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a b s t r a c t

Signal detection models for the same–different task are presented. In contrast to the standard approach
that only considers the proportion correct, the models apply to the full four by two same–different table.
The approach allows one to consider models that recognize bias and other effects. Two basic signal
detectionmodels, associatedwith different decision rules, are presented. A version of the covert decisions
rule is introduced that directly allows for same–different bias, in contrast to earlier versions. It is shown
how to fit the models with standard software for nonlinear mixedmodels. Themodels are applied to data
from a recent same–different study.

© 2013 Elsevier Inc. All rights reserved.
The same–different task requires observers to decide if two
presented events are the same, say AA or BB, or different, say AB
or BA (Macmillan & Creelman, 2005). An interesting aspect of the
task is that observers can perform it even if they do not know how
the events differ (i.e., howA differs from B). For example, observers
can be asked to decide if two products are the same or different
without necessarily knowing how the products differ. This aspect
makes the procedure attractive for certain applications, such as in
speech research or in food science, and so the task has been widely
used (e.g., seeMacmillan, Kaplan, & Creelman, 1977; Noreen, 1981;
O’Mahony & Rousseau, 2002; Stillman & Irwin, 1995).

The standard approach to analyzing data from the same–
different task is to collapse AA and BB presentations into a ‘same’
category, and AB and BA presentations into a ‘different’ category,
and to then obtain ‘hits’ and ‘false alarms’ from the resulting
two by two table (e.g., Macmillan & Creelman, 2005). Note that,
because there are only two observations (i.e., hits and false alarms),
models with more than two parameters are not identified, and
so the standard signal detection models include only one or two
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parameters, such as detection and criterion location. However, as
noted by Petrov (2009), the same–different task actually provides
four observations, that is, the task produces a four by two table,
with events of AA, AB, BA, and BB as the four rows and responses of
‘different’ or ‘same’ as the two columns. By not collapsing the table
(and losing information), one can consider more realistic signal
detectionmodels for the same–different task. For example, amodel
that allows for direct bias towards a response of ‘same’ or ‘different’
is introduced here.

Two basic signal detection models for the same–different task
are presented. Themodels follow from different decision rules that
have been discussed in the literature, but differ from the standard
approach in that they apply to the full four by two table and so they
use all of the information available in the data. It is shown how to
fit the models with standard software for nonlinear mixed models
andwith software for Bayesian estimation. Themodels are applied
to data from a recent same–different study.

1. The same–different task

Two basic approaches to the same–different task are discussed
in Macmillan and Creelman (2005): the ‘independent observation’
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approach and the ‘differencing’ approach. Both approaches are
examined here, with the difference that additional parameters are
introduced, which represent ‘bias’ and ‘asymmetry’, as discussed
below. In addition, it is shown that the ‘differencing’ approach
also has a representation in the original (non-differenced) decision
space.

1.1. Covert decisions

One approach is to simply make separate covert decisions
for each event, which has been referred to variously as the
‘independent observation’ decision rule (Macmillan & Creelman,
2005), the ‘β-strategy’ (e.g., Rousseau, 2001), or the ‘covert
categorization’ approach (Petrov, 2009). It will be referred to
here simply as the covert decisions approach. The idea is that the
observer makes (covert) decisions as to whether each event is A or
B, and then responds ‘same’ for AA or BB decisions and ‘different’
for AB or BA decisions.

Decision rule. The observer responds ‘different’ if the two covert
decisions differ, otherwise they respond ‘same’. The decision rule is
generalized here to allow for response bias, which basically allows
the criterion to have different locations across the two decisions. In
particular, for the same–different task, ‘bias’ refers to a tendency
to favor one of the responses, such as ‘same’ or ‘different’, in the
same manner as in the simple detection task, where ‘bias’ refers
to a tendency to favor a response of ‘yes’ or ‘no’. A point that
has been somewhat overlooked is that this type of bias occurs for
the covert decisions approach if the observer changes the location
of their response criterion after the first decision. For example, a
bias towards responding ‘same’ will occur if either (1) the first
perception is below the criterion and a higher criterion is then
used for the second perception or (2) the first perception is above
the criterion and a lower criterion is then used for the second
perception. Thus, a decision rule with bias for the same–different
task is,

Y = 1 if


91 < c and 92 > c + b

or
91 > c and 92 < c − b,

(1)

else Y = 0, where Y = 1 indicates a response of ‘different’
and Y = 0 indicates a response of ‘same’, 91 is the perception
associated with the event in the first position (or first presented)
and 92 is the perception of the second event. Note that a positive
value of b in Eq. (1) indicates a bias towards a response of ‘same’
whereas a negative value indicates a bias towards a response of
‘different’.

Fig. 1 illustrates the decision rule for the situationwhere B (say a
‘noise’) is presented in the first position and A (say a ‘signal’) in the
second position, that is, BA trials. Consider the case where the bias
b is positive, which is a bias towards a response of ‘same’. As shown
in the top panel of Fig. 1, if a realization from the first perception
91 (solid circle) is below the response criterion c , so that the first
decision is ‘B’, then the second criterion is raised by b to c + b,
which makes a decision of ‘B’ for the second event more likely, and
so the probability of a response of ‘same’ (BB in this case) is greater.
Similarly, as shown in the lower panel of Fig. 1, if a realization from
91 (solid circle) is above the criterion c , the first decision is ‘A’ and
the second criterion is then located at c−b, whichmakes a decision
of ‘A’ for the second event more likely, and so the probability of
a response of ‘same’ (AA in this case) is again greater. The figure
shows an example where the response would have been ‘different’
in both the top and bottom panels if only one criterion location
(c) had been used, but because of the positive bias, the response is
‘same’ in both cases (because the open circle is below the second
criterion in the top panel and above it in the bottom panel). Thus,
b reflects bias towards one of the responses in the same–different
Fig. 1. An illustration of the covert decisions rule with bias for the same–different
task.

task in exactly the samemanner that the criterion location reflects
response bias in the simple detection situation.

Note that families of receiver operating characteristic (ROC)
curves can be generated (for different values of d and c) by varying
the bias parameter b from minus infinity to plus infinity, which
gives hit and false alarm probabilities that vary from zero to one.
This is in contrast to other versions of the covert decisions model
that have been proposed, as discussed in the ROC section below.
Another interesting consequence of the decision rule is that a bias
towards a response of ‘same’ or ‘different’ means that the covert
decisions are correlated (the correlation is positive for b > 0 and
negative for b < 0) because the location of the second criterion
depends on the location of the first realization.

Structural model. The ‘structural model’ is the same as that used
for m-alternative forced choice (see DeCarlo, 2012), which is

9i = dXi + εi, (2)

for i = 1, 2, where εi is random variation in the observer’s percep-
tion 9 , and X1 and X2 are position (temporal or spatial) indicators.
For example, X1 = 1 indicates that event A is in the first position
and X1 = 0 indicates that event B is in the first position; X2 = 1 in-
dicates that event A is in the second position and X2 = 0 indicates
that event B is in the second position.

A response of ‘different’ occurs if the covert decisions are either
‘BA’ or ‘AB’. It follows from the decision rule of Eq. (1) that the
conditional probability of a response of ‘different’ is

p(Y = 1|X1, X2) = p(91 < c, 92 > c + b)
+ p(91 > c, 92 < c − b).

Substituting the structural model of Eq. (2) and rearranging terms
gives

p(Y = 1|X1, X2) = p(ε1 < c − dX1, ε2 > c + b − dX2)

+ p(ε1 > c − dX1, ε2 < c − b − dX2).
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If the perceptions are independent (i.e., ε1 and ε2), then the above
joint probabilities can bewritten as products and themodel can be
re-written as

p(Y = 1|X1, X2) = p(ε1 < c − dX1)p(ε2 > c + b − dX2)

+ p(ε1 > c − dX1)p(ε2 < c − b − dX2)

= F(c − dX1)[1 − F(c + b − dX2)]

+ [1 − F(c − dX1)]F(c − b − dX2), (3)

where F is a cumulative distribution function (CDF). Eq. (3) gives
a general SDT model for the same–different task that follows from
the assumption of covert decisions with bias towards a response
of ‘same’ or ‘different’. Note that, although the perceptions or
observations (i.e., ε1 and ε2) are independent, the decisions are not
independent but rather are correlated, as noted above. The model
is also more general than the usual same–different models in that
CDFs other than the normal can be used for F in Eq. (3).

The normal theory version of the model follows by using the
normal CDF for F in Eq. (3),

p(Y = 1|X1, X2) = 8(c − dX1)[1 − 8(c + b − dX2)]

+ [1 − 8(c − dX1)]8(c − b − dX2). (4)

Eq. (4) is a nonlinear model that is within a family of nonlinear
mixed models that have recently been discussed for m-alternative
forced choice (DeCarlo, 2012), and so it can be fitted in the same
manner. For example, it is shownherehow to fit themodelwith the
NLMIXED procedure of SAS, as well as with software for Bayesian
estimation.

Eq. (4) is a basic signal detection model that follows from
the covert decisions approach with response bias, where the bias
is towards a response of ‘same’ or ‘different’. Note that a strict
assumption is that the bias is symmetrical, in that the criterion
shifts up or down by the same amount, b, regardless of whether
the realization is above or below the criterion c , as shown in Fig. 1.
A generalization is to allow the bias to differ depending onwhether
the realization is above or below the criterion.More specifically, an
asymmetry parameter a can be introduced as follows,

Y = 1 if


91 < c and 92 > c + b + a

or
91 > c and 92 < c − b.

(5)

Theparameter a allows for an asymmetry in the ‘same’ or ‘different’
bias (b). For example, a positive value of a indicates that the
observer has a greater bias towards a response of ‘same’ when the
first realization is below the criterion, as compared to when the
realization is above the criterion. In terms of Fig. 1, a positive value
of a shifts the bias line shown in the top panel (c + b) to the right,
whereas a negative value shifts it to the left. Thus, bias towards a
response of ‘same’ can be smaller (negative a) or larger (positive a)
in one direction as compared to the other.

Using the structural model of Eq. (2) and the decision rule of
Eq. (5), the resulting normal theory version of the model is,

p(Y = 1|X1, X2) = 8(c − dX1)[1 − 8(c + b + a − dX2)]

+ [1 − 8(c − dX1)]8(c − b − dX2). (6)

Eq. (6) includes four parameters and is exactly identified (i.e.,
it has the same number of parameters as observations); it will
be considered along with Eq. (4) and will be referred to as the
asymmetric covert decisionsmodel.

1.2. Asymmetric yardstick

Another approach to the same–different task is referred to
as the ‘differencing approach’ in Macmillan and Creelman (2005,
Fig. 2. An illustration of the yardstick decision rule for the same–different task.

p. 221); also see Sorkin (1962) and Noreen (1981). The view is
that the decisions are based on differenced random variables,
such as 92 − 91. As shown here, however, one does not need
to assume that the decision is based upon differenced random
variables, because the approach also has a representation in the
original decision space. In particular, the observer can be viewed
as using a ‘yardstick’ to help make same–different judgments,
without differencing. This has been referred to as the ‘τ -criterion’
approach (e.g., Lee, vanHout, Hautus, &O’Mahony, 2007, Rousseau,
2001) andwill be referred to here simply as the ‘yardstick’ decision
rule, in line with earlier discussions. In the present development,
an asymmetry in the yardstick is also allowed for.

Yardstick decision rule. It is assumed that the observer places a
‘‘yardstick’’ around the realization for the first event and makes a
decision of ‘different’ as follows,

Y = 1 if


92 > 91 + τ + a

or
92 < 91 − τ ,

(7)

else Y = 0. The decision rule is illustrated in Fig. 2 (without the
a parameter for visual clarity). In this case, a ‘yardstick’ (shown
by the brackets) is placed around the first realization (solid circle).
The parameter τ represents the size of the yardstick (with 2τ being
the total length). The decision rule is that if the second realization
(open circle) falls within the yardstick brackets, then the decision
is ‘same’, else it is ‘different’. Note that any bias towards a response
of ‘same’ or ‘different’ in this case is simply a part of τ . That is, a
larger value of τ means that the probability of a response of ‘same’
is higher whereas a smaller value indicates that the probability
of a response of ‘different’ is larger (note that, to set a ‘no bias’
point, one could determine an optimal value of τ and use that as a
reference).

The asymmetry parameter a in the decision rule of Eq. (7) allows
the size of the yardstick to differ across less-than and greater-than
comparisons. With respect to Fig. 2, a positive value of a shifts the
rightmost bracket τ to the right, whereas a negative value shifts it
to the left. Note that a complication of allowing for asymmetry is
that there must be a restriction on the parameter a for negative
values, and in particular, if a < 0 then |a| ≤ 2τ . The reason
for the constraint can be seen in Fig. 2—if a is negative and is
larger in absolute magnitude than 2τ , then the right-most bracket
(τ + a) will be to the left of the left-most bracket (−τ ), and the
yardstick will have a length that is less than zero, which is clearly
not permissible.

It follows from the decision rule of Eq. (7) that the probability
of a response of ‘different’ is

p(Y = 1|X1, X2) = p(92 > 91 + τ + a) + p(92 < 91 − τ).
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Fig. 3. An illustration of the differencing decision rule for the same–different task.
The distributions have standard deviations of

√
2 (instead of 1) in this case.

Substituting the structural model of Eq. (2) and rearranging terms
gives,

p(Y = 1|Z) = p(ε2 > τ + a + dZ + ε1)

+ p(ε2 < −τ + dZ + ε1)

= 1 − F(τ + a + dZ + ε1) + F(−τ + dZ + ε1),

where Z = X1 − X2. The above can be fit by conditioning on a
realization of ε1, say e1, and integrating (for details, see DeCarlo,
2012), which gives

p (Y = 1|Z) =


∞

−∞

[1 − F(τ + a + dZ + e1)

+ F(−τ + dZ + e1)]f (e1)de1. (8)

Eq. (8) will be referred to as the asymmetric yardstick signal
detection model.

The normal theory version of Eq. (8) can be fit by using max-
imum likelihood estimation with Gaussian quadrature or by us-
ing Bayesian estimation, as discussed in DeCarlo (2012); both
approaches are illustrated here. The model can also be written in
a simpler form by using a version that follows from a differencing
approach, as shownnext. Note, however, that the simpler formalso
follows directly from Eq. (8), because of a relation of the integral to
another form, as shown in DeCarlo (2012, p. 198).

Differencing decision rule. Another view of the yardstick decision
rule of Eq. (7) arises if one re-writes it in terms of differences,

Y = 1 if


92 − 91 > τ + a

or
92 − 91 < −τ ,

else Y = 0. The decision rule is illustrated in Fig. 3 (with a = 0 for
visual clarity). The three distributions in Fig. 3 are differenced dis-
tributions associated with B–A, B–B or A–A, and A–B, respectively.
If a realization from one of the distributions in Fig. 3 is between−τ
and τ , then the decision is ‘same’, else it is ‘different’. Fig. 3 shows
that −τ and +τ are simply fixed response criteria in the differ-
enced decision space, rather than being moving yardsticks (with
locations that depend on each realization) as in Fig. 2. Thus, τ has
different interpretations in different decision spaces. The asymme-
try parameter a allows τ on the right to have a different distance
from the zero point than −τ on the left, and so the criteria loca-
tions are asymmetrical. For example, a positive value of a indicates
a greater tendency to respond ‘same’ in one direction as compared
to the other. It again follows that the restriction |a| ≤ 2τ for a < 0
is necessary so that the criterion on the right of Fig. 3 (i.e., τ + a)
is not below the left-most criterion (−τ ). Thus, the constraint on a
for the differencing rule is the same as for the yardstick rule, which
simply reflects the relation between the decision rules.

It follows from the differencing decision rule given above that
the probability of a response of ‘different’ is

p(Y = 1|X1, X2) = p(92 − 91 > τ + a) + p(92 − 91 < −τ).
Fig. 4. ROC curves for the asymmetric covert decisions and asymmetric yardstick
models for the same–different task.

Substituting the structural model of Eq. (2) and noting that, for the
normal theory version of the model, if εi ∼ N(0, 1) and ε1 and ε2
are independent then ε2 − ε1 ∼ N(0,

√
2), it follows that

p (Y = 1|Z) = 1 − 8


τ + a + dZ

√
2


+ 8


−τ + dZ

√
2


, (9)

where Z = X1 − X2. The above form of the model is equivalent
to the yardstick model of Eq. (8), which follows from a relation
discussed in DeCarlo (2012, p. 198). The asymmetric difference
model of Eq. (9) is referred to as the DF2 model in Petrov (2009);
setting a equal to zero gives the standard differencing model for
the same–different task (e.g., Eq. (9.8) in Macmillan & Creelman,
2005; referred to as the DF1 model in Petrov, 2009).

As noted above, Eq. (9) is equivalent to Eq. (8), which can be
seen by fitting the two models using the programs provided in the
Appendix. Given that the yardstick and differencing approaches
lead to equivalent models for the same–different task, they will
be considered interchangeably here and will be referred to simply
as the yardstick/differencing model. However, this is not meant to
imply that the decision approaches are the same in general. That
is, although differencing and non-differencing approaches give the
same models in several cases (e.g., for the same–different task and
for two-alternative forced choice), this is not necessarily the case in
general, such as for forced choice with three or more alternatives,
as has previously been noted (DeCarlo, 2012). It is also interesting
to note that the covert decisions and the yardstick approaches only
require qualitative decisions about the perceptions, that is, ‘greater
than’ or ‘less than’ decisions, whereas the differencing approach
involves quantitative information about the perceptions, because
of the differencing operation (which implies a unit). In short, covert
decisions, yardstick, and differencing are three different decision
rules for the same–different task.

1.3. Same–different ROC curves

The usual approach to generating receiver operating character-
istic (ROC) curves for the same–different task applies to the col-
lapsed two by two table, which gives one ROC curve (for each value
of d). However, when the four different types of events (i.e., BB, AA,
AB, BA) are recognized, as done here, then there are actually three
ROC curves, and not simply one. For example, if the BB row is used
as the reference for ‘false alarms’ (i.e., the observer responds ‘dif-
ferent’ when BB is presented), then there are three ROC curves (as
the false alarm rate varies) associated with each of the other three
rows.

Note that, for the simple yes–no detection task, ROC curves can
be generated by varying the bias, that is the criterion location, from
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minus infinity to plus infinity, which gives false alarm probabilities
that vary from zero to one and hit probabilities that also vary
from zero to one. This also applies to the same–different models
presented here, in that varying the bias parameter generates the
usual type of ROC curve. For example, for the covert decisions
model, a family of ROC curves can be generated by varying b in
Eq. (6) (or Eq. (4)) from minus infinity to plus infinity with values
of d, c , and a held constant. Similarly, for the yardstick model of
Eq. (9), the size of τ reflects bias, and so ROC curves can be
generated by varying τ from zero to infinity (for fixed d and a),
which gives false alarm and hit probabilities that vary between
zero and one.

It is informative to examine the ROC curves that follow from
the models of Eqs. (6) and (9) when b or τ is varied. Fig. 4
shows ROC curves for both the asymmetric covert decisions model
(Eq. (6), solid lines) and the asymmetric yardstick model (Eq. (9),
dotted lines). The plots are for average values of the parameters
(d, c , and a) obtained in the analysis presented below (see Tables 3
and 4). Note that, for the covert decisions model, the curve for
AA (lowest solid line) is close to the diagonal, whereas for the
yardstickmodel, the curve for AA is exactly on the diagonal (dotted
line). This occurs because it follows from the yardstick/differencing
model that p(‘different’|AA) = p(‘different’|BB), as Petrov (2009)
noted. Overall, Fig. 4 shows that the ROC curves are fairly similar
across the twomodels, which is relevant to results obtained for the
application discussed below.

It is important to recognize that the usual covert decisions
model with only a non-moving (fixed) criterion c (i.e., Eq. (4) with
b = 0, discussed as CC1 in Petrov (2009)) does not generate typical
ROC curves, in that varying c from minus to plus infinity does not
give hit and false alarm probabilities that vary from zero to one
(with monotonically decreasing slopes); this is also the case if two
fixed criteria are used (e.g., CC2a, CC2s, in Petrov). For example,
Fig. 5 shows examples of ROC curves that arise by varying c in the
covert decisions model (with b = 0), with d = 2 in the left panel
and d = 3 in the right panel (there are actually three curves, but
only two are visible because the ‘AB’ and ‘BA’ curves are identical).
BB presentations are again used as the reference.

Consider what happens when c varies from minus to plus
infinity. As shown by Fig. 5, the false alarm probability (the x-axis)
at first increases as the criterion moves to the right (because a
covert decision of AA becomes less likely, and so the probability of
a response of ‘different’ increases), up to a maximum of 0.5 (which
occurs at themidpoint of the B distribution), and then decreases as
the criterion goes past the B midpoint (because a covert decision
of BB becomes more likely, and so the probability of a response
of ‘different’ decreases). Similarly, the probability of a ‘hit’, that is
a response of ‘different’ for AB or BA presentations (solid curve),
also at first increases, with a maximum at the midpoint of the two
distributions, and then decreases, giving the curved ROC curves
shown in Fig. 5.

Fig. 5 shows that varying the criterion location c in the covert
decisions model with a fixed criterion (e.g., CC1 in Petrov (2009))
does not directly give bias for a response of ‘same’ or ‘different’,
but rather only directly gives bias for a covert decision of ‘A’ or
‘B’. Using terminology introduced earlier, the ROC curves are not
‘proper’ in that they do not pass through the points (0, 0) and (1,
1) and they do not have a monotonically decreasing slope (Egan,
1975). This is also the case for covert decisions models with two
criteria (e.g., CC2a, CC2s, RC2a, and RC2s in Petrov). For example,
ROC curves associated with these models do not pass through the
point (1, 1), because, as for the CC1 model, the false alarm rate
cannot go above 0.5 (the probability of a ‘different’ response is a
maximumwhen the ‘ambiguous’ region is zero,which simply gives
the CC1 model). Another problem with the two criteria models
is that, in some cases, a same–different decision can be based on
only one observation. For example, if the first perception is in the
‘ambiguous’ region (between the two criteria) then the decision is
‘same’ irrespective of the second perception, and so a decision is
made without observing both events!

In sum, if one wants proper ROC curves, as in Fig. 4, and not
improper curves, as in Fig. 5, then one can rule out all of the covert
categorization rules discussed in Petrov (2009). In contrast, the
bias parameter b in the covert decisions models introduced here
directly reflects bias for a response of ‘same’ or ‘different’ and gives
proper ROC curves. Note that this problem appears to be unique
to covert decisions models, and does not arise for the yardstick or
differencing models, where τ directly reflects bias for a response
of ‘same’ or ‘different’ and the resulting ROC curves are proper.

1.4. Fitting the models

The models of Eqs. (4), (6), (8) and (9) are within a family
of nonlinear mixed models that have recently been discussed for
m-alternative forced choice (DeCarlo, 2012), and so they can be
fitted in exactly the same manner. The Appendix provides a pro-
gram that shows how to use the NLMIXED procedure of SAS to
fit the models of Eqs. (6), (8) and (9) (other software, such as R,
can also be used with similar programs). Programs for Bayesian
estimation of Eqs. (6) and (8) (with OpenBUGS; Thomas, O’Hara,
Ligges, & Sturtz, 2006) are also provided. Although the Bayesian
approach differs from the maximum likelihood approach, param-
eter estimates obtained for Bayesian estimation with OpenBUGS,
as applied to Petrov’s (2009) data, were virtually identical to those
obtained for maximum likelihood estimation with SAS.

Eqs. (6) and (9) are simply nonlinear models (i.e., they are not
mixed because there is no random term). Note that, for Eq. (9),
the SAS program given in the Appendix includes a

√
2 term in
Fig. 5. ROC curves for the covert decisions model with only a ‘fixed’ criterion c for values of d of 2 and 3.
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Table 1
Chi-square and likelihood ratio goodness of fit statistics.

Obs. Covert decisions Asymmetric yardstick
ChiSq p LR p ChiSq p LR p

1 3.22 0.07 3.25 0.07 7.27 <0.01 7.33 <0.01
2 1.06 0.30 1.06 0.30 1.78 0.18 1.81 0.18
3 11.94 <0.01 12.00 <0.01 2.18 0.14 2.20 0.14
4 3.01 0.08 3.02 0.08 0.24 0.62 0.24 0.62
5 8.57 <0.01 8.65 <0.01 1.48 0.22 1.49 0.22
6 45.79 <0.01 47.34 <0.01 0.09 0.77 0.09 0.77
7 13.91 <0.01 14.02 <0.01 0.03 0.87 0.03 0.87
8 36.09 <0.01 37.56 <0.01 0.27 0.60 0.27 0.60
9 5.47 0.02 5.49 0.02 0.45 0.50 0.45 0.50

10 1.25 0.26 1.25 0.26 2.40 0.12 2.41 0.12
11 0.17 0.68 0.17 0.68 0.02 0.89 0.02 0.89
12 3.14 0.08 3.15 0.08 0.28 0.59 0.28 0.59
13 3.12 0.08 3.11 0.08 3.35 0.07 3.37 0.07
14 1.60 0.21 1.60 0.21 1.53 0.22 1.53 0.22

Notes: Obs. is the observer’s number; the sample size for each observer is 512. The
statistics for the differencing model are the same as for the asymmetric yardstick
model.

the model specification, so that one obtains direct estimates of
d, which eliminates some confusion that has arisen regarding the
scale factor

√
2 (such as in forced choice models; see DeCarlo,

2012). Eq. (8) is a nonlinear mixed model because it includes a
random term in the linear predictor; it can be fitted using Gaussian
quadrature (in SAS) or Bayesian estimation (with OpenBUGS). Note
that, to fit Eq. (8) with SAS, one must include a ‘trial’ variable (i.e.,
the observation number) in the data and the data must be sorted
by this variable. Also note that the constraint on the parameter a
noted above was not explicitly introduced (although it could be)
because it was not necessary for the analysis presented below, in
that, for all observers, any negative estimates of a were clearly
smaller in absolute value than 2τ . If the constraint on a is not
explicitly introduced, then onemust check the estimates to ensure
that the constraint is satisfied.

2. Application to a same–different experiment

The models are applied to data from a recent same–different
experiment (Petrov, 2009).1 The task was to detect, in two pre-
sentations, whether black dots in a display moved in the same
or different directions. A detection task was also included, where
the task was to determine, in one presentation, whether the dots
moved in a clockwise or counterclockwise direction compared to
a reference direction. The data were obtained across multiple ses-
sions; only data from the last session (sixth session) are analyzed
here. For each observer, there were 512 same–different trials and
512 detection trials. For the same–different data, the signal de-
tection models of Eq. (4) (covert decisions), Eq. (6) (asymmetric
covert decisions), and Eq. (9) (asymmetric yardstick/differencing
model) are fitted to the individual data of fourteen observers. Pa-
rameter estimates and standard errors are obtained, and absolute
and relative fit are examined.

2.1. Model fit

Absolute fit. Table 1 shows likelihood ratio (LR) and chi-square
goodness of fit statistics for fits of Eqs. (4) and (9) (covert decisions
and asymmetric yardstick/differencing). The asymmetric model
of Eq. (6) is not included in the table because there are no
degrees of freedom available to test absolute fit (i.e., there are four
observations and four parameters), however the relative fit of the
model can be assessed, as done in the next section. Table 1 shows

1 I thank Alexander Petrov for making the raw data available.
Table 2
Relative fit statistics for three models.

Observer AIC BIC
Eq. (4) Eq. (9) Eq. (6) Eq. (4) Eq. (9) Eq. (6)

1 653.8 657.9 652.6 666.5 670.6 669.5
2 609.7 610.4 610.4 622.4 623.1 627.3
3 598.5 588.7 588.5 611.2 601.4 605.5
4 548.2 545.4 547.2 560.9 558.2 564.2
5 671.1 663.8 664.3 683.7 676.5 681.3
6 628.6 581.4 583.3 641.3 594.1 600.2
7 670.6 657.3 659.2 683.3 670.0 676.2
8 669.7 632.4 634.1 682.4 645.1 651.1
9 680.3 675.3 676.9 693.1 688.0 693.8

10 653.2 654.4 653.9 665.9 667.1 670.9
11 626.8 626.7 628.7 639.5 639.4 645.6
12 551.0 548.1 549.8 563.7 560.8 566.8
13 638.3 638.6 637.2 651.0 651.3 654.2
14 647.5 647.5 647.9 660.2 660.2 664.9

Notes: Eq. (4) is the covert decisions model (three parameters); Eq. (9) is
the asymmetric yardstick/differencing model (three parameters); Eq. (6) is the
asymmetric covert decisions model (four parameters).

Table 3
Parameter estimates: Asymmetric covert decisions model (Eq. (6)).

Observer d c b a

1 1.63 (0.13) 0.92 (0.14) −0.23 (0.18) 0.61 (0.34)
2 1.79 (0.13) 0.78 (0.14) 0.61 (0.16) −0.33 (0.29)
3 1.84 (0.14) 1.21 (0.17) 1.11 (0.18) −0.97 (0.28)
4 2.30 (0.12) 1.00 (0.13) −0.00 (0.17) 0.52 (0.30)
5 1.43 (0.14) 0.64 (0.15) −0.25 (0.16) 0.99 (0.33)
6 1.89 (0.14) 0.63 (0.14) −0.42 (0.14) 2.00 (0.29)
7 1.54 (0.14) 1.13 (0.15) 0.64 (0.23) −1.43 (0.38)
8 1.73 (0.14) 0.43 (0.13) −0.92 (0.15) 2.15 (0.34)
9 1.21 (0.15) 0.36 (0.17) −0.12 (0.17) 0.84 (0.36)

10 1.14 (0.16) 0.86 (0.19) 0.63 (0.20) −0.40 (0.35)
11 1.81 (0.12) 0.87 (0.14) 0.11 (0.17) 0.13 (0.31)
12 2.24 (0.14) 1.12 (0.15) 0.26 (0.17) 0.49 (0.28)
13 1.74 (0.13) 0.57 (0.13) −0.11 (0.16) 0.57 (0.32)
14 1.68 (0.13) 1.05 (0.14) 0.32 (0.19) −0.42 (0.33)

Average 1.71 0.83 0.12 0.34

Notes: Standard errors are in parentheses.

Table 4
Parameter estimates: Asymmetric yardstick model (Eq. (9)).

Observer d τ a

1 1.88 (0.16) 1.21 (0.13) 0.47 (0.24)
2 2.02 (0.16) 2.04 (0.17) −0.40 (0.23)
3 2.04 (0.17) 2.33 (0.18) −0.71 (0.23)
4 2.76 (0.16) 1.74 (0.14) 0.40 (0.24)
5 1.65 (0.17) 1.11 (0.13) 0.78 (0.24)
6 2.19 (0.19) 1.17 (0.12) 1.69 (0.24)
7 1.89 (0.17) 1.72 (0.17) −0.94 (0.25)
8 2.08 (0.18) 0.75 (0.11) 1.52 (0.24)
9 1.39 (0.17) 1.15 (0.14) 0.58 (0.26)

10 1.24 (0.18) 1.65 (0.16) −0.17 (0.26)
11 2.15 (0.15) 1.57 (0.15) 0.09 (0.23)
12 2.60 (0.17) 1.84 (0.14) 0.51 (0.23)
13 2.03 (0.16) 1.39 (0.14) 0.37 (0.24)
14 1.99 (0.15) 1.63 (0.16) −0.28 (0.24)

Average 1.99 1.52 0.28

Notes: Standard errors are in parentheses.

that the covert decisions model is rejected (at the 0.05 level) in 6
out of 14 cases and the asymmetric yardstick/differencing model
is rejected in 1 case.

Relative fit. Table 2 presents relative fit statistics, namely the
Akaike information criterion (AIC) and the Bayesian information
criterion (BIC), for all three models, that is, Eqs. (4), (6) and (9).
Results for the two three-parameter models of Eqs. (4) and (9) are
presented first, followedby results for the four-parametermodel of
Eq. (6). For each statistic, the bold values indicate the smallest value
in each row (except for cases with ties; note that, although smaller
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Fig. 6. The top left panel shows estimates of d for the asymmetric yardstick/differencing model plotted against estimates of d for the asymmetric covert decisions model.
The top right panel shows estimates of τ for the difference model plotted against estimates of b for the covert decisions model. The bottom panel shows estimates of the
asymmetry parameter a for the yardstick/differencing model plotted against the asymmetry parameter a for the covert decisions model.
values indicate better relative fit, a difference of less than, say, 2 can
be considered as trivial). For the AIC, the covert decisions models
(Eqs. (4) or (6)) are favored in 5 cases and the differencing model
is favored in 8 cases. Note, however, that for the 8 cases where
the AIC selects (i.e., is smaller) the asymmetric differencing model
(Eq. (9)), AIC for Eq. (6) is quite close in magnitude, tending to be
within about 2, and so the results do not indicate a clear choice
between Eqs. (6) and (9). The right side of Table 1 shows that the
BIC is smallest for the differencing model in 9 cases (it is well
known that BIC tends to select models with fewer parameters).

ROC curves. As noted earlier (DeCarlo, 2007), ROC curves offer a
useful visual supplement to absolute and relative fit statistics. Note
that the data analyzed above do not include different conditions
where the bias was varied within observers, and so empirical ROC
curves are not obtained (i.e., for each observer, there is only one
point on each of the three curves). However, it is still informative
to plot ROC curves for typical values of the parameters, as done in
Fig. 4, to see how the models differ.

Fig. 4 shows ROC curves for the asymmetric covert decisions
model (Eq. (6)) and the asymmetric yardstick/differencing model
(Eq. (9)). As noted above, the figure shows that the ROC curves
are similar, which suggests that it might be difficult in practice
to distinguish between the two models. It is informative to note
that for Petrov’s (2009) data, the x-axis, which gives the false alarm
rate, only varied between 0.13 and 0.41 across the 14 observers. If
one looks at this region in Fig. 4, it is apparent that there is little
difference between the three ROC curves across the two models.
This suggests why it is difficult to come to clear-cut conclusions
based on fit statistics alone as to which decision rule (if only one)
was used by the observers.

2.2. Parameter estimates

Covert decisions model. Table 3 shows parameter estimates
and standard errors for fits of Eq. (6) to each observer’s data.
The average estimate of d is 1.71 and the average estimate of the
first criterion location is 0.83. Note that in the simple detection
situation, the ‘optimal’ location of the criterion is at the midpoint
of the two distributions (i.e., at 1/2d) if the observer does not have
knowledge about the signal probability (or if they have knowledge
about the signal probability but it is 0.50). It is interesting to note
that the average estimate of the first criterion location is quite
close to this location, that is, one half of the average estimate of
d is 0.85 whereas the average estimate of the criterion location
is 0.83. With respect to the bias parameter, estimates of b are
positive and negative, and are significant in six cases. Estimates of
the asymmetry parameter a are also positive and negative, and so
the asymmetry is in different directions for different observers, as
also found below for Eq. (9).

It is interesting to note that large and significant values of a for
Eq. (6) are found in every case where the fit of the covert decisions
model of Eq. (4) was rejected (Table 1, Observers 3, 5, 6, 7, 8,
and 9). This illustrates why one cannot conclude that rejecting the
covert decisions model with bias (Eq. (4)) means that the covert
decisions approach was not used—it could simply indicate that the
assumption of symmetry in the bias (i.e., a = 0) was not valid.

Yardstick/differencingmodel. Table 4 shows parameter estimates
for fits of the differencing model of Eq. (9). The average estimate of
d is 1.99, which is larger (by 0.28) than the average d found for the
covert decisionsmodel. The average estimate of τ is 1.52. Estimates
of the asymmetry parameter a are positive and negative across
observers with an average value of 0.28; note that the pattern of
positive and negative values of a is exactly the same as that found
for a in the asymmetric covert decisions model (Table 3).

Comparisons across models. The top left panel of Fig. 6 presents
estimates of d for each observer from the asymmetric yard-
stick/differencing model (Table 4) plotted against estimates of
d from the asymmetric covert decisions model (Table 3). The
figure shows that estimates of d from the two models are highly
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Fig. 7. The left panel shows estimates of d for the asymmetric covert decisions model plotted against estimates of d from a detection task. The right panel shows estimates
of d for the asymmetric yardstick/differencing model plotted against estimates of d from a detection task.
correlated (r = 0.99). Thus, the two models (Eqs. (6) and (9))
give similar estimates of d for the fourteen observers. The fig-
ure also shows that estimates of d from the asymmetric yard-
stick/differencing model are larger than estimates of d from the
asymmetric covert decisions model (the points are all above the
equality line), which has also been found for fits of the traditional
covert decisions model and the differencing model (Irwin, Hautus,
& Francis, 2001, Table 1).

The top right panel of Fig. 6 shows that estimates of τ for the
asymmetric yardstick/differencingmodel are related to (but larger
than) the estimates of b for the asymmetric covert decisionsmodel,
with a correlation of 0.92. The bottom center panel shows that
estimates of a for the asymmetric yardstick/differencing model
are closely related to those for the asymmetric covert decisions
model, with a correlation of 0.99. Thus, like detection, the bias and
asymmetry parameters are very similar across the two models.

Relation to detection. The fourteen observers in Petrov’s
same–different experiment (2009) also participated in a yes–no
detection task with the same stimuli. The left panel of Fig. 7
shows a plot of the estimates of d obtained for the asymmetric
covert decisions model for the same–different task plotted against
estimates of d obtained for the detection task. The figure shows
that estimates of d for the same–different task are closely related
to estimates of d from detection, with a correlation of 0.71. This
is important evidence for the validity of the signal detection
approach, in that it shows that the approach gives consistent
estimates of d across same–different and detection tasks. The right
panel of Fig. 7 shows that estimates of d from the asymmetric
yardstick/differencing model are also highly correlated with
estimates of d from detection; the figure also shows that the
yardstick/differencing estimates of d tend to be larger than in the
left panel.

Fig. 7 shows that estimates of d for the same–different task
for the covert decisions model are close in magnitude to
those found for detection, whereas those for the asymmetric
yardstick/differencing model tend to be larger. One could take this
as evidence against the yardstick/differencing model, however it
is important to recognize that the difference might arise simply
because of a violation of an auxiliary assumption. For example,
the standard deviations for the differenced distributions are

√
2 if

the observations ε1 and ε2 are independent; however if they are
positively correlated, then the standard deviation is the square root
of 2 − 2 × corr(ε1, ε2). This means that one can find a positive
value for corr(ε1, ε2) so that the d are re-scaled to values that are
nearly identical to those obtained for the covert decisions model
(given that the correlation between the two sets of estimates is
0.99).2 Thus, the larger estimates of d cannot necessarily be taken

2 This suggests an interesting possible way to estimate the correlation for
the yardstick/differencing model, if one has both same–different and detection
as evidence against the yardstick/differencing decision rule, in that
it could simply reflect a violation of another assumption.

3. Conclusions

By not collapsing the data, more general models for the
same–different task can be considered. Two basic signal detection
models that allow for ‘bias’ and ‘asymmetry’ are discussed here.
The first model is based upon the classic idea of covert decisions.
A novel aspect of the model presented here is with respect to how
bias is introduced, in that the decision rule allows for direct bias
towards a response of ‘same’ or ‘different’. A parameter that allows
for asymmetry in the bias also appears to be necessary. The second
model is an extension of the standard ‘differencing’ approach, in
that the decision rule allows for asymmetry in the bias, in the same
manner as for the asymmetric covert decisions approach.

An important point is that acceptance or rejection of a model
does not necessarilymean acceptance or rejection of the associated
decision rule. For example, it is shown that the differencing
decision rule also has a representation in the original decision
space as a ‘yardstick’ decision rule. Thus, if it is found that the
differencing model describes the data, one cannot conclude that
the observer is using the differencing decision rule, because the
results will be the same if he or she is actually using the yardstick
decision rule. As another example, Table 1 suggests rejection of
the covert decisions model in six cases, however fits of Eq. (6)
showed that, in all of these cases, there was considerable
asymmetry in the bias. Thus, it is not necessarily the decision rule
(covert decisions) that is being rejected, but possibly rather the
assumption of symmetry in the decision rule. It should also be kept
inmind that although the yardstick and differencing decision rules
lead to equivalent models for the same–different task, this is not
necessarily the case in general.

For the data of Petrov (2009), the finding of mixed results for
absolute and relative fit statistics, ROC curves that are hard to
distinguish for the range of observed false alarms, and parameter
estimates that are similar across the models together suggest
that one cannot come to any hard and fast conclusions about
which decision rule is used (if only one). Further study of the
same–different task with the models proposed here is needed.

The models presented here (asymmetric covert decisions and
asymmetric yardstick/differencing), although motivated by differ-
ent decision rules, are apparently closely related. For example,
for fits of Petrov’s (2009) data, the detection (d), bias (b or τ ), and
asymmetry parameters (a), were found to be very similar across

conditions—one can find the value of the correlation that re-scales d for the
same–different condition so that it is the closest in value to d for detection.
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the two models. A possible reason for the similar results is sug-
gested by work of Dai, Versfeld, and Green (1996). In particu-
lar, they showed that, for likelihood ratio decision rules for the
same–different task, having independent observations gives the
usual likelihood ratio model (which is closely related to the ver-
sion of the covert decisions model given here) and having highly
correlated observations gives the differencing model. They noted
that ‘‘Thus, the correlation between observations provides a com-
mon thread between the two decision rules’’ (p. 2). As noted above,
the bias parameter in the covert decisions model introduced here
allows for correlated responses, whereas correlated responses are
also allowed for in the differencing model, in that correlation sim-
ply re-scales the detection parameter d. Thus, the fact that both
models allow for correlation suggests that this might be the ‘com-
mon thread’ between them.

The models presented here fall within a well-developed
statistical framework (nonlinear mixed models) and can easily
be fitted with standard software, which should encourage their
use. Reporting results for fits of the models, such as absolute and
relative fit, parameter estimates, and standard errors, provides a
wealth of information about the data and will lead to cumulative
knowledge about the same–different task.

Appendix

A SAS NLMIXED program for same–different signal detection
models
*Note: y is coded as zero/one, z = x1 − x2;
proc nlmixed data = first;
title ‘Asymmetric covert decisions with bias model, Equation 6’;
parms b = 0 a = 0 c = 0 d = 1;
eta1 = c − d ∗ x1;
eta2 = c + b + a − d ∗ x2;
eta3 = c − d ∗ x1;
eta4 = c − b − d ∗ x2;
p = probnorm(eta1) ∗ (1 − probnorm(eta2)) + (1 −

probnorm(eta3)) ∗ probnorm(eta4);
model y ∼ binary(p);
predict p out = predprob;
estimate ‘rel_c’ c − .5 ∗ d;
ods output parameterestimates = pars FitStatistics = fit;
ods output additionalestimates = other;
run;
proc nlmixed data = first qpoints = 20;
title ‘Asymmetric yardstick model, Equation 8’;
parms a = 0 t = 1 d = 1;
eta1 = (t + a + d ∗ z + eps1);
eta2 = (−t + d ∗ z + eps1);
p = 1 − probnorm(eta1) + probnorm(eta2);
model y ∼ binary(p);
random eps1 ∼ normal(0, 1) subject = trial;
ods output parameterestimates = subjparm;

run;
proc nlmixed data = first;
title ‘Differencing model with asymmetry, Equation 9’;
parms a = 0 t = 1 d = 1;
eta1 = (t + a + d ∗ z)/sqrt(2);
eta2 = (−t + d ∗ z)/sqrt(2);
p = 1 − probnorm(eta1) + probnorm(eta2);
model y ∼ binary(p);
predict p out = predprob1;
ods output parameterestimates = subjparm;

run;
An OpenBUGS program for same–different signal detection models

# Asymmetric covert decisions model
# Note: y is recoded as 1 (for 1) and 2 (for 0)
model SD
{
#priors for parameters d, c, b, a
d ∼ dnorm(0, .1)
c ∼ dnorm(0, .1)
b ∼ dnorm(0, .1)
a ∼ dnorm(0, .1)
for (i in 1 : N) {
p1[i, 1] <- phi(c − d ∗ x1[i]) ∗ (1− phi(c + b+ a− d ∗ x2[i])) +

(1 − phi(c − d ∗ x1[i])) ∗ phi(c − b − d ∗ x2[i])
p1[i, 2] <- 1 − p1[i, 1]
y1[i] ∼ dcat(p1[i, 1 : 2])
}

}
#data
list(N = 512)
#priors
list(d = 1, c = .5, b = 0, a = 0)
# Asymmetric yardstick model
model SD
{
#priors for parameters d, c, b, a
d ∼ dnorm(0, .1)
t ∼ dnorm(0, .1)
a ∼ dnorm(0, .1)
for (i in 1 : N) {
eps[i] ∼ dnorm(0, 1.0)
z[i] <- x1[i] − x2[i]
p1[i, 1] <- 1−phi(t + a+ d∗ z[i]+ eps[i])+phi(−t + d∗ z[i]+

eps[i])
p1[i, 2] <- 1 − p1[i, 1]
y1[i] ∼ dcat(p1[i, 1 : 2])
}

}
#data
list(N = 512)
#priors
list(d = 1, t = 1, a = 0)
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