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On the Meaning and Use of Kurtosis 

Lawrence T. DeCarlo 
Fordham University 

For symmetric unimodal distributions, positive kurtosis indicates heavy tails and 
peakedness relative to the normal distribution, whereas negative kurtosis indicates 
light tails and flatness. Many textbooks, however, describe or illustrate kurtosis 
incompletely or incorrectly. In this article, kurtosis is illustrated with well-known 
distributions, and aspects of its interpretation and misinterpretation are discussed. 
The role of kurtosis in testing univariate and multivariate normality; as a measure 
of departures from normality; in issues of robustness, outliers, and bimodality; in 
generalized tests and estimators, as well as limitations of and alternatives to the 
kurtosis measure [32, are discussed. 

It is typ ica l ly  noted in in t roductory  stat is t ics  
courses that distr ibutions can be character ized in 
terms of  central tendency, variability, and shape. With 
respect to shape, virtually every textbook defines and 
illustrates skewness. On the other hand, another as- 
pect of  shape, which is kurtosis, is either not discussed 
or, worse yet, is often described or illustrated incor- 
rectly. Kurtosis is also frequently not reported in re- 
search articles, in spite of  the fact that virtually every 
statistical package provides a measure of  kurtosis. 
This occurs most likely because kurtosis is not well 
understood and because the role of  kurtosis in various 
aspects of statistical analysis is not widely recognized. 
The purpose of  this article is to clarify the meaning of  
kurtosis and to show why and how it is useful. 

On  the M e a n i n g  o f  Kur tos i s  

Kurtosis can be formally defined as the standard- 
ized fourth population moment about the mean, 

E (X - IX)4 IX4 
132 = ( E  ( X -  IX)2)2 0.4' 

where E is the expectation operator, IX is the mean, 1,1,4 
is the fourth moment about the mean, and 0. is the 
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standard deviation. The normal distribution has a kur- 
tosis of  3, and 132 - 3 is often used so that the refer- 
ence normal distribution has a kurtosis of  zero (132 - 
3 is sometimes denoted as Y2)- A sample counterpart 
to 132 can be obtained by replacing the population 
moments with the sample moments, which gives 

~ ( X  i -- S)4/n  

b2 (•(X i - ~')2/n)2' 

where b 2 is the sample kurtosis, X bar is the sample 
mean, and n is the number of  observations. 

Given a definition of  kurtosis, what information 
does it give about the shape of  a distribution? The left 
and right panels of  Figure 1 illustrate distributions 
with positive kurtosis (leptokurtic), 132 - 3 > 0, and 
negative kurtosis (platykurtic), [32 - 3 < 0. The left 
panel shows that a distribution with positive kurtosis 
has heavier tails and a higher peak than the normal, 
whereas the right panel shows that a distribution with 
negative kurtosis has lighter tails and is flatter. 

Kurtos i s  and  W e l l - K n o w n  Dis t r ibu t ions  

Although a stylized figure such as Figure 1 is useful 
for illustrating kurtosis, a comparison of well-known 
distributions to the normal is also informative. The t 
distribution, which is discussed in introductory text- 
books, provides a useful example. Figure 2 shows the 
t distribution with 5 df  which has a positive kurtosis 
of  [32 - 3 = 6, and the normal distribution, for which 
132 - 3 = 0. Note that the t distribution with 5 df  has 
a variance of 5/3, and the normal distribution shown 
in the figure is scaled to also have a variance of 5/3. 

The figure shows that the t 5 distribution has heavier 
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Figure 1. An illustration of kurtosis. The dotted lines show normal distributions, whereas the solid lines show distributions 
with positive kurtosis (left panel) and negative kurtosis (right panel). 

tails and a higher peak than the normal. It is informa- 
tive to note in introductory courses that, because of  
the heavier tails of  the t distribution, the critical values 
for the t test are larger than those for the z test and 
approach those of  the z as the sample size increases 
(and the t approaches the normal). Also note that the 
t s distribution crosses the normal twice on each side 
of  the mean, that is, the density shows a pattern of  
higher-lower-higher on each side, which is a common 
characteristic of  distributions with excess kurtosis. 

With respect to negative kurtosis, a simple example 
is the continuous uniform (rectangular) distribution, 
for which 132 - 3 = -1.2. Figure 3 shows the uniform 
distribution and the normal distribution, both with a 
variance of unity (the range for the uniform distribu- 
tion is _+ ~/3). The figure shows that, relative to the 
normal, the uniform distribution has light tails, a flat 
center, and heavy shoulders. Also note that the uni- 
form density, like that for the t, crosses the normal 
twice on each side of  the mean. 

Other examples of  symmetric distributions with 
positive kurtosis are the logistic distribution, for 

which 132 - 3 = 1.2, and the Laplace (double expo- 
nential) distribution, for which 132 - 3 = 3; the logis- 
tic distribution has been used in psychology in signal 
detection theory and in item response theory, for ex- 
ample, whereas the Laplace has been used in vision 
research and in mathematical psychology. The sym- 
metric binomial distribution with p = .5 offers an 
interesting example of  a distribution with negative 
kurtosis: 132 - 3 is negative, with a maximum o f - 2  for 
the two-point binomial (n = 1), and approaches zero 
as the index n increases (and the distribution ap- 
proaches the normal). 

Kurtosis and Density Crossings 

Figures 2 and 3 show a basic characteristic of dis- 
tributions with excess kurtosis: The densities cross the 
normal twice on each side of  the mean. Balanda and 
MacGillivray (1988) referred to standardized densi- 
ties that cross twice as satisfying the Dyson-Finucan 
condition, after Dyson (1943) and Finucan (1964), 
who showed that the pattern of  density crossings is 
often associated with excess kurtosis. 
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Figure 2. The t distribution with 5 df (solid curve) and the normal distribution (dotted curve), both with a variance of 5/3. 
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Figure 3. The uniform distribution and the normal distri- 
bution, both with a variance of unity. 

A Simplified Explanation of Kurtosis 

Why are tailedness and peakedness both compo- 
nents of kurtosis? It is basically because kurtosis rep- 
resents a movement of mass that does not affect the 
variance. Consider the case of positive kurtosis, where 
heavier tails are often accompanied by a higher peak. 
Note that if mass is simply moved from the shoulders 
of a distribution to its tails, then the variance will also 
be larger. To leave the variance unchanged, one must 
also move mass from the shoulders to the center, 
which gives a compensating decrease in the variance 
and a peak. For negative kurtosis, the variance will be 
unchanged if mass is moved from the tails and center 
of the distribution to its shoulders, thus resulting in 
light tails and flatness. A similar explanation of kur- 
tosis has been given by several authors (e.g., Balanda 
& MacGillivray, 1988; Ruppert, 1987). Balanda and 
MacGillivray noted that the definition of kurtosis is 
"necessarily vague" because the movement of mass 
can be formalized in more than one way (such as 
where the shoulders are located, p. 116). 

The above explanation divides the distribution into 
tails, shoulders, and center, where for [3 2 the shoulders 
are located at p~ _+ ~, as noted by Darlington (1970) 
and Moors (1986). It should be recognized that al- 
though tailedness and peakedness are often both com- 
ponents of kurtosis, kurtosis can also reflect the effect 
of primarily one of these components, such as heavy 
tails (which gives rise to some of the limitations dis- 
cussed below). Thus, for symmetric distributions, 
positive kurtosis indicates an excess in either the tails, 
the center, or both, whereas negative kurtosis indi- 
cates a lightness in the tails or center or both (an 
excess in the shoulders). An approach by means of 
influence functions, discussed below, shows that kur- 
tosis primarily reflects the tails, with the center having 
a smaller influence. 

On Some Common Misconceptions 
Concerning Kurtosis 

Further insight into kurtosis can be gained by ex- 
amining some misconceptions about it that appear in 
a number of textbooks, ranging from those used in 
introductory courses to those used in advanced gradu- 
ate courses. Three common errors are that (a) kurtosis 
is defined solely in terms of peakedness, with no men- 
tion of the importance of the tails; (b) the relation 
between the peak and tails of a distribution with ex- 
cess kurtosis is described or illustrated incorrectly; 
and (c) descriptions and illustrations of kurtosis fail to 
distinguish between kurtosis and the variance. 

An Old Error Revisited: Kurtosis As 
Simply Peakedness 

Many textbooks describe kurtosis as simply indi- 
cating peakedness (positive kurtosis) or flatness 
(negative kurtosis), with no mention of the impor- 
tance of the tails. Kaplansky (1945) referred to the 
tendency to describe kurtosis in terms of peakedness 
alone as a "common error," apparently made in sta- 
tistics textbooks of the 1940s. As counterexamples to 
this notion, Kaplansky gave density functions for a 
distribution with positive kurtosis but a lower peak 
than the normal, and a distribution with negative kur- 
tosis but a higher peak than the normal. The counter- 
examples illustrate why the definition of kurtosis 
solely in terms of peakedness or flatness can be mis- 
leading. Unfortunately, the error noted by Kaplansky 
(1945) and others still appears in a number of textbooks. 

It is interesting to note that Kaplansky's (1945) two 
counterexamples to kurtosis as peakedness alone do 
not satisfy the Dyson-Finucan condition, because the 
distributions cross the normal more than twice on 
each side of the mean. As noted by Balanda and Mac- 
Gillivray (1988), " I f  distributions cross more than the 
required minimum number of times, the value of 132 
cannot be predicted without more information. It is 
the failure to recognize this that causes most of the 
mistakes and problems in interpreting 132" (p. 113). 

A Recent Error: On Tailedness and Peakedness 

Although the above error persists, many textbooks 
now correctly recognize that tailedness and peaked- 
ness are both components of kurtosis. However, and 
somewhat surprisingly, the description of the tails is 
often incorrect. In particular, a number of textbooks, 
ranging from introductory to advanced graduate texts, 
describe positive kurtosis as indicating peakedness 
and light (rather than heavy) tails and negative kur- 
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tosis as indicating flatness and heavy (rather than 
light) tails (e.g., Bollen, 1989; Howell, 1992; Kirk, 
1990; Tabachnick & Fidell, 1996). This is a serious 
error, because it leads to conclusions about the tails 
that are exactly the opposite of  what they should be. 

Kurtosis and the Variance 

Another difficulty is that a number of  textbooks do 
not distinguish between kurtosis and the variance. For 
example, positive and negative kurtosis are some- 
times described as indicating large or small variance, 
respectively. Note, however, that the kurtosis measure 
132 is scaled with respect to the variance, so it is not 
affected by it (it is scale free). Kurtosis reflects the 
shape of  a distribution apart from the variance. 

A related problem is that many textbooks use dis- 
tributions with considerably different variances to il- 
lustrate kurtosis. This is apparently another old yet 
persistent problem; Finucan (1964), for example, 
noted that it appeared in statistics textbooks over 30 
years ago: 

But a falsely simplified version of this as "peakedness" 
has unfortunately gained some currency and has even 
misled some elementary texts into presenting two curves 
of markedly unequal variances (e.g., intersecting only 
once on each side of the mean) as their example of a 
difference in kurtosis. (p. 112) 

This is exactly the error made in more recent text- 
books. 

For the purpose of  illustrating the shape of  a dis- 
tribution relative to the normal, as measured by 132, 
the distributions should be scaled to have equal vari- 
ances, as in Figures 2 and 3. Otherwise, any differ- 
ence in the appearance of  the distributions will not 

simply reflect a difference in kurtosis, but will also 
reflect the difference in variance. This is illustrated by 
Figure 4, which shows three normal distributions with 
variances of  0.5, 1, and 2. Relative to the standard 
normal (or 2 = 1), the distribution with smaller vari- 
ance (tr 2 = 0.5) appears to have a higher peak and 
lighter tails, whereas the distribution with larger vari- 
ance (cr 2 = 2) appears flatter with heavier mils, which 
matches the incorrect descriptions and illustrations of  
kurtosis that are commonly given (note that the dis- 
tributions also cross only once on each side of  the 
mean). However, the three distributions are all nor- 
mal, so they have exactly the same shape and kurtoses 
of  132 - 3 = 0; the differences shown in Figure 4 
simply reflect the difference in variance, not kurtosis. 

Figure 4 is also relevant to the illustration of  the t 
distribution with varying degrees of  freedom that is 
given in many textbooks. The typical illustration 
shows that, as the degrees of  freedom decrease, the t 
distribution appears flatter with heavier tails than the 
normal, and it is often described in this way. How- 
ever, the t is actually more peaked than the normal, as 
Figure 2 shows (for df = 5); the apparent flatness in 
textbook illustrations arises because of  the larger vari- 
ance of  the t as the degrees of  freedom decrease (the 
variance is dfl[df- 2] for df > 2). In fact, Horn's  
(1983) measure of  peakedness, noted below, suggests 
that, contrary to becoming flatter, the t distribution 
becomes more peaked as the degrees of  freedom de- 
crease (and the tails are heavier). 

On  the Use  o f  Kurtosis  

As taught in introductory courses, a basic goal of  
statistics is to organize and summarize data, and the 
mean and variance are introduced as summary mea- 

0.6,  

>,, 
-4-/ 
o - -  
O3 ¢- 

q.) 0.4 ,  

>,, 
= ~  
o m  

0 0 . 2  
..Q 
0 
k_ 

O_ 

0 .0  

- -  o-2= 1 "'" / 2-3=0 
- - 0 ' ' = 2  j - 
. . . . . .  0 " 2 = 0 . 5  

, , i  -,x 
# :' ",,, \ 

/ o" " ,  
~.. , "  o. ~ .  

. ~ ~ "  . ° .  . .  ~ .  °..-'¢ 

- 3  - 2  - 1  0 1 2 3 4 

Figure 4. Three normal distributions with variances ( 0  "2) of 0.5, 1, and 2. 
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sures of the location and variability of a distribution. 
Similarly, skew and kurtosis provide summary infor- 
mation about the shape of a distribution. Although 
there are limitations to 132 as a measure of kurtosis, as 
discussed below, the concepts of kurtosis, tail weight, 
and peakedness of a distribution "nevertheless play 
an important role in both descriptive and inferential 
statistics" (Balanda & MacGillivray, 1988, p. 114). 
Some of these roles are examined in this section. 

First considered are uses of kurtosis that are prac- 
tical and research oriented, followed by uses that are 
more conceptual and teaching oriented. From a prac- 
tical perspective, the kurtosis and skewness statistics 
provided by virtually every statistical package provide 
information about shape that researchers should con- 
sider (and report), and tests based on these (or related) 
statistics have been shown to have excellent proper- 
ties. Kurtosis is also relevant to issues of robustness, 
outliers, and modified tests and estimators, each of 
which is discussed in turn (also see Hopkins & 
Weeks, 1990; Jobson, 1991). At a more conceptual 
level, the simplified view of kurtosis given above 
serves to introduce the concepts of tails, center, and 
shoulders of a distribution, and these in turn are useful 
for a discussion of limitations of the measure 132, al- 
ternatives to 132, nonnormal distributions, and differ- 
ent approaches to formalizing the concept of kurtosis, 
as addressed in the last sections of this article. 

Kurtosis and Normality 

Part of a complete statistical analysis is an assess- 
ment of assumptions, including any distributional as- 
sumptions. When using normal theory methods, there- 
fore, the assumption of normality should be checked. 
Other reasons for assessing normality are because de- 
partures from normality can affect tests and confi- 
dence intervals based on normal theory methods, and 
because the reduction of multivariate data to covari- 
ance matrices may overlook important aspects of the 
data; robustness and multivariate normality are dis- 
cussed below. 

Univariate normality. The use of the kurtosis sta- 
tistic b 2, together with the skewness statistic {b~, to 
assess normality has a long history in statistics, which 
was reviewed by D'Agostino (1986). The skewness 
statistic {b~, like the kurtosis statistic b 2, is obtained 
from the sample moments as 

"~V~I - E(Xi - ~')3/n 

( E ( X  i - S ) 2 1 n ) 3 / 2  

and indicates departures from symmetry. 

Although tests based on the kurtosis and skewness 
statistics have been shown to have excellent proper- 
ties for detect ing departures  f rom normali ty ,  
D'Agostino, Belanger, and D'Agostino Jr. (1990) 
have noted that the results "have not been dissemi- 
nated very well" (p. 316). In particular, studies have 
shown that tests based on the kurtosis and skewness 
statistics b2 and ~/b 1 have good power properties, and 
D'Agostino et al. (1990) recommended their use for 
sample sizes as small as nine. In addition, the statistics 
provide information about the type and magnitude of 
departures from normality. Thus, the recommended 
strategy for assessing normality is to use tests and 
measures of skew and kurtosis in conjunction with 
omnibus tests, such as the Shapiro--Wilk test and the 
D' Agostino and Pearson (1973) K 2 test, both of which 
have good power properties, and graphical checks, 
such as normal probability plots. 

With respect to software, the Shapiro-Wilk test and 
various plots (e.g., normal probability, quantile- 
quantile) are provided by many packages, such as 
SAS (SAS Institute, 1989) and SPSS (SPSS Inc., 
1994). The skewness and kurtosis tests and the om- 
nibus test K 2 can be obtained in SAS by using the 
macro given in D'Agostino et al. (1990) or in SPSS 
by using the macro given in the appendix of this ar- 
ticle. 

Multivariate normality. The multivariate normal 
distribution has several simplifying properties, one of 
which is that it is completely defined by the first two 
moments, which is important to the many multivariate 
methods that use a covariance matrix as input. The 
multivariate normal distribution plays a central role in 
multivariate methods because of this property and 
others (e.g., the marginals of multivariate normal ran- 
dom variables are also normal). Multivariate normal- 
ity is a stronger assumption than univariate normality, 
and, just as for univariate normality, it should be 
checked; Cox and Wermuth (1994) noted a number of 
reasons for testing multivariate normality. 

A first step in assessing multivariate normality is to 
separately test each variable for univariate normality, 
because univariate normality is a necessary condition 
for multivariate normality. This can be done by using 
plots and the skew, kurtosis, and omnibus tests noted 
above. Because several tests are performed, a Bonfer- 
roni correction can be used to control the Type I error 
rate (using or~p, where et is the desired experimentwise 
error rate and p is the number of variables). 

Although univariate normality is a necessary con- 
dition for multivariate normality, it is not sufficient, 
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which means that a nonnormal multivariate distribu- 
tion can have normal marginals. So if univariate nor- 
mality is not rejected, then the next step is to check for 
multivariate normality. Looney (1995) discussed an 
interesting example (Royston's hematology data) 
where, after transforming some of the variables, uni- 
variate tests do not indicate departures from normality 
for the marginal distributions, but multivariate tests 
indicate departures from multivariate normality. 

Multivariate normality can be assessed by again 
using both formal and informal tools. For example, 
many textbooks discuss a graphical check of multi- 
variate normality that is based on the squared Maha- 
lanobis distances (e.g., Gnanadesikan, 1977; Jobson, 
1992; Johnson & Wichern, 1988; Stevens, 1996; Ta- 
bachnick & Fidell, 1996). With respect to tests, 
Looney (1995) has recently discussed several multi- 
variate tests that are based on the skew, kurtosis, and 
Shapiro-Wilk statistics; several tests are used because 
the different tests are sensitive to different types of 
departures from multivariate normality. SAS macros 
and FORTRAN routines are available to perform the 
tests (see Looney, 1995), and the SPSS macro in the 
appendix gives several multivariate tests of normality 
as well as a plot of the squared Mahalanobis dis- 
tances. In addition, Cox and Wermuth (1994) dis- 
cussed testing multivariate normality by using regres- 
sion tests of linearity, which can easily be performed 
using standard software. 

Robustness. This section notes that distributional 
shape is relevant to issues of robustness (e.g., see E. S. 
Pearson & Please, 1975) and to decisions about robust 
alternatives. 

The frequent finding of departures from normality 
for many psychological variables (see Micceri, 1989) 
has led to interest in the robustness of various tests 
and estimators. Robustness has been investigated in 
sampling (Monte Carlo) studies by examining the ef- 
fects of specific types of departures from normality; 
for example, symmetric distributions with heavy tails, 
such as the Laplace, Cauchy, and contaminated nor- 
mal, are commonly used. Sampling studies and theo- 
retical considerations (such as approximations of mo- 
ments) have together shown that shape has a different 
effect on different tests and estimators. For example, 
a general finding for univariate and multivariate data 
is that tests of means appear to be affected by skew 
more than kurtosis, whereas tests of variances and 
covariances are affected by kurtosis more than skew 
(e.g., Jobson, 1991, p. 55; Mardia, Kent, & Bibby, 
1979, p. 149). So, knowledge about expected types of 

departures from normality for a variable is relevant; 
this knowledge may come from prior research expe- 
rience with the variable(s), from theoretical consider- 
ations, or both. For example, reaction time distribu- 
tions tend to be positively skewed with a heavy tail, as 
shown by extensive research, and examples of non- 
normal distributions arising from theory can be found 
in mathematical psychology (e.g., Luce, 1986). 

A specific example is that it has long been recog- 
nized that kurtosis can have a large effect on tests of 
equality of variances (see Box, 1953; E. S. Pearson, 
1931; Rivest, 1986). In response, robust tests, such as 
Levene's (1960) test (one version of which is given by 
the EXAMINE procedure of SPSS), have been de- 
veloped. Note that shape is also relevant to Levene's 
test (and others; see Algina, Olejnik, & Ocanto, 1989) 
in that Brown and Forsythe (1974) found that dif- 
ferent versions of the test appear to perform better, 
depending on whether the distribution is sym- 
metric with heavy tails, in which case the trimmed 
mean can be used in place of the mean, or asymmet- 
ric, in which case the median can be used in place of 
the mean. 

Kurtosis can also affect tests of equality of covari- 
ance matrices (e.g., Layard, 1974). More generally, 
the effect of kurtosis on analyses based on covariance 
matrices has received extensive attention in structural 
equation modeling, which is widely used in psychol- 
ogy (see Tremblay & Gardner, 1996). Browne (1982, 
1984), for example, noted that kurtosis can have a 
large effect on significance tests and standard errors 
of parameter estimates, and measures of univariate 
and multivariate kurtosis are now included in most 
software for structural equation modeling. If kurtosis 
is thought to be a problem, a number of alternative 
(and possibly more robust) tests and estimators are 
available (see Hu, Bentler, & Kano, 1992). 

Note that, even if a test is generally robust, shape 
can still be relevant in some situations, such as for 
small sample sizes (as are often obtained in applied 
research) or for models with random effects. For ex- 
ample, it is well known that tests of means, such as t 
tests and analyses of variance, are robust to moderate 
departures from normality (see Harwell, Rubinstein, 
Hayes, & Olds, 1992; Lindman, 1992; Stevens, 1996). 
However, Tiku, Tan, and Balakrishnan (1986) noted 
that, for small sample sizes, the power and Type I 
errors of the t test can be heavily affected by skewness 
and kurtosis; they also noted the relevance of shape to 
the choice of robust alternatives (p. 113). 

Outliers. The topic of robustness is closely related 
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to that of  outliers. As noted above, kurtosis largely 
reflects tail behavior, and so its use for detecting out- 
liers has been considered. In fact, kurtosis can be quite 
useful for detecting outliers in some situations (loca- 
tion slippage); discussions of  approaches to detecting 
outliers can be found in Barnett and Lewis (1996), 
Jobson (1991), Tietjen (1986), and Tiku et al. (1986). 
Note that positive kurtosis can arise either because 
outliers are present, yet the distribution is normal, or 
because the underlying distribution is nonnormal, in 
which case heavy tailed nonnormal distributions can 
be considered as alternatives to the normal. 

For multivariate data, a classical approach to de- 
tecting multivariate outliers that is discussed in many 
textbooks (e.g., Gnanadesikan, 1977; Jobson, 1992; 
Johnson & Wichern, 1988; Seber, 1984) is to examine 
the squared Mahalanobis distance for each case; a 
large value for a case relative to other cases can in- 
dicate a multivariate outlier. Note that the Mahalano- 
bis distances are also related to Mardia's measure of  
multivariate kurtosis (see Mardia, 1970, 1980), in that 
the average of the sum of the Mahalanobis distances 
raised to the fourth power gives Mardia's measure 
(see Mardia et al., 1979). In fact, Mardia's test of 
multivariate kurtosis has been shown to have good 
properties for detecting multivariate outliers in some 
situations (Schwager & Margolin, 1982). 

The relation of Mardia's (1970) measure to the Ma- 
halanobis distances is also helpful for understanding 
the measure: A large value of  Mardia's measure (rela- 
tive to the expected value under multivariate normal- 
ity) suggests the presence of one or more cases with 
large Mahalanobis distances, which are cases that are 
far from the centroid of all cases (potential outliers). 
So, Mardia's multivariate kurtosis in part indicates if 
the tails are heavy or light relative to those of  the 
multivariate normal distribution; of course, a possible 
effect of the center also has to be kept in mind. 

Generalized tests and estimators. Kurtosis also 
appears in a number of tests and estimators. For ex- 
ample, Searls and Intarapanich (1990) showed that an 
estimator of  the variance that uses (a known value of) 
kurtosis in the divisor has a smaller mean squared 
error. Other examples are Box ' s  (1953; Box & 
Andersen, 1955) modification of  Bartlett's test for 
equal variances, which corrects the degrees of  free- 
dom using an estimate of  kurtosis, and Layard 's  
(1973) modification of  a chi-square test for equality of  
covariance matrices, which also utilizes kurtosis. 

Kurtosis also plays a role in structural equation 
modeling, in that it appears in one form or another in 

generalizations of  normal theory methods, such as el- 
liptical theory (see Bentler, 1989), which uses Mar- 
dia's (1970) multivariate kurtosis, and heterogeneous 
kurtosis theory (Kano, Berkane, & Bentler, 1990), 
which uses estimates of  univariate kurtosis. These 
theories are more general in that they allow for mul- 
tivariate distributions with heavier or lighter tails than 
the multivariate normal. Of course, an understanding 
of  kurtosis is a requisite for understanding how the 
above theories generalize normal theory methods, so 
teaching about kurtosis lays the groundwork for later 
courses. 

It should be noted that this section simply points 
out the role of  kurtosis in various tests and estimators, 
and is not meant to imply that the use of  kurtosis is 
necessarily a plus. In fact, some difficulties with el- 
liptical theory estimators and tests appear to be due to 
problems with estimating multivariate kurtosis, and 
current research is examining other approaches. 

Kurtosis and Nonnormal Distributions 

The use of  the standardized moments 132 and x/131 to 
describe shape goes back to Karl Pearson (1895), who 
also introduced a system of frequency curves to model 
departures from normality often found for real-world 
data; these and other systems of distributions, such as 
the Johnson system (Johnson, 1949), approach shape 
through the standardized moments, and plots of  the 
(131, 132) plane (Pearson diagrams) are often used for 
illustrations. The next sections examine several non- 
normal distributions and note limitations of  and alter- 
natives to the kurtosis measure 132. 

Bimodality. The relation of kurtosis to bimodality 
illustrates both advantages and limitations of  the mea- 
sure 132. In particular, Finucan (1964) noted that, be- 
cause bimodal distributions can be viewed as having 
"heavy shoulders," they should tend to have negative 
kurtosis, that is, "a  bimodal curve in general has also 
a strong negative kurtosis"  (p. 112). Darlington 
(1970) took this view a step further and argued that 
kurtosis can be interpreted as a measure of  unimodal- 
ity versus bimodality, with large negative kurtosis in- 
dicating a tendency toward bimodality (the uniform 
distribution, with 132 - 3 = -1.2, provides a dividing 
point). The symmetric binomial distribution with n = 
1 and p = .5 offers a simple example: The mean is np 
= .5, the standard deviation is ~/np(1 - p )  = 0.5, and 
the (Bernoulli) distribution consists of  mass at 0 and 
1, so all the probability mass is concentrated at Ix -+ ~r, 
the shoulders, and 132 - 3 is -2 ,  which is the lowest 
possible value. 
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Hildebrand (1971) noted that the family of  sym- 
metric beta distributions provides an example of  a 
continuous distribution that nicely illustrates Darling- 
ton's (1970) point. The family has a shape parameter 
v > 0, and as v varies, 132 - 3 varies between - 2  and 
0. For v = 1, the distribution is uniform and 132 - 3 = 
-1.2.  For v > 1, the distribution is unimodal and ap- 
proaches the normal as v increases, and 132 - 3 ap- 
proaches zero (from the left). For v < 1, the distribu- 
tion is bimodal and 132 - 3 < -1.2,  and as v approaches 
zero, 132 - 3 approaches - 2  (and the modes approach 
_+1, as for the symmetric binomial). Figure 5 presents 
an illustration. The top left panel shows a standard- 
ized symmetric beta distribution with v = 3, for 
which [32 - 3 = -0.67. Note that, relative to the 
standard normal, the distribution is flat with light tails, 
and also satisfies the Dyson-Finucan condition (it 
crosses the normal twice on each side of  the mean). 
As v approaches 1, the distribution approaches the 
uniform, as shown by the top fight and bottom left 
panels of  Figure 5 with v = 1.2 and v = 1. For v < 
1, the distribution is bimodal and 132 - 3 < -1.2,  as 
shown by the bottom right panel for v = 0.9. Thus, 
the symmetric beta is a family of  light-tailed distri- 
butions that range from unimodal to no mode (uni- 
form) to bimodal, and this is reflected by 132 - 3 going 
from near zero (close to normal) to -1 .2  (uniform) to 
less than -1 .2  (bimodal). 

A limitation, however, is that kurtosis for bimodal 
distributions is not necessarily negative. Hildebrand 
(1971) noted, for example, that the double gamma 
family of  distributions (also known as the reflected 
gamma; see Johnson, Kotz, & Balakrishnan, 1994) 
can have values of  132 - 3 ranging from - 2  to 3 when 
the distributions are bimodal (for an illustration, see 
Balanda & MacGillivray, 1988). This means that 132 - 
3 can be zero or positive for bimodal distributions; it 
depends on where the modes are located and on the 
heaviness of  the tails. Adding contamination to the 
tails, for example, can result in zero or positive kur- 
tosis for a bimodal or flat distribution (the double 
gamma has heavy tails). Moors (1986) noted that, as 
a consequence of  Hi ldebrand 's  counterexample,  
"Darlington's  result did not receive the attention it 
deserves" (p. 284). 

Recognizing the above limitation, it should never- 
theless be kept in mind that large negative kurtosis 
may indicate bimodality. In a similar vein, Bajgier 
and Aggarwal (1991) noted that a one-tailed test of 
negative kurtosis can be useful for detecting balanced 
mixtures of  normal distributions in some situations. 
Other tools for detecting bimodality and mixtures are 
plots ,  such as a normal  p robabi l i ty  plot  (see 
D'Agost ino et al., 1990, for an illustration), and pos- 
sibly Horn's  (1983) measure of peakedness, discussed 
below. The CLUSTER procedure of  SAS (SAS Insti- 
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Figure 5. The solid lines show examples from the family of standardized symmetric beta distributions, which vary from 
unimodal to bimodal with shape parameter v. The dotted lines show the standard normal distribution. 
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tute, 1989) also gives a "bimodality coefficient" (p. 
561) based on kurtosis and skew that might be useful 
for skewed distributions (it remains to be investi- 
gated). 

Limitations of 132. A discussion of  kurtosis would 
not be complete without noting some further limita- 
tions of  the measure 132. One problem is that more 
than one distributional shape can correspond to a 
single value of  132. The family of  symmetric Tukey 
lambda distributions provides an example: There are 
two distributions (two values of lambda) with differ- 
ent shapes for each value of  132 (for an illustration, see 
Balanda & MacGillivray, 1988; Johnson et al., 1994; 
Joiner & Rosenblatt, 1971). For example, for h = 
0.135, the distribution approximates the normal and 
132 - 3 = 0. However, for X = 5.2, again 132 - 3 = 
0, as for the normal, but the distribution is consider- 
ably more peaked than the normal. So, for X = 5.2, [32 
does not reflect the peakedness of  the distribution. 
This might occur because the distribution is peaked 
yet the tails are truncated; Chissom (1970), for ex- 
ample, used discrete distributions to show that trun- 
cation of  the tails of a peaked distribution decreases 
its positive kurtosis, and similarly, symmetrically 
truncating the tails of  a normal distribution can lower 
[32 - 3 from 0 to -1.2 (see Figure 1 of  Sugiura & 
Gomi, 1985). So, just as adding mass to the tails can 
eliminate the negative kurtosis of  a flat or bimodal 
distribution, as noted above, removing mass from the 
tails can eliminate the positive kurtosis of a peaked 
distribution. 

Another limitation of [32 is that it cannot be used 
when the moments are not finite. The familiar t dis- 
tribution provides an example, in that [32 is only de- 
fined for df > 4 (the variance is also not finite for df 
= 1 or 2). Similarly, the Cauchy distribution does not 
have finite moments, so [32 and the variance do not 
exist (note that a t with df = 1 is the Cauchy). In these 
and other examples, alternative measures are more 
useful. For example, Hogg 's  (1974) measure of tail 
heaviness can be used for the t (for all dj") and Cauchy 
distributions, and Hogg noted that the normal, logis- 
tic, t, and Cauchy distributions can be ordered as 
given with respect to increasing tail heaviness. 

Another difficulty is that [32 does not necessarily 
allow a comparison of  nonnormal distributions with 
respect to each other, but only with respect to the 
normal. For example, the normal, Laplace, and t (with 
5 df) have values of [32 - 3 of 0, 3, and 6, respectively, 
which reflects that the Laplace and t distributions are 
both more peaked with heavier tails than the normal. 

However, the Laplace is more peaked than the t 5, but 
its value of  132 - -  3 is smaller (3 vs. 6), so 132 fails to 
reflect the greater peakedness of  the Laplace. In this 
case, Horn's  (1983) measure of  peakedness is more 
useful, in that it indicates the peakedness of  the 
Laplace relative to the t. Further discussion of com- 
parative kurtosis and approaches based on partial or- 
derings of  distributions is provided by Balanda and 
MacGillivray (1988). 

In sum, by their very nature, there are always limi- 
tations to summary measures, and this applies to the 
mean, variance, and skew, as well as to kurtosis. The 
purpose here is not to dictate the best or only approach 
to describing shape, but rather to clarify the meaning 
and relevance of  kurtosis and to motivate researchers 
to look at the kurtosis statistic already included in 
their output. As is the case for any measure, informed 
use of  kurtosis requires knowledge of  both its advan- 
tages and limitations. 

Alternatives to 132. Because of  limitations of  132, a 
number of  alternative measures of kurtosis have been 
proposed. Balanda and MacGillivray (1988) provide a 
review and note that the measures basically differ 
with respect to how they are scaled and where they 
position the shoulders of  the distribution. For ex- 
ample, 132 locates the shoulders at Ix -+ (r and the 
measure is scaled with respect to the standard devia- 
tion, but other possibilities are to locate the shoulders 
at the quartiles, as done for a measure proposed by 
Groeneveld and Meeden (1984), or to scale the mea- 
sure using the interquartile range, as done for some 
quantile based measures. Balanda and MacGillivray 
(1988) noted that the alternative measures "together 
form a haphazardly constructed collection of  altema- 
tives rather than a coherent alternative approach to the 
standardized fourth central moment"  (p. 114), but the 
measures can nevertheless be useful (this is also a 
rapidly developing area in statistics). 

In some applications, interest centers on part of the 
distribution rather than on the entire distribution. For 
example, in some situations (e.g., the study of  floods 
or pollution levels), the tails (the extremes) of the 
distribution are of primary interest. Thus, some of  the 
alternative measures attempt to measure tailedness 
alone or peakedness alone. For example, Hogg (1974) 
proposed a measure of  tailedness, whereas Horn 
(1983) proposed a measure of  peakedness. If interest 
is primarily on tail weight, then Hogg 's  measure of 
tailedness is less affected by outliers than 132, whereas 
if the center (or shoulders) of the distribution is of 
greater interest, then Horn's  measure better reflects 
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peakedness than [32 (in that the influence of the tails is 
bounded). 

It should be recognized, however, that the above 
are not "pure measures of peakedness or of tail 
weight" (Ruppert, 1987, p. 5), because they are af- 
fected by both the center and tails. Ruppert offered a 
"simple intuitive reason" (p. 5) for this, which is the 
same as the simplified explanation of kurtosis given 
above. More important, he showed that the influence 
function is useful for understanding ~2 and other mea- 
sures. For example, plots of the (symmetric) influence 
function show that [32 is largely affected by tail weight 
and to a lesser extent by peakedness. The plots also 
show that Hogg's (1974) measure of tailedness indeed 
reflects tail weight and is less affected by outliers than 
[32 but is still affected by the center (though to a lesser 
extent than [32), and Horn's (1983) measure indeed 
reflects peakedness but is also affected by the tails 
(though to a lesser extent than [32). Balanda and Mac- 
Gillivray (1988) argue that a simultaneous consider- 
ation of tailedness and peakedness provides a better 
understanding of distributional shape (through an or- 
dering based approach) than a separation of the con- 
cepts. 

A Note on Kurtosis and Skewness Statistics 

As shown above, the kurtosis statistic b E and the 
skewness statistic ~/b a are obtained by substituting the 
sample moments for the population moments. These 
statistics form the basis for univariate tests of kurtosis 
and skew, as discussed by D'Agostino et al. (1990), 
and for the multivariate tests of kurtosis and skew 
discussed by Looney (1995). They are also used in 
structural equation modeling in, for example, the 
mean scaled univariate kurtosis estimates used in el- 
liptical estimators (e.g., Bentler, 1989, p. 214). 

Many readers will recognize that the estimator of 
the second population moment (the variance) used in 
the kurtosis statistic b 2 is biased, because it uses n in 
the denominator instead of n - 1; similarly, the third 
and fourth sample moments are biased estimators of 
the third and fourth population moments. Another ap- 
proach is to use unbiased estimators of the population 
moments, which gives the Fisher g statistics (see 
Fisher, 1970, p. 75), gl for skewness and g2 for kur- 
tosis, 

nX(X~ -- ~.)3 
g l - -  (n - 1)(n - 2)[~(Xi - ~')2/(n - 1)] 3/2 

and 

g 2 -  
n(n + 1)2(X i -- ~ 4  

(n - 1)(n - 2)(n - 3)[Z(Xi- X')2/(n - 1)] 2 

3 ( n -  1) 2 

(n - 2)(n - 3)" 

The Fisher g statistics are related to ~/b 1 and b 2, and 
D'Agostino et al. (1990) used this relation to compute 
~/bl and b2 from the g statistics given by SAS (SAS 
Institute, 1989) and SPSS (SPSS Inc., 1994; note that 
using the BIASKUR option in the CALIS procedure 
of SAS gives "Jbl and b2). 

A Macro for  Measures and Tests o f  Skew 
and Kurtosis 

The appendix provides a macro for measures and 
tests of univariate and multivariate skewness and kur- 
tosis based on ~/b I and b 2. The macro can be used to 
supplement the graphs and statistics provided by 
many statistical packages. For example, normal prob- 
ability plots and the Shapiro-Wilk statistic are pro- 
vided by SAS (SAS Institute, 1989), SPSS (SPSS 
Inc., 1994) and other software. 

For univariate data, the macro gives ~/bl and b2 and 
tests based on them, as discussed by D'Agostino et al. 
(1990). It also provides two omnibus tests: K 2 
(D'Agostino & Pearson, 1973), which simply sums 
the two chi-squares for skewness and kurtosis, and a 
score (Lagrange multiplier) test (see Jarque & Bera, 
1987), which is a function of ~/b 1 and b 2. D'Agostino 
(1986) noted that K 2 might be less affected by ties 
than the Shapiro-Wilk statistic (Looney, 1995, rec- 
ommends the use of a correction for ties for the Sha- 
piro-Wilk). 

In addition to the univariate statistics, the macro 
gives for multivariate data (a) Mardia's (1970) mul- 
tivariate kurtosis; (b) Srivistava's (1984) and Small's 
(1980) measures and tests of multivariate kurtosis and 
skew, both of which are discussed by Looney (1995); 
(c) an omnibus test of multivariate normality based on 
Small's statistics (see Looney, 1995); (d) a list of the 
five cases with the largest squared Mahalanobis dis- 
tances; (e) a plot of the squared Mahalanobis dis- 
tances, which is useful for checking multivariate nor- 
mality and for detecting multivariate outliers; and (f) 
Bonferroni adjusted critical values for testing for a 
single multivariate outlier by using the Mahalanobis 
distance, as discussed by Penny (1996), who also 
noted that the test gives results equivalent to those 
obtained by using jackknifed Mahalanobis distances. 

To gain experience with the macro, one can use it 
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to replicate the results of D'Agostino et al. (1990), 
who provided data in the form of a stem and leaf plot 
(62 participants from the Framingham heart study) 
and illustrated the use of the univariate statistics and 
normal probability plot. For multivariate analysis, the 
macro can be used with Fisher's iris data, which is 
readily available (e.g., in examples of  the procedures 
CLUSTER and DISCRIM in the SAS/STAT User's 
Guide [SAS Institute, 1989]; also by anonymous ftp 
from Statlib: ftp to lib.stat.cmu.edu, it 's in the datasets 
directory as part of  visualizing.data) and the analysis 
reported by Looney (1995) can be (partially) repli- 
cated; note that thep  value for Small 's Q2 in Looney 's  
Table 2 should be .072 and not .074 (S. W. Looney, 
personal communication, September 1995). Gnana- 
desikan (1977, pp. 161-195) gave examples of  the use 
of  the plot of  ordered squared Mahalanobis distances, 
which provides a visual check of multivariate normal- 
ity (the points should lie along the diagonal) and can 
also help in the detection of  multivariate outliers. 

To use the macro, one needs two lines, one to in- 
clude the macro in the program and the other to ex- 
ecute it. In SPSS 6.1 (SPSS Inc., 1994), the com- 
mands can be typed directly in the syntax window, for 
example, as the following: 

include 'c:\spsswin\normtest.sps'. 
normtest vars = xl,x2,x3,x4. 

The first line includes the macro, which in this case is 
named normtest.sps and is in the spsswin directory, 
and the second line invokes the macro for variables x 1 
to x4, for example. 

Conclusions 

At the level of an introductory course, kurtosis can 
be illustrated with a stylized figure, such as Figure 1. 
Well-known distributions, such as the t and uniform, 
are also useful as examples. It is informative to note 
the relevance of  density crossings to the kurtosis mea- 
sure, and to distinguish kurtosis from the variance. In 
second and higher level courses, the role of  kurtosis 
for assessing normality; for describing the type and 
magnitude of departures from normality; for detecting 
outliers, bimodality, and mixtures; in issues of  robust- 
ness; in generalized tests and estimators, as well as 
limitations and alternatives to kurtosis, can be dis- 
cussed. 
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A p p e n d i x  

A n  S P S S  M a c r o  f o r  U n i v a r i a t e  and  M u l t i v a r i a t e  S k e w  a n d  K u r t o s i s  

preserve 
set printback = none 
define normtest (vars = !charend('/')) 
matrix 
get x/variables = !vars/names = varnames/missing = omit 
compute n = nrow(x) 
compute p = ncol(x) 
compute sl = csum(x) 
compute s2 = csum(x&**2) 
compute s3 = csum(x&**3) 
compute s4 = csum(x&**4) 
compute xbar = sl /n 
compute j = make(n, 1,1) 
compute xdev = x- j  * xbar 
release x 
compute m2 = (s2-(sl&**2/n))/n 
compute m3 = (s3-(3/n*sl&*s2)+(2/(n**2)*(sl&**3)))/n 
compute m4 = (s4-(4/n*sl&*s3)+(6/(n**2)*(s2&*(sl&**2)))-(3/(n**3)*(sl&**4)))/n 
compute sqrtbl = t(m3/(m2&**l.5)) 
compute b2 = t(m4/(m2&**2)) 

• ******* quantit ies needed for mult ivar iate  statistics ********  
computes s = sscp(xdev)/(n-1) 
compute sinv = inv(s) 
compute d = diag(s) 
compute dmat = make(p,p,0) 
call setdiag(dmat,d) 
compute sqrtdinv = inv(sqrt(dmat)) 
compute corr = sqrtdinv*s*sqrtdinv 

• ** principal  components  for Sr ivas tava ' s  tests *** 



ON KURTOSIS 305 

call svd(s,u,q,v) 
compute pc = xdev*v 
release xdev 

*** M a h a l a n o b i s  d i s t ances  *** 
compute sqrtqinv = inv(sqrt(q)) 
compute stdpc = pc*sqrtqinv 
compute dsq = rssq(stdpc) 
release stdpc 

* * * * * * * * * * * * * * * *  un iva r i a t e  skew and  kur tos is  * * * * * * * * * * * * * * * * *  

*** a p p r o x i m a t e  J o h n s o n ' s  S U  t r ans f o r m a t i on  for  skew *** 
compute y = sqrtbl*sqrt((n+l)*(n+3)/(6*(n-2)))  
compute beta2 = 3*(n**2+27*n-70)*(n+l)*(n+3)/((n-2)*(n+5)*(n+7)*(n+9))  
compute w = sqrt(- l+sqrt(2*(beta2-1)))  
compute delta = 1/sqrt(ln(w)) 
compute alpha = sqrt(2/(w*w-1)) 
compute subl = delta*ln(y/alpha+sqrt((y/alpha)&**2+l)) 
compute psubl = 2*( l -cdfnorm(abs(subl) ) )  
print {n}/t i t le"Number of observations:" /format = f5 
print {p}/t i t le"Number of variables:" / format= f5 

print {sqr tbl ,subl ,psubl  } 
/title' 'Measures and tests of skew:"  
/clabels = " s q r t ( b l ) " , " z ( b l ) " , " p - v a l u e "  
/mames = vamames / fo rmat  = f l  0.4 

*** A n s c o m b e  and  G l y n n ' s  t r an s f o r m a t i on  for  kur tos i s  

compute eb2 = 3*(n-1) / (n+l )  
compute vb2 = 24*n*(n-2)*(n-3)/(((n+l)**2)*(n+3)*(n+5))  
compute stm3b2 = (b2-eb2)/sqrt(vb2) 
compute betal  = 6*(n*n-5*n+2)/((n+7)*(n+9))*sqrt(6*(n+3)*(n+5)/(n*(n-2)*(n-3)))  
compute a = 6+(8/betal)*(2/betal+sqrt( l+4/(betal**2)))  
compute zb2 = (1-2/(9*a)-((1-2/a)/(l+stm3b2*sqrt(2/(a-4))))&**(1/3))/sqrt(21(9*a)) 
compute pzb2 = 2*(1-cdfnorm(abs(zb2))) 
compute b2minus3 = b2 -3  
print { b2minus3,zb2,pzb2 } 

/ t i t le"Measures and tests of kurtosis:" 
/clabels = " b 2 - 3 " , " z ( b 2 ) " , " p - v a l u e "  
/mames = vamames / fo rmat  = f l  0.4 

compute ksq = subl&**2+zb2&**2 
compute pksq = l-chicdf(ksq,2) 
compute lm = n*((sqrtbl&**2/6)+(b2minus3&**2/24)) 
compute plm = 1-chicdf(lm,2) 
print 

/ t i t le"Omnibus tests of normality (both chisq, 2 df) :"  
print { ksq,pksq,lm,plm} 

/ t i t le" D'Agost ino & Pearson K sq Jarque & Bera LM test"  
/clabels = " K  sq" , "p-va lue '  ' , " L M " , " p - v a l u e "  
/rnames = varnames/ format  = f10.4 

do if p>l  
print 
/ t i t le"*************** Multivariate Statistics ***************" 
*** Small 's  multivariate tests *** 
compute uinv = inv(corr&**3) 
compute uinv2 = inv (corr&**4) 
compute ql  = t (subl)*uinv*subl  
* note: the variant of Small 's  kurtosis uses Anscombe & Glynn's  
* transformation in lieu of SU (A & G is simpler to program) 
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compute q2 = t(zb2)*uinv2*zb2 
compute pql  = 1-chicdf(ql,p) 
compute pq2 = 1-chicdf(q2,p) 
print/t i t le"Tests of multivariate skew:" 
print {ql,p,pql }/title" Small's test (chisq)" 

/clabels = "  Q 1 " , "  d f " , "  p- value"/format = f l  0.4 

*** Sr ivas tava ' s  mult ivar ia te  tests *** 
compute pcsl = csum(pc) 
compute pcs2 = csum(pc&**2) 
compute pcs3 = csum(pc&**3) 
compute pcs4 = csum(pc&**4) 
release pc 
compute mpc2 = (pcs2-(pcsl&**2/n))/n 
compute mpc3 = (pcs3-(3/n*pcsl&*pcs2) +(2/(n*'2)* (pcsl&**3)))/n 
compute mpc4= (pcs4-(4/n*pcsl&*pcs3) +(6/(n*'2)* (pcs2&*(pcsl&**2)))-(3/(n**3)* (pcsl&**4)))/n 
compute pcb 1 = mpc3/(mpc2&** 1.5) 
compute pbc2 = mpc4/(mpc2&**2) 
compute sqblp = rsum(pcb 1 &**2)/p 
compute b2p = rsum(pcb2)/p 
compute chibl = sqblp*n*p/6 
compute normb2 = (b2p-3)*sqrt(n*p/24) 
compute pchibl = 1-chicdf(chibl,p) 
compute pnormb2 = 2*(l-cdfnorm(abs(normb2))) 
print { chib 1,p,pchib 1 } 

/title" Srivastava's test" 
/clabels = " c h i ( b  1 p)' ' , '  'df '  ' , "p-value '  '/format = ft  0.4 

print/t i t le"Tests of multivariate kurtosis:" 
print {q2,p,pq2} 

/ti t le" A variant of Small 's test (chisq)" 
/clabels = "VQ2" , "d f " , "p -va lue" / fo rma t  = f10.4 

print {b2p,normb2,pnormb2 } 
/title" Srivastava's test" 
/clabels = "b2p" ,"N(b2p)" , "p-va lue" / format  = f10.4 

*** Mard ia ' s  mult ivar iate  kurtosis *** 
compute b2pm = csum(dsq&**2)/n 
compute nb2pm = (b2pm-p*(p+2))/sqrt(8*p*(p+2)/n) 
compute pnb2pm = 1-cdfnorm(abs(nb2pm)) 
print {b2pm,nb2pm,pnb2pm } 

/ti t le" Mardia's test" 
/clabels = "b2p" ,"N(b2p)" , "p-va lue" / format  = f10.4 

compute q3 = ql+q2 
compute q3df = 2*p 
compute pq3 = 1-chicdf(q3,q3df) 
print/title '  'Omnibus test of multivariate normality:" 
print {q3,q3df, pq3 } 

/t i t le" (based on Small's test, chisq)" 
/clabels = " V Q 3 " , " d f " ,  "p-value'  '/format = f10.4 

end if 
compute cse = { 1 :n} 
compute case = t(cse) 
compute rnk = rnkorder(dsq) 
compute top = (n+l)-rnk 
compute pvar = make(n, 1,p) 
compute ddf = make(n, 1,(n-p- 1)) 
compute ncase = make(n, 1 ,n) 
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compute a01 = make(n,l,(1-.01/n)) 
compute a05 = make(n, 1 ,(1-.05In)) 
compute mahal = {case,rnk,top,dsq,pvar,ddf, ncase,a01,a05 } 
save mahal/outfile = temp 

/variables = case,rnk,top,dsq,pvar,ddf, ncase,a01,a05 
end matrix 
get file = temp 
sort cases by top (a) 
do if case = 1 
compute f01 = idf.f(a01,pvar,ddf) 
compute f05 = idf.f(a05,pvar,ddf) 
compute fc01 = (f01*pvar*(ncase-1)**2)/(ncase*(ddf+pvar*f01)) 
compute fc05 = (f05*pvar*(ncase-1)**2)/(ncase*(ddf+pvar*f05)) 
print space 
print 

/ 'Critical values (Bonferroni) for a single multivar, outlier:' 
print space 
print 

/ '  critical F(.05/n) = 'fc05 (f5.2)' df = 'pvar (f3) ' , 'ddf (f4) 
print 

/ '  critical F(.01/n) = 'fc01 (f5.2)' df = 'pvar (f3)', 'ddf (f4) 
print space 
pr int / '5  observations with largest Mahalanobis distances:' 
end if 
execute 
do if top < 6 
print 

/ '  rank = 'top (f2)' case# = 'case (f4)' Mahal D sq = 'dsq 
end if 
execute 
compute chisq = idf.chisq((rnk-.5)/ncase,pvar) 
plot 

/rifle = "Plot  of ordered squared distances" 
/symbols = '* '  
/horizontal = '  Chi-square p,(i-.5/n)' min(0) 
/vertical = '  Mahalanobis D squared' min(0) 
/plot = dsq with chisq 

execute 
!enddefine 
restore 
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