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a b s t r a c t

The standard signal detection theory (SDT) approach to m-alternative forced choice uses the proportion
correct as the outcome variable and assumes that there is no response bias. The assumption of no bias
is not made for theoretical reasons, but rather because it simplifies the model and estimation of its
parameters. The SDT model for mAFC with bias is presented, with the cases of two, three, and four
alternatives considered in detail. Two approaches to fitting the model are noted: maximum likelihood
estimation with Gaussian quadrature and Bayesian estimation with Markov chain Monte Carlo. Both
approaches are examined in simulations. SAS and OpenBUGS programs to fit the models are provided,
and an application to real-world data is presented.

© 2012 Elsevier Inc. All rights reserved.
On each trial of a two-alternative forced choice (2AFC) task, two
events (e.g., signal and noise) are presented and the observer’s task
is to indicate which event was the signal. The approach can readily
be extended toM alternatives, resulting in anm-alternative forced
choice (mAFC) task. The standard signal detection theory (SDT)
approach to mAFC uses the proportion correct as the outcome
variable and assumes that there is no response bias (e.g., see
Macmillan & Creelman, 2005; Wickens, 2002). The assumption of
no bias is not made for theoretical reasons, but rather because it
simplifies the model and estimation of its parameters.

Although the importance of bias was recognized and discussed
early on by mathematical psychologists (e.g., Luce, 1963), the
approach was not developed in any detail for SDT models ofmAFC
because of the complexity of the resulting models. For example,
Luce (1963) noted that ‘‘The generalization of the two-alternative
signal detectabilitymodel to the k-alternative forced-choice design
is comparatively complicated if response biases are included and
very simple if they are not.’’ (p.137).1 Similarly, Green and Swets
(1988), in a discussion of response bias in forced choice, noted
that ‘‘Our discussion is limited to the two-alternative forced-
choice procedure; the analysis for larger numbers of alternatives
is complex and, at this date, has not been accomplished.’’ (p. 409).

The SDT model for mAFC with bias is presented here. In
particular, a general decision rule and structural model for forced
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choice are presented. These can then be used to derive the
mAFC model with any number of alternatives. As examples, SDT
models for two, three, and four alternatives are derived. As has
long been recognized, the models present a bit of a challenge
to fit. Two approaches to fitting the models are discussed:
maximum likelihood estimation with Gauss–Hermite quadrature
and Bayesian estimation with Markov chain Monte Carlo. Both
approaches are shown to be simple to implement in standard
software. A SAS program, for the maximum likelihood approach,
and an OpenBUGS program, for the Bayesian approach, are
provided.

The first section briefly reviews the basic SDT situation where
an observer responds ‘‘yes’’ or ‘‘no’’ in response to a presentation
of a signal or noise. Next, the extension to two-alternative forced
choice, recognizing effects of bias, is shown. The approach can be
immediately extended to three or more alternatives. Approaches
to estimation via maximum likelihood and Bayesian methods
are noted, and simulations that examine parameter recovery are
presented. An application to real-world data is also presented.

1. SDT and the yes/no procedure

The simplest detection situation consists of the presentation of
a signal or noise, with an observer responding yes (signal present)
or no (signal absent). Let the variable X indicate presentation
of a signal or noise, with 1 = signal and 0 = noise, and the
variable Y indicate the observer’s response, with 1 indicating a
response of ‘‘yes’’ (signal perceived to be present) and 0 indicating
a response of ‘‘no’’ (signal perceived to be absent). A basic idea
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Fig. 1. An illustration of the signal detection approach for detection (left panel) and
two-alternative forced choice (right panel). In detection (left panel), the observer
reports a signal because their perception (solid circle) in this case is above the
criterion; in 2AFC (right panel), the observer chooses Position 1 because their
Position 1 perception (solid circle) in this case is above their Position 2 perception
(open circle).

in SDT is that the effect on an observer of a presentation of a
signal or noise can be represented by a random variable, 9 , which
is a psychological representation of the event. In applications
in psychophysics, for example, the psychological representation
is usually interpreted as the observer’s perception of the event,
whereas in other applications, 9 has other interpretations (e.g., as
the familiarity of a word in recognition memory research).

The observer is viewed in SDT as arriving at an observed
response, that is, a decision of yes or no, by using the random
variable 9 along with a decision rule,

Y = 1 if 9 > c,
Y = 0 if 9 ≤ c.

Thus, the observer responds ‘‘yes’’ if their perception on any given
trial is larger than the decision criterion c , otherwise they respond
‘‘no’’. The location of the decision criterion c can be viewed as
reflecting the observer’s ‘‘bias’’ towards a response of yes or no
(see Macmillan & Creelman, 2005), and so c is the same as the
bias parameter b discussed below for forced choice. Indeed, an
important aspect of SDT is that it recognizes the basic role of
response bias in detection, and so it is somewhat odd that bias has
tended to be ignored in signal detection approaches tomAFC.

The left panel of Fig. 1 illustrates the decision rule for the yes/no
situation. The two distributions represent perceptual distributions
associated with signal and noise, with the signal distribution
shifted to the right. The distance between the distributions is d and
the location of the response criterion is shown by the vertical line
marked as c . The solid dot shows the location of a realization from
the signal distribution on a trial where the signal was presented.
The observer knows that the realization is above the criterion (the
vertical line) and so responds ‘‘yes’’, which in this case is a correct
response.

The structural model (see DeCarlo, 2010) links the psychological
variable to the presented event,

9 = dX + ε

where ε represents random variation in the perception. It follows
that the mean of 9 , that is, the conditional expectation E(9|X), is
at zero for a noise presentation (X = 0), assuming E(ε) = 0, and
is at d for a signal presentation (X = 1). If ε ∼ N(0, 1), it follows
from the decision rule and structural model that

p(Y = 1|X) = p(9 > c | X) = p(dX + ε > c)
= p(ε > c − dX) = 1 − 8(c − dX),

= 8(−c + dX),

where 8 is the cumulative distribution function (CDF) for the
normal distribution. Note that the last step uses the relation 1 −

8(a) = 8(−a), which follows from the symmetry of the normal
distribution. The above shows that the basic SDT model with
normal underlying distributions is
p(Y = 1|X) = 8(−c + dX), (1)

which is simply a probit model (e.g., see DeCarlo, 2003). Themodel
can also be more generally written for distributions other than the
normal by replacing the normal CDF with other CDF’s (see below).
This is easily implemented by noting that Eq. (1) can be written
as a generalized linear model, with the underlying distributions
corresponding to the inverse of a link function (see DeCarlo, 1998).

The data for the basic signal detection situation consist of a two
by two table, say with X as rows and Y as columns. The essential
information is provided by the proportion of ‘‘hits’’ (response of
yes when a signal is present) and the proportion of ‘‘false alarms’’
(response of yes when a signal is absent). Thus, there are two
observations, the proportion of hits and the proportion of false
alarms, and two parameters, c and d, and so the basic SDT model
is exactly identified. This means that one can directly solve for each
parameter. For example, it follows from Eq. (1) that the probability
of a hit is

p(Y = 1|X = 1) = 8(−c + d),

and the probability of a false alarm is

p(Y = 1|X = 0) = 8(−c).

It follows that

d = 8−1
[p(Y = 1|X = 1)] − 8−1

[p(Y = 1|X = 0)],

where, for normal distributions, d is the traditional distance
measure d′ (d is more general notation, for distributions other than
the normal, see DeCarlo, 1998). The above shows that one can
obtain an estimate of d simply by taking inverse normal transforms,
8−1, of the proportion of hits and the proportion of false alarms
and subtracting. Similarly, solving for the criterion gives

c = −8−1
[p(Y = 1|X = 0)].

Using the above equations along with the observed response
proportions (which provide estimates of the probabilities) gives
estimates of c and d. Of course, a better approach is to fit Eq. (1),
because estimates of the standard errors of the parameter
estimates are then also obtained.

2. SDT and 2AFC with bias

In 2AFC, two pieces of information are available to the observer
on each trial, namely the perception of the event in the first
position and the perception of the event in the second position,
where ‘‘position’’ refers to either spatial position (left or right)
or temporal position (first or second). A response of Y = 1
indicates that the first position is chosen as the signal, and Y = 2
indicates that the second position is chosen as the signal. Let the
perception associated with the first position be denoted by 91
and the perception associated with the second position by 92. The
decision rule, assuming no bias, is

Y = 1 if 91 > 92,

Y = 2 if 91 ≤ 92.

The view in SDT is that the observer has information about their
perceptual magnitudes, and so, as shown by the above decision
rule, they simply choose as the signal the position with the largest
perception. The right panel of Fig. 1 illustrates the decision rule for
2AFC. The figure shows the situation where the signal is presented
in the first position. The solid dot shows, for a given trial, the
location of a perception associatedwith Position 1 (signal)whereas
the open dot shows a perception associatedwith Position 2 (noise).
The observer knows that the solid observation is above the open
observation, just as they know that the observation is above the
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criterion in the yes/no situation, and so they choose Position 1 as
the signal, which in this case is a correct decision.

As has long been recognized (e.g., Luce, 1963; also see
Macmillan & Creelman, 2005; Wickens, 2002), the choice might
also be affected by response bias. This can bemodeled by using one
position as the reference and allowing bias to be associated with
the other position (i.e., the bias is relative to the reference position).
The approach here is to use the last position as the reference and
to then use bias parameters for the other positions (one could also
use bias parameters for all positionswith a sum to zero constraint).
Thus, the decision rule for 2AFC with bias is

Y = 1 if 91 + b > 92 (2)
Y = 2 if 91 + b ≤ 92,

where b is a bias parameter, with positive values indicating bias
for the first position over the second position, and negative values
indicating bias for the second position.

It follows from the decision rule of Eq. (2) that

p(Y = 1|S = 1) = p(92 < 91 + b),

where p(Y = 1|S = 1) is the probability that the observer chooses
Position 1 given that the signal is in Position 1 (a hit). The usual
next step (e.g., Macmillan & Creelman, 2005; Wickens, 2002) is
to take differences in order to derive the model (see Appendix A).
Observers in SDT, however, are assumed to have information about
their perceptualmagnitudes, and so they knowwhich realization is
larger, as illustrated in Fig. 1, without having to take differences. In
other words, the view here is that observers can directly evaluate
92 < 91 without having to subtract 91 and 92 (i.e., the process
is not one of differencing). This distinction does not make any
difference for 2AFC, in that the resulting models are identical,
however the two approaches can lead to different models for
m > 2.

The SDT model can be derived directly from the above as
follows. First, note that a structural model for 2AFC is

9i = dXi + εi,

for i = 1, 2, with X1 = 1 for signal in Position 1 and 0 otherwise,
and X2 = 1 for signal in Position 2 and 0 otherwise. As before,
the structural model shows how the perception is related to the
presentation of a signal or noise (i.e., the conditional mean of
the perceptual distribution is shifted by d). The decision rule and
structural model together give, for a signal in Position 1,

p(Y = 1|X1 = 1, X2 = 0) = p(92 < 91 + b)
= p(ε2 < b + d + ε1).

Note that, for a given realization (value) of ε1, say e1, the above
conditional probability is simply,

p(Y = 1|X1 = 1, X2 = 0, ε1 = e1) = p(ε2 < b + d + e1)
= F(b + d + e1)

where F is a cumulative distribution function (CDF). The response
probability, not conditional on e1, can then be found by integration,

p(Y = 1|X1 = 1, X2 = 0) =


∞

−∞

F(b + d + e1)f (e1)de1

where f is a probability density function (PDF). Similarly, it can be
shown that, for a signal in Position 2,

p(Y = 1|X1 = 0, X2 = 1) =


∞

−∞

F(b − d + e1)f (e1)de1.

The above two equations together give the signal detection model
for 2AFC with bias,

p(Y = 1|Z) =


∞

−∞

F(b + dZ + e1)f (e1)de1,
where Z = X1 − X2, that is, Z = 1 indicates that the signal is at
Position 1 and Z = −1 indicates that the signal is at Position 2.

The above is a general SDTmodel for 2AFCwith bias. The normal
theory version of the model follows by using the normal CDF (i.e.,
8) and the normal probability density function (i.e., φ) for F and f ,
respectively,

p(Y = 1|Z) =


∞

−∞

8(b + dZ + e1)φ(e1)de1. (3)

Eq. (3) is the normal theory version of the SDTmodel for 2AFCwith
bias. It is important to note that the model was derived simply
by assuming that, on any given trial, the observer chooses the
alternative associated with the largest perceptual magnitude. The
approach can also be immediately generalized tom > 2; examples
for m = 3 and 4 are given below.

The 2AFC model of Eq. (3), and its generalizations to mAFC, can
be fit directly, as shown below. However, Eq. (3) has generally not
been used for 2AFC because a simplification is available (for 2AFC
with normal distributions, but not in general for distributions other
than the normal or formAFC). In particular, it can be shown that

∞

−∞

8(b + d + e1)φ(e1)de1 = 8


b + d
√
2


,

and
∞

−∞

8(b − d + e1)φ(e1)de1 = 8


b − d
√
2


.

It follows from these relations that Eq. (3) can be re-written as,

p(Y = 1|Z) = 8


b + dZ

√
2


. (4)

An advantage of Eq. (4) is that, as for the yes/no situation,
it is a simple probit model, and so it can easily be fit with
standard software (e.g., DeCarlo, 2003) using maximum likelihood
estimation (see Myung, 2003). Note that, once again, there are two
observations (i.e., hits and false alarms) and two parameters, b and
d (i.e., themodel is exactly identified), and so one can solve directly
for the parameters in terms of (inverse normal) transformed hits
and false alarms, as done above.

Note that Eq. (4) also follows from a derivation in terms of
differences, which is the usual textbook approach in SDT (e.g.,
Macmillan & Creelman, 2005; Wickens, 2002); this is shown
in Appendix A. There is also a large closely related literature
on ‘‘Thurstonian’’ modeling, Luce’s choice theory, random utility
models (e.g., see Bock & Jones, 1968; Böckenholt, 2006; Luce,
1994; Yellott, 1977), and ranking models (see Critchlow, Fligner, &
Verducci, 1991). Thurstone (1927), for example, used differenced
random variables in his presentation of the law of comparative
judgment. Here it is simply noted that the view in SDT is that
observers have information about their perceptual magnitudes,
and so they simply select, as the signal, the alternative associated
with the largest perceptual magnitude, and so the process need not
involve differencing. The mAFC SDT models are developed here
directly from this idea – choose the alternative with the largest
perceptual magnitude – without the use of differencing.

2.1. Traditional approach: probability of a correct response

As noted above, a common approach to forced choice is to
analyze the total proportion correct, and not the proportion of
hits and false alarms separately (or, equivalently, the proportion
correct for each position). In practical terms, this means that,
instead of keeping track of the proportion of times the signal was
correctly chosen when it was in Position 1 and the proportion of
times the signal was correctly chosen when it was in Position 2,
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only the total proportion of times the signal was correctly chosen
is kept track of, in which case information about possible position
bias is lost.

The implications of the above can be clarified by explicitly
deriving themodel for the probability of a correct response (i.e., the
total proportion correct provides an estimate of the probability of
a correct response). Let Z = 1 indicate that the signal is presented
at Position 1 and Z = −1 indicate that the signal is at Position 2.
The probability of a correct response, pC , is then
pC = p(Y = 1, Z = 1) + p(Y = 2, Z = −1)

= p(Z = 1)p(Y = 1|Z = 1)
+ p(Z = −1)[1 − p(Y = 1|Z = −1)].

That is, a correct response occurs if the observer chooses Position 1
when the signal is in Position 1 or the observer chooses Position
2 when the signal is in Position 2. Note that the conditional
probabilities in the above are given by the SDT model of Eq. (4),
and so

pC = p8

b + d
√
2


+ (1 − p)8


−b + d

√
2


,

where p is shorthand for p(Z = 1). Note that the model has two
parameters, b and d, but only one observation is available (the
proportion correct, which provides an estimate of pC ). Thus, there
are fewer parameters than observations and the model is under-
identified. However, if it is assumed that there is no bias (b = 0),
then the above reduces to

pC = 8


d

√
2


,

as, for example, given by Eq. (7.6) of Macmillan and Creelman
(2005). The above model is exactly identified, and so one can use
the observed proportion correct (an estimate of pC ) to obtain an
estimate of d. This is basically themotivation for assuming zero bias
in 2AFC. Note that, by using the observed proportion correct as the
outcome, one has lost information about bias (because information
about position is ignored). On the other hand, keeping track of the
position chosen allows one to use Eq. (3) or (4) and does not require
any assumptions about bias. As shown below, this is also the case
for models withm > 2.

3. SDT andm-alternative forced choice

The generalization of the SDT approach to m-alternatives
follows immediately from the above ideas. As before, observers are
assumed to have information about their perceptual magnitudes,
and so once again the observer simply selects, on any given trial,
the alternative associated with the largest perceptual magnitude.
Thus, a signal detection approach to mAFC does not require any
new assumptions, and the decision rule is exactly the same as for
2AFC, simply extended to more alternatives. The model is shown
next for three and four alternatives; the approach is immediately
applicable tom-alternatives.

3.1. The decision rule for 3AFC

The SDT approach assumes that the observer chooses, as
the signal, the alternative associated with the largest perceptual
magnitude, exactly as for 2AFC. Thus, the SDT approach can easily
be applied to forced choice with any number of alternatives. For
example, the decision rule for 3AFC,without bias, can be compactly
written as,
Y = i if 9i > max(9j, 9k),

for i = 1, 2, or 3 (for Position 1, 2, or 3), wheremax is themaximum
of the set of values. The above decision rule is easily generalized to
allow for response bias, as done below. First examined, however,
is the traditional approach, where the probability of a correct
response is used as the outcome variable and it is assumed that
there is no bias.
3.2. Traditional approach: probability of a correct response and 3AFC

For 3AFC, a correct response can be made in one of three ways:
when the signal is in the first position and the first position is
chosen, the signal is in the second position and the second position
is chosen, or the signal is in the third position and the third position
is chosen. The traditional approach, however, ignores this and
simply considers the total number of correct responses (and so
once again information is lost).

In the traditional approach, the signal is chosen (ignoring the
actual position chosen) if 9S > max(9N1, 9N2), where 9S is the
perceptual distribution associatedwith signal and9N1 and9N2 are
perceptual distributions associated with noise (for two positions).
Note that it is assumed that there is no response bias. It follows that
the probability of a correct response is

pC = p(Y = S) = p[max(9N1, 9N2) < 9S],

where p(Y = S) is the probability that the observer chooses the
signal (i.e., a correct response). The above requires finding the
maximum of a signal in noise, which is a well-known problem in
communication systems, aswas recognized early on by Tanner and
Swets (1954).

Note that

p[max(9N1, 9N2) < 9S] = p(9N1 < 9S ∩ 9N2 < 9S).

The above events are not independent, given the dependence of
both on the random variable 9S , however they are independent
for a given realization of 9S = ψS , and so

p (Y = S|9S = ψS) = p (9N1 < ψS ∩ 9N2 < ψS)

= p (9N1 < ψS) p (9N2 < ψS) ,

= FN1 (ψS) × FN2 (ψS) = [FN (ψS)]
2,

where FN1 (ψS) and FN2 (ψS) are cumulative distribution functions
for the twonoise distributions (which are both the same, and so the
subscriptsN1 andN2 can be replaced byN). Note that the approach
can easily be generalized tom-alternatives, which gives

p (Y = S|9S = ψS) = [FN (ψS)]
m−1.

To get the unconditional probability of a correct response, one can
integrate over ψS ,

p(Y = S) =


∞

−∞

[FN(ψS)]
m−1fS(ψS − d)dψS

where fS is a probability density function for the signal perception,
and d is the usual distance measure (not to be confused with dψS ,
which is the derivative with respect to ψS). If one assumes normal
distributions, so that 9N ∼ N(0, 1) and 9S ∼ N(d, 1), then the
above is

pC =


∞

−∞

[8(ψS)]
m−1φS(ψS − d)dψS, (5)

where φS is the normal probability density function for signal.
Eq. (5) can be found in one form or another in many references
(e.g., Green & Dai, 1991; Hacker & Ratcliff, 1979; Macmillan &
Creelman, 2005; Swets, Tanner, & Birdsall, 1961; Tanner & Swets,
1954; Wickens, 2002). Hacker and Ratcliff (1979) provide tables of
the proportion correct and d for the normal model for a number
ofm-alternative situations (also see Frijters, Kooistra, & Vereijken,
1980). Using the approach shown below, however, one can directly
fit Eq. (5) and obtain estimates of d and its standard error.

As for 2AFC, the ‘‘standard’’ model of Eq. (5) is quite wasteful
of the data, given that it reduces all of the observations to one—
the total proportion correct. For example, for 3AFC, there are six
proportions in the three by three table that are free to vary. This
is shown in Table 1, which presents data that are analyzed below.
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Table 1
Response frequencies for two conditions of a 3AFC experiment (Ennis & O’Mahony,
1995).

Prior stimuli Sequence ‘‘1’’ ‘‘2’’ ‘‘3’’ Total

WW SWW 54 5 1 60
WW WSW 0 60 0 60
WW WWS 5 3 52 60

SS SWW 40 12 8 60
SS WSW 6 49 4 59
SS WWS 6 5 49 60

Notes: WW = water, water prior stimuli; SS = salt water, salt water prior
stimuli; SWW= salt-water–water sequence, and similarly for the other sequences,
responses of ‘‘1’’, ‘‘2’’, and ‘‘3’’ indicate the frequencywith which the 1st, 2nd, or 3rd
stimulus was chosen as S.

Consider the first three by three table at the top of Table 1. The
three rows of the table are forwhen the signalwas presented in the
first, second, or third position, whereas the three columns are for
a choice by the observer of the first, second, or third position. Note
that the row totals are fixed by design (i.e., they depend on how
many times the signal was presented in each position, which is 60
in this case), and so only two of the three values in each row are
free to vary (because the summust equal 60). Thus, two free values
per row by three rows gives a total of 2 × 3 = 6 observations that
are free to vary, and so there are six pieces of information available.
Proportion correct, on the other hand, is simply the sumof themain
diagonal (divided by the total), and so six pieces of information are
reduced to one. In contrast, the SDT model with bias developed
here uses all of the information available in the data.

3.3. SDT and 3AFC with bias

In 3AFC, the observer has, on each trial, three perceptions, each
associated with one of the three positions. Response bias can be
introduced by including bias parameters (bi) in the decision rule,
exactly as done for 2AFC above. The bias again reflects the added
or subtracted value of the position, relative to a reference position.
For three positions, there are two bias parameters, denoted here as
b1 and b2 for Positions 1 and 2, respectively, with the third position
serving as the reference. The decision rule for 3AFC with bias is,

Y = 1 if 91 + b1 > max(92 + b2, 93),

Y = 2 if 92 + b2 > max(91 + b1, 93), (6)
Y = 3 if 93 > max(91 + b1, 92 + b2).

That is, Position 1 is chosen (Y = 1) if the associated perception
(91) is greater than the perceptions for Positions 2 and 3, including
effects of bias (b1 and b2), and similarly for the other responses.
Note that the decision rule is the same as for 2AFC: choose
the alternative with the largest perceptual magnitude, including
effects of bias.

The structural model is

91 = dX1 + ε1,

92 = dX2 + ε2, (7)
93 = d(1 − X1 − X2) + ε3,

where X1 = 1 for signal in Position 1 and zero otherwise, and
X2 = 1 for signal in Position 2 and zero otherwise. The decision
rule and structural model together give the SDTmodel for 3AFC, in
the samemanner as for 2AFC above. The result is six equations that
correspond to the six cells of the three by three table that are free
to vary, as discussed above.

More specifically, it follows from the decision rule that the first
position is chosen if

p(Y = 1|X1, X2) = p[max(92 + b2, 93) < 91 + b1]
= p[(92 + b2 < 91 + b1) ∩ (93 < 91 + b1)].
One can develop the model by conditioning on 9 (as done above
for the traditional approach), however it ismore informative to use
the structural model and condition on ε, as done for 2AFC above.
In particular, substituting the structural model given above and
rearranging terms gives

p(Y = 1|X1, X2) = p[(ε2 < b1 − b2 + dX1 − dX2 + ε1)

∩ (ε3 < b1 + dX1 − d(1 − X1 − X2) + ε1)].

The above events are independent conditional on a given value of
ε1 = e1,

p(Y = 1|X1, X2, ε1 = e1)
= p(ε2 < b1 − b2 + dX1 − dX2 + e1)p(ε3 < b1

+ dX1 − d(1 − X1 − X2) + e1)
= F(b1 − b2 + dX1 − dX2 + e1)

× F [b1 + dX1 − d(1 − X1 − X2) + e1].

The unconditional probability can then be found, as above, by
integrating,

p(Y = 1|X1, X2) =


∞

−∞

F(b1 − b2 + dX1 − dX2 + e1)

× F [b1+ dX1 − d(1 − X1 − X2) + e1]f (e1)de1.

The above gives three equations, for the probabilities of choosing
Position 1 when the signal is in Position 1, 2, or 3 (indicated by the
values of X1 and X2). A second set of three equations can be derived
in a similar manner for the choice of Position 2, which gives

p(Y = 2|X1, X2) =


∞

−∞

F(−b1 + b2 −dX1 + dX2 + e2)

× F [b2+ dX2 − d(1 − X1 − X2) + e2]f (e2)de2.

The model (and programs, see Appendix B) can be simplified by
letting Z = X1 − X2 (as for 2AFC), Z1 = 1 − 2X1 − X2, and
Z2 = 1 − X1 − 2X2, which gives

p(Y = 1|Z) =


∞

−∞

F(b1 − b2 + dZ + e1)F(b1 − dZ1 + e1)

× f (e1)de1

p (Y = 2|Z) =


∞

−∞

F(−b1 +b2 − dZ + e2)F(b2 − dZ2 + e2)

× f (e2)de2. (8)

Eq. (8) is a general SDT model for 3AFC with bias. Using 8 for
F and φ for f gives the normal theory version of the model. The
approach can also be immediately applied tomAFCwithm > 3; as
an example, themodel for 4AFC is presented below. Eq. (3) for 2AFC
and Eq. (8) for 3AFC show that including bias in themodel formAFC
results in the inclusion of bias parameters in the psychometric
function.

Note that the two components of Eq. (8) are conditioned on
different random variables, ε1 and ε2, and so the model in essence
consists of two binomial models (c.f. Begg & Gray, 1984). In
practical terms, thismeans that, in order to fit themodel, responses
Y of 1, 2, and 3 (indicating the position chosen) must be recoded
into two dichotomous responses, say Y1 and Y2, where Y1 = 1
indicates that Position 1 was chosen and Y1 = 0 indicates that
Position 2 or 3 was chosen; Y2 = 1 indicates that Position 2 was
chosen and Y2 = 0 indicates that Position 1 or 3 was chosen. The
two sets of binary models, that is for responses of Y1 = 1 (i.e.,
Y = 1 in the first three equations of Eq. (8)) and Y2 = 1 (i.e., Y = 2
in the second three equations), can then be simultaneously fit, as
shown by the programs provided in Appendix B.
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3.4. Fitting the mAFC SDT model with bias

As has long been recognized, fitting the SDT version of the
mAFC model with bias presents a bit of a challenge. In contrast to
Eqs. (1) and (4), for example, Eq. (8) has a more complex form and
involves an integral with limits from minus to plus infinity. There
are, however, several approaches available for fitting the model.
One involves the use of maximum likelihood estimation (MLE) and
Gaussian quadrature, whereas the second involves the use of a
Bayesian approachwithMarkov chainMonte Carlo. It is beyond the
scope of this article to introduce and explain these approaches in
any detail, and so it is simply shown how to use the approaches to
fit themAFC SDTmodels presented here, with references to articles
that discuss details of the methods, and programs provided in an
Appendix.

A first step is to recognize that the mAFC SDT model can be
viewed as a type of nonlinear mixed model (NLMM; Davidian &
Giltinan, 1995; Lindstrom & Bates, 1990; Vonesh & Chinchilli,
1996), and so it can be fit using methods developed for NLMMs.
Note that this places m-alternative forced choice SDT models
within a well developed statistical framework. The use of a special
case of NLMMs, namely generalized linear mixed models (GLMMs;
see Breslow & Clayton, 1993; Fahrmeir & Tutz, 2001; McCulloch &
Searle, 2001), for SDT has earlier been noted (DeCarlo, 1998).

The model can be expressed as follows. First note that the
joint probability of the dichotomous responses Y1 and Y2 defined
above is given by the product of their separate probabilities,
because of independence, which follows from the assumption of
independence of ε1 and ε2. Let the responses Y1 and Y2 be denoted
by Yj for j = 1 and 2. The dichotomous response variables are
assumed to follow Bernoulli distributions with parameters pj,

Yj ∼ Bernoulli(pj). (9)

Next, the Bernoulli parameters (pj) are given by the 3AFC model of
Eq. (8), which can be written more compactly as,

pj =


∞

−∞

8(η1j)8(η2j)φ(ej)dej, (10)

where η1j and η2j are linear predictors for Y1 and Y2. Note that there
are different linear predictors for Y1 and Y2, which is why there are
four predictors in the next equation. In particular, as shown by Eq.
(8), the linear predictors for the 3AFC SDT model are

η11 = b1 − b2 + dZ + e1
η12 = −b1 + b2 − dZ + e2
η21 = b1 − dZ1 + e1 (11)
η22 = b2 − dZ2 + e2.

Note that the linear predictors include random effects (ej), as is
the usual case for NLMMs and GLMMs.

The 3AFC SDT model with normal distributions is specified
by the above. Eqs. (9) through (11) basically show how to
implement the model for both the maximum likelihood and
Bayesian approaches discussed below (compare the equations to
the syntax given in Appendix B). A final detail has to do with how
to deal with the intractable integral in Eq. (10). Two approaches
are noted here: maximum likelihood with Gaussian quadrature
and a Bayesian approach. The first approach is implemented with
a SAS program given below; the second approach is implemented
with the Bayesian software OpenBUGS (Thomas, O’Hara, Ligges, &
Sturtz, 2006).

3.5. MLE and Gaussian quadrature

Gauss–Hermite quadrature is used to approximate an integral of
a function that ismultiplied by another function, where the second
function has the shape of a normal density, that is,
∞

−∞

f (ej) exp(−e2j )dej,

where notation relevant to the models discussed here is used. The
basic idea of Gauss–Hermite quadrature is that the above can be
approximated by a finite weighted sum,

∞

−∞

f (ej) exp(−e2j )dej ≈

Q
q=1

f (ejq)wq,

where ejq are quadrature nodes,wq areweights, andQ is the number
of nodes. For example, using the above, the probability of Eq. (10)
can be approximated as

pj ≈

Q
q=1

8(η1jq)8(η2jq)wq,

with

η11q = b1 − b2 + dZ + e1q
η12q = −b1 + b2 − dZ + e2q
η21q = b1 − dZ1 + e1q
η22q = b2 − dZ2 + e2q,

where the Gaussian nodes (ejq) and weights (wq) are used in
place of ej and φ(ej), respectively. Thus, this approach replaces the
intractable integral of Eq. (10) with a numerical approximation,
and the resulting approximated likelihood can then be maximized
with standard algorithms, giving maximum likelihood estimates
of the parameters. This approach is implemented in the NLMIXED
procedure of SAS, except that NLMIXED uses adaptive Gaussian
quadrature, as discussed by Pinheiro and Bates (1995); (also see
Liu& Pierce, 1994). Lesaffre and Spiessens (2001) cautioned against
using too few quadrature points and noted that the use of adaptive
quadrature, as in NLMIXED, solved the problem for an example
they presented.

With respect to the SAS program given in Appendix B, the first
part of the program simply recodes the variables and gets the data
into the form needed for the NLMIXED procedure. Note that the
model is fit as a multivariate nonlinear mixed model. Also note
that indicator variables (i1 and i2), which indicate whether the
response is Y1 or Y2, are created. The program includes a ‘‘trick’’,
which is that the indicators are used to select the appropriate linear
predictors for Y1 and Y2. The linear predictors are denoted as eta1
and eta2 in the program, and are transformed by the normal CDF
(phi in the program) and multiplied, as in Eq. (10). To approximate
Eq. (10), as discussed above, adaptive Gaussian quadrature with
20 nodes is used (using more nodes did not appear to change the
results). The programalso shows that the responses Yj are specified
as Bernoulli variables (with the ‘binary’ command) and that the εj
(denoted as eps1 and eps2 in the program) are specified as being
random variables with variances of one and a covariance of zero.

Note that a similar approach has been used for item response
theory (IRT) models, which can also be expressed as NLMMs and
are closely related to the models presented here. The approach
is usually discussed in IRT as marginal maximum likelihood (e.g.,
de Ayala, 2009) because, as shown in Eq. (8), the random effect
(εj in this case) is integrated out of the conditional response
probability (and so the ‘marginal’ likelihood is maximized). Some
useful references that discuss relevant details of NLMIXED (and
other programs) in this context are Rijmen, Tuerlinckx, De Boeck,
and Kuppens (2003) and Sheu, Chen, Su, and Wang (2005).
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3.6. Bayesian estimation and MCMC

For the Bayesian approach, the statistical model is again the
same as in Eqs. (9) through (11), however priors are now specified
for the model parameters d, b1, and b2. The priors are used,
along with the likelihood (which follows from the model), to get
posteriors,

posterior ∝ prior × likelihood.

Markov chain Monte Carlo (MCMC) methods can be used to
sample from the posterior distributions of the parameters given
the observed data.

The OpenBUGS program in Appendix B shows that the model
is again specified exactly as given in Eqs. (9) through (11), with
Yj having Bernoulli distributions (using the ‘dcat’ command) and
εj (eps1 and eps2) having independent N(0, 1) distributions. Note
that the OpenBUGS syntax uses the precision, which is the inverse
of the variance, 1/σ 2, instead of the variance, and so 0.1 in the
program indicates a variance of 10. Priors are specified for the
parameters as follows,

d ∼ N(0,
√
10)

b1 ∼ N(0,
√
10)

b2 ∼ N(0,
√
10),

which can be viewed as being ‘‘mildly’’ informative (in practice,
one usually has knowledge about typical estimates obtained in
SDT studies). Indeed, an advantage of the Bayesian approach
over maximum likelihood is that the Bayesian approach allows
one to incorporate information from previous research. For the
real-world example analyzed below, the reader can perform a
sensitivity analysis and verify that the results are unchanged if
non-informative priors (e.g., normal with a variance of 100) are
instead used. As noted in the program in Appendix B, one can
also use the bounds function of OpenBUGS to restrict d to positive
values.

The Bayesian approach has also been used for IRTmodels,with a
useful reference being Patz and Junker (1999), who provide details
about Metropolis–Hastings sampling, which is used for the forced
choice signal detection models discussed here (i.e., it is used in
OpenBUGS); also see Albert (1992). Related work for Bayesian
Thurstonian models is discussed by Ansari and Iyengar (2006) and
Yao and Böckenholt (1999). Some useful textbooks on Bayesian
analysis are Congdon (2005), Gelman, Carlin, Stern, and Rubin
(2004), Jackman (2009), and Lynch (2007).

It should be noted that although the maximum likelihood
approach with Gaussian quadrature and the Bayesian approach
with Markov chain Monte Carlo come from conceptually different
backgrounds, they are actually similar (apart from the introduction
of priors for the model parameters in the Bayesian approach). For
example, with respect to approximating the integral, the nodes
and weights in Gaussian quadrature are fixed, whereas they can
be viewed in the Monte Carlo approach as being random, as was
noted by Pinheiro and Bates (1995).

3.7. Simulations: 3AFC with bias

Simulations were conducted in order to obtain information
about parameter recovery for 3AFC with bias using both ap-
proaches, MLE and Bayesian. A ‘‘small’’ sample size was used
(recovery appeared to be quite good for large sample sizes). For ex-
ample, it is typical in applied research (e.g., in memory research)
to obtain 100–200 observations per observer in a single session;
sample sizes of this sort are also found in other applications, such
as the food science example discussed below (sample size of 180).
A sample size of 150 was used for the simulation, with the signal
appearing in each position 50 times. The population parameters
used were similar to those found for analyses of some real-world
data, with d = 1.5, b1 = 0.6 (small bias for the first position over
the third) and b2 = −0.4, and so the first position is the most pre-
ferred, the third position is the next preferred, and the second po-
sition is the least preferred (but the bias is ‘small’ in both cases).
SAS was used to generate 50 datasets.

For the maximum likelihood approach, SAS was run for each
dataset with 20 quadrature points, whereas for the Bayesian
approach, OpenBUGS was run for each dataset, with 5000 burn-
ins and 20,000 iterations (per dataset). The use of 20,000 iterations
appeared to be adequate for convergence, in that the Monte Carlo
errors, which reflect between-simulation variability (see Flegal,
Haran, & Jones, 2008; Geyer, 1992; Koehler, Brown, & Haneuse,
2009) were less than 5% of the posterior standard deviations (the
Monte Carlo error and posterior standard deviations are both given
in the OpenBUGS output). This has been suggested as a criterion for
convergence (e.g., see Spiegelhalter, Thomas, Best, & Lunn, 2003);
inspection of multiple chains also suggested convergence.

Table 2 presents the results. For both simulations, the table
shows the average parameter estimates over 50 replications,
the average standard error (or posterior standard deviation), the
percent coverage, and the percent of cases that were significant at
the 0.05 level. For MLE, the percent coverage is for 95% confidence
intervals, which have an interpretation in terms of containing the
population value in repeated sampling. In the Bayesian approach,
percent coverage is for 95% credible intervals, which have an
interpretation in terms of the probability that the parameter is in
the interval. Similarly, the percent significant is the percent of cases
where zero was not in the 95% confidence interval, for MLE, or
not in the 95% credible interval, for the Bayesian approach; both
provide information about the power to detect a nonzero effect
of a given size. The top part of Table 2 shows results for MLE
with NLMIXED of SAS; the lower part shows results for Bayesian
estimation with OpenBUGS. The table shows that the results for
the two approaches are virtually identical, and so they will be
discussed together.

Table 2 shows that the average estimates of d, b1, and b2 are
quite close to their population values (with generally less than
10% error), and so the results suggest that parameter recovery
for both approaches is quite good, even with a small sample size.
The percent coverage obtained for b1 and b2 (94%) is close to the
nominal value of 95%, whereas that for d is slightly lower (90%),
but still quite high. The ‘% significant’ column shows that d was
detected as being non-zero in 100% of the cases. Of particular
interest are the significance results for the bias parameters,
because in practice one wants to know if there is non-zero bias.
Table 2 shows that there is adequate power (84% for MLE and 92%
for Bayesian) to detect the larger value of bias, b1 = 0.6, however
the power for the smaller negative bias, b2 = −0.4, is clearly
inadequate at 36%–38%. The results provide useful information
about the magnitude of bias that can be detected for 3AFC with
a sample size of 150 (in a balanced design).

To summarize, the results suggest that parameter recovery for
3AFC is good for both approaches (MLE and Bayesian), even with
a fairly small sample size. Of course, this conclusion is limited to
the situation examined here (which is similar to the real-world
example analyzed below). Given that it is quite simple to generate
data and fit the model, the recommendation here is to conduct at
least a small simulation in order to obtain some information about
parameter recovery and power in the particular situation being
studied.

3.8. A real-world example: 3AFC with bias

An extensive search for 3AFC data found that in virtually all
cases where researchers provided their data, only the proportion
of correct responses was given (ignoring position), and not the
full three by three table. An exception was a study on taste that
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Table 2
Results for maximum likelihood and Bayesian estimation for a 3AFC simulation, N = 150.

Maximum likelihood with NLMIXED of SAS

Parameter Pop. value Average estimate Av. SE % Coverage % Significant

d 1.50 1.54 0.16 90 100
b1 0.60 0.63 0.23 94 84
b2 −0.40 −0.41 0.26 94 38

Bayesian estimation with OpenBUGS

Parameter Pop. value Average estimate Av. PSD % Coverage % Significant

d 1.50 1.56 0.16 90 100
b1 0.60 0.65 0.24 94 92
b2 −0.40 −0.40 0.26 94 36

Notes: Results are for 50 datasets. SE is the standard error. PSD is the posterior standard deviation.
Table 3
Parameter estimates for two conditions of a 3AFC experiment (Ennis & O’Mahony,
1995).

d b1 b2

WW prior stimuli

Table (H&R, 1979) 2.39 – –
Eq. (5) (MLE) 2.41 (0.18) – –
Eq. (6) (MLE) 2.68 (0.23) 0.35 (0.31) 0.96 (0.36)
Eq. (6) (Bayesian) 2.73 (0.24) 0.36 (0.31) 1.00 (0.37)

SS prior stimuli

Table (H&R, 1979) 1.52 – –
Eq. (5) (MLE) 1.52 (0.14) – –
Eq. (6) (MLE) 1.47 (0.12) −0.29 (0.20) 0.04 (0.20)
Eq. (6) (Bayesian) 1.47 (0.12) −0.28 (0.20) 0.04 (0.21)

Notes: WW is water, water prior tasted stimuli; SS is salt-water, salt-water prior
stimuli. H&R refers to the table given in Hacker and Ratcliff (1979), using the
proportion correct as the outcome. MLE is maximum likelihood estimation, with
standard errors shown in parenthesis. For Bayesian estimation, values are means
and standard deviations (in parenthesis) of the posterior distributions.

considered sequence effects and response bias (Ennis & O’Mahony,
1995). For the data reported here, the three alternatives were
(a) an alternative that consisted of salt added to water (signal)
and (b) two alternatives that consisted of water alone (noise).
The observer’s task was to detect the salt solution. In addition,
detection of salt was examined in two conditions, one where two
samples of water were first tasted (before the 3AFC trial) and one
where two salt-water samples were first tasted. Table 1 shows,
as two three by three tables, the results (response frequencies)
separately for the two conditions (labeled as WW or SS prior
stimuli). The purpose here is simply to illustrate aspects of the
analysis with some real-world data.

Table 3 shows results for a traditional analysis (i.e., without
bias) as well as results for the 3AFC with bias model. For the
WW condition (top of table), the first line shows an estimate of d
obtained using the proportion correct and the tables of Hacker and
Ratcliff (1979), which is 2.39. The second line shows an estimate
of d obtained by fitting (with MLE) the traditional 3AFC model
without bias (i.e., Eq. (5)). The table shows that the estimate of d
is virtually the same as that found using Hacker and Ratcliff’s table
(about 2.4), with the advantage that the model-based approach
also provides an estimate of the standard error. The third line
of Table 3 shows estimates of d, b1, and b2, and their standard
errors, obtained by fitting the 3AFC with bias model (Eq. (8)) with
MLE. The fourth line shows the results for the Bayesian approach
with OpenBUGS. Once again, the results for MLE and Bayesian
estimation are virtually identical and sowill be discussed together.
For the 3AFCmodel with bias, the estimate of d (about 2.8) is larger
than that obtained for the 3AFCmodelwithout bias (about 2.4). The
results for the bias parameter estimates suggest a significant bias
in favor of the second position, with an estimate of b2 of 1.0 and
standard error (or posterior standard deviation) of about 0.36.
The lower part of Table 3 shows results for the SS condition. In
this case, all of the approaches give an estimate of d of around 1.5.
Note that this is considerably smaller than the estimate of 2.8 found
in the WW condition, which suggests that detection of salt-water
was lowerwhen two tastings of salt-waterwere used as prior stim-
uli. The bias parameter estimates are small, and so there is little or
no bias for either Positions 1 or 2 (of course power considerations
have to be kept inmind, as shown in the 4AFC simulation presented
below; in any case, the parameter estimates suggest that the mag-
nitude of the biases in this example, if any, are small).

Although of course the true values are not known for real-world
data, the results are interesting in that they suggest that, when
bias is present, as appears to be the case in the WW condition, d is
underestimated if the bias is ignored (as suggested by the finding
of smaller estimates of d for the model without bias than for the
model with bias), whereas when bias is not present, as appears
to be the case in the SS condition, d is not underestimated (as
suggested by the finding that the estimates of d are about the same
across models with and without bias). Macmillan and Creelman
(2005) and Wickens (2002) have previously noted that ignoring
bias in mAFC will lead to underestimation of d, and the results
found here are consistent with this.

3.9. SDT and 4AFC with bias

As noted above, models for any number of alternatives follow
immediately from the decision rule and structural model given
above, with appropriate extensions. For example, for SDT, the
decision rule is always the same: choose the alternative with
the largest perceptual magnitude. The structural model is also
simply extended to include additional covariates, to represent the
additional possible positions that the stimulus can be presented in.
Given that the 4AFC procedure has been used in a number of recent
studies (whereasm > 4 is rarely used), the derivation of themodel
for 4AFC with bias is shown here, with parameter recovery again
examined in simulations.

As before, the model can be derived using the decision rule and
structural model. Note that the decision rule is a straightforward
extension of Eq. (6) (choose the maximum) whereas the structural
model is a straightforward extension of Eq. (7), with the use of
additional dummy variables (e.g., X1, X2, and X3) to indicate that
the signal is in Position 1, 2, or 3, respectively. The SDT model
is then derived in exactly the same manner as for 3AFC above.
The result is twelve equations for the twelve cells of the four by
four table that are free to vary. Presentation of the model is again
simplified by recoding, and in particular let Z = X1 − X2, Za =

X1−X3, Zb = X2−X3, Z1 = 1−2X1−X2−X3, Z2 = 1−X1−2X2−X3,
and Z3 = 1 − X1 − X2 − 2X3.

The SDT model for 4AFC is

p (Y = 1|Z) =


∞

−∞

F(b1 − b2 + dZ + e1)F(b1 − b3

+ dZa + e1)F (b1 − dZ1 + e1) f (e1)de1
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Table 4
Results for maximum likelihood and Bayesian estimation for 4AFC simulations.

MLE: parameter estimates, N = 160

Parameter Pop. value Average Av. SE % Coverage % Significant

d 2.00 2.10 0.18 96 100
b1 −0.60 −0.58 0.30 90 52
b2 0.50 0.63 0.28 96 60
b3 −1.00 −0.98 0.32 94 90

Bayesian estimation, N = 160

Parameter Pop. value Average Av. PSD % Coverage % Significant

d 2.00 2.12 0.19 92 100
b1 −0.60 −0.55 0.32 90 46
b2 0.50 0.68 0.30 90 64
b3 −1.00 −0.95 0.33 92 86

MLE: parameter estimates, N = 400

Parameter Pop. value Average Av. SE % Coverage % Significant

d 2.00 2.04 0.11 96 100
b1 −0.60 −0.62 0.18 98 94
b2 0.50 0.50 0.17 96 82
b3 −1.00 −1.05 0.19 94 100

Bayesian estimation, N = 400

Parameter Pop. value Average Av. PSD % Coverage % Significant

d 2.00 2.05 0.11 90 100
b1 −0.60 −0.62 0.18 98 94
b2 0.50 0.52 0.17 96 84
b3 −1.00 −1.04 0.20 92 100

Notes: results are for 50 datasets. Av. SE is the average standard error. Av. PSD is the
average posterior standard deviation.

p (Y = 2|Z) =


∞

−∞

F(−b1 +b2 − dZ + e2)F(b2 − b3

+ dZb + e2)F (b2 − dZ2 + e2) f (e2)de2

p (Y = 3|Z) =


∞

−∞

F(−b1 +b3 − dZa + e3)F(−b2 +b3

− dZb + e3)F (b3 − dZ3 + e3) f (e3)de3, (12)
where bi is the bias for the ith position, with three bias parameters
for the four positions (with the last position again serving as the
reference). Eq. (12) gives the general SDT model for 4AFC with
bias. The above shows exactly how to modify, for 4AFC, the SAS
and OpenBUGS programs given in Appendix B. Note that, in this
case, Y is recoded into three dichotomous Yj to indicate the position
chosen.

3.10. Simulations: 4AFC with bias

Simulations were again conducted in order to obtain some
information about parameter recovery for 4AFCwith bias. A ‘small’
sample size of 160 was used in one condition, and a ‘medium’
sample size of 400 was used in the other. In both cases, the signal
appeared in each position either 40 times (for N = 160) or
100 times (for N = 400). The population parameters were d =

2.0, b1 = −0.6, b2 = 0.5, and b3 = −1.0. SAS was used to
generate 50 datasets; SAS and OpenBUGS were again used to fit
the model.

The top part of Table 4 shows results for N = 160. Once again,
the MLE and Bayesian results are virtually identical and so will be
discussed together. Table 4 shows that the average estimates of d
are close to the population value, and so estimation of d appears
to be good even for a fairly small sample size. With respect to the
bias parameters, estimates of b1 and b3 are close to their population
values,whereas estimates of the smallest bias parameter, b2 = 0.5,
are too large (by about 36%). For all of the parameters, the percent
coverage (90%–92%) is close to, but slightly lower than, the nominal
95% level.With respect to significance, power is adequate (86%) for
b = −1, but is low for the other two (smaller) bias parameters. This
shows that, for 4AFCwith a sample size of 160, estimation and tests
are generally good, but can be poor for small values of bias.
The lower half of Table 4 shows results for the 4AFC simulation
with N = 400. Again, the results for MLE and Bayesian estimation
are quite similar. In this case, the average estimates are quite close
to their population values in all cases, and so estimation of both
detection and bias appears to be quite good for 4AFCwith a sample
size of 400. Coverage also appears to be adequate, and ranges
around the nominal 95% value (from 90% to 98%). The significance
results show that power is now adequate in all cases, even for the
smallest bias, b2 = 0.5 (power of 84%). This shows that increasing
the sample size from 160 to 400 in 4AFC gives much higher power
to detect ‘‘small’’ biases (i.e., a magnitude of around 0.5). Again,
the simulations are informative about the magnitude of bias that
can be detected in practice for a given sample size and design.
The take home message to researchers is that if one is concerned
about ‘small’ bias, then an adequate sample size is needed (another
option is to use a hierarchical model, as discussed below).

3.11. Bias and other factors

Bias, in the typical discussion of forced choice, usually refers
to a non-perceptual factor that affects the observer’s choice, such
as preferring the right-most alternative in a forced choice task,
which is a ‘position’ bias (see Macmillan & Creelman, 2005;
Wickens, 2002). Here it is noted that, in some applications, the
‘bias’ might reflect the influence of other factors besides position.
An interesting example is provided by two (other) conditions in the
study of Ennis and O’Mahony (1995), where the task was, in 3AFC,
to detect the weakest stimulus instead of the strongest (i.e., there
were two S’s and one W instead of two W’s and one S). A fit of
Eq. (8) (keeping in mind a direction reversal) gave bias parameters
that indicated a bias in both conditions towards choosing the third
stimulus as the weakest. This could reflect a sensory effect, such as
adaptation, rather than a position preference. In short, it should
be kept in mind that the ‘bias’ parameters obtained using the
models presented heremight reflect effects of other factors besides
position. These factors should either be controlled for or explicitly
brought into themodel as covariates, as done here for position. The
use of additional covariates inmAFC is an interesting area for future
research.

4. Discussion

As noted byMacmillan and Creelman (2005), ‘‘As we have seen,
bias is customarily ignored in analyzingmAFC data. That it does not
therefore go away is shown in some 4AFC experiments of Nisbett
and Wilson (1977)’’; they then cite an example where a large bias
for the right-most itemwas apparently present. This motivates the
use of mAFC SDT models with bias, as presented here.

Up to this point, there has been a practical reason for ignoring
bias—the resulting SDT models are relatively complex, as Green
and Swets (1988) and Luce (1963) noted many years ago. The
models are also certainly not trivial to fit. However, thanks to
advances in statistical modeling, there is no longer any reason to
ignore the possibility of bias in the signal detection approach to
mAFC—one can easily make use of all the information available
in the data and fit the mAFC SDT model with bias parameters, as
shown here.

The models can also be extended in various ways. For example,
if small sample sizes are obtained for each observer, yet one has
a large number of observers, then estimation might be improved
by specifying the bias and detection parameters as being random
across observers, giving a hierarchical mAFC SDT model. Note
that the hierarchical approach can easily be implemented with
only minor modifications to the OpenBUGS program given in
Appendix B (i.e., use parameters instead of values in the priors).
This is an advantage of the Bayesian approach over maximum



L.T. DeCarlo / Journal of Mathematical Psychology 56 (2012) 196–207 205
likelihood. Hierarchical Bayesian models have previously been
used for basic SDT models, see for example Lee (2008), Morey,
Pratte, and Rouder (2008) and Rouder and Lu (2005); also see the
February 2011 issue of the Journal of Mathematical Psychology,
which is a special issue on hierarchical Bayesian models.

Another interesting extension would be a mixture version of
mAFC, which would allow for possible mixing that might arise
from various factors, such as attention (DeCarlo, 2002). This can
easily be accomplished by including a latent dichotomous variable
in the structural models presented above (see DeCarlo, 2010). An
advantage of the Bayesian approach is that this type of extension
is simple to implement in complex models such as that presented
here (for another example, see DeCarlo, 2011), although a caution
is that one has to take care that the posterior distribution is still
actually being sampled from, as noted by Natarajan andMcCulloch
(1995) and others (Jackman, 2009; Lynch, 2007). Kellen and Klauer
(2011) recently considered a mixture version of SDT for 4AFC,
but they only considered a model without bias and they used
proportion correct as the outcome variable.

Further study of the mAFC SDT model and approaches to
estimation, as well as real-world applications, are needed.

Appendix A. The differencing approach for 2AFC

A.1. SDT and differencing

As discussed in the text, the decision rule for 2AFC with bias is

Y = 1 if 91 + b > 92

Y = 2 if 91 + b ≤ 92.

In the ‘differencing’ approach, the decision rule is rewritten as

Y = 1 if 92 − 91 < b
Y = 2 if 92 − 91 ≥ b.

It follows that

p(Y = 1|X1, X2) = p(92 − 91 < b|X1, X2)

with X1 = 1 for signal in Position 1 and 0 otherwise, and X2 = 1
for signal in Position 2 and 0 otherwise. Substituting the structural
model (given in the text) gives

p(92 − 91 < b|X1, X2) = p(dX2 + ε2 − (dX1 + ε1) < b)
= p(ε2 − ε1 < b + dX1 − dX2).

= p(ε2 − ε1 < b + dZ),

where the last line follows with Z = X1 − X2, as done in the text
for 2AFC. For εi ∼ N(0, 1) it follows, assuming that ε1 and ε2 are
independent, that (ε1 − ε2) ∼ N(0,

√
2) and so

p(ε2 − ε1 < b + dZ) = 8


b + dZ

√
2


.

In short, the
√
2 term arises from the differencing of the two

random variables ε1 and ε2. The above gives Eq. (4) in the text.

A.2. A note on the invariance of d

Note that Eq. (1) for yes/no detection and Eq. (3) for 2AFC
both give estimates of d. A basic question of interest is whether
d is invariant across the different procedures, which would be
important evidence in favor of SDT. There are in fact a number of
experiments in psychophysics that have provided evidence that
d is invariant (e.g., Green & Swets, 1988; Macmillan & Creelman,
2005; Schulman & Mitchell, 1965; Shipley, 1965; Swets, 1959), as
well as some studies in food science (e.g., Lee, van Hout, & Hautus,
2007). Macmillan and Creelman, however, also noted some studies
that do not support invariance (although information about the
standard errors of the parameter estimates is needed).

It should be noted that the invariance of d is often discussed
in another way, namely as a ‘‘

√
2d’’ prediction (e.g., Wickelgreen,

1968). Here it is noted that the appearance of
√
2 is simply a

consequence of using the differencing approach (i.e., it does not
occur if Eq. (3) is used). That is, it follows from either Eq. (4) (with
zero bias) or from the forced choice model for proportion correct
given above that one of the differenced distributions is located
at d/

√
2 and the other is located at −d/

√
2, and so the distance

between the differenced distributions is d/
√
2 − (−d/

√
2) =

2d/
√
2 =

√
2d, which is what gives rise to the ‘‘

√
2d’’ prediction.

This does not mean that detection is
√
2 times better in forced

choice than detection (this misunderstanding has appeared in
the literature), but rather it simply means that the forced choice
distance estimate must be divided

√
2 to get an estimate of d.

Note that, if one uses Eq. (3), then a direct (i.e., not divided by
√
2 as in Eq. (4)) estimate of d is obtained, and so estimates of d

obtained for 2AFC with Eq. (3) will be the same (within sampling
error) as those obtained for detection with Eq. (1), if invariance
indeed holds (and so there is no

√
2 prediction). The reader can

verify that estimates of d will be the same by fitting Eqs. (1)
and (3) to the yes/no and 2AFC data provided by Shipley (1965),
which provides a nice example of invariance. In short, the general
prediction is correctly stated as invariance of d across detection and
2AFC.

Appendix B. A SAS NLMIXED program for 3AFC with bias

filename name ‘C:\Desktop\3AFC.txt’;
∗create Z’s, recode y’s from 1,2 to 1,0, get data in correct form;
DATA first;
infile name delimiter = ‘09’x firstobs = 2;
input x1 x2 ytemp1 ytemp2; trial = _N_;
y1 = 2 − ytemp1; y2 = 2 − ytemp2;
z = x1 − x2; z1 = 1 − 2∗x1 − x2; z2 = 1 − x1 − 2∗x2;
array resp[2] y1 − y2;
do i = 1 to 2; y = resp[i];
if i = 1 then i1 = 1; if i = 1 then i2 = 0;
if i = 2 then i1 = 0; if i = 2 then i2 = 1;
output; end;
keep trial z z1 z2 i1 i2 y;
run;
∗create linear predictors, specify random eps covariance
structure;
PROC NLMIXED data = first qpoints = 20;
parms b1 − b2 = 0 d = 0;
eta1 = (b1−b2+d∗z+eps1)∗i1+(b2−b1−d∗z+eps2)∗i2;
eta2 = (b1 − d∗z1 + eps1)∗i1 + (b2 − d∗z2 + eps2)∗i2;
p = probnorm(eta1)∗probnorm(eta2);
model y ∼ binary(p);
random eps1 eps2 ∼ normal([0,0],[1,0,1]) subject = trial;
ods output parameter estimates = subjpar;
run;



206 L.T. DeCarlo / Journal of Mathematical Psychology 56 (2012) 196–207
An OpenBUGS program for 3AFC with bias

# 3AFC with bias
model 3AFC
{
#(mildly informative) priors for parameters d, b1, b2
#one can also use the bounds function I(0,) with d
d∼ dnorm(0,.1)
b1∼ dnorm(0,.1)
b2∼ dnorm(0,.1)

for (i in 1:N) {
eps1[i] ∼ dnorm(0,1.0)
eps2[i] ∼ dnorm(0,1.0)
z[i] <- x1[i] − x2[i]
z1[i] <- 1 − 2∗x1[i] − x2[i]
z2[i] <- 1 − x1[i] − 2∗x2[i]
p1[i, 1] <-

phi(b1 − b2 + d∗z[i] + eps1[i])∗phi(b1 − d∗z1[i] + eps1[i])
p1[i, 2] <- 1 − p1[i, 1]
p2[i, 1] <-

phi(−b1 + b2 − d∗z[i] + eps2[i])∗phi(b2 − d∗z2[i] + eps2[i])
p2[i, 2] <- 1 − p2[i, 1]
y1[i] ∼ dcat(p1[i,1:2])
y2[i] ∼ dcat(p2[i,1:2])
}

}

#data
list(N = 150)

#inits
list(d = 1,b1 = 0,b2 = 0)
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