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An extension of signal detection theory (SDT) that incorporates mixtures of the underlying distributions
is presented. The mixtures can be motivated by the idea that a presentation of a signal shifts the location
of an underlying distribution only if the observer is attending to the signal; otherwise, the distribution is
not shifted or is only partially shifted. Thus, trials with a signal presentation consist of a mixture of 2 (or
more) latent classes of trials. Mixture SDT provides a general theoretical framework that offers a new
perspective on a number of findings. For example, mixture SDT offers an alternative to the unequal
variance signal detection model; it can also account for nonlinear normal receiver operating characteristic
curves, as found in recent research.

Signal detection theory (SDT) provides a theoretical framework
that has been quite useful in psychology and other fields (see
Gescheider, 1997; Macmillan & Creelman, 1991; Swets, 1996). A
basic idea of SDT is that decisions about the presence or absence
of an event are based on decision criteria and on perceptions of the
event or nonevent, with the perceptions being represented by
probability distributions on an underlying continuum. Thus, in its
simplest form, the theory considers two basic aspects of detec-
tion—the underlying representations, which are interpreted as psy-
chological distributions of some sort (e.g., of perception or famil-
iarity), and a decision aspect, which involves the use of decision
criteria to arrive at a response.

The present article extends SDT by viewing detection as con-
sisting of an additional process. The result is a simple and psy-
chologically meaningful extension of SDT that can be applied to
any area of research where SDT has been applied. The approach is
illustrated with applications to research on recognition memory,
where the additional process can be interpreted as attention. In
particular, the basic idea is that presentation of a signal shifts the
location of the underlying distribution only if the observer is
attending to the signal; otherwise, the distribution is not shifted or
is only partially shifted. As a result, trials with a signal presenta-
tion consist of a mixture of two (or more) latent classes of trials,
which can be interpreted as being attended and nonattended trials
(or as two different levels of processing of the stimuli). Apart from
that, the theory is the same as in conventional SDT, in that the
underlying representations are used together with response criteria
to arrive at an observed response. I show, however, that this simple
extension of SDT is quite powerful and can account for a variety
of findings across several areas of research. For example, the
mixture approach offers an alternative to the unequal variance

signal detection model (Green & Swets, 1966), which has been the
standard model for many years, and provides a different interpre-
tation of normal receiver operating characteristic (ROC) curves
with slopes less than unity; it can also account for nonlinear
normal ROC curves, as found in recent research. I also show that
mixture SDT offers new insights into the data and suggests new
directions for future research; mixture SDT recognizes the influ-
ence of an additional process in detection and greatly enlarges the
scope of classical SDT.

SDT With Finite Mixture Distributions

Consider the basic signal detection experiment where, on each
trial, either a signal or noise is presented. For example, in recog-
nition memory research, the signal might consist of words that
were shown on a list studied earlier (old items), and noise might
consist of words that were not on the list (new items). In SDT, the
effect of a presentation of a new item is represented by a proba-
bility distribution on an underlying continuum, and the effect of a
presentation of an old item is represented by a probability distri-
bution with a different location; the distance between the two
distributions reflects the observer’s ability to detect. In the ex-
tended version of SDT, the effect of a presentation of an old item
is represented by two (or more) probability distributions rather
than one. The two distributions correspond to different represen-
tations of the signal and can be motivated in more than one way,
depending on the particular research context. A general interpre-
tation is that the distributions arise from different levels of atten-
tion (or processing) to the signal (during the study period for
memory research or during the test period for psychophysical
research). It should be noted that although the focus here is on two
levels (which appears to be adequate for the data analyzed below),
the mixture approach is general and can include more than two
levels (i.e., latent classes) if necessary; a situation where more than
two latent classes might be needed (repetition) is noted below.

Figure 1 illustrates the basic ideas. The distribution on the left
(with mode �N) represents the familiarity of new items, as in the
usual version of SDT as applied to recognition memory. For old
items, on the other hand, there are two distributions instead of one.

LEM and Mplus programs for some of the examples discussed here are
available at http://www.columbia.edu/�ld208.
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One distribution, denoted as the A distribution (with mode �A), is
associated with items that were attended to during the study period,
and so the distribution is shifted to the right (higher familiarity), as
in the usual situation. The other distribution, denoted as A� (rep-
resented by the dotted line), represents items that were processed
at a different level, such as those not being attended to or only
being partially attended to during the study period, and so their
distribution has a different location than that for attended items.
The result is that during a recognition test, responses on a propor-
tion of the signal trials depend on the A distribution, and for the
remaining proportion of signal trials depend on the A� distribution.
If it was known which items received high and low attention, say,
then classical SDT could be used to obtain estimates of the
observer’s ability to detect the A and A� items. However, the level
of attention to each item is not known, so there are latent classes
of items, with the result that observed responses to a signal arise
from a mixture of the underlying distributions associated with each
type of item.

A model for the response probabilities follows directly from the
theory illustrated in Figure 1. First note that, for rating or binary
responses, the equal variance normal theory signal detection model
can be written as

p(Y � k|X) � �[(ck � dAX)/�],

where Y is the response variable (e.g., a confidence rating) with
values of k (e.g., from 1 to 4), X is a dummy-coded variable (new
item � 0, old item � 1), p(Y � k|X) is the cumulative probability
of a response of k or less given X, with 1 � k � K � 1, where K
is the number of response categories, � is the cumulative standard
normal distribution function, ck are response criteria (i.e., distances
from the new item distribution), dA is the distance of the A
distribution from the new item distribution, and � is the standard
deviation of the underlying distributions, which can be set to unity
without loss of generality (and so it is not included in the equations
below). The model can also be written more generally for proba-
bility distributions other than the normal by replacing � with other
cumulative distribution functions (through the use of inverse link
functions; see DeCarlo, 1998).

Mixture SDT extends the basic signal detection model by as-
suming that there are different latent classes of old items, associ-
ated with which are different underlying distributions, as illus-
trated in Figure 1. With the assumption that the latent classes are
mutually exclusive and exhaustive, a mixture model for SDT is

p(Y � k|X) � ��(ck � dAX) � (1 � �)�(ck � dA�X), (1)

where dA� is the distance of the A� distribution from the new item
distribution and � is the mixing proportion (with 0 � � � 1),
interpreted here as indicating the proportion of trials on which the
signal was attended to. Equation 1 accounts for the observed
responses through a mixture of signal detection models, with
different detection parameters in each component of the mixture
but the same response criteria; note that if � � 1, then the model
reduces to the equal variance normal theory signal detection
model. Equation 1 can be further generalized by replacing � with
other functions, which corresponds to mixtures of other distribu-
tions (like the logistic or extreme value), in which case the model
is a mixture of generalized linear models (DeCarlo, 2000); an
example is noted below.

A simplification that appears to apply in many situations, as
shown below, is obtained with dA� � 0, in which case the model
is

p(Y � k|X) � ��(ck � dAX) � (1 � �)�(ck). (2)

Equation 2 has a simple yet appealing interpretation: The restric-
tion dA� � 0 implies that rather than some items being only
partially attended to during the study period, they are not attended
to at all, so they are equivalent to new items during the subsequent
test (and the nonattended A� distribution has the same location as
the new item distribution). Thus, in its simplest form, the theory
views responses on signal trials as being determined by a mixture
of signal and noise distributions, corresponding to attended and
nonattended trials, for example.

Equation 2 generalizes the equal variance normal signal detec-
tion model with the introduction of one parameter, the mixing
proportion �. The mixture model provides a basic way to gener-
alize the simple signal detection model that differs from the
traditional generalization, the unequal variance signal detection
model (Green & Swets, 1966), which allows the variances of the
underlying distributions to differ. For normal (Gaussian) distribu-
tions, the unequal variance SDT model can be written as

p(Y � k|X) � �[(ck � dNX)/�s
X], (3)

which generalizes the equal variance normal model by introducing
the parameter �s � 0; dN is the detection parameter scaled with
respect to the standard deviation of the noise distribution (see
DeCarlo, 1998). With the assumption that �n � 1, 1/�s gives the
ratio of the standard deviations of the new and signal distributions,
which corresponds to the slope of the ROC curve on inverse
normal coordinates. With respect to the unequal variance normal
signal detection model, Green and Swets (1966) noted that

The justification for the Gaussian model with unequal variance is, we
believe, not to be made on theoretical but rather on practical grounds.
It is a simple, convenient way to summarize the empirical data with
the addition of a single parameter. (p. 79)

Figure 1. An example of signal detection theory with mixture distribu-
tions. �N, �A, and �A� are the modes of the reference (noise or new), A,
and A� distributions, respectively; c1, c2, and c3 are three response criteria
that delineate responses of 1, 2, 3, and 4.

711SIGNAL DETECTION THEORY WITH FINITE MIXTURES



Here it is shown that mixture SDT provides an alternative exten-
sion of equal variance SDT that, like the unequal variance model,
offers a simple summary of the data with the addition of a single
parameter (i.e., Equation 2). In addition, an attractive aspect of the
mixture approach is that it can easily be theoretically motivated.

It should also be noted that the unequal variance extension of
SDT raises a somewhat neglected complication. In particular, with
respect to introducing a parameter to allow the variance to vary,
Green and Swets (1966) noted

Not only does this ad hoc assumption introduce another free param-
eter, but it creates a set of rather knotty theoretical problems. If the
ratios of the standard deviations of the noise and signal distributions
are unequal, then, as discussed above, the decision axis x is no longer
monotonic with likelihood ratio. (p. 79)

Figure 2 illustrates the problem. The upper panel of the figure
shows two normal distributions with different variances (noise
distribution, M � 0.0, SD � 1.0; signal distribution, M � 0.5,
SD � 3.0) and two possible locations of a response criterion,
indicated by lines A and B. Note that if an observer located a
yes–no criterion at A (i.e., they reported a signal above that value
and noise below that value), then they would be reporting a signal
when the probability of a signal was indeed higher than that of
noise and so their hit rate would be greater than their false alarm
rate, as can be seen in the figure (i.e., the area under the signal
curve to the right of the A criterion is clearly larger than that for

noise). This is also shown by the lower panel, which presents the
linearized (i.e., inverse normal or z-transformed) ROC curve that
corresponds to the distributions shown in the upper panel and the
locations of A and B. If, on the other hand, an observer located
their criterion at Point B, then they would be reporting a signal
when in fact the probability of noise was higher (note in this case
that the area under the signal curve to the left of the B criterion is
clearly larger than that for noise, so the area to the right is smaller
for signal), and so their hit rate would be lower than their false
alarm rate, as shown by Point B in the lower panel; they would in
essence perform worse than if they were simply guessing. This
reflects the lack of monotonicity (in the likelihood ratio) that
Green and Swets (1966) referred to as a “knotty theoretical prob-
lem” (p. 79). By simply changing the location of their response
criterion, an observer would appear to go from good to below
chance performance, even though there was actually no change in
their detection, that is, the distance between the distributions was
constant and greater than zero.

It is important to recognize that the above complication only
arises for the unequal variance extension of SDT and not for the
mixture model of Equation 2. The structure of the models (Equa-
tions 2 and 3) also reflects the difference: The mixture model is
additive within the latent classes, because it is assumed that the
effect of an event is to simply shift the location of the underlying
distribution, with the variance remaining constant, whereas the
unequal variance model is nonlinear in the parameters; it assumes
that an event has two effects, in that there is both a shift in location
and a change in the variance of the underlying distribution.

Inverse Normal ROC Curves for Mixture Distributions

A signal detection model implies a set of ROC curves. For the
mixture SDT model with normal underlying distributions, the
ROC curves within each component of the mixture have unit
slopes on inverse normal coordinates. The ROC curves for the
mixture, however, do not necessarily have unit slopes and are more
complex. The curves that follow from the theory can be derived by
noting that a normal ROC plot is simply a plot of the inverse
normal transform of p(Y � k|X � 0) on the abscissa against the
inverse normal transform of p(Y � k|X � 1) on the ordinate. For
example, for the mixture model of Equation 2, it follows that the
normal ROC curve is a plot of

��1	1 � �
ck)],

on the X axis (i.e., the inverse normal transform of one minus the
equation for false alarms, that is, Equation 2 with X � 0) against

��1�1 � 	��
ck � dA) � (1 � �)�(ck)]}

on the Y axis (i.e., the inverse normal transform of one minus the
equation for hits). The above are simply the equations for the
theoretical mixture ROC curves on inverse normal coordinates.
Note that the fitted ROC curves presented below are obtained by
substituting the maximum likelihood estimates of dA and � in the
above and plotting the curves generated by varying ck.

Figure 3 presents ROC curves for various mixing proportions �
and values of dA (for Equation 2). The upper left panel shows an
example where � varies and dA remains constant, and it is apparent
that as � decreases the curves are pulled down toward the diagonal,

Figure 2. The upper panel shows two unequal variance normal distribu-
tions and two locations of a response criterion, indicated by vertical lines
denoted as A and B. For the left distribution, M � 0.0, SD � 1; for the right
distribution, M � 0.5, SD � 3. The lower panel shows the corresponding
receiver operating characteristic curves on inverse normal coordinates,
with the locations of the criterion shown in the upper panel indicated as
Points A and B.
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so that from the conventional perspective detection appears to be
lower; the effect is also larger for the right side of the curves, thus
giving them curvature and slopes less than unity. The upper right
panel shows that, for constant �, the curves are near linear for
small dA, but the curvature increases and the slope decreases as dA

increases. The lower panel shows an example where both dA and
� change; from the conventional perspective, the curves are con-
sistent with a decrease in the slope of the normal ROC curve as
detection increases (a result that is commonly found). Overall, the
figure shows that, with the addition of one parameter to the model
(�), a variety of ROC curves are generated. Examples of ROC
curves consistent with the patterns shown in Figure 3 are readily
found in the memory literature; for example, in addition to those
presented below, see empirical ROC curves presented by Glanzer,
Kim, Hilford, and Adams (1999); Ratcliff, McKoon, and Tindall
(1994); and Yonelinas (1994, 1999). It should be kept in mind that,
although the mixture ROC curves shown in Figure 3 are nonlinear,
the unmixed ROC curves are simply linear with unit slopes (on
inverse normal coordinates).

Because data obtained in signal detection experiments usually
fall within the range of �2 to 2 (i.e., the false alarm and hit rates
fall within the range of .02 and .98), and because the mixture ROC
curves are near linear within this range and have slopes less than
unity, as shown by Figure 3, data previously found to be well
described by the unequal variance normal model will tend to be
well described by mixture SDT, as shown in the next section. The
interpretation of the results differs, however, and this is the aspect
that is stressed here. Also considered below are situations where
normal ROC curves show departures from linearity, which are not
consistent with unequal variance normal theory, whereas the de-
partures are well described by mixture SDT.

The mixture SDT model can be viewed as a hybrid of a struc-
tural equation model and a latent class model (DeCarlo, 2000), so

it brings with it a well-developed statistical methodology used, for
example, in latent class analysis (see Dayton, 1998) and for mix-
ture models (e.g., McLachlan & Peel, 2000); some aspects of
fitting and testing the models are illustrated here. The Appendix
discusses some additional details, such as how the model can be fit
using the software LEM (Vermunt, 1997), which is freely avail-
able on the Internet (the Web site is given in the Appendix); the
mixture model (with logistic distributions) can also be fit using
Version 2 of the structural equation software Mplus (Muthén &
Muthén, 1998). Some LEM and Mplus programs for the data
discussed below are available at my Web site (http://www.
columbia.edu/�ld208).

Some Applications of Mixture SDT: Recognition Memory

Recent research has focused on the use of ROC curves to
evaluate different theories of recognition memory (e.g., Glanzer,
Kim, et al., 1999; Ratcliff et al., 1994; Ratcliff, Sheu, & Gronlund,
1992). One aspect of this research has been an examination of the
effects of different variables on the slope of the ROC curve. The
results have been interpreted in terms of effects of the variables on
the variances of the underlying distributions, and this in turn has
influenced theories of recognition memory. It is shown here that,
from the perspective of mixture SDT, the results can be interpreted
in terms of effects on the mixing proportion, with the variance
remaining constant.

Several examples are used to illustrate the application and
implications of the mixture extension of SDT. The focus is on
experiments where variables that might affect attention were ma-
nipulated and for which published data are readily available. The
first example considers the effect of brief presentation times. The
use of brief presentation times is of interest in light of mixture SDT
because it seems reasonable to expect that more items will be

Figure 3. Examples of mixture receiver operating characteristic curves on inverse normal coordinates.
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missed (not attended to) when presentation times are brief. Thus,
brief presentation times should affect the parameter �, if indeed it
reflects attention. This prediction is examined using published data
from recognition memory experiments of Ratcliff et al. (1994); the
results for the mixture model are compared and contrasted with
those for the unequal variance model. A second example examines
experiments where both word frequency and presentation time
were manipulated. The effects of word frequency have been con-
sidered in several theories, such as attention likelihood theory
(Glanzer, Adams, Iverson, & Kim, 1993), where it is assumed that
lower frequency words receive more attention than higher fre-
quency words. The effect of word frequency on � is examined and
results for the mixture model are again compared with those for the
unequal variance model.

Presentation time. Experiments 1 and 2 of Ratcliff et al.
(1994) used brief presentation times during the study period: 50
ms, 100 ms, 200 ms, and 400 ms. Mixed and pure conditions were
also used: For the pure condition, all the words were presented for
the same amount of time during the study period; for the mixed
condition, different presentation times were mixed together during
the study period. The results for the pure conditions are presented
here (the results for the mixed conditions are virtually identical, as
noted by Ratcliff et al., 1994, and as is evident from inspection of
their ROC curves). During the test phase, participants indicated
how sure they were that a word was old or new by using a
six-category ordered response scale, coded here as 1 � sure new,
2 � probably new, 3 � maybe new, 4 � maybe old, 5 � probably
old, 6 � sure old.

Figure 4 shows the data on inverse normal coordinates, along
with ROC curves for the fitted mixture model (Equation 2). In all
cases, the mixture ROC curves closely describe the data; note that
the fitted lines are slightly curved but are near linear. The figure
shows that decreasing presentation time systematically decreased
detection, in that the curves are closer to the diagonal.

Table 1 presents results for fits of the equal variance normal
SDT model, the mixture SDT model (Equation 2), and the unequal
variance SDT model (Equation 3). The table shows that the like-
lihood ratio (LR) goodness-of-fit statistics1 are considerably

smaller for the mixture and unequal variance models than for the
equal variance model in every case (significant values of the
goodness-of-fit statistic indicate rejection of the null hypothesis
that the model fits), except for the 50 ms condition, where the
equal-variance model appears to be adequate. Note that, although
the LR statistics for the 400 ms condition are significant, Figure 4
shows that the fitted mixture ROC curve closely describes the data;
the significant statistics in this case reflect in part the large sample
size (N � 4,184), which gives high power for the tests. This shows
why, when assessing the adequacy of a model, visual inspection of
the fitted ROC curves should be used in addition to formal tests. In
spite of the high power, note that, for the mixture model, tests of
dA� � 0 did not lead to rejection of the null hypothesis in any case;
an LR test can be performed by fitting Equations 1 and 2 and
subtracting the �2 log-likelihoods, which gave, for 50 ms, LR(1,
N � 4,295) � 0.03, p � .86; for 100 ms, LR(1, N � 4,176) � 0.00,
p � .98; for 200 ms, LR(1, N � 4,451) � 0.06, p � .80; for 400
ms, LR(1, N � 4,184) � 0.10, p � .75. Thus, the simple one-
parameter extension of Equation 2 (with dA� � 0) appears to be
adequate.

Also shown in Table 1 are information criteria (see Agresti,
1990; Burnham & Anderson, 1998), specifically Akaike’s infor-
mation criterion (AIC) and the Bayesian information criterion
(BIC), which allow one to compare non-nested models; note that

1 The chi-square goodness-of-fit statistics were also examined and were
close in magnitude to the LR statistics in every case, so only the LR is
reported.

Table 1
Goodness-of-Fit Statistics and Information Criteria for
Experiments 1 and 2 of Ratcliff, McKoon, and Tindall (1994)

Model LR df p AIC BIC

400-ms study time (N � 4,184)

Mixture SDT 15.77 3 � .01 13,896 13,940
Unequal variance SDT 17.79 3 � .01 13,898 13,942
Equal variance SDT 72.05 4 � .01 13,950 13,988

200-ms study time (N � 4,451)

Mixture SDT 4.90 3 .18 15,297 15,342
Unequal variance SDT 5.75 3 .12 15,298 15,343
Equal variance SDT 39.54 4 � .01 15,330 15,368

100-ms study time (N � 4,176)

Mixture SDT 2.37 3 .50 13,603 13,648
Unequal variance SDT 2.97 3 .40 13,604 13,648
Equal variance SDT 10.12 4 .04 13,609 13,647

50-ms study time (N � 4,295)

Mixture SDT 5.51 3 .14 14,315 14,359
Unequal variance SDT 5.51 3 .14 14,315 14,359
Equal variance SDT 6.24 4 .18 14,313 14,351

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s infor-
mation criterion; BIC � Bayesian information criterion; SDT � signal
detection theory; mixture SDT � Equation 2 in text; unequal variance
SDT � Equation 3 in text.

Figure 4. Data and fitted mixture receiver operating characteristic curves
on inverse normal coordinates for Experiments 1 and 2 of Ratcliff, Mc-
Koon, and Tindall (1994). The different presentation times are indicated in
the figure legend.
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the mixture and unequal variance signal detection models are not
nested because one model cannot be obtained by restricting pa-
rameters of the other model. The information criteria incorporate a
penalty for additional parameters, with smaller values of the cri-
teria indicating a better model. Table 1 shows that the values of
both the AIC and BIC for the mixture model are equal to or smaller
than those for the unequal variance model in every case, although
the difference tends to be small (and the simple equal variance
model appears adequate for the 50-ms condition). Overall, the
mixture model and unequal variance model appear to fit about
equally well. Thus, Table 1 shows that what have typically been
described as linear normal ROC curves with slopes less than unity
are equally well described as normal mixture ROC curves. An
important point to keep in mind is that, for mixture SDT, the
variance of the signal distribution is equal to that of the noise
distribution.

Table 2 presents maximum likelihood parameter estimates for
the mixture model and for the unequal variance model. For the
mixture model, detection decreases systematically with presenta-
tion time, and the estimated detection parameter is not significantly
different than zero for the 50-ms presentation time (i.e., the esti-
mate of dA is less than its standard error). Thus, decreasing
presentation time led to a decrease in detection.

Of particular interest is the effect of presentation time on the
mixing proportion �, interpreted here as a measure of attention.
Table 2 shows that the estimates of � decrease in magnitude as
presentation time decreases (and the estimate is not significantly
different than zero for the 50-ms presentation time). The interpre-
tation of this result is simple yet compelling: The proportion of
words attended to steadily decreased as presentation time de-
creased, with few if any words attended to for very brief presen-
tation times.

The right side of Table 2 shows the parameter estimates ob-
tained for the unequal variance model. With respect to detection,
the results are similar to those for the mixture model, in that
detection decreases as presentation time decreases. Note that the
detection estimates are smaller in absolute magnitude that those
found for mixture SDT; from the perspective of mixture SDT, this
occurs because the mixing pulls the ROC curves down toward the
diagonal, so that detection appears to be lower, as noted earlier in
the discussion of the ROC curves shown in Figure 3. Table 2 also
shows the estimates of the log of the standard deviation of the
signal distribution (estimates of which are directly obtained be-
cause of the way the model is parameterized in LIMDEP; see the

Appendix) and the estimated ratio of standard deviations, obtained
by exponentiating and taking the inverse of the estimate of log �s

(using the natural log). The results show that the variance of the
signal distribution decreases as presentation time decreases.

In summary, the results for presentation times are adequately
described by both mixture SDT and unequal variance SDT. The
interpretation of the results, however, differs considerably across
the two approaches. From the perspective of mixture SDT, de-
creasing the presentation time led to a smaller proportion of items
being attended to, with the variance of the underlying distributions
remaining constant. The results provide important evidence that
supports the interpretation of the mixing proportion as a measure
of attention. From the perspective of unequal variance SDT, on the
other hand, decreasing the presentation time led to a decrease in
the variance of the signal distribution, and there is no obvious
reason why the variance should be smaller; nevertheless, the
interpretation in terms of the unequal variance model has had a
considerable impact on the development of theories of recognition
memory. Here I simply note that mixture SDT offers a simple and
psychologically plausible interpretation of the results, in that the
effect of presentation time on attention is as expected, whereas the
interpretation in terms of the unequal variance model is not as
clear; one could easily argue, for example, that the variance of the
representation should increase as presentation time decreases (be-
cause there is less information about the signal), not decrease.

Word frequency. Effects of word frequency have been exam-
ined in a number of studies; the published data of Experiments 4
and 5 of Ratcliff et al. (1994), which have been analyzed in several
articles (e.g., Glanzer et al., 1999; Ratcliff, Van Zandt, & McKoon,
1995), are analyzed here. Participants were presented with study
lists consisting of either low- or high-frequency words, presented
during the study phase for either 2 s or 5 s (Experiment 4) or
for 1.5 s or 5 s (Experiment 5). During the test phase, participants
responded on a six-category scale as to how sure they were that the
word was old or new (with the same response labels as in Exper-
iments 1 and 2, given above). The four pure-list conditions are
analyzed here (i.e., the study lists consisted of only one type of
word rather than the different types mixed together); the results are
similar for the mixed lists, as shown by Ratcliff et al. (1994). For
Experiment 4, the pooled data presented by Ratcliff et al. (1994)
are analyzed; for Experiment 5, the individual data presented by
Ratcliff et al. (1994) are analyzed.

Table 3 presents, for each of the four conditions in Experi-
ment 4, results for fits of the equal variance normal SDT model,

Table 2
Parameter Estimates for Mixture Signal Detection Model for Experiments 1 and 2 of Ratcliff,
McKoon, and Tindall (1994)

Study time

Mixture SDT Unequal variance SDT

dA � dN log �s �n/�s

400 ms 1.49 (0.08) 0.69 (0.03) 1.07 (0.04) 0.23 (0.03) 0.79
200 ms 1.20 (0.11) 0.50 (0.05) 0.61 (0.04) 0.17 (0.03) 0.85
100 ms 0.87 (0.23) 0.31 (0.09) 0.26 (0.03) 0.07 (0.03) 0.93
50 ms 0.47 (0.92) 0.18 (0.35) 0.08 (0.03) 0.02 (0.03) 0.98

Note. Standard errors are in parentheses. SDT � signal detection theory; mixture SDT � Equation 2 in text;
unequal variance SDT � Equation 3 in text.
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the unequal variance model (Equation 3), and the mixture SDT
model (Equation 2). The LR goodness-of fit-statistics show that the
equal variance model provides poor fits, whereas the fits for the
mixture model and unequal variance model are acceptable. The
information criteria for the mixture model are equal to or smaller
than those for the unequal variance model in every case, although
the difference again tends to be small. Thus, the unequal variance
and mixture SDT models again fit about equally well. Note that,
for the mixture model, a test of dA� � 0 is not rejected in any case;
the LR tests give for high frequency 5 s, LR(1, N � 2,917) � 0.11,
p � .74; for low frequency 5 s, LR(1, N � 2,918) � 0.27, p � .60;
for high frequency 2 s, LR(1, N � 2,816) � 0.21, p � .65; for low
frequency 2 s, LR(1, N � 2,823) � 1.45, p � .23. This again shows
that the simple one-parameter extension of Equation 2 appears to
be adequate.

Figure 5 shows the data and fitted mixture normal ROC curves
on inverse normal coordinates. The curves have slopes less than
unity, and are slightly curved but near linear for the range of hits
and false alarms obtained in the study. The figure shows that
low-frequency words are detected better than high-frequency
words, as is usually found, and increasing presentation time in-
creased detection.

The mixture and unequal variance models were also fit to the
individual data of the 11 participants in Experiment 5 of Ratcliff et
al. (1994), who each participated in four conditions. With respect
to fit, the results for 9 of the 11 participants were similar to those
shown in Table 3, in that the unequal variance model and the
simple mixture model (Equation 2) both provided adequate fits.
For example, Table 4 shows results for Participants 2 and 3, who

are representative of most of the others. The table shows that the
LR statistics are not significant for most conditions and the values
of the AIC are similar across the mixture and unequal variance
models (the BIC gave similar results and is omitted for clarity).
The LR statistics for 2 other participants (6 and 10), however, were
large and significant for all of the conditions, and inspection of the
normal ROC curves presented by Ratcliff et al. (1994; Figures 8
and 9) showed that the ROC curves for these participants were
markedly nonlinear. In particular, the ROC curves for Participant 6
were curved upward (concave) in all four conditions, whereas
those for Participant 10 were curved downward (convex). It is of
interest to compare the mixture and unequal variance models for
these cases. The lower half of Table 4 shows, for Participants 6
and 10 in all four conditions, the results for fits of the mixture
models (Equations 1 and 2) and the unequal variance model;
Figure 6 shows some of the data and fitted ROC curves (the results
for the other conditions overlapped considerably with those shown
and are omitted for clarity).

With respect to Participant 6, Table 4 shows that Equation 1
provides a better fit than either the unequal variance model or
Equation 2 for at least three of the four conditions. This reflects the
fact that the general mixture model of Equation 1 (with dA�  0)
can account for upwardly curved normal ROC curves, as shown by
the upper left panel of Figure 6, whereas the unequal variance
model cannot. This result suggests that the more complex model of
Equation 1 might be needed if upwardly curved ROC curves are
consistently found for a particular application (an example with a
theoretical interpretation is given in DeCarlo, 2000); of course, in
this case, additional research is needed to determine whether or not
the result is anomalous. With respect to Participant 10, Table 4
shows that, although Equation 1 provides a better fit than the
unequal variance model, the LR statistics are still large, mainly
because Equation 1 cannot deal with the large downward curvature
of the ROC curves, as shown by the upper right panel of Figure 6.
However, it is interesting to note that the simple model of Equa-
tion 2 with extreme value distributions in place of normal distri-
butions provides good fits of Participant 10’s data in all four
conditions; the last row of Table 4 presents the results, and the

Figure 5. Data and fitted mixture receiver operating characteristic curves
on inverse normal coordinates for Experiment 4 of Ratcliff, McKoon, and
Tindall (1994). The high- and low-frequency words and their presentation
times are indicated in the figure legend. freq � frequency.

Table 3
Goodness-of-Fit Statistics and Information Criteria for
Experiment 4 of Ratcliff, McKoon, and Tindall (1994)

Model LR df p AIC BIC

High freq 2 s (N � 2,816)

Mixture SDT 3.98 3 .26 9,671 9,712
Unequal variance SDT 4.45 3 .22 9,671 9,713
Equal variance SDT 33.22 4 � .01 9,698 9,734

Low freq 2 s (N � 2,823)

Mixture SDT 5.56 3 .14 9,000 9,042
Unequal variance SDT 5.19 3 .16 9,003 9,042
Equal variance SDT 52.47 4 � .01 9,045 9,081

High freq 5 s (N � 2,917)

Mixture SDT 5.94 3 .11 9,758 9,800
Unequal variance SDT 6.36 3 .10 9,759 9,801
Equal variance SDT 28.32 4 � .01 9,779 9,815

Low freq 5 s (N � 2,918)

Mixture SDT 5.29 3 .15 8,961 9,002
Unequal variance SDT 9.50 3 .02 8,965 9,007
Equal variance SDT 73.39 4 � .01 9,027 9,063

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s infor-
mation criterion; BIC � Bayesian information criterion; freq � frequency;
SDT � signal detection theory; mixture SDT � Equation 2 in text; unequal
variance SDT � Equation 3 in text.
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fitted extreme value ROC curves are shown in the lower center
panel of Figure 6 (the model uses a log–log link, which corre-
sponds to underlying extreme value distributions that are skewed
to the right). Although this is an interesting result, the use of
probability distributions other than the normal in the mixture
model remains to be investigated; note that, through the use of
different link functions, the unequal variance model can be ex-
tended in a similar manner (DeCarlo, 1998; Tosteson & Begg,
1988). The mixture model is somewhat more flexible, however, in
that it can include more than two latent classes.

Overall, the analysis of individual data shows that the simple
mixture model of Equation 2 and the unequal variance model both
provide acceptable fits for most of the participants. Table 4 and
Figure 6 show that the general mixture model of Equation 1 can
also describe the ROC curves for cases where nonlinear normal
ROC curves were obtained. Nonlinearity was only found for a few
cases, however, so it remains to be determined whether the devi-
ations are indicative about underlying processes or are anomalous.
Nevertheless, it is important to note that results that might seem
bizarre (to use one reviewer’s description), from the perspective of
unequal variance SDT (i.e., the nonlinear ROC curves found for
Observers 6 and 10), might be consistent with a systematic pro-
cess, from the perspective of mixture SDT.

Table 5 presents, for both Experiments 4 and 5, the parameter
estimates for the simple mixture model (Equation 2) and the
unequal variance model. For Experiment 4, the estimates were
obtained by fitting the models to the pooled data given by Ratcliff
et al. (1994), whereas for Experiment 5, the models were fit to the

individual data and the table shows the average parameter esti-
mates (across participants). Table 5 shows that, for fits of the
mixture model, lower frequency words were detected better than
higher frequency words, and detection tended to be better for the
5-s presentation time. The same results were found for fits of the
unequal variance model; as before, note that the estimates of the
detection parameter are smaller for the unequal variance model
than for the mixture model. The right side of Table 5 shows that,
for the unequal variance model, the variance tends to be larger for
low-frequency words and for the longer presentation time.

The most important result with respect to mixture SDT concerns
the parameter �. The table shows that, for both Experiments 4
and 5, the estimates of � tend to be larger for the low-frequency
words than for the high-frequency words, and the estimates also
tend to be larger for the longer presentation times; the latter finding
replicates the results found for Experiments 1 and 2 above. Thus,
Experiments 4 and 5 of Ratcliff et al. (1994) can be interpreted as
showing that more low-frequency words received attention than
high-frequency words and that more words were attended to for
longer presentation times.

In summary, mixture SDT offers a new framework within which
earlier data can be reexamined. For the examples presented above,
mixture SDT described the data as well as or better than the
unequal variance model. In addition, a comparison of Equations 1
and 2 showed that the simple one-parameter extension of the equal
variance model (i.e., Equation 2, with dA� � 0) appears to be
adequate in most cases. More importantly, the mixture extension
of SDT is shown to offer a new interpretation of the data. Con-

Table 4
Goodness-of-Fit Statistics and Information Criteria for Experiment 5 of Ratcliff, McKoon, and Tindall (1994):
Participants 2, 3, 6, and 10, Four Conditions

Model

High freq 1.5 s Low freq 1.5 s High freq 5 s Low freq 5 s

LR p AIC LR p AIC LR p AIC LR p AIC

Participant 2

Uneq 3.23 .36 3,003 8.06 .04 2,246 3.24 .36 3,194 6.78 .08 2,408
Mix2 2.46 .48 3,002 5.41 .14 2,243 3.57 .31 3,195 4.25 .24 2,406

Participant 3

Uneq 15.06 � .01 3,701 5.76 .12 3,341 18.08 � .01 3,593 6.65 .08 2,930
Mix2 4.38 .22 3,690 8.02 .05 3,343 6.54 .09 3,581 18.14 � .01 2,942

Participant 6

Uneq 20.71 � .01 2,831 7.73 .05 2,985 23.53 � .01 2,805 14.51 � .01 2,839
Mix2 13.47 � .01 2,823 13.88 � .01 2,991 15.41 � .01 2,797 29.22 � .01 2,854
Mix1a 0.99 .61 2,813 3.14 .21 2,983 13.86 � .01 2,797 3.64 .16 2,830

Participant 10

Uneq 23.76 � .01 2,790 46.07 � .01 2,441 32.71 � .01 2,608 57.69 � .01 2,259
Mix2 15.06 � .01 2,781 31.36 � .01 2,426 22.19 � .01 2,597 25.27 � .01 2,252
Mix1a 9.03 � .01 2,777 27.89 � .01 2,425 20.19 � .01 2,597 21.51 � .01 2,251
Mix2a 2.02 .57 2,768 3.63 .30 2,398 0.93 .82 2,576 1.62 .65 2,229

Note. In all cases except where indicated, dfs � 3. freq � frequency; LR � likelihood ratio goodness-of-fit statistic; AIC � Akaike’s information criterion;
Uneq � unequal variance SDT (Equation 3 in text); Mix2 � mixture SDT (Equation 2 in text); Mix1 � mixture SDT (Equation 1 in text); Mix2a �
Equation 2 in text with extreme value distributions; SDT � signal detection theory.
a In this row, all dfs � 2.
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sider, for example, the effect of word frequency. Ratcliff et al.
(1994) interpreted their data in terms of the unequal variance SDT
model and noted that “The larger standard deviation for the low-
frequency distribution is plausibly explained by assuming that the
familiarity of low-frequency words is more variable for a given
subject than the familiarity of high-frequency words” (p. 772).
There really is no intuitive reason for why the variance should be
larger for low-frequency words, however, as evidenced by the fact
that McClelland and Chappell (1998) argued for exactly the op-
posite view: “We examine the possibility that representations of
low-frequency words are less variable than representations of
high-frequency words. Support for this possibility comes from the
fact that there are far more definitions of high-frequency words
than low-frequency words” (p. 743). An interesting aspect of
mixture SDT, on the other hand, is that it suggests a different
interpretation: Low-frequency words are attended to more often
than high-frequency words. Similarly, there is no obvious reason
why the variability of a representation should increase as presen-
tation time increases, as found above for fits of the unequal
variance model. The interpretation in terms of mixture SDT is
again quite simple: More words are attended to with longer pre-
sentation times.

Implications for theory. Normal ROC curves for word recog-
nition with slopes less than unity have been interpreted, since Egan
(1958), as indicating larger variance for the old-item distribution
relative to the new-item distribution. It is important to recognize,
however, that the view that nonunit slopes indicate something
about the relative variances is an interpretation in terms of the
unequal variance extension of SDT and is not a result. From the
perspective of mixture SDT, nonunit slopes do not provide infor-
mation about the relative variances but rather about the mixture
process. Note that, from the perspective of unequal variance SDT,
what appears to be a systematic increase in the signal variance as
detection increases arises quite naturally from a mixture process,
because mixing distributions (i.e., signal and noise) that are farther
apart results in a distribution that appears to have larger variance.

Mixture SDT provides an alternative account of nonunit slope
ROC curves; it also has implications about the way new versions
of global memory models are formulated (cf. Ratcliff et al., 1994,
p. 779). In particular, instead of adding or modifying assumptions
about the variance, mixture SDT suggests that another approach is
to consider processes that might lead to latent classes of items,
such as attention (and most current theories already include as-
sumptions about attention).

Figure 6. Data and fitted mixture receiver operating characteristic curves for 2 participants in two conditions
of Experiment 5 of Ratcliff, McKoon, and Tindall (1994). The upper left and right panels show receiver
operating characteristic (ROC) curves for fits of Equation 1; the lower center panel shows ROC curves for a fit
of Equation 2 with an extreme value cumulative distribution function in lieu of the normal. freq. � frequency.
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Although the focus here has been on recognition memory,
mixture SDT models can be readily motivated for other memory
phenomena as well, such as the effects of repetition, source dis-
crimination (models for repetition and source discrimination were
presented in DeCarlo, 2000), the mirror effect, and the process
dissociation procedure (which readily suggests a mixture process).
Repetition is an interesting example in that it suggests a situation
where three or more latent classes might be needed. Consider what
might happen, for example, when items are presented twice. If it is
assumed that an item attended to twice is shifted further than an
item attended to once,2 then it follows from the mixture point of
view that there will be a total of three latent classes of items on
signal trials: a proportion of items attended to twice, a proportion
attended to once, and a proportion not attended to on either
presentation. Thus, there will be at least two distributions with
nonzero locations corresponding to once- and twice-attended items
(with the nonattended distribution assumed to have the same
location as the new item distribution, as in Equation 2). Some
evidence for this was obtained for an analysis of data of Egan
(1958) in that a fit of the mixture model suggested that repetition
of a study list resulted in two distributions with nonzero locations,
whereas one repetition gave one nonzero distribution (DeCarlo,
2000); the two distributions can be interpreted as items attended to
once and twice. In contrast, the unequal variance model suggested
that repeating the list did not affect the variance of the signal
distribution, which raises questions as to why other variables that
increase strength also increase the variance but not repetition. This
led Glanzer et al. (1999) to note that “It may be that repetition
differs intrinsically from other variables” (p. 508). Mixture SDT
suggests an interesting possibility as to how and why it might
differ: Repetition gives rise to additional latent classes of items.
This remains to be investigated.

Conclusions

SDT can be extended in a psychologically meaningful way by
allowing for mixtures of the underlying distributions. The mixtures

are viewed as arising from the action of a second process, with the
result that signal trials consist of latent classes of trials, with the
mixing parameter indicating the proportion of each type of trial. It
is shown that this simple idea can be applied to a variety of
situations and offers new insights into the data. Examples in
recognition memory research are given where mixture SDT offers
a new account of the effects of various variables, and the results
suggest new directions for future research.

Although recognition memory research is considered here, the
approach is general and can be applied to any area of research
where SDT has been applied. Consider, for example, Swets’s
(1986) observation that normal ROC curves for odor recognition
have slopes close to unity. An interpretation of this result in terms
of mixture SDT is that all of the odors received attention during the
study period, perhaps reflecting an intrinsic difference between
odors (they command attention?) and visual stimuli such as words.
In this way, the mixture perspective suggests new interpretations
of old data.

Although only mixing on signal trials was considered here,
situations where there might be mixtures on noise trials or on both
signal and noise trials can also be motivated (an example was
discussed in DeCarlo, 2000). For example, Swets (1986) noted that
slopes greater than unity were found for detection of abnormal
cells (presented on slides). From the mixture perspective, a slope
greater than unity could result from a mixture of noise distribu-
tions; this suggests that there might have been two latent classes of
slides for nondiseased cases—perhaps a proportion of the nondis-
eased slides had signal-like aspects (spots or discolorations), which
suggests reexamining the nondiseased slides to see if this might be
the case. Mixture SDT provides a framework for investigating this
and other possibilities; it greatly enriches the theoretical scope of

2 Another approach is to assume that the effect of attention is all or none,
so that attending twice does not further shift the distribution; the resulting
model is then simply Equation 2.

Table 5
Parameter Estimates for Experiments 4 and 5 of Ratcliff, McKoon, and Tindall (1994)

Condition

Mixture SDT Unequal variance SDT

dA � dN log �s �n/�s

Experiment 4

High freq 2 s 1.32 (0.15) 0.47 (0.05) 0.61 (0.05) 0.20 (0.04) 0.82
Low freq 2 s 1.69 (0.10) 0.70 (0.04) 1.25 (0.06) 0.29 (0.04) 0.75
High freq 5 s 1.32 (0.11) 0.70 (0.05) 0.95 (0.05) 0.19 (0.04) 0.83
Low freq 5 s 1.86 (0.09) 0.76 (0.03) 1.51 (0.06) 0.35 (0.04) 0.70

Experiment 5

High freq 1.5 s 1.85 (0.11) 0.67 (0.04) 1.28 (0.10) 0.33 (0.04) 0.72
Low freq 1.5 s 2.28 (0.06) 0.83 (0.02) 2.09 (0.07) 0.42 (0.05) 0.66
High freq 5 s 2.11 (0.14) 0.77 (0.04) 1.76 (0.13) 0.42 (0.07) 0.66
Low freq 5 s 2.67 (0.12) 0.90 (0.02) 2.95 (0.18) 0.56 (0.06) 0.57

Note. Standard errors are in parentheses. Experiment 4: pure conditions, pooled data. Experiment 5: pure
conditions, mean and standard error of the parameter estimates obtained from individual fits for 11 participants
in four conditions (except n � 10 for the low freq 5 s condition, mixture SDT, because of convergence problems
for the analysis of 1 participant). SDT � signal detection theory; mixture SDT � Equation 2 in text; unequal
variance SDT � Equation 3 in text; freq � frequency.
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SDT, opening new possibilities for applications in psychology and
other areas.
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Appendix

Some Notes on Fitting and Testing Mixture Models

Detection

Equations 1 and 2 can be fit using software for mixture models, such as
LEM (Vermunt, 1997), which is available at http://www.uvt.nl/faculteiten/
fsw/organisatie/departementen/mto/software2.html. LEM allows one to fit
a mixture multinomial distribution with generalized linear models in each
component of the mixture. For example, Equation 2 can be fit by writing
it as a latent class model with an observed covariate X,

p(Y � k|X) � �wp(W)p(Y � k|XW),

where W is a latent dummy (zero/one) variable, p(W) is the mixing
proportion (� in Equation 2), and the last term can be written as a
cumulative probit model:

p(Y � k|XW) � �(ck � dAXW).

The model is specified in LEM by the terms p(W) and p(A|XW), with a
cumulative probit model specified for p(A|XW); a sample program is
available from my Web site (http://www.columbia.edu/�ld208). Note that
it is important to run the program repeatedly with different starting values,
because local maxima are sometimes encountered; see Dayton (1998) for

a general discussion of various aspects of latent class analysis and DeCarlo
(in press) for discussion of a latent class extension of signal detection
theory (SDT) and additional sample programs.

To fit Equation 1, X is included as a predictor in addition to XW, and the
model is

p(Y � k|XW) � �(ck � dA�X � d AA�XW),

with W � 0 indicating the nonattended trials, W � 1 the attended trials, and
dAA� indicating the distance of the A distribution from the A� distribution;
dA is obtained as dAA� � dA�. Note that which class serves as the reference
is arbitrary, but it can be determined from the output. The class corre-
sponding to lack of attention in Equation 2, for example, is obvious from
the conditional probabilities provided in the output, because they are equal
across signal and noise. For Equation 1, the signs of the two coefficients
(and inspection of the conditional probabilities) allow one to determine
which class corresponds to A� and which to A (responses are coded so that
higher numbers indicate higher confidence)—both coefficients negative
indicates that the coefficient of XW gives dAA� and the coefficient of X
gives dA� (i.e., W � 1 indicates attention, as used above), whereas positive
and negative coefficients indicate that the coefficient of XW gives dA�A, and
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the coefficient of X gives dA (i.e., W � 0 indicates attention). The solutions
are equivalent, in that they simply redefine the reference distribution (as
noise or signal), and the parameter estimates are the same. Note that the
standard errors might have to be computed; that is, if one wants the
standard error of dA from output where the standard errors of dAA� and dA�

are given, then it can be obtained as (the square root of) Var(dA) �
Var(dA� � dAA�) � Var(dA�) � Var(dAA�) � 2 Cov(dA�, dAA�). Including
the command “wse filename” in LEM will write out the estimates of the
variances and covariances of the parameter estimates to a file specified by
filename.

The mixture SDT model (with logistic distributions) can also be fit using
software for second-generation structural equation modeling, such as
Mplus (Muthén & Muthén, 1998). A sample program for mixture SDT is
available at my Web site.

The Unequal Variance SDT Model

Equation 3 is more generally known in econometrics and biostatistics as
an ordered probit model with multiplicative heteroscedasticity; it was fit
here using the software LIMDEP (Greene, 1998), which gives maximum-
likelihood estimates and also allows one to fit more general models with
heteroscedasticity by using different link functions. The model (i.e., Equa-
tion 3) is implemented in LIMDEP as

p(Y � k|X) � �[(ck � dNX)/exp(�X)],

where exp is the exponential function; the use of the exponential function
ensures that the estimate of the variance is positive. Note that the above is
identical to Equation 3 with � � ln(�s); thus, as shown in the tables, the
fitted model gives estimates of (natural) log(�s) and its standard error.

A Note on Log-Likelihoods

The maximized log-likelihoods are used to compute the information
criteria; here it is noted that the log-likelihoods reported by LEM and
LIMDEP differ by a constant. Let A indicate the response, X the signal or
noise, and n the frequency of pattern AX. The log-likelihood reported by
LEM can then be written as

log L � � n log p(AX),

where p(AX ) is the joint probability of A and X, and the summation is over
the different patterns of AX. In a similar manner, the log-likelihood given
by LIMDEP is

log L � � n log p(A|X),

where p(A|X) is the conditional probability of A given X. Note that

� n log p(AX) � � n log [p(A|X)p(X)]

� � n log p(A|X) � � n log p(X),

which shows that subtracting �n log p(X) from the log-likelihood reported
by LEM gives the log-likelihood reported by LIMDEP, and this was done
to compute the information criteria reported in the tables. Note that, for a
fit of the equal variance model, the log-likelihood obtained in this manner
by LEM was identical in every case to three decimal places to that given
by LIMDEP.

Received August 1, 2000
Revision received November 5, 2001

Accepted November 5, 2001 �

721SIGNAL DETECTION THEORY WITH FINITE MIXTURES


