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The factor-augmented vector autoregressive (FAVAR) model is now widely used in macroeconomics and
finance. In this model, observable and unobservable factors jointly follow a vector autoregressive process,
which further drives the comovement of a large number of observable variables. We study the identification
restrictions for FAVAR models, and propose a likelihood-based two-step method to estimate the model. The
estimation explicitly accounts for factors being partially observed. We then provide an inferential theory
for the estimated factors, factor loadings, and the dynamic parameters in the VAR process. We show how
and why the limiting distributions are different from the existing results. Supplementary materials for this
article are available online.

KEY WORDS: High-dimensional analysis; Identification restrictions; Impulse response; Inferential
theory; Likelihood-based analysis; VAR.

1. INTRODUCTION

Since the seminal work of Sims (1980), vector autoregressive
(VAR) models have played an important role in macroeconomic
analysis. Because the number of parameters in a VAR system
increases rapidly with the number of variables, there is a degree-
of-freedom problem when too many variables are included in
the system. On the other hand, too few variables may not fully
capture the dimension of the structural shocks. These problems
may explain some puzzling empirical results in the body of
VAR research. For example, various studies commonly find that
a contractionary monetary policy often leads to an increase of
the price level, rather than a decrease as the standard economic
theory alleges (see Sims 1992; Christiano, Eichenbaum and
Evans 1999). Sims (1992) proposed a plausible interpretation of
this puzzle, suggesting that it results from the VAR analysis not
fully capturing the information. Including more series in a VAR
model is limited because of the loss of degrees of freedom. (The
Bayes method is alternatively considered (Doan, Litterman, and
Sims 1984; Litterman 1986; Sims 1993), and by imposing some
prior restrictions, the usual VAR model can accommodate more
variables (e.g., Leeper, Sims, and Zha 1996).) Furthermore, as
Stock and Watson (2005) pointed out, it is doubtful that the
larger VAR models with some potentially incredible restrictions
would be superior to the smaller ones.

Bernanke, Boivin, and Eliasz (2005) proposed a factor-
augmented vector autoregressive (FAVAR) model to address
the dilemma arising from the information deficiency and the
degree-of-freedom problem in traditional VAR models. In con-
trast with such models, the FAVAR model includes unobserved
low-dimensional factors in the autoregression. These factors,
which may not be captured by some specific macroeconomic
aggregates, are thought to contain the bulk of information about
an economy. With inclusion of these unobserved factors, the

FAVAR model is of rich information, but remains tractable in
terms of the number of parameters, owing to the low dimen-
sion of the factors. Such approach of using a small number of
factors to summarize useful information in a large number of in-
dicators have been used in many papers, for instance, Bernanke
and Boivin (2003) and Stock and Watson (2002). The FAVAR
model is now widely used in economic applications. (For exam-
ple, Boivin, Giannoni, and Mihov (2009), Bianchi, Mumtaz, and
Surico (2009), Forni and Gambetti (2010), Moench (2008), and
Ludvigson and Ng (2009), to name a few. Large dimensional fac-
tor models are also increasingly used outside macroeconomics
and finance, for example, Fan, Liao, and Mincheva (2011), Fan,
Liao and Mincheva (2013), and Tsai and Tsay (2010).) Despite
its wide applicability, important issues remain to be addressed.

We first derive the number of restrictions needed in the pres-
ence of observable factors, and then consider how to impose
these restrictions. Two types of restrictions may be considered.
One type involves restrictions on the sample moments of factor
process, the other involves restrictions on the population mo-
ments of the factor process. The first type is more appropriate
for factors being a sequence of fixed constants, for example,
Bai and Li (2012). The second type is more appropriate for fac-
tors being a random sequence. Similar issue was discussed by
Anderson (2003, p. 571). In FAVAR models, since the factors
are stochastic processes, restrictions on population variance are
more reasonable than on sample variance. An important result of
this article is that the two types of restrictions, although asymp-
totically equivalent, lead to different limiting distributions for
the estimated factors and factor loadings, as well as different
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limiting distributions for the estimated parameters in the VAR
process.

The second issue is estimation and the related inferential
theory. In the FAVAR literature, Bernanke, Boivin, and Eliasz
(2005) and Boivin, Giannoni, and Mihov (2009) suggested a
two-step method to estimate an FAVAR model, in which the
factors are extracted first and their dynamics are estimated next.
There are no studies on the inferential theory of the FAVAR
model. The deficiency in this respect makes it difficult to con-
struct the confidence intervals for the impulse response function
and to interpret the subsequent economic analysis. Possibly for
this reason, Bernanke, Boivin, and Eliasz (2005) also consid-
ered a Bayesian method to estimate the model. However, the
burdensome computation procedure of the Markov chain Monte
Carlo (MCMC) method in this context is formidable for many
researchers.

In this article, we consider the identification, estimation, and
inferential theory of the FAVAR models. We contribute to the
FAVAR literature in several ways. First, we investigate the iden-
tification problem of the FAVAR model. Due to the presence
of partially observable factors, the identification problem here
differs from those in standard factor models. We consider three
sets of identification conditions. Unlike the usual identification
conditions that are imposed on the sample variance of factors,
we put the conditions on the variance of innovations to fac-
tors. These conditions are similar to those in the standard struc-
tural VAR literature. Second, we propose a likelihood-based
two-step method to estimate the FAVAR model, which explic-
itly takes into account of partial factors being observed. Using
maximum likelihood (ML) method instead of principal com-
ponents (PC) method in the first step gives a better estimation
of unobserved factors. (See Bai and Li (2016) for a compar-
ison of finite sample performance of the ML and PC meth-
ods.) In addition, we find that the iterative estimation proce-
dure advocated by Boivin, Giannoni, and Mihov (2009) can be
avoided.

Third, we establish the statistical theory of the two-step esti-
mators including consistency, convergence rates, and the asymp-
totic representations. We also give an inferential theory for the
impulse response functions. Based on this theory, the confi-
dence intervals of the impulse response function can be easily
constructed.

There are several studies related to our work. Stock and Wat-
son (2005) considered the identification and estimation issues in
the dynamic factor models. Their identification strategies share
with ours the same feature that partial conditions are imposed
on the variance of innovations. But the remaining conditions
are different: their conditions are imposed on the vector mov-
ing average representation and ours are imposed on the original
factor representation. Which identification strategy is preferred
depends on specific applications. Bernanke, Boivin, and Eliasz
(2005) suggested a timing-exclusion strategy for identification.
Their strategy may lead to over-identification. Han (2015) pro-
posed a statistic to test the over-identification restrictions. There
are additional studies considering the bootstrap method to con-
struct confidence intervals for factor-augmented models, such
as Goncalves and Perron (2014), Shintani and Guo (2011), and
Yamamoto (2011). Our theoretical results also pave ways for
future studies in this direction.

The rest of the article is arranged as follows. Section 2 in-
troduces the FAVAR model with its identification problem, and
examines three sets of identification restrictions; and presents
some regularity conditions. Section 3 states our two-step estima-
tion procedures. Section 4 presents all the asymptotic properties
of our estimators. Section 5 focuses the impulse response func-
tion and its confidence intervals. Section 6 investigates the finite
sample properties of our estimators. Section 7 concludes. Tech-
nical proofs are delivered in the online appendix. Throughout
the article, the norm of a vector or matrix is that of Frobenius,
that is, ‖A‖ = √

[tr(A′A)] for vector or matrix A.

2. THE FAVAR MODELS

Let gt be a vector of observable factors, and ft be a vector
of latent factors, both of low dimension. The FAVAR model
assumes that gt and ft jointly follow a VAR process. That is, let
ht = (f ′

t , g
′
t )

′, then ht is characterized by a VAR(K) process for
some K,

ht = �1ht−1 +�2ht−2 + · · · +�Kht−K + ut , (2.1)

where �1,�2, . . . , �K are matrices of coefficients. In general,
neither ft nor gt alone is a finite-order VAR process. The FAVAR
model further assumes that a large number of observable vari-
ables zt = (z1t , z2t , . . . , zNt )′, dimension of N × 1, is affected
by ht through a factor model

zt = [� �]

[
ft
gt

]
+ et , (2.2)

where � and � are the factor loadings with � = (λ1, . . . , λN )′

and � = (γ1, . . . , γN )′, and et = (e1t , e2t , . . . , eNt )′ is the id-
iosyncratic error, where λi is of dimension r1 × 1 and γi of
r2 × 1, for all i = 1, 2, . . . , N . Throughout, we assume ft is of
dimension r1 × 1, gt of r2 × 1, and ht of r = r1 + r2. We con-
sider estimating the factors (ft ) and factor loadings, the variance
of the idiosyncratic errors eit , and the dynamic parameters in the
ht process, and derive their limiting distributions under various
identification restrictions.

Model (2.1)−(2.2) is the FAVAR model proposed by
Bernanke, Boivin, and Eliasz (2005). Equation (2.1) is a stan-
dard specification of VAR(K) model, except that the variables ft
are unobservable. The inclusion of unobservable factors is cru-
cial to the FAVAR model. These unobservable factors usually
capture the information of some structural shocks that are impor-
tant to the economy but cannot be well represented by specific
macroeconomic aggregates. As mentioned before, omitting un-
known structure shocks may be a primary reason for the failure
of the traditional VAR model in some empirical applications.
Equation (2.2) specifies that the common factors ht are related
to the observable data zt by a factor model. This approach is
a plausible way to model the relation between observable vari-
ables zt and the latent variable ft , given the diffusion nature of
common shocks in ht . The FAVAR model can be considered as
a special case of Forni et al. (2000), but with more structures.

2.1 The Number of Identification Restrictions Needed

Model (2.1)−(2.2) cannot be fully identified without addi-
tional restrictions. To see this, for any invertible r1 × r1 matrix
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M11 and r1 × r2 matrix M12, the model can be written as

zt = �ft + �gt + et = (�M11)︸ ︷︷ ︸
�∗

(M−1
11 ft −M−1

11 M12gt )︸ ︷︷ ︸
f ∗
t

+ (� +�M12)︸ ︷︷ ︸
�∗

gt + et . (2.3)

Then we obtain two observably equivalent models. Since the
total number of free parameters ofM11 andM12 is r2

1 + r1r2, we
need at least r2

1 + r1r2 restrictions to identity parameters. A sub-
sequent question is whether r2

1 + r1r2 restrictions are enough.
To answer this question, we first define some notations for ease
of exposition. Let

F = (f1, f2, . . . , fT )′, G = (g1, g2, . . . , gT )′,

H = (h1, h2, . . . , hT )′ = [F,G].

The following proposition shows that the preceding question
has a definite answer.

Proposition 1. Suppose that H is of full column rank,
the number of restrictions needed to fully identify model
(2.2)−(2.1) is (r2

1 + r1r2).

Proof. Let M be any invertible r × r rotation matrix, parti-
tioned as

M =
[
M11 M12

M21 M22

]
,

whereM11,M22 are r1 × r1 and r2 × r2 square matrices, respec-
tively. Then Equation (2.2) can be written as

zt = [��]

[
ft
gt

]
+ et = [��]

[
M11 M12

M21 M22

]−1

×
[
M11 M12

M21 M22

][
ft
gt

]
+ et .

Let h†t = Mht . If M is a qualified rotation matrix, the lower r2
elements of h†t should be gt . This gives[

f
†
t

gt

]
=
[
M11 M12

M21 M22

][
ft
gt

]
,

implying gt = M21ft +M22gt , or equivalently

[M21 (M22 − Ir2 )]

[
ft
gt

]
= 0,

for t = 1, 2, . . . , T . The above result is equivalent to

[M21 (M22 − Ir2 )]H ′ = 0.

If H is of full column rank, by post-multiplying H (H ′H )−1,
we have M21 = 0,M22 = Ir2 . This result indicates that, to fully
identify the parameters, we only need to uniquely determine
the matrix M11 and M12, whose number of free parameters is
exactly r2

1 + r1r2. This proves the proposition. �
2.2 Identification Restrictions

The identification problem brings advantages and disadvan-
tage to the FAVAR model. On one hand, it causes difficulties in
interpreting the model in a universal way; on the other hand,
the model has flexibility to fit specific situations through a

careful design of the identification strategy. In what follows,
we consider three sets of identification restrictions, which we
think are of practical relevance. We first introduce the following
notations:

ut =
[
εt
υ t

]
; � = E(utu

′
t ) =

[
E(εtε′

t ) E(εtυ ′
t )

E(υ t ε′
t ) E(υ tυ ′

t )

]
=
[
�εε �ευ
�υε �υυ

]
ht =

[
ft
gt

]
; � = E(hth

′
t ) =

[
E(ftf ′

t ) E(ftg′
t )

E(gtf ′
t ) E(gtg′

t )

]
=
[

�ff �fg

�gf �gg

]
, (2.4)

where εt and υ t are the innovations corresponding to ft and gt ,
respectively. We consider the following three sets of identifica-
tion restrictions.

IRa. The underlying parameter values θ satisfy: �εε = Ir1 ,
�ευ = 0, and 1

N
�′
−1

ee � = Q, where Q is a diagonal ma-
trix with its diagonal elements being distinct and arranged
in descending order.

IRb. The underlying parameter values θ satisfy: �εε =
Ir1 ,�ευ = 0 and �1 is a lower triangular matrix, where
�1 is the upper r1 × r1 submatrix of �.

IRc. The underlying parameter values θ satisfy:�ευ = 0 and
�1 = Ir1 , where �1 is the upper r1 × r1 submatrix of �.

Each set of identification restrictions imposes r2
1 + r1r2 re-

strictions. There are no restrictions on �υυ as υ t is the reduced
form residual from the observable gt . In the next subsection, we
explain why it is possible to assume �ευ = 0.

Remark 1. In factor analysis, Anderson (2003, p. 571) consid-
ers both types of restrictions E(ftf ′

t ) = Ir1 and 1
T

∑T
t=1 ftf

′
t =

Ir1 . The former restriction is considered population restriction,
and the latter is considered sample version restriction. In our
case, since we have dynamics in ht , the errors εt correspond to
ft . Because we assume the errors are random, it is reasonable
to make populational assumptions rather than sample version
restrictions. However, as we will show, though E(εtε′

t ) = Ir1
and 1

T

∑T
t=1 εtε

′
t = Ir1 are asymptotically equivalent in a cer-

tain sense, they imply different distributions for the estimated
factor loadings and the estimated factors ft . The population ver-
sion restriction implies larger variance than the sample version
restriction.

2.3 Discussions on the Identification Restrictions

We give some discussions on the preceding identification
restrictions, especially the reason that we can impose the re-
striction �ευ = 0. Suppose the original FAVAR model is

zt = [�† �†]
[
f

†
t

gt

]
+ et ,

h
†
t = �

†
1h

†
t−1 +�

†
2h

†
t−2 + · · · +�

†
Kh

†
t−K + u

†
t ,
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where h†t = [f
†
t

gt
] and u†t = [ ε

†
t

υ t
] with the variance matrix �† =

E(u†t u
†′
t ) = [ �

†
εε �

†
ευ

�
†
υε �υυ

]. Note that this original VAR representa-

tion is in a reduced form with �†
υε �= 0. Let A be a rotation

matrix defined asA = [ (�†
εε·υ )−1/2 −(�†

εε·υ )−1/2�
†
ευ�

−1
υυ

0 Ir2
] , then the new

FAVAR model after rotation is

zt = [�† �†]A−1︸ ︷︷ ︸
[� �]

· A
[
f

†
t

gt

]
︸ ︷︷ ︸⎡⎣ft
gt

⎤⎦≡ht

+et ,

Ah
†
t︸︷︷︸

ht

= A�
†
1A

−1︸ ︷︷ ︸
�1

·Ah†t−1︸ ︷︷ ︸
ht−1

+A�†
2A

−1︸ ︷︷ ︸
�2

·Ah†t−2︸ ︷︷ ︸
ht−2

+ . . .

+A�†
KA

−1︸ ︷︷ ︸
�K

·Ah†t−K︸ ︷︷ ︸
ht−K

+ Au
†
t︸︷︷︸

ut

,

where we use the notation without † to denote the new param-
eters. Note that the observable factor gt and the corresponding
innovation υ t do not change. Let � be the variance matrix of
the new innovation ut = [ εtυ t

], then � = A�†A′ = [ Ir1 0
0 �υυ

] ,
where the new innovations satisfy�εε = Ir1 and�ευ = 0. Con-
sequently our imposed identification restrictions on the innova-
tions as stated in the previous subsection are reasonable. The
new factor ft = (�†

εε·υ)−1/2f
†
t − (�†

εε·υ)−1/2�
†
ευ�

−1
υυgt is now a

linear combination of f †
t and gt . With some appropriate restric-

tions on the new loadings [� �], the factor ft can now have
economic meanings with additional identification restrictions.

The three different identification restrictions in the previous
subsection can be interpreted as follows.

IRa requires that�′
−1
ee � be diagonal, which is often used in

the maximum likelihood estimation, see Lawley and Maxwell
(1971). This identification condition is important in terms of
the statistical analysis, it can also be of economic interest in
some specific cases, as pointed out in Bai and Ng (2013). For
example,� is block diagonal such as� = [π1, 0; 0, π2], where
πi is a column vector ofNi elements withN1 +N2 = N . In this
case, the first factor only affects the first N1 variables, and the
second factor only affects the next N2 variables. Each variable
is affected by only a single factor, but we do not need to know
which variable is affected by which factor; we have �′
−1

ee �

being diagonal under arbitrary cross-sectional permutation of
individuals.

IRb shares the same feature with IRa by imposing the re-
strictions on the variance of ut . In addition, it restricts �1 to
being a lower triangular matrix. This allows IRb to endow eco-
nomic implications with the unobserved factors. Under IRb,
only the first unobservable factor affects the first variable, the
first two unobservable factors affect the second variable, etc.
This scheme somewhat resembles the recursive identification in
structural VAR analysis. Through careful selection of the first r1
variables, the unobservable factors are now explainable. For ex-
ample, Geweke and Zhou (1996), in their study of pricing error
in the Arbitrage Pricing Theory, used the recursive identification
conditions.

IRc restricts the upper r1 × r1 matrix of the factor loadings�
to being an identity matrix. Since more restrictions are imposed
on the factor loadings �, IRc relinquishes the requirement that
the innovations to the unobservable factors be orthogonal and
have unit variance. Under IRc, the first unobservable factor af-
fects only the first series, the second unobservable factor affects
only the second series, etc.

Overall, the identification restrictions considered in this arti-
cle share the feature that they impose restrictions on the loadings
� and the variance of the innovations to ht . This is in contrast
with the usual identification conditions in factor models, which
impose restrictions on the loadings and the sample variance of
factors; see Anderson and Rubin (1956) and Bai and Li (2012)
for traditional identification conditions. Imposing restrictions on
innovations instead on factors themselves is important and rea-
sonable because the components of ft are correlated while the
innovations εt can be assumed uncorrelated, similar to structural
analysis.

2.4 Assumptions

To analyze model (2.2)−(2.1), we make the following as-
sumptions:

Assumption A. The factor ht = (f ′
t , g

′
t )

′ admits a VAR rep-
resentation (2.1), where ut is an iid process with ut = �1/2ςt ,
where E(ςt ) = 0, var(ςt ) = Ir , and � > 0, E(‖ςt‖4) < ∞ and
the elements of ςt are mutually independent. In addition, all
the roots of the polynomial�(L) = Ir −�1L−�2L

2 − · · · −
�KL

K = 0 are outside of the unit circle.

Assumption B. There exists a positive constant C large enough
such that

B.1. ‖λi‖ ≤ C < ∞, ‖γi‖ ≤ C < ∞ for all i.
B.2.C−2 ≤ σ 2

i ≤ C2 for all i, where σ 2
i is defined in Assump-

tion C.
B.3. limN→∞ 1

N
�′
−1

ee � = Q exists and is a positive-definite
matrix, where 
ee is defined in Assumption C.

Assumption C. E(et ) = 0; E(ete′t ) = 
ee = diag(σ 2
1 , σ

2
2 ,

. . . , σ 2
N ); E(e4

it ) < ∞ for all i and t. The eit are independent
over i and t. The N × 1 vector et is identically distributed over
t. Furthermore, eit is independent with us for all i, t, s.

Assumption D. Variances σ 2
i are estimated in the compact set

[C−2, C2].

Assumption A makes the regularity conditions on factors. It
requires factor ht to be stationary over t. It also guarantees that
H = (h1, h2, . . . , hT )′ is of full column rank. So under Assump-
tion A, Proposition 1 holds. Assumption B is made on the factor
loadings. This assumption is standard. Notice that Assumption
B requires the columns of � to be linearly independent; oth-
erwise, Q will be a singular matrix. Assumption C centers on
the idiosyncratic errors. Under Assumption C, the correlations
over time and cross-section are ruled out. Meanwhile, the het-
eroscedasticity over time is also precluded. This assumption can
be relaxed to a great extent. In fact, the analysis of this article can
be extended to the approximate factor models (Chamberlain and
Rothschild 1983). Assumption D requires σ 2

i to be estimated in
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a compact set. This assumption is due to the high nonlinearity
of the likelihood function, and it is common in the literature for
nonlinear problems.

3. ESTIMATION

In this section, we propose a two-step method to estimate
the underlying structure parameters that satisfy IRa, IRb, or
IRc. Some alternative methods can also be used. Bernanke,
Boivin, and Eliasz (2005) considered the MCMC method.
Boivin, Giannoni, and Mihov (2009) considered the iterated
principal component-ordinary least squares (PC-OLS) method.
Our method directly takes into account that gt is observable,
no iteration is necessary. Also, the MLE-based method is more
efficient than that of PC-based.

To gain insight into our method, write (2.2) into matrix form
as

Z = �F ′ + �G′ + e. (3.1)

Post-multiplying MG = IT −G(G′G)−1G, we have

ZMG = �F ′MG + eMG.

Applying the quasi-maximum likelihood (ML) estimation
method to the model, we obtain the quasi-ML estimates (QMLE)
�̃, 
̃ee, and F̃ . Let f �t = R11(ft − �fg�

−1
gg gt ), where R11 is a

rotation matrix. It can be shown that f̃t consistently estimate f �t .
To recover ft from f �t and gt , we only need to determine �fg

and R11, which is achieved by our identification conditions.
The estimation method is formally stated as follows:

1. Apply quasi-ML method with Y = ZMG to get QMLE
λ̃i , σ̃

2
i ; then calculate F̃ = Y ′
̃−1

ee �̃(�̃′
̃−1
ee �̃)−1 and �̃ =

(Z − �̃F̃ ′)G(G′G)−1, where 
̃ee = diag(σ̃ 2
1 , . . . , σ̃

2
N ).

2. Let h̃t = (f̃ ′
t , g

′
t )

′ and run the following regression

h̃t = �1h̃t−1 +�2h̃t−2 + · · · +�Kh̃st−K + error (3.2)

to get the estimators �̃1, �̃2, . . . , �̃K .
3. Let ũt be the residuals of the regression (3.2). Calcu-

late �̃ = 1
T̄

∑T
t=K̄ ũt ũ

′
t , where T̄ = T −K and K̄ = K + 1.

Then �̃εε, �̃ευ and �̃υυ are obtained by the definition. Cal-
culate �̃εε·υ = �̃εε − �̃ευ�̃

−1
υυ�̃υε.

4. Estimation under IRa: Let V be the eigenvector matrix
of �̃1/2

εε·υ( 1
N
�̃′
̃−1

ee �̃)�̃1/2
εε·υ , whose associated eigenvalues

are in descending order. Calculate �̂ = �̃�̃
1/2
εε·υV , �̂ = �̃ +

�̃�̃ευ�̃
−1
υυ , F̂ = (F̃ −G�̃−1

υυ�̃υε)�̃
−1/2
εε·υ V . Further construct

R as

R =
[V ′�̃−1/2

εε·υ −V ′�̃−1/2
εε·υ �̃ευ�̃−1

υυ

0 Ir2

]
.

Then �̂p = R�̃pR
−1 for p = 1, 2, . . . , K , and �̂υυ = �̃υυ .

Estimation under IRb: Let �̃1/2
εε·υ�̃′

1 = QR be the QR decom-
position of �̃1/2

εε·υ�̃′
1 with Q an orthogonal matrix and R an

upper triangular matrix, where �̃1 is the upper r1 × r1 sub-
matrix of �̃. The parameters are estimated by �̂ = �̃�̃

1/2
εε·υQ,

�̂ = �̃ + �̃�̃ευ�̃
−1
υυ , F̂ = (F̃ −G�̃−1

υυ�̃υε)�̃
−1/2
εε·υ Q. Let

R =
[Q′�̃−1/2

εε·υ −Q′�̃−1/2
εε·υ �̃ευ�̃−1

υυ

0 Ir2

]
.

Then �̂p = R�̃pR
−1 for p = 1, 2, . . . , K , and �̂υυ = �̃υυ .

Estimation under IRc: The parameters are estimated
by �̂ = �̃(�̃1)−1, �̂ = �̃ + �̃�̃ευ�̃

−1
υυ , and F̂ = (F̃ −

G�̃−1
υυ�̃υε)�̃′

1. Let

R =
[
�̃1 −�̃1�̃ευ�̃

−1
υυ

0 Ir2

]
.

Then �̂p = R�̃pR
−1 for p = 1, 2, . . . , K , and �̂υυ = �̃υυ ,

�̂εε = �̃1�̃εε·υ�̃′
1.

Remark 2. The innovations υ t do not involve any identifi-
cation problem and hence are the same under different identi-
fication restrictions, due to the factors gt being observable. As
a result, the estimator �̂υυ is the same under different identifi-
cation restrictions. However, for the innovations εt , its variance
matrix is restricted to being an identity matrix under IRa and
IRb, so we only need estimate �εε under IRc. The estimator
�̂ would be useful in the construction of the impulse response
function in Section 5.

Remark 3. We explain how we recover ft from f �t (how
to obtain f̂t from f̃t ) using the given formula above. We take
IRc as the example to illustrate. By f �t = R11(ft − �fg�

−1
gg gt ),

we have F = (F� +G�−1
gg �gf R

′
11)R−1′

11 . From the estimation

procedure, it is seen that �̃−1
1 corresponds to R11. Also notice

that [
ft
gt

]
=
[
R−1

11 �fg�
−1
gg

0 I

][
f �t
gt

]
−→

[
εt
υ t

]
=
[
R−1

11 �fg�
−1
gg

0 I

][
ε�t
υ�t

]
(notice that υ�t = υ t ), which further implies[

�εε �ευ
�υε �υυ

]
=
[∗ R−1

11 �
�
ευ + �fg�

−1
gg �

�
υυ

��υεR
−1′
11 +��υυ�−1

gg �gf ��υυ

]
.

By�υε = 0, we see that��−1
υυ �

�
υε = −�−1

gg �gf R
′
11. So the term

−�̃−1
υυ�̃υε is an estimator of �−1

gg �gf R
′
11. This justifies the for-

mula F̂ = (F̃ −G�̃−1
υυ�̃υε)�̃′

1 in IRc.

Remark 4. The parameters�,�,
ee,�1, . . . , �k , and� can
also be estimated by the state space method using the Kalman
smoother as in Watson and Engle (1983), Quah and Sargent
(1992), and Doz, Giannone, and Reichlin (2012) (though the
latter article considers homoscedastic eit , it can be extended to
heteroscedastic errors). But the state space method is computa-
tionally more demanding than the two-step method here. That
is perhaps the reason that Doz, Giannone, and Reichlin (2011)
subsequently also considered a two-step method. Furthermore,
it can be shown that, due to the static relationship between zit and
ht , there is no asymptotic efficiency gain by using the Kalman
smoother (see Bai and Li (2016)). None of these articles study
the limiting distributions of the estimators.

Throughout the article, we use the symbols with a hat to
denote the final estimators (e.g., λ̂i , f̂t , �̂k) and the symbols
with a tilde to denote the intermediate estimators (e.g., λ̃i , f̃t ,
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�̃k). Since σ 2
i does not have the identification problem, the

intermediate estimator and the final estimator are the same. For
this reason, we use the two symbols interchangeably, that is,
σ̂ 2
i = σ̃ 2

i and 
̂ee = 
̃ee.

4. ASYMPTOTIC PROPERTIES OF THE
ESTIMATORS

In this section, we deliver the asymptotic results on the two-
step estimators. The following proposition states that the two-
step estimators are individually consistent.

Proposition 2. Under Assumptions A–D, when N, T → ∞,
with any one of identification conditions (IRa, IRb, or IRc), we
have

λ̂i − λi
p−→ 0; γ̂i − γi

p−→ 0; σ̂ 2
i − σ 2

i

p−→ 0;

f̂t − ft
p−→ 0; �̂k −�k

p−→ 0,

for each i = 1, 2, . . . , N ; t = 1, 2, . . . , T ; k = 1, 2, . . . , K .

To give the asymptotic representations for the factor loadings,
we introduce the following notations. Let V be an r1 × r1 matrix,
which is defined as follows:

vec(V ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B−1
Q P1D

+
r1

1
T̄

∑T
t=K̄ [εt ⊗ εt − vec(Ir1 )], under IRa

D2
1
T̄

∑T
t=K̄ [εt ⊗ εt − vec(Ir1 )]

+D3(�1 ⊗ �φφ)−1 1
T

∑T
t=1(ξt ⊗ φt ), under IRb

−(Ir1 ⊗ �−1
φφ ) 1

T

∑T
t=1 ξt ⊗ φt , under IRc

where Dr is the r-dimensional duplication matrix such that
Drvech(M) = vec(M) for any r × r symmetric matrix M and
D+
r is its Moore–Penrose inverse; BQ = [2D+′

r1
,
(
K ′
r1

(Ir1 ⊗
Q) +Q⊗ Ir1

)
D′

1]′, where Q = (�′
−1
ee �)/N , Kr is the r-

dimensional commutation matrix such that Krvec(M) =
vec(M ′) for any r × r matrix M and D1 is the matrix such that
veck(M) = D1vec(M) for any symmetric matrix, and veck(M)
is the operator that stacks the elements of M below the di-
agonal into a vector; P1 = [Ip, 0p×q ]′ with p = (r1 + 1)r1/2
and q = r1(r1 − 1)/2; D2 = Kr1D

∗
r1

(D∗′
r1
S ′
r1
Sr1D

∗
r1

)−1D∗′
r1
S ′
r1
/2

where D∗ is the matrix such that vec(M) = D∗
r vech(M) for

any lower triangular r × r matrix M and Sr1 is the symmetrizer
matrix such that Sr = (Ir2 +Kr )/2; D3 = 2D2Sr1 − Ir2

1
; �1

is the upper r1 × r1 submatrix of �; �φφ = E(φtφ′
t ) with

φt = ft − �fg�
−1
gg gt ; ξt = (e1, e2, . . . , er1t )

′.
Given the consistency, we have the following theorem on the

asymptotic representation of the estimator for loadings λ̂i :

Theorem 1. Under Assumptions A–D, whenN, T → ∞ and√
T /N → 0, under IRa, IRb, or IRc, we have,

√
T (λ̂i − λi) =

√
T V λi + �−1

φφ

( 1√
T

T∑
t=1

φteit

)
+ op(1),(4.1)

where φt = ft − �fg�
−1
gg gt and �φφ = E(φtφ′

t ), where �fg

and �gg are defined in (2.4).

Remark 5. Consider the limiting distribution under IRa. The
restrictions under IRa are similar to those for the principal com-
ponents estimator. The limiting distribution here is different
from that of the usual PC in several ways. First because of the

presence of observable gt , the “regressors” ft is projected onto
gt , and the projection error φt enters into the distribution. Sec-
ond, there is an extra term V in the limiting distribution. To better
understand this term, consider the situation in which gt is ab-
sent, and the dynamics in ht is also absent so that ht = ft = εt .
The restriction E(εtε′

t ) = Ir becomes E(ftf ′
t ) = Ir . The limit-

ing distribution under IRa becomes

√
T (λ̂i − λi) =

√
T V λi +

( 1

T

T∑
t=1

ftf
′
t

)−1 1√
T

×
T∑
t=1

fteit + op(1), (4.2)

where V depends on 1
T

∑T
t=1 ftf

′
t − Ir . If one assumes the sam-

ple version restriction 1
T

∑
t ftf

′
t = Ir , then the first term dis-

appears. This result is consistent with that of Bai and Li (2012),
where the sample version restriction is considered. Thus re-
strictions on sample covariance and restrictions on population
covariance lead to different limiting distributions for the esti-
mated factor loadings. Restrictions on population covariance of
ft imply a larger limiting variance for λ̂i . Finally, because we
allow dynamics in ht , the first term V involves the innovations
of εt rather than ft .

Also in the absence of gt and without dynamics in ht
so that ht = ft = εt , Equation (4.2) is also the asymptotic
representation of the PC estimator under the population re-
striction E(ftf ′

t ) = Ir ; but in the definition of V , the matrix
Q = (�′
−1

ee �)/N is replaced by �′�/N because the PC es-
timator treats the error covariance matrix as an identify matrix.
This result is also consistent with that of Bai (2003), where he
considers a limiting distribution of the form

√
T (λ̂i − Rλi) for

some rotation matrix R. If we let R = Ir + V , then the repre-
sentation will be equivalent to that of Bai (2003).

Under IRb, the population restrictionE(εtε′
t ) = Ir1 continues

to affect the limiting distribution. Now V itself is composed of
two expressions. The second expression in V is analogous to a
term in Bai and Li (2012) under IC5 .

Under IRc, there are no restrictions on the population variance
of εt , and instead, the restrictions are imposed on the factor
loadings. The limiting distribution is analogous to that of Bai
and Li (2012) under IC1.

Remark 6. Theorem 1 shows that the asymptotic representa-
tion for λ̂i under different IRs has a similar expression, which
justifies our treatment that the asymptotic properties for λ̂i under
different IRs are studied in a unified framework. The symbol φt
in the asymptotic representation is the residual from projecting
ft on gt . Hence, it is orthogonal with gt . The expression of V is
different under different identification restrictions.

To derive the limiting distribution of λ̂i , we consider the co-
variance between the first and second term on the right-hand side
of (4.1). Under IRa, V only involves the variance of the VAR
innovations εtε′

t , and the second term only involves φteit , so the
first and second term are asymptotically independent because
of the absence of correlation between εtε′

t and φteit . Uncorre-
lation implies asymptotic independence because each term is
asymptotically normal. Under IRc, we only need to estimate λi
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with i > r1, so the second term only involves eit where i > r1.
But V involves ξtφ′

t , where ξt = (e1t , e2t , . . . , er1t ), so the first
term is asymptotically independent with the second term. Under
IRb, for i > r1, these two terms are asymptotically independent
for the same reason as under IRa and IRc. But for i ≤ r1, these
two terms are correlated. Based on the preceding analysis and
Theorem 1, we have the following corollary.

Corollary 1. Under the assumptions of Theorem 1, we have

Under IRa:
√
T (λ̂i − λi)

d−→ N (
0, (λ′

i ⊗ Ir1 )B−1
Q P1

[
2(D′

r1
Dr1 )−1 + G]

× P′
1B

−1′
Q (λi ⊗ Ir1 ) + σ 2

i �
−1
φφ

)
.

Under IRb: for i > r1,
√
T (λ̂i − λi)

d−→ N
(

0, (λ′
i ⊗ Ir1 )

[
D2(2Ir2

1
+ H)D′

2

+D3[(�′
1


−1
ξξ �1) ⊗ �φφ]−1D′

3

]
(λi ⊗ Ir1 ) + σ 2

i �
−1
φφ

)
,

for 1 ≤ i ≤ r1,
√
T (λ̂i − λi)

d−→ N
(

0, (λ′
i ⊗ Ir1 )D2

[
2Ir2

1
+ H

+4Sr1 [(�′
1


−1
ξξ �1) ⊗ �φφ]−1S ′

r1

]
D′

2(λi ⊗ Ir1 )
)
,

Under IRc: for i > r1,
√
T (λ̂i − λi)

d−→ N (
0, (λ′

i
ξξλi + σ 2
i )�−1

φφ

)
,

where 
ξξ = var(ξt ) with ξt = (e1t , e2t , . . . , er1t )
′,

G = D+
r1
Dr1WεD ′

r1
D+′
r1

, and H = Dr1WεD ′
r1

, where
D+
r1

= (D′
r1
Dr1 )−1D′

r1
is the Moore–Penrose inverse of

Dr1 , Dr is an r2 × r transformation matrix such that
vec(M) = Drdiag(M) for any diagonal r-dimensional matrix
M and Wε is an r1-dimensional diagonal matrix with its ith
diagonal element κ∗

i − 3 where κ∗
i = E(ε4

it ). The notations
BQ,P1,Dr1 ,D2,D3,�1, Sr1 , and �φφ are defined in the
paragraph before Theorem 1.

Remark 7. Term V in the asymptotic representation under IRa
and IRb involves εt ⊗ εt − vec(Ir1 ), where εt is a component of
ut . The limiting variances therefore depend on the kurtosis of εit ,
where εit is the ith element of εt . If normality of ut is assumed,
then terms G and H are zeros since W = 0, and the limiting
distribution in the preceding theorem is simplified. Similarly,
with normality assumption of ut , the asymptotic variances in
Corollaries 3 and 4 and Theorems 7–9 will also be simplified.
The simplified limiting distributions can be found in an earlier
(online) version of this article.

Now we consider the asymptotic results for γ̂i − γi . We have
the following theorem.

Theorem 2. Under Assumptions A–D, whenN, T → ∞, and√
T /N → 0, under IRa, IRb, or IRc, we have

√
T (γ̂i − γi) =

√
TWλi + �−1

ηη

(
1√
T

T∑
t=1

ηteit

)
+ op(1),

where ηt = gt − �gf�−1
ff ft and �ηη = E(ηtη′

t ) where �gf and
�ff are defined (2.4). In addition,

W = �−1
υυ

1

T

T∑
t=K̄

υ t ε
′
t .

Similar to Theorem 1, the asymptotic representation of γ̂i
under different IRs also has a unified expression. Symmetric to
the symbol φt in Theorem 1, the symbol ηt here is the residual
of projecting gt on ft . The matrix W has a unified expression
under different IRs. If the population restriction E(υ t ε′

t ) = 0 is
replaced by the sample version 1

T

∑T
t=1 υ t ε

′
t = 0, then the first

term W disappears.
Note that the two terms in the asymptotic representation of

γ̂i − γi are asymptotically independent. The asymptotic inde-
pendence follows from the absence of correlation between vtε′

t

and ηteit , which is similar to the case in (4.1) under IRa.

Corollary 2. Under the assumptions of Theorem 2, we have

√
T (γ̂i − γi)

d−→ N (
0,
(
λ′
i�εελi

)
�−1

υυ + σ 2
i �

−1
ηη

)
,

where �εε and �υυ are defined in (2.4).

After deriving the asymptotic result of loadings, we consider
the estimation of the unobservable factors f̂t . The asymptotic
result of f̂t − ft involves both V and W matrices, which is stated
in the following theorem.

Theorem 3. Let ρ = N/T . Under Assumptions A–D, when
N, T → ∞, we have

√
N (f̂t − ft ) =

(
1

N

N∑
i=1

1

σ 2
i

λiλ
′
i

)−1 (
1√
N

N∑
i=1

1

σ 2
i

λieit

)

−√
ρ
(√
T V ′ft +

√
TW ′gt

)
+ op(1).

In the asymptotic representation of f̂t − ft , the first term,
V and W are asymptotically independent with each other.
To see this, first consider V and W. Under IRa, no-
tice E[vec(V )vec(W )′|ε] = 0 where ε = (ε1, . . . , εT )′. Thus,
E[vec(V )vec(W )′] = E[E(vec(V )vec(W )′|ε)] = 0. Under IRc,
we also have the same result since E[vec(V )vec(W )′|u] = 0
where u = (u1, . . . , uT )′. Combining the above two results un-
der IRa and IRc, we have E(vec(V )vec(W )′] = 0 under IRb
in view of the expression of V . We next show the first term is
asymptotically independent with both V and W. Since W only
involves u while the first term only involves e, they are inde-
pendent under all IRs. Under IRa, V is independent with the
first term for the same reason. Under IRc, V involves ξtφ′

t over
t where ξt = (e1t , . . . , er1t ), while the first term involves sum-
mations of eit over i, so they are uncorrelated because φt and
eit are independent from the assumption that ut is independent
of eit . The previous two cases imply that under IRb, V is also
asymptotically uncorrelated with the first term. Given the above
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analysis, we derive the limiting distribution in the following
corollary.

Corollary 3. Under the assumptions of Theorem 3, we have

Under IRa:
√
N (f̂t − ft )

d−→ N
(

0,Q−1+ρ
[
F ′
tB

−1
Q P1

(
2(D′

r1
Dr1 )−1+G

)
×P′

1B
−1′
Q Ft + g′

t�
−1
υυgt�εε

])
,

under IRb:
√
N (f̂t − ft )

d−→ N
([

F ′
t

(
D2(2Ir2

1
+ H)D′

2 + D3

×[(�′
1


−1
ξξ �1) ⊗ �φφ]−1D′

3

)
Ft + g′

t�
−1
υυgt�εε

])
,

under IRc:
√
N (f̂t−ft ) d−→ N (

0,Q−1+ρ [f ′
t �

−1
φφft
ξξ+g′

t�
−1
υυgt�εε

])
,

where Ft = Ir1 ⊗ ft and Q = limN→∞(�′
−1
ee �)/N .

Remark 8. In the absence of gt , the term
√
TWgt drops out.

Furthermore, in the absence of factor dynamics (so that ht =
ft = εt ), Theorem 3 characterizes the MLE of ft under the
population restriction E(ftf ′

t ) = Ir when IRa or IRb is used.
Especially, the principal components estimator of ft (with 
̂ee
replaced by an identity matrix), has the following representation,

√
N (f̂t − ft ) =

(
1

N

N∑
i=1

λiλ
′
i

)−1 (
1√
N

N∑
i=1

λieit

)

−√
ρ
√
T V ′ft + op(1).

Here in the definition of V , the matrix Q = �′
−1
ee �/N is re-

placed by �′�/N .

For estimator σ̂ 2
i , we have the following theorem and corol-

lary.

Theorem 4. Under Assumptions A–D, when N, T → 0,

√
T (σ̂ 2

i − σ 2
i ) = 1√

T

T∑
t=1

(e2
it − σ 2

i ) + op(1).

In addition, we have
√
T (σ̂ 2

i − σ 2
i )

d−→ N (0, σ 4
i (2 + κi)),

where κi is the excess kurtosis of eit . With the normality of eit ,
the limiting distribution reduces to N (0, 2σ 4

i ).

Notice eit does not have the identification problem. Conse-
quently its asymptotic representation does not depend on the
identification restrictions. We then consider the asymptotic rep-
resentation of �̂k −�k , which is stated in the following theo-
rem.

Theorem 5. Under Assumptions A–D, when N, T → 0 and√
T /N → 0, we have

√
T (�̂k −�k) =

( 1√
T

T∑
t=K̄

utψ
′
t

)( 1

T

T∑
t=K̄

ψtψ
′
t

)−1
(ik ⊗ Ir )

−
√
T B ′�k +

√
T�kB

′ + op(1),

where ψt = (h′
t−1, h

′
t−2, . . . , h

′
t−K )′ and B is defined as B =

[V, 0;W, 0].

If the factors ft were observed, the asymptotic representation
of

√
T (�̂k −�k) would be⎛⎝ 1√
T

T∑
t=K̄

utψ
′
t

⎞⎠⎛⎝ 1

T

T∑
t=K̄

ψtψ
′
t

⎞⎠−1

(ik ⊗ Ir ) + op(1).

However, ft is unobservable, the asymptotic representation
of

√
T (�̂k −�k) then has two extra terms, −√

T B ′�k +√
T�kB

′. Theorem 5 shows that the inferential theory of the
standard VAR models cannot be applied to the FAVAR model.

Given Theorem 5, we have the following corollary.

Corollary 4. Under the assumptions of Theorem 5, we have
√
T vec(�̂k −�k)

d−→ N (0,Vk ⊗�+ D6JD′
6),

where Vk denotes the (k, k)th r × r submatrix of [E(ψtψ ′
t )]

−1

and J is the limiting variance of
√
T vec(B) and defined as

Under IRa:

J = D4B
−1
Q P1

[
2(D′

r1
Dr1 )−1 + G

]
P′

1B
−1′
Q D′

4

+D5(�εε ⊗�−1
υυ )D5.

Under IRb:

J = D4

(
D2(2Ir2

1
+ H)D′

2 + D3[(�′
1


−1
ξξ �1) ⊗ �φφ]−1D′

3

)
×D′

4 + D5(�εε ⊗�−1
υυ )D5.

Under IRc:

J = D4(
ξξ ⊗ �−1
φφ )D′

4 + D5(�εε ⊗�−1
υυ )D5,

where D4 and D5 are respective r2 × r2
1 and r2 × r1r2 matrices

such that vec(B) = D4vec(V ) + D5vec(W ); D6 = (Ir ⊗�k −
�′
k ⊗ Ir )Kr with Kr the r-dimensional commutation matrix.

Remark 9. This article assumes ht follows a finite order
AR(K) process. This may not be appropriate for certain set-
tings. For example, if the idiosyncratic errors contain unit roots,
then differencing the data is necessary. But the factor process
ht may be over-differenced, and a finite lag VAR for ht will
not be appropriate. Our model does not apply to this case. A
possibility is to allow K to increase slowly with T as in Berk
(1974), but the analysis will be much more complicated. When
the errors eit are all stationary AR(1), there are two methods
to proceed. Method 1 is to model the AR(1) process, and the
likelihood function needs to be modified. Method 2 is to ignore
the serial dependence, and the same likelihood function is used.
It can be shown that both approaches give consistency for the
factor loadings and the factors. But the limiting distributions
will be different. In a non-FAVAR context, Bai and Li (2016)
studied some related issues.

5. IMPULSE RESPONSE FUNCTION

Impulse response function plays an important role in the
VAR analysis. In this section, we construct the confidence
intervals for impulse response function of model (2.1). Let
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� = (�1,�2, . . . , �K ). Theorem 5 gives
√
T vec(�̂′ −�′)

=
[
Ir ⊗

( 1

T

T∑
t=1

ψtψ
′
t

)]−1[ 1√
T

T∑
t=1

(ut ⊗ ψt )
]

−
√
T (Ir ⊗�′)vec(B) +

√
T (�⊗ IKr )vec(IK ⊗ B)

+op(1).

Let D9 be a K2r2 × r2 matrix satisfying that vec(IK ⊗ B) =
D9vec(B). Given this result, we have

√
T vec(�̂′ −�′)

=
[
Ir ⊗

( 1

T

T∑
t=1

ψtψ
′
t

)]−1[ 1√
T

T∑
t=1

(ut ⊗ ψt )
]

+[(�⊗ IKr )D9 − (Ir ⊗�′)]
√
T vec(B) + op(1).

By definition, it is seen that
√
T vec(B) is asymptotically in-

dependent with 1√
T

∑T
t=1(ut ⊗ ψt ). Let D10 = (�⊗ IKr )D9 −

(Ir ⊗�′). Then we have
√
T vec(�̂′ −�′)

d−→ N
(

0,�⊗ [E(ψtψ
′
t )]

−1 + D10JD′
10

)
,

where J is the limiting variance of
√
T vec(B) and� = E(utu′

t ).
Under the assumption of stationarity of the process ht , model

(2.1) has a vector MA(∞) expression

ht = ut +�1ut−1 +�2ut−2 + · · · (5.1)

Given the asymptotic results of
√
T vec(�̂′ −�′), the limiting

distribution of �̂s −�s for all s can be derived in the standard
way (see Hamilton 1994, p. 336). The limiting result is stated
in the following theorem.

Theorem 6. Under Assumptions A–D, whenN, T → ∞ and√
T /N → 0,

√
T vec(�̂ ′

s −� ′
s)

d→ N
(

0, ϒs
[
�⊗ [E(ψtψ

′
t )]

−1 + D10JD′
10

]
ϒ ′
s

)
,

where ϒs is defined recursively by

ϒs =
s∑
i=1

�i−1 ⊗ [� ′
s−i�

′
s−i−1 . . . �

′
s−i−K+1]

with �0 = Ir and �s = 0 for s < 0.

We notice that the above impulse response functions are de-
rived from the nonorthogonal shocks. In the analysis of some
structural models, the impulse response functions for orthog-
onal shocks are required. For this, we consider decomposing
� = var(ut ). Let P be the lower triangular matrix, which is ob-
tained by the Cholesky decomposition of �. And let ωt be the
corresponding structural shocks with the relation that ut = Pωt .
Then the moving average expression (5.1) can be written as

ht = Pωt +�1Pωt−1 +�2Pωt−2 + · · ·
= C0ωt + C1ωt−1 + C2ωt−2 + · · · (5.2)

with Cs = �sP being the impulse response function corre-
sponding to the structural shocks ωt .

Remark 10. There are some cases in which no Cholesky
decomposition is needed. For instance, in the application of
Bernanke, Boivin, and Eliasz (2005), gt is a scalar that is the
federal fund rate. Then �υυ is a scalar and hence a diagonal
matrix. So under IRa and IRb, �̂ is diagonal implying that
the innovations ut are mutually orthogonal and hence can be
interpreted as structural shocks. But under IRc, �̂ is not diagonal
due to the nondiagonal matrix �̂εε.

Next we aim to derive the limiting distribution of√
T vec(Ĉs − Cs), on which basis the confidence intervals of

the impulse response function can be constructed.
By definition, Cs is related to both �s and P . The limiting

distribution of �̂s −�s is given in Theorem 6. The limiting
distribution of P̂ − P can be derived based on the following
theorem, since by definition, P is related to �εε and �υυ .

Theorem 7. Under Assumption A–D, when N, T → ∞, the
estimator �̃υυ is consistent for �υυ . With

√
T /N → 0, under

IRa, IRb, or IRc, we have

√
T vech(�̃υυ −�υυ)

d−→ N
(

0,D+
r2

[
2�υυ ⊗�υυ

+(�1/2
υυ ⊗�1/2

υυ )(Dr2WυD ′
r2

)(�1/2
υυ ⊗�1/2

υυ )
]
D+′
r2

)
,

where D+
r2

is the Moore–Penrose inverse of an r2-dimensional
duplication matrix, Dr is defined in Corollary 1, and Wυ is
an r2-dimensional diagonal matrix with its ith element κ†i − 3
where κ†i is the fourth moment of its ith element of �−1/2

υυ υ t . In
addition, under IRc, we also have

√
T vech(�̂εε −�εε)

d−→ N
(

0,D+
r1

[
2�εε ⊗�εε

+(�1/2
εε ⊗�1/2

εε )(Dr1WεD
′
r1

)(�1/2
εε ⊗�1/2

εε )

+4Sr1 (
ξξ ⊗ �−1
φφ )S ′

r1

]
D+′
r1

)
,

where Wε is defined similarly as Wυ .

Further, based on Theorems 6 and 7, we can derive the limiting
distribution of

√
T vec(Ĉs − Cs) as in the following theorem.

Theorem 8. Under Assumptions A–D, whenN, T → ∞ and√
T /N → 0, we have:

Under IRa and IRb,
√
T vec(Ĉs − Cs)

d−→ N
(

0, (P ′ ⊗ Ir )KrϒsJ1ϒ
′
sK

′
r (P ⊗ Ir )

+(Ir ⊗�s)D7J2D
′
7(Ir ⊗� ′

s)
)
.

Under IRc,
√
T vec(Ĉs − Cs)

d−→ N
(

0, (P ′ ⊗ Ir )KrϒsJ1ϒ
′
sK

′
r (P ⊗ Ir )

+(Ir ⊗�s)J3(Ir ⊗� ′
s)
)
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with J1 = �⊗ [E(ψtψ ′
t )]

−1 + D10JD′
10, J3 = D8J4D

′
8 +

D7J2D
′
7 and

J2 = W2Sr2

[
2�υυ ⊗�υυ

+(�1/2
υυ ⊗�1/2

υυ )(Dr2WυD ′
r2

)(�1/2
υυ ⊗�1/2

υυ )
]
S ′
r2

W′
2,

where

J4 = W1Sr1

[
2�εε ⊗�εε + (�1/2

εε ⊗�1/2
εε )

×(Dr1WεD
′
r1

)(�1/2
εε ⊗�1/2

εε )

+4Sr1 (
ξξ ⊗ �−1
φφ )S ′

r1

]
S ′
r1

W′
1.

D7 and D8 are transformation matrices such that for anyMr×r =
[M1, 0; 0,M2] where M1 is r1 × r1 and M2 is r2 × r2 and
both are lower-triangular matrices, vec(M) = D8vech(M1) +
D7vech(M2); W1 and W2 are defined in Appendix E (online
supplement).

Then based on (2.2) and (5.2), the impulse response func-
tion of the observable variables zt with respect to the structural
shocks ωt is

∂zi,t+k
∂ωt

= C′
k

[
λi
γi

]
for each i and for all k ≥ 0. Then note that

∂̂zi,t+k
∂ωt

− ∂zi,t+k
∂ωt

= (Ĉk − Ck)
′
[
λi
γi

]
+ C′

k

[
λ̂i − λi
γ̂i − γi

]
has two components, which arise from estimating the loadings
(λi, γi) and the MA(∞) coefficients Ck . From the asymptotic
representations of (λ̂i − λi), (γ̂i − γi), and (Ĉk − Ck), taking
into account their covariances, we obtain the following theorem
on the impulse response function.

Theorem 9 (Impulse Response Function). Under Assump-
tions A–D, whenN, T → ∞ and

√
T /N → 0, under IRa, IRb,

or IRc, we have

√
T

(
∂̂zi,t+k
∂ωt

− ∂zi,t+k
∂ωt

)
d−→ N

(
0,Avar

( ∂̂zi,t+k
∂ωt

))
,

with

Avar
( ∂̂zi,t+k
∂ωt

)
= [(λ′

i , γ
′
i ) ⊗Kr ] · Avar(vec(Ĉk)) · [(λ′

i ,

γ ′
i )

′ ⊗K ′
r ] + C′

k · Avar(λ̂′
i , γ̂

′
i ) · Ck

+[(λ′
i , γ

′
i ) ⊗Kr ] · (P ′ ⊗ Ir )KrϒkD10J [(λ′

i , γ
′
i )

′ ⊗ Ck]

+[(λ′
i , γ

′
i ) ⊗ C′

k]JD′
10ϒ

′
kK

′
r (P ⊗ Ir ) · [(λ′

i , γ
′
i )

′ ⊗K ′
r ],

where Kr is the commutation matrix defined as in Section 4;
J is the limiting variance of

√
T vec(B) defined as in Corollary

4 and ϒk is defined in Theorem 6. In addition, Avar(λ̂′
i , γ̂

′
i ) =

diag(Avar(λ̂i),Avar(γ̂i)); Avar(λ̂i), Avar(γ̂i), and Avar(vec(Ĉk))
are the asymptotic variances of λ̂i , γ̂i , and Ĉk , respectively, and
are given in Corollary 1, Corollary 2, and Theorem 8, respec-
tively.

Once estimators for Avar(λ̂i), Avar(γ̂i), and Avar(vec(Ĉk))
are obtained, the confidence intervals for the impulse response

function can be easily constructed. For example, the 95% con-

fidence interval for the impulse response function
∂zi,t+k
∂ωt

is

(( ∂̂zi,t+k
∂ωt

)
− 1.96√

T

[
diag

{
Âvar

( ∂̂zi,t+k
∂ωt

)}]1/2
,
( ∂̂zi,t+k
∂ωt

)
+1.96√

T

[
diag

{
Âvar

( ∂̂zi,t+k
∂ωt

)}]1/2
)
,

where ( ∂̂zi,t+k
∂ωt

) = Ĉ′
k[
λ̂i
γ̂i

], and diag{·} stacks the diagonal ele-
ments of the argument into a column vector, and

Âvar
( ∂̂zi,t+k
∂ωt

)
= (λ̂′

i , γ̂
′
i ) ⊗ Ir ·Kr · Âvar(vec(Ĉk))

·K ′
r · (λ̂′

i , γ̂
′
i )

′ ⊗ Ir + Ĉ′
k · Âvar(λ̂′

i , γ̂
′
i ) · Ĉk

+(P̂ ′ ⊗ Ir )Krϒ̂kD̂10Ĵ [(λ̂′
i , γ̂

′
i )

′ ⊗ Ĉk]

+[(λ̂′
i , γ̂

′
i ) ⊗ Ĉ′

k]Ĵ D̂′
10ϒ̂

′
kK

′
r (P̂ ⊗ Ir )

with Âvar(λ̂′
i , γ̂

′
i ) being the estimate of Avar(λ̂′

i , γ̂
′
i ) and

Âvar(vec(Ĉk)) being the estimate of Avar(vec(Ĉk)); P̂ , ϒ̂k , D̂10,
and Ĵ are the estimates of P , ϒk , D10, and J, respectively.

6. FINITE SAMPLE PROPERTIES

In this section, we run Monte Carlo simulations to investigate
the finite sample properties of the two-step estimators. For the
sake of space, we only consider IRb and IRc, which are of more
practical relevance. In factor analysis literature, many studies,
such as Bai and Li (2012, 2016), Doz, Giannone, and Reichlin
(2012), investigate the finite sample properties of the QMLE,
that is, �̃, F̃ , 
̃ee. Consequently, in this article we instead focus
on the performance of the estimator �̂. Notice that �̂ has a close
relation with the impulse response function, which in many
occasions is the primary tool of the economic analysis. Hence,
the finite sample properties of �̂ deserves our special attention.

The factors are assumed to follow VAR(1) and are generated
according to

ht = �ht−1 + ut ,

where ht = (f ′
t , g

′
t )

′ and ut is an iid N (0,�) process. Matrix�
is restricted by the identification IRb and IRc and exhibits the
form, respectively,

(IRb)

[
Ir1 0
0 �22

]
, (IRc)

[
�11 0

0 �22

]
,

where �11 and �22 are both symmetric positive definite ma-
trices. The symmetric positive matrix is generated according
to � = MDM′, where M = M(M ′M)−1/2 with M being any
r × r standard normal random matrix and D is a diagonal ma-
trix with all its diagonal elements drawn from (1 + U[0, 1])2.
Throughout the simulation, the number of unknown factors and
known factors, r1 and r2, are set to 2 and 1 (so r = r1 + r2 = 3).
In addition, the parameter � is fixed to 0.7Ir .

All the factor loadings are generated independently from
N (0, 1) (where � is N × 2 and � is N × 1). To make the
underlying factor loadings satisfy the identification restrictions,
we set the (1, 2)th element of� to be 0 under IRb and the upper



630 Journal of Business & Economic Statistics, October 2016

Table 1. The RMSEs of all the elements of �̂ under IRb

N T �11 �12 �13 �21 �22 �23 �31 �32 �33 Ave

50 50 0.1360 0.1261 0.0902 0.1318 0.1474 0.0925 0.1804 0.1748 0.1170 0.1329
100 50 0.1307 0.1177 0.0919 0.1252 0.1351 0.0939 0.1799 0.1722 0.1209 0.1297
200 50 0.1335 0.1208 0.0894 0.1230 0.1320 0.0885 0.1736 0.1625 0.1218 0.1272
50 100 0.0933 0.0803 0.0569 0.0846 0.0891 0.0591 0.1179 0.1185 0.0810 0.0867
100 100 0.0841 0.0788 0.0563 0.0783 0.0848 0.0563 0.1113 0.1133 0.0811 0.0827
200 100 0.0844 0.0794 0.0554 0.0798 0.0879 0.0538 0.1106 0.1147 0.0816 0.0831
50 200 0.0611 0.0534 0.0380 0.0560 0.0614 0.0369 0.0787 0.0833 0.0529 0.0580
100 200 0.0572 0.0563 0.0379 0.0532 0.0600 0.0396 0.0795 0.0799 0.0559 0.0577
200 200 0.0557 0.0519 0.0370 0.0528 0.0547 0.0369 0.0836 0.0797 0.0551 0.0564
50 500 0.0373 0.0326 0.0236 0.0328 0.0380 0.0235 0.0495 0.0514 0.0336 0.0358
100 500 0.0343 0.0335 0.0229 0.0327 0.0350 0.0233 0.0509 0.0495 0.0349 0.0352
200 500 0.0335 0.0321 0.0233 0.0324 0.0341 0.0235 0.0505 0.0484 0.0322 0.0344

Table 2. The empirical size of the t-test (nominal 5%) for all the elements of � under IRb

N T �11 �12 �13 �21 �22 �23 �31 �32 �33 Ave

50 50 0.068 0.060 0.049 0.069 0.086 0.062 0.058 0.052 0.055 0.0621
100 50 0.063 0.055 0.055 0.062 0.071 0.066 0.063 0.055 0.055 0.0606
200 50 0.079 0.069 0.049 0.049 0.065 0.058 0.049 0.055 0.074 0.0608
50 100 0.085 0.046 0.044 0.065 0.072 0.060 0.042 0.067 0.054 0.0594
100 100 0.059 0.055 0.055 0.051 0.072 0.046 0.044 0.041 0.066 0.0543
200 100 0.060 0.045 0.050 0.055 0.074 0.040 0.034 0.055 0.060 0.0526
50 200 0.069 0.042 0.052 0.056 0.072 0.039 0.047 0.062 0.050 0.0543
100 200 0.058 0.057 0.048 0.058 0.069 0.052 0.042 0.040 0.071 0.0550
200 200 0.057 0.042 0.043 0.043 0.056 0.055 0.056 0.053 0.058 0.0514
50 500 0.070 0.043 0.055 0.043 0.081 0.058 0.049 0.064 0.053 0.0573
100 500 0.054 0.053 0.053 0.046 0.054 0.052 0.049 0.046 0.064 0.0523
200 500 0.055 0.047 0.056 0.049 0.046 0.053 0.057 0.048 0.048 0.0510

2 × 2 matrix of� to be the identity matrix under IRc. After the
factor loadings are obtained, the data are generated by

zt = �ft + �gt + et ,

where et = (e1t , e2t , . . . , eNt )′ with eit ∼ N (0, σ 2
i ), whereσ 2

i ∼
1 + U[0, 1].

After the data (Z,G) are constructed, we need to determine
the number of unknown factors r1 before estimation. There are
two approaches to determine r1. One approach is to first esti-
mate the total number of factors based on Z (denoted as r̂) by
the information criterion proposed by Bai and Ng (2002), and

then get r̂1 = r̂ − r2 where r2 is the number of known factors. A
better approach is to directly estimate the number of unknown
factors r̂1 through the transformed data ZMG. The second ap-
proach is adopted in simulations. Once r1 is determined, we
use the method described in the previous section to estimate the
parameters.

The identification conditions IRb have so-called sign prob-
lem. (See Bai and Li (2012) for an illustration on the sign
problem.) To eliminate this problem, after the estimated fac-
tors F̂ are obtained, we calculate the correlation coefficients
between each column of F̂ and the corresponding column

Table 3. The RMSEs of all the elements of �̂ under IRc

N T �11 �12 �13 �21 �22 �23 �31 �32 �33 Ave

50 50 0.1407 0.1397 0.1336 0.1354 0.1383 0.1258 0.1359 0.1281 0.1323 0.1344
100 50 0.1405 0.1403 0.1349 0.1365 0.1443 0.1299 0.1319 0.1419 0.1284 0.1365
200 50 0.1347 0.1290 0.1350 0.1394 0.1406 0.1295 0.1312 0.1323 0.1261 0.1331
50 100 0.0878 0.0868 0.0800 0.0897 0.0897 0.0849 0.0842 0.0859 0.0806 0.0855
100 100 0.0871 0.0869 0.0877 0.0810 0.0843 0.0838 0.0831 0.0871 0.0812 0.0847
200 100 0.0827 0.0840 0.0874 0.0813 0.0857 0.0852 0.0879 0.0878 0.0843 0.0851
50 200 0.0586 0.0562 0.0600 0.0571 0.0583 0.0568 0.0538 0.0571 0.0528 0.0567
100 200 0.0559 0.0566 0.0592 0.0558 0.0560 0.0586 0.0564 0.0567 0.0547 0.0567
200 200 0.0534 0.0583 0.0554 0.0577 0.0558 0.0565 0.0579 0.0562 0.0541 0.0562
50 500 0.0348 0.0343 0.0346 0.0334 0.0353 0.0364 0.0346 0.0348 0.0312 0.0344
100 500 0.0338 0.0337 0.0353 0.0344 0.0347 0.0353 0.0347 0.0359 0.0324 0.0344
200 500 0.0332 0.0339 0.0347 0.0341 0.0341 0.0369 0.0351 0.0370 0.0328 0.0346
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Table 4. The empirical size of the t-test (nominal 5%) for all the elements of � under IRc

N T �11 �12 �13 �21 �22 �23 �31 �32 �33 Ave

50 50 0.079 0.064 0.069 0.081 0.081 0.051 0.076 0.073 0.076 0.0722
100 50 0.088 0.078 0.065 0.071 0.089 0.069 0.074 0.078 0.087 0.0777
200 50 0.069 0.059 0.061 0.069 0.089 0.064 0.067 0.069 0.077 0.0693
50 100 0.078 0.064 0.051 0.070 0.074 0.058 0.057 0.050 0.062 0.0627
100 100 0.073 0.067 0.054 0.045 0.069 0.053 0.053 0.056 0.047 0.0574
200 100 0.055 0.055 0.070 0.058 0.068 0.066 0.058 0.066 0.065 0.0623
50 200 0.058 0.048 0.060 0.055 0.056 0.046 0.043 0.051 0.049 0.0518
100 200 0.060 0.046 0.067 0.050 0.059 0.058 0.064 0.064 0.066 0.0593
200 200 0.049 0.060 0.052 0.059 0.052 0.037 0.055 0.057 0.055 0.0529
50 500 0.055 0.046 0.046 0.046 0.066 0.057 0.058 0.060 0.048 0.0536
100 500 0.051 0.045 0.050 0.054 0.057 0.050 0.049 0.056 0.052 0.0516
200 500 0.051 0.051 0.045 0.050 0.058 0.067 0.047 0.060 0.047 0.0529

of F. If the coefficient is negative, then multiply −1 to
that column of F̂ and the corresponding column of �̂. In
practice, this treatment is not feasible. However, sign prob-
lem can be fixed by other means, see Stock and Watson
(2005). We consider a combination of N = 50, 100, 200 and
T = 50, 100, 200, 500. All the results are obtained in 1000
repetitions.

Table 1 reports the root of mean square error (RMSE) of all
elements of �. The last element of each row is the average of
the left nine elements under IRb. On the whole, we can see that
the RMSE decreases as the sample size becomes larger. More
concretely, Table 1 shows that the RMSE is closely linked with
the time length T and little related to the cross-sectional size N.
Take�11 as an example. When T = 200 andN = 50, 100, 200,
the corresponding three RMSEs are 0.0611, 0.0572, and 0.0557,
which are roughly equal. However, when T increases to 500, the
corresponding three RMSEs are 0.0373, 0.0343, and 0.0335,
which are still roughly equal but dramatically lower in compari-
son with those of T = 200. This result is consistent with results
in Theorem 5.

Aside from the consistency, we are also concerned about the
limiting distribution of

√
T vec(�̂′ −�′), which, as seen in the

last section, has a direct effect on the confidence interval of the
impulse response function. To this end, we calculate the size
of t-test for every �ij in each simulation and count the number
of times that the absolute value of t-statistics is greater than the
critical value of the 5% significance level for the standard normal
distribution (i.e., 1.96) in 1000 repetitions. Table 2 reports the
actual significance level that corresponds to 5% nominal size
for every �ij . As in Table 1, we average the result of the nine
elements of � and report the result in the last column. From
Table 2, we find that, unlike in Table 1, the actual significance
level is related to both N and T . When the sample size is small,
say N = 50, T = 50, the size distortion is a little larger, for
�22, the actual significance level is 0.086. However, when the
sample becomes larger, the distortion gradually decreases (see
the last column). When N = 200, T = 500, we can see that all
the elements of � have a satisfactory size.

The results under IRc are similar to those under IRb and
are reported in Tables 3 and 4. We do not repeat the detailed
analysis.

7. CONCLUDING REMARKS

This article considers the identification, estimation, and in-
ferential theory of the FAVAR model. Three sets of identifica-
tion restrictions are considered. We propose a likelihood-based
two-step method to estimate the parameters. Consistency, con-
vergence rates, asymptotic representations, and the limiting dis-
tributions have been established. The impulse response function
and its confidence intervals are also provided. An important re-
sult from our theory is that if the identification conditions are
imposed on the population variance rather than on the sample
variance of the factor process, an additional term, which arises
from the distance between the sample variance and the popula-
tion variance, would enter the final asymptotic representations.
Consequently the limiting variances of the estimators are larger.
We studied the ways in which this distance affects the limiting
distributions. The finite sample Monte Carlo simulation con-
firms our theoretical results.

The analysis of this article assumes constant parameters. In
empirical applications with a long time span, it is likely that
a structural change occurs, either in the dynamics of ht , or in
the factor loadings (�,�). It is of interest to develop inference
procedures allowing for this possibility, as in Chen, Dolado, and
Gonzalo (2014), Cheng, Liao, and Schorfheide (2013), and Han
and Inoue (2015).

APPENDIX: TECHNICAL MATERIALS FOR THE
ASYMPTOTIC RESULTS

In this appendix, we provide the detailed derivations for the asymp-
totic results under IRa. The derivations for the asymptotic results under
IRb and IRc as well as the theorems in Section 5 are delegated to the on-
line supplement. Throughout the appendix, we use K̄ to denote K + 1
and T̄ to denote T −K − 1. To facilitate the analysis, we introduce
the following auxiliary identification condition (an intermediate step
analysis).

AU1: The underlying parameter values θ∗ = (�∗, �∗, F ∗,�∗, 
ee)
satisfy: 1

N
�∗′
−1

ee �
∗ = Q∗, 1

T

∑T

t=1 f
∗
t f

∗′
t = Ir1 , and 1

T

∑T

t=1
f ∗
t g

′
t = 0, where Q∗ is a diagonal matrix, whose diagonal ele-

ments are distinct and arranged in descending order.
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APPENDIX A: THE ASYMPTOTIC RESULTS OF THE
QMLE

In this appendix, we show that the QMLE λ̃i , σ̃
2
i , f̃t and �̃k are

respectively consistent estimator of λ∗
i , σ

2
i , f ∗

t and �∗
k under AU1. We

also derive their asymptotic representations.

Proposition A.1. Under Assumptions A-D, together with AU1,

λ̃i − λ∗
i =

(
1

T

T∑
t=1

f ∗
t f

∗′
t

)−1 (
1

T

T∑
t=1

f ∗
t eit

)
+Op(N−1/2T −1/2) +Op(T −1), (A.1)

γ̃i − γ ∗
i =

(
1

T

T∑
t=1

gtgt ′

)−1 (
1

T

T∑
t=1

gteit

)
, (A.2)

f̃t − f ∗
t =

(
1

N

T∑
i=1

1

σ 2
i

λ∗
i λ

∗′
i

)−1 (
1

N

N∑
i=1

1

σ 2
i

λ∗
i eit

)
+Op(N−1/2T −1/2) +Op(T −1), (A.3)

σ̃ 2
i − σ 2

i = 1

T

T∑
t=1

(e2
it − σ 2

i ) +Op(N−1/2T −1/2) +Op(T −1). (A.4)

Proof of Proposition A.1. Write zt = �∗f ∗
t + �∗gt + et into matrix

form,

Z = �∗F ∗′ + �∗G′ + e. (A.5)

Post-multiplying MG = IT −G(G′G)−1G′ on both sides, together
with F ∗′G = 0 by AU1, we have

ZMG = �∗F ∗′ + eMG.

Let Y = ZMG and yt denotes the t-th column of Y . The above equation
is equivalent to

yt = �∗f ∗
t + et − eG(G′G)−1gt (A.6)

Bai and Li (2012) derive the asymptotic representations of λ̃i , f̃t , σ̃ 2
i

under the case that gt ≡ 1. However, when gt is a general ran-
dom variable, as like in the present context, the derivation is the
same since term eG(G′G)−1gt is essentially negligible. Using the
arguments of Bai and Li (2012) under IC3, we obtain (A.1), (A.3)
and (A.4). Consider (A.2). Substituting zit = λ∗′

i f
∗
t + γ ∗′

i gt + eit into
γ̃i = (

∑T

t=1 gtg
′
t )

−1
(∑T

t=1 gt (zit − λ̃′
i f̃t )

)
, we have

γ̃i − γ ∗
i =

(
T∑
t=1

gtg
′
t

)−1 (
T∑
t=1

gteit

)

−
(

T∑
t=1

gtg
′
t

)−1 (
T∑
t=1

gtf
∗′
t

)
(λ̃i − λ∗

i )

−
(

T∑
t=1

gtg
′
t

)−1 (
T∑
t=1

gt (f̃t − f ∗
t )′
)
λ̃i

The second term of the right hand side is zero by
∑T

t=1 gtf
∗′
t = G′F ∗

= 0. Consider the third term. Notice

f̃t = (�̃′
̃−1
ee �̃)−1�̃′
̃−1

ee yt

= (�̃′
̃−1
ee �̃)−1�̃′
̃−1

ee

⎡⎣zt − (
T∑
s=1

zsg
′
s

)(
T∑
s=1

gsg
′
s

)−1

gt

⎤⎦
= (�̃′
̃−1

ee �̃)−1�̃′
̃−1
ee

⎡⎣�∗f ∗
t + et −

(
T∑
s=1

esg
′
s

)(
T∑
s=1

gsg
′
s

)−1

gt

⎤⎦.

Then it follows

f̃t − f ∗
t = −A∗′f ∗

t + (�̃′
̃−1
ee �̃)−1�̃′
̃−1

ee et

−(�̃′
̃−1
ee �̃)−1�̃′
̃−1

ee

(
T∑
s=1

esg
′
s

)(
T∑
s=1

gsg
′
s

)−1

gt (A.7)

where A∗ = (�̃−�∗)′
̃−1
ee �̃(�̃′
̃−1

ee �̃)−1.
Given the above expression, together with

∑T

t=1 gtf
∗′
t = 0, we have

1

T

T∑
t=1

gt (f̃t − f ∗
t )′ = 0. (A.8)

Then (A.2) follows. This completes the proof of Proposition A.1. �
Lemma A.1 Under Assumptions A-D,

(a)
1

T̄

T∑
t=K̄

h̃t−ph̃′
t−q − 1

T̄

T∑
t=K̄

h∗
t−ph

∗′
t−q = Op(N−1) +Op(T −1),

for p, q = 0, . . . , K

(b)
1

T̄

T∑
t=K̄

(h̃t−p − h∗
t−p)h̃′

t−q = Op(N−1) +Op(T −1),

for p, q = 0, 1, . . . , K

(c)
1

T̄

T∑
t=K̄

u∗
t h̃

′
t−p − 1

T̄

T∑
t=K̄

u∗
t h

∗′
t−p = Op(N−1/2T −1/2)+Op(T −1),

for p = 1, . . . , K,

where h̃t = (f̃ ′
t , g

′
t )

′ and h∗
t = (f ∗′

t , h
′
t )

′.

Proof of Lemma A.1. Consider (a). By the definitions of h̃t and h∗
t , the

left hand side of (a) is equal to[
J11 J12

J21 0

]
where

J11 = 1

T̄

T∑
t=K̄

(f̃t−p − f ∗
t−p)(f̃t−q − f ∗

t−q )′ + 1

T̄

T∑
t=K̄

(f̃t−p − f ∗
t−p)f ∗′

t−q

+ 1

T̄

T∑
t=K̄

f ∗
t−p(f̃t−q − f ∗

t−q )′;

J12 = 1

T̄

T∑
t=K̄

(f̃t−p − f ∗
t−p)g′

t−q ; J21 = 1

T̄

T∑
t=K̄

gt−p(f̃t−q − f ∗
t−q )′.

The first term of J11 is Op(N−1) +Op(T −2), as shown in Bai an Li
(2012). Consider the second term. By (A.7), 1

T̄

∑T

t=K̄ (f̃t−p − f ∗
t−p)f ∗′

t−q
is equal to

−A∗′ 1

T̄

T∑
t=K̄

f ∗
t−pf

∗′
t−q + (�̃′
̃−1

ee �̃)−1 1

T̄

T∑
t=K̄

�̃′
̃−1
ee et−pf

∗′
t−q

−(�̃′
̃−1
ee �̃)−1

(
1

T

T∑
s=1

�̃′
̃−1
ee esg

′
s

)(
1

T

T∑
s=1

gsg
′
s

)−1
⎛⎝ 1

T̄

T∑
t=K̄

gt−pf ∗′
t−q

⎞⎠
The first term of the above expression is Op(N−1/2T −1/2) +Op(T −1)
by 1

T̄

∑T

t=K̄ f
∗
t−pf

∗′
t−q = Op(1) and A = Op(N−1/2T −1/2) +Op(T −1) ,

as shown in Bai and Li (2012). The second and third terms are also
Op(N−1/2T −1/2) +Op(T −1), which can be proved similarly as Lemma
C.1(e) of Bai and Li (2012). Given these results, the second term of J11

is Op(N−1) +Op(T −1). The last term can be proved to be the same
magnitude by the similar arguments. Summarizing these results, we
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have J11 = Op(N−1) +Op(T −1). Terms J12 and J21 can be proved to
be Op(N−1/2T −1/2) +Op(T −1) similarly as J11. Then (a) follows.

Consider (b). The left hand side of (b) is equal to[
1
T̄

∑T

t=K̄ (f̃t−p − f ∗
t−p)f̃ ′

t−q
1
T̄

∑T

t=K̄ (f̃t−p − f ∗
t−p)g′

t−q
0 0

]
The two none-zero terms of the above areOp(N−1) +Op(T −1), which
are shown in (a). Then (b) follows.

Consider (c). The left hand side of (c) is equal to[
1
T̄

∑T

t=K̄ u
∗
t (f̃t−p − f ∗

t−p)′

0

]
.

So it suffices to consider term 1
T̄

∑T

t=K̄ u
∗
t (f̃t−p − f ∗

t−p)′, which, by
(A.7), can be written as

− 1

T̄

T∑
t=K̄

u∗
t f

∗′
t−pA

∗ + 1

T̄

T∑
t=K̄

u∗
t e

′
t−p
̃

−1
ee �̃(�̃′
̃−1

ee �̃)−1

− 1

T̄

T∑
t=K̄

u∗
t g

′
t−p

(
T∑
s=1

gsg
′
s

)−1
T∑
s=1

gse
′
s
̃

−1
ee �̃(�̃′
̃−1

ee �̃)−1

Both 1
NT̄

∑T

t=K̄ u
∗
t e

′
t−p
̃

−1
ee �̃ and 1

NT̄

∑T

s=1 gse
′
s
̃

−1
ee �̃ can be proved to

be Op(N−1/2T −1/2) +Op(T −1) similarly as Lemma C.1(e) of Bai and
Li (2012). Given these results, together with A = Op(N−1/2T −1/2) +
Op(T −1) and (�̃′
̃−1

ee �̃)−1 = Op(N−1), we have

1

T̄

T∑
t=K̄

u∗
t (f̃t − f ∗

t )′ = Op(N−1/2T −1/2) +Op(T −1).

Then (c) follows. This completes the proof of Lemma A.1. �
Proposition A.2. Under Assumptions A-D, together with the iden-

tification condition AU1, for each k = 1, 2, . . . , K , we have

�̃k −�∗
k =

(
T∑
t=K̄

u∗
t ψ

∗′
t

)(
T∑
t=K̄

ψ∗
t ψ

∗′
t

)−1

(ik ⊗ Ir )

+Op(N−1) +Op(T −1)

where ψ∗
t = (h∗′

t−1, h
∗′
t−2, . . . , h

∗′
t−K )′ and ik is the k-th column of the

K ×K identity matrix.

Proof of Proposition A.2. Let �∗ = (�∗
1,�

∗
2, . . . , �

∗
K ) and �̃ be de-

fined similarly. Notice �̃ is obtained by running the regression

h̃t = �1h̃t−1 +�2h̃t−2 + · · · +�Kh̃t−K + error

So we have

�̃ =
(

T∑
t=K̄

h̃t ψ̃
′
t

)(
T∑
t=K̄

ψ̃t ψ̃
′
t

)−1

where ψ̃t = (h̃′
t−1, h̃

′
t−2, . . . , h̃

′
t−K )′. By h∗

t = �∗ψ∗
t + u∗

t ,

�̃−�∗ =
[

T∑
t=K̄

(
u∗
t + (h̃t − h∗

t ) −�∗(ψ̃t − ψ∗
t )
)
ψ̃ ′
t

][
T∑
t=K̄

ψ̃t ψ̃
′
t

]−1

=
[

1

T̄

T∑
t=K̄

(
u∗
t + (h̃t − h∗

t ) −�∗(ψ̃t − ψ∗
t )
)
ψ̃ ′
t

]

×
[

1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

]−1

By Lemma A.1(a) and (b),[
1

T̄

T∑
t=K̄

(h̃t − h∗
t )ψ̃

′
t

][
1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

]−1

= Op(N−1) +Op(T −1)

[
1

T̄

T∑
t=K̄

(ψ̃t − ψ∗
t )ψ̃ ′

t

][
1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

]−1

= Op(N−1) +Op(T −1)

By Lemma A.1(a) and (c),[
1

T̄

T∑
t=K̄

u∗
t ψ̃

′
t

][
1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

]−1

=
[

1

T̄

T∑
t=K̄

u∗
t ψ

∗′
t

][
1

T̄

T∑
t=K̄

ψ∗
t ψ

∗′
t

]−1

+Op(N−1) +Op(T −1)

Given this result, we have

�̃−�∗ =
(

T∑
t=K̄

u∗
t ψ

∗′
t

)(
1

T̄

T∑
t=K̄

ψ∗
t ψ

∗′
t

)−1

+Op(N−1) +Op(T −1)

Post-multiplying ik ⊗ Ir on both sides gives Proposition A.2. �
Now we consider the following auxiliary identification restrictions

(denoted by AU2), in which the loading restrictions are the same as
AU1 but factor restrictions are imposed on the population.

AU2 The underlying parameter values θ� = (��, ��, F �,��,
ee)
satisfy: 1

N
��′
−1

ee �
� = Q�,E(f �t f

�′
t ) = Ir1 and E(f �t g

′
t ) = 0,

where Q� is a diagonal matrix, whose diagonal elements are
distinct and arranged in descending order.

Note that the superscript “stars” in θ� and θ∗ are different. Different
identification restrictions imply different rotations. Because AU1 and
AU2 are asymptotically the same (the former with sample moment
restriction 1

T

∑
t ftf

′
t = Ir1 and the latter with population moment re-

striction E(ftf ′
t ) = Ir1 ), θ� and θ∗ are also asymptotically the same.

That is why the deviation of MLE from θ� also converges to zero in
probability, which will be proved below.

The following lemma is useful to our analysis.

Lemma A.2 Let Q be an r × r matrix satisfying

QQ′ = Ir

Q′VQ = D

where V is an r × r diagonal matrix with strictly positive and distinct
elements, arranged in decreasing order, and D is also diagonal. Then Q
must be a diagonal matrix with elements either −1 or 1 and V = D.

Lemma A.2 is proved in Bai and Li (2012). The following Propo-
sitions A.3 and A.4 summarize the asymptotic results of the QMLE
under AU2. These results show that the limiting distributions under
AU2 are different.

Proposition A.3. Under Assumptions A-D, together with the iden-
tification condition AU2, when N, T → ∞, we have

λ̃i − λ�i = V �λ�i + ��−1
ff

(
1

T

T∑
t=1

f �t eit

)

+Op(N−1/2T −1/2) +Op(T −1) (A.9)

γ̃i − γ �i = W�λ�i + �−1
gg

(
1

T

T∑
t=1

gt eit

)
+Op(T −1) (A.10)

f̃t − f �t = −V �′f �t −W�′gt +
(

1

N

N∑
i=1

1

σ 2
i

λ�i λ
�′
i

)−1 (
1

N

N∑
i=1

1

σ 2
i

λ�i eit

)

+Op(N−1) +Op(T −1) (A.11)

where W� = �−1
gg ��

gf with ��
gf = E(gtf �′t ); ��

ff = E(f �t f
�′
t ); V � is

an r1 × r1 matrix, which is Op(T −1/2).
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Proof of Proposition A.3. Notice that

λ̃i − λ�i = (λ̃i − λ∗
i ) + (λ∗

i − λ�i ).

We show λ∗
i and λ�i are close to each other because AU1 and AU2

are asymptotically the same. Different identification restrictions imply
different rotations. Let R� be the rotation matrix, which transform
(λ∗′
i , γ

∗′
i )′ to (λ�′i , γ

�′
i )′. Then we have

zt = ��f �t + ��gt + et = [��, ��]

[
f �t
gt

]
+ et

= [�∗, �∗]

[
R�′11 R

�′
21

R�′12 R
�′
22

][
R�′11 R

�′
21

R�′12 R
�′
22

]−1[
f ∗
t

gt

]
+ et (A.12)

As mentioned in the main text, due to the fact that the factors gt are
observed, matrix R�′12 is fixed to 0 and matrix R�′22 is fixed to Ir2 . So
equation (A.12) reduces to

zt = [��, ��]

[
f �t
gt

]
+ et

= [�∗, �∗]

[
R�′11 R

�′
21

0 Ir2

][
R�′−1

11 −R�′−1
11 R�′21

0 Ir2

][
f ∗
t

gt

]
+ et

This gives

λ�i = R�11λ
∗
i , γ

�
i = R�21λ

∗
i + γ ∗

i , f
�
t = R�′−1

11 f ∗
t − R�′−1

11 R�′21gt . (A.13)

The last equation of (A.13) can also be written as

f ∗
t = R�′11f

�
t + R�′21gt . (A.14)

Post-multiplying g′
t on both sides and taking summation over t, by∑T

t=1 gtf
∗′
t = 0, we have

R�21 = −
[

T∑
t=1

gtg
′
t

]−1 [
T∑
t=1

gtf
�′
t

]
R�11, (A.15)

Substituting (A.15) into (A.14),

f ∗
t = R�′11

⎛⎝f �t −
[

T∑
t=1

f �t g
′
t

][
T∑
t=1

gtg
′
t

]−1

gt

⎞⎠ .
By T −1

∑T

t=1 f
∗
t f

∗′
t = Ir1 , the preceding equation implies(

1

T

T∑
t=1

f �t f
�′
t

)
−
(

1

T

T∑
t=1

f �t g
′
t

)(
1

T

T∑
t=1

gtg
′
t

)−1 (
1

T

T∑
t=1

gtf
�′
t

)

= R�′−1
11 R�−1

11 . (A.16)

The first equation of (A.13) shows �� = �∗R�′11. So we have

R�−1
11 Q�R�′−1

11 = R�−1
11

(
1

N
��′
−1

ee �
�

)
R�′−1

11

= 1

N
�∗′
−1

ee �
∗ = diag. (A.17)

Consider (A.16). By E(f �t g
′
t ) = 0, we have(

1

T

T∑
t=1

f �t g
′
t

)(
1

T

T∑
t=1

gtg
′
t

)−1 (
1

T

T∑
t=1

gtf
�′
t

)
= Op(T −1) (A.18)

The left hand side of (A.16) converges to Ir1 in probability.

Thus R�′−1
11 R�−1

11
p−→ Ir1 . Applying Lemma A.2 to R�′−1

11 R�−1
11

p−→ Ir1
and R�−1

11 Q�R�′−1
11 = 1

N
�∗′
−1

ee �
∗ with Q = R�′−1

11 , V = Q� and D =
1
N
�∗′
−1

ee �
∗, we have R�−1

11 converges to a matrix whose diagonal
elements either 1 or −1. Since we assume that the sign problem is

precluded in our analysis, it follows R�−1
11

p−→ Ir1 . Let

U� = R�−1
11 − Ir1 . (A.19)

Apparently, U� p−→ 0. Then (A.16) is equivalent to(
1

T

T∑
t=1

[f �t f
�′
t − Ir1 ]

)
−
(

1

T

T∑
t=1

f �t g
′
t

)(
1

T

T∑
t=1

gtg
′
t

)(
1

T

T∑
t=1

gtf
�′
t

)

= U� + U�′ + U�′U�. (A.20)

Also, (A.17) is equivalent to

Ndg
(
U�Q� +Q�U�′ + U�Q�U�′) = 0 (A.21)

where Ndg{·} denotes the non-diagonal elements of the argument. Ne-
glecting the terms U�Q�U�′ and U�′U� since they are of smaller order
than U�, we can uniquely determine matrix U� by solving the equation
system (A.20) and (A.21). LetV � be the leading term ofU�. It is easy to
see that U� = Op(T −1/2), V � = Op(T −1/2) and U� = V � +Op(T −1).
This result gives R�−1

11 = Ir1 +Op(T −1/2) by (A.19), which, together
with (A.15), implies

R�21 = −
[

T∑
t=1

gtg
′
t

]−1 [
T∑
t=1

gtf
�′
t

]
+Op(T −1)

= −�−1
gg ��

gf +Op(T −1/2)

� −W� +Op(T −1) = Op(T −1/2) (A.22)

Now consider the asymptotic representation of λ̃i − λ�i . Notice

λ̃i − λ�i = λ̃i − R�11λ
∗
i = (λ̃i − λ∗

i ) − (R�11 − Ir1 )λ∗
i

By (A.1), the above result is equivalent to

λ̃i − λ�i =
[

1

T

T∑
t=1

f ∗
t f

∗′
t

]−1 [
1

T

T∑
t=1

f ∗
t eit

]
− (R�11 − Ir1 )λ∗

i

+Op(T −1) +Op(N−1/2T −1/2) (A.23)

By (A.14), we have

1

T

T∑
t=1

f ∗
t f

∗′
t = 1

T

T∑
t=1

f �t f
�′
t + op(1) = ��

ff + op(1),

1

T

T∑
t=1

f ∗
t eit = 1

T

T∑
t=1

f �t eit +Op(T −1).

Notice R�11 = (Ir1 + U�)−1 = Ir1 − U�(Ir1 + V �)−1 = Ir1 − U�R�11.
Then it follows

−(R�11 − Ir1 )λ∗
i = U�λ�i .

Given the above three results, together with U� = V � +Op(T −1) and
(A.23), we have

λ̃i − λ�i = V �λ�i +
(

1

T

T∑
t=1

f �t f
�′
t

)−1 (
1

T

T∑
t=1

f �t eit

)
+Op(T −1)

+Op(N−1/2T −1/2). (A.24)

We then consider γ̃i − γi . By (A.13), we have γ̃i − γ �i = γ̃i − γ ∗
i −

R�21λ
∗
i . Then, by (A.3),

γ̃i − γ �i = −R�21λ
∗
i +

(
T∑
t=1

gtg
′
t

)−1 (
T∑
t=1

gteit

)
.

Substituting (A.15) into the above equation and noticing λ�i = R�11λ
∗
i ,

we have

γ̃i − γ �i =
(

T∑
t=1

gtg
′
t

)−1 (
T∑
t=1

gt (eit + f �′t λ
�
i )

)

= W�λ�i + �−1
gg

(
T∑
t=1

gteit

)
+Op(T −1). (A.25)
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Now consider f̃t − f �t . By (A.13),

f̃t − f �t = f̃t − R�′−1
11 f ∗

t + R�′−1
11 R�′21gt

By R�′−1
11 = Ir1 + U�′, the above equation is equal to

f̃t − f �t = (f̃t − f ∗
t ) − U�′f ∗

t + R�′−1
11 R�′21gt

Substituting (A.3) into the above result, we have

f̃t − f �t = −U�′f ∗
t + R�′−1

11 R�′21gt +
(

N∑
i=1

1

σ 2
i

λ∗
i λ

∗′
i

)−1 (
N∑
i=1

1

σ 2
i

λ∗
i e

′
it

)
+Op(N−1) +Op(T −1) (A.26)

However, by (A.13) together with R�11 = (Ir1 + U�)−1 and U� =
Op(T −1/2), we have

1

N

N∑
i=1

1

σ 2
i

λ∗
i λ

∗′
i = 1

N

N∑
i=1

1

σ 2
i

λ�i λ
�′
i + op(1)

1

N

N∑
i=1

1

σ 2
i

λ∗
i eit = 1

N

N∑
i=1

1

σ 2
i

λ�i eit +Op(N−1/2T −1/2)

In addition, by (A.14), (A.12) and U� = V � +Op(T −1) , we have

U�′f ∗
t = V �′f �t +Op(T −1)

R�′−1
11 R�′21gt = −

(
T∑
t=1

f �t g
′
t

)(
T∑
t=1

gtg
′
t

)−1

gt = −W�′gt +Op(T −1)

Given the above results, by (A.26), we have the last expression of
Proposition A.3. This completes the proof of Proposition A.3. �

The asymptotic result for �̃k under AU2 is given in the following
proposition.

Proposition A.4. Under Assumptions A-D, together with the iden-
tification condition AU2, we have

�̃k −��
k =

(
T∑
t=K̄

u�t ψ
�′
t

)(
T∑
t=K̄

ψ�
t ψ

�′
t

)−1

(ik ⊗ Ir ) − B�′��
k +��

kB
�′

+Op(N−1) +Op(T −1)

where B� is defined as

B� =
[
V � 0
W� 0

]
.

Proof of Proposition A.4. Notice

h∗
t = �∗

1h
∗
t−1 +�∗

2h
∗
t−2 + · · · +�∗

Kh
∗
t−K + u∗

t ,

and

h�t = ��
1h

�
t−1 +��

2h
�
t−2 + · · · +��

Kh
�
t−K + u�t .

By h�t = R�′−1h∗
t , it follows that ��

k = R�′−1�∗
kR

�′. Thus,

�̃k −��
k = �̃k − R�′−1�∗

kR
�′ (A.27)

However, by R�−1
11 = Ir1 + V � +Op(T −1) and R�21 = −W� +

Op(T −1), we have

R�′−1 =
[
R�′−1

11 −R�′−1
11 R�′21

0 Ir2

]
= Ir +

[
V �′ W�′

0 0

]
+Op(T −1)

= Ir + B�′ +Op(T −1) (A.28)

Given the above result, we have R�′ = Ir − B�′ +Op(T −1). Substitut-
ing the preceding two results into (A.27), we have

�̃k −��
k = �̃k −�∗

k − B�′�∗
k +�∗

kB
�′ +Op(T −1).

By Proposition A.2, we can rewrite the above result as

�̃k −��
k =

(
T∑
t=K̄

u∗
t ψ

∗′
t

)(
T∑
t=K̄

ψ∗
t ψ

∗′
t

)−1

(ik ⊗ Ir ) − B�′�∗
k +�∗

kB
�′

+Op(N−1) +Op(T −1).

By h�t = R�′−1h∗
t , we have h∗

t = R�′h�t = h�t + (R� − Ir )′h�t . Given this
result, together with the fact that R� − Ir = Op(T −1/2), we have⎛⎝ T∑
t=K̄

u∗
t ψ

∗′
t

⎞⎠⎛⎝ T∑
t=K̄

ψ∗
t ψ

∗′
t

⎞⎠−1

=
⎛⎝ T∑
t=K̄

u�t ψ
�′
t

⎞⎠⎛⎝ T∑
t=K̄

ψ�
t ψ

�′
t

⎞⎠−1

+Op(T −1)

and

B�′�∗
k = B�′��

k +Op(T −1), �∗
kB

�′ = ��
kB

�′ +Op(T −1)

Given these results, we have

�̃k −��
k =

(
T∑
t=K̄

u�t ψ
�′
t

)(
T∑
t=K̄

ψ�
t ψ

�′
t

)−1

(ik ⊗ Ir )

−B�′��
k +��

kB
�′ +Op(N−1) +Op(T −1)

This completes the proof of Proposition A.4. �

APPENDIX B: THE ASYMPTOTIC RESULTS AND
THEIR PROOFS UNDER IRa

As in the main text, we use (�,�, F ) to denote the underlying pa-
rameters satisfying IRa. Let R be the rotation matrix which transforms
(λ�′i , γ

�′
i )′ into (λ′

i , γ
′
i )

′. Then we have

zt = �ft + �gt + et = [�,�]

[
ft
gt

]
+ et

= [��, ��]

[
R′

11 R
′
21

0 Ir2

][
R′−1

11 −R′−1
11 R

′
21

0 Ir2

][
f �t
gt

]
+ et (B.1)

Then we have

λi = R11λ
�
i , γi = γ �i + R21λ

�
i , ft = R′−1

11 f
�
t − R′−1

11 R
′
21gt . (B.2)

The last equation in (B.2) can be written as

f �t = R′
11ft + R′

21gt . (B.3)

Note that the rotation matrix R is nonrandom. To see this, both AU2
and IRa impose restrictions on the loadings and the covariance of ht .
So the rotation matrix R, which transform the underlying parameters
from AU2 to IRa, only involves loadings and covariance of ht . Thus it
is nonrandom. This is in contrast with R�, which is random since AU1
involves ft .

Post-multiplying g′
t on both sides and taking the expectation, by

E(f �t g
′
t ) = 0, we have

R21 = −�−1
gg �gf R11.

Define φt = R′−1
11 f

�
t . From the above results, φ has an alternative

expression

φt = ft − �fg�
−1
gg gt . (B.4)

The following lemmas will be used in the subsequent proof.

Lemma B.1. For any compatible matrices A and B and their corre-
sponding estimates Â and B̂, we have

ÂB̂−1Â′ − AB−1A′ = (Â − A)B−1A′ + AB−1(Â − A)′

−AB−1(B̂ − B)B−1A′ + R
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where

R = −(Â − A)B̂−1(B̂ − B)B−1A′ + (Â − A)B̂−1(Â − A)′

+AB̂−1(B̂−B)B−1(B̂−B)B−1Â′ − AB̂−1(B̂−B)B−1(Â−A)′.

Lemma B.1 can be proved easily by matrix algebra.

Lemma B.2 Under Assumptions A-D, we have

(a)
1

T̄
H̃ ′M�̃H̃ − 1

T̄
H ∗′M�∗H ∗ = Op(N−1) +Op(T −1)

(b)
1

T̄
H �′M��H

� − 1

T̄
H ∗′M�∗H ∗ = B�′�� +��B� +Op(T −1)

(c)
1

T̄
H̃ ′M�̃H̃ − 1

T̄
H �′M��H

� = −B�′�� −��B� +Op(N−1)

+Op(T −1)

where 1
T̄
H̃ ′M�̃H̃ is defined as

1

T̄
H̃ ′M�̃H̃

= 1

T̄

T∑
t=K̄

h̃t h̃
′
t

−
(

1

T̄

T∑
t=K̄

h̃t ψ̃
′
t

)(
1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

)−1 (
1

T̄

T∑
t=K̄

ψ̃t h̃
′
t

)
,

and 1
T̄
H ∗′M�∗H ∗ and 1

T̄
H �′M��H

� are defined similarly.

Proof of Lemma B.2. Consider (a). By Lemma A.1(a), we have

1

T̄

T∑
t=K̄

h̃t h̃
′
t −

1

T̄

T∑
t=K̄

h∗
t h

∗′
t = Op(N−1) +Op(T −1)

1

T̄

T∑
t=K̄

h̃t ψ̃
′
t − 1

T̄

T∑
t=K̄

h∗
t ψ

∗′
t = Op(N−1) +Op(T −1)

1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t − 1

T̄

T∑
t=K̄

ψ∗
t ψ

∗′
t = Op(N−1) +Op(T −1)

Given the above results, together with Lemma B.1, we have (a).
Consider (b). By h�t = R�′−1h∗

t , we haveψ�
t = (IK ⊗ R�′−1)ψ∗

t . This
gives

1

T̄
H �′M��H

� = 1

T̄
H �′M�∗H�

By H� = H ∗R�−1, we have

1

T̄
H �′M�∗H� = R�′−1

(
1

T̄
H ∗′M�∗H ∗

)
R�−1

However, (A.28) shows that R�′−1 = Ir + B�′ +Op(T −1). Thus, we
have

1

T̄
H �′M��H

� − 1

T̄
H ∗′M�∗H ∗

= R�′−1

(
1

T̄
H ∗′M�∗H ∗

)
R�−1 − 1

T̄
H ∗′M�∗H ∗

= B�′
(

1

T̄
H ∗′M�∗H ∗

)
+
(

1

T̄
H ∗′M�∗H ∗

)
B� +Op(T −1) (B.5)

Now consider 1
T̄
H ∗′M�∗H ∗, which is equivalent to

1

T̄

T∑
t=K̄

u∗
t u

∗′
t −

(
1

T̄

T∑
t=K̄

u∗
t ψ

∗′
t

)(
1

T̄

T∑
t=K̄

ψ∗
t ψ

∗′
t

)−1 (
1

T̄

T∑
t=K̄

ψ∗
t u

∗′
t

)

The second term is Op(T −1). The first term, by u�t = R�′−1u∗
t and

R�′ = Ir +Op(T −1/2), is equal to

R�′
(

1

T̄

T∑
t=K̄

u�t u
�′
t

)
R� = 1

T̄

T∑
t=K̄

u�t u
�′
t +Op(T −1/2) = �� +Op(T −1/2).

Then it follows

1

T̄
H ∗′M�∗H ∗ = �� +Op(T −1/2) (B.6)

Substituting (B.6) into (B.5), we have (b).
Result (c) is a direct result of (a) and (b). This completes the proof

of Lemma B.2. �
Note that Theorems 1–3 under IRa are implied by the following

results:

Proposition B.1. Under Assumption A-D, together with the identi-
fication condition IRa, we have

(a) λ̂i − λi = V λi + �−1
φφ

(
1

T

T∑
t=1

φteit

)
+Op(N−1) +Op(T −1)

(b) γ̂i − γi = Wλi + �−1
ηη

(
1

T

T∑
t=1

ηteit

)
+Op(N−1) +Op(T −1)

(c) f̂t − ft =
(

1

N

N∑
i=1

1

σ 2
i

λiλ
′
i

)−1 (
1

N

T∑
i=1

1

σ 2
i

λieit

)
− V ′ft −W ′gt

+Op(N−1) +Op(T −1)

where vec(V ) = B−1
Q P1D

+
r1

1
T̄

∑T

t=K̄ [εt ⊗ εt − vec(Ir1 )]; φt = ft −
�fg�

−1
gg gt ; �φφ = E(φtφ′

t ); W = �−1
υυ

1
T

∑T

t=K̄ υ t ε
′
t ; ηt = gt −

�gf�
−1
ff ft ; �ηη = E(ηtη′

t ).

Proof of Proposition B.1. Consider the VAR expression under AU2:

h�t = ��
1h

�
t−1 +��

2h
�
t−2 + · · · +��

Kh
�
t−K + u�t .

Pre-multiplying R′−1 gives

ht = (
R′−1��

1R
′)ht−1 + · · · + (

R′−1��
KR

′)ht−K + R′−1u�t .

So we have�i = R′−1��
i R

′ for i = 1, 2, . . . , K andut = R′−1u�t . Then
we have

εt = R′−1
11 ε

�
t − R′−1

11 R
′
21υ

�
t ,

υ t = υ�t . (B.7)

Post-multiplying υ ′
t on both sides and taking the expectation, by

E(εtυ ′
t ) = 0, we have

R21 = ��−1
υυ �

�
υε, (B.8)

Substituting the proceeding result into (B.7), byE(εt ε′
t ) = Ir1 , we have

��
εε·υ = ��

εε −��
ευ�

�−1
υυ �

�
υε = R′

11R11. (B.9)

where ��
εε = E(ε�t ε

�′
t ), ��

υυ = E(υ�t υ
�′
t ) and ��

ευ = E(ε�t υ
�′
t ). In addi-

tion, the identification condition also requires that

Q = 1

N
�′
−1

ee � = R11

(
1

N
��′
−1

ee �
�

)
R′

11.

This is equivalent to

Q� = 1

N
��′
−1

ee �
� = R−1

11 QR
′−1
11 . (B.10)

However, our estimation procedure implies that the estimators of
R11, R21, denoted by R̂11, R̂21, satisfy

R̂21 = �̃−1
υυ�̃υε (B.11)
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R̂′
11R̂11 = �̃εε·υ = �̃εε − �̃ευ�̃

−1
υυ�̃υε (B.12)

R̂11

(
1

N
�̃′
̃−1

ee �̃

)
R̂′

11 = diag (B.13)

where �̃εε, �̃υυ , �̃ευ are submatrices of �̃, which is defined as

�̃ = 1

T̄

T∑
t=K̄

ũt ũ
′
t

with ũt being the residuals of the regression

h̃t = �1h̃t−1 +�2h̃t−2 + · · · +�Kh̃t−K + error

Let ψ̃t = (h̃′
t−1, h̃

′
t−2 . . . , h̃

′
t−K )′. Thus

ũt = h̃t −
(

T∑
t=K̄

h̃t ψ̃
′
t

)(
T∑
t=K̄

ψ̃t ψ̃
′
t

)−1

ψ̃t

So we have

�̃ = 1

T̄

T∑
t=K̄

h̃t h̃
′
t −

(
1

T̄

T∑
t=K̄

h̃t ψ̃
′
t

)(
1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

)−1 (
1

T̄

T∑
t=K̄

ψ̃t h̃
′
t

)

The above result can be rewritten as

�̃−�� =
{

1

T̄

T∑
t=K̄

h̃t h̃
′
t −

⎛⎝1

T̄

T∑
t=K̄

h̃t ψ̃
′
t

⎞⎠⎛⎝1

T̄

T∑
t=K̄

ψ̃t ψ̃
′
t

⎞⎠−1 ⎛⎝1

T̄

T∑
t=K̄

ψ̃t h̃
′
t

⎞⎠

− 1

T̄

T∑
t=K̄

h�t h
�′
t +

⎛⎝ 1

T̄

T∑
t=K̄

h�t ψ
�′
t

⎞⎠⎛⎝ 1

T̄

T∑
t=K̄

ψ�
t ψ

�′
t

⎞⎠−1 ⎛⎝ 1

T̄

T∑
t=K̄

ψ�
t h

�′
t

⎞⎠}

+ 1

T̄

T∑
t=K̄

(u�t u
�′
t −��) −

⎛⎝ 1

T̄

T∑
t=K̄

u�t ψ
�′
t

⎞⎠⎛⎝ 1

T̄

T∑
t=K̄

ψ�
t ψ

�′
t

⎞⎠−1 ⎛⎝ 1

T̄

T∑
t=K̄

ψ�
t u

�′
t

⎞⎠
(B.14)

whereψ�
t = (h�′t−1, h

�′
t−2, . . . , h

�′
t−K )′. The expression in bracket is given

in Lemma B.2(c). Given this result, together with(
1

T̄

T∑
t=K̄

u�t ψ
�′
t

)(
1

T̄

T∑
t=K̄

ψ�
t ψ

�′
t

)−1 (
1

T̄

T∑
t=K̄

ψ�
t u

�′
t

)
= Op(T −1),

we have

�̃−�� = −B�′�� −��B� + 1

T̄

T∑
t=K̄

(u�t u
�′
t −��)

+Op(N−1) +Op(T −1). (B.15)

The above result implies

�̃εε −��
εε = −V �′��

εε −W�′��
υε −��

εεV
� −��

ευW
�

+ 1

T̄

T∑
t=K̄

(ε�t ε
�′
t −��

εε) +Op(N−1) +Op(T −1); (B.16)

�̃ευ −��
ευ = −V �′��

ευ −W�′��
υυ + 1

T̄

T∑
t=K̄

(ε�t υ
�′
t −��

ευ )

+Op(N−1) +Op(T −1); (B.17)

�̃υυ −��
υυ = 1

T̄

T∑
t=K̄

(υ�t υ
�′
t −��

υυ ) +Op(N−1) +Op(T −1). (B.18)

By (B.15), we have �̃−�� p−→ 0. Then it follows �̃εε·υ −��
εε·υ

p−→ 0,
where �̃εε·υ and ��

εε·υ are defined in (B.9) and (B.12). Thus

R̂′
11R̂11R

−1
11 R

′−1
11

p−→ Ir1 ,

which, by the fact that AB = I then BA = I , leads to

(R̂11R
−1
11 )′(R̂11R

−1
11 )

p−→ Ir1 (B.19)

Furthermore, by (B.13), we have

(R̂11R
−1
11 )

[
R11

(
1

N
�̃′
̃−1

ee �̃

)
R′

11

]
(R̂11R

−1
11 )′ = diag

By 1
N
�̃′
̃−1

ee �̃− 1
N
��′
−1

ee �
� = op(1) and R11

1
N
��′
−1

ee �
�R′

11 =
1
N
�′
−1

ee � = Q, we have

(R̂11R
−1
11 )Q(R̂11R

−1
11 )′ = diag (B.20)

Notice Q is a diagonal matrix by identification. Applying Lemma A.2
to (B.19) and (B.20), we have R̂11R

−1
11 converges to a diagonal matrix

whose diagonal elements are either 1 or −1. However, the possibil-
ity of −1 is precluded by our sign restrictions. Given this result, we

have R̂11 − R11
p−→ 0. Henceforth, we use �̂R11 to denote R̂11 − R11.

Apparently �̂R11
p−→ 0. By (B.9) and (B.12), we have

R̂′
11R̂11 − R′

11R11 = �̃εε −��
εε − (�̃ευ�̃

−1
υυ�̃υε −��

ευ�
�−1
υυ �

�
υε)

Substituting (B.16)-(B.18) into the above equation, together with
Lemma B.1, we have

�̂R
′
11R11 + R′

11�̂R11 + �̂R
′
11�̂R11 = −V �′��

εε·υ −��
εε·υV

�

+ 1

T̄

T∑
t=K̄

[
(ε�t −��

ευ�
�−1
υυ υ�t )(ε

�
t −��

ευ�
�−1
υυ υ�t )

′ −��
εε·υ
]

+Op(N−1) +Op(T −1).

However, by (B.7) and (B.8), we haveR′
11εt = ε�t −��

ευ�
�−1
υυ υ�t . Given

this result, together with (B.9), we have

�̂R
′
11R11 + R′

11�̂R11 + �̂R
′
11�̂R11 = −V �′R′

11R11 − R′
11R11V

�

+R′
11

[
1

T̄

T∑
t=K̄

εt ε
′
t − Ir1

]
R11 +Op(N−1) +Op(T −1). (B.21)

Pre-multiplying R′−1
11 and post-multiplying R−1

11 on both sides, and
neglecting the smaller order term R′−1

11 �̂R
′
11�̂R11R

−1
11 , we have(

�̂R11R
−1
11 + R11V

�R−1
11

) + (
�̂R11R

−1
11 + R11V

�R−1
11

)′
= 1

T̄

T∑
t=K̄

(εtε
′
t − Ir1 ) +Op(N−1) +Op(T −1). (B.22)

Now consider

1

N
�̃′
̃−1

ee �̃− 1

N
��′
−1

ee �
� = 1

N

N∑
i=1

1

σ̃ 2
i

(λ̃i − λ�i )λ̃
′
i

+ 1

N

N∑
i=1

1

σ̃ 2
i

λ̃i(λ̃i − λ�i )
′ − 1

N

N∑
i=1

1

σ̃ 2
i

(λ̃i − λ�i )(λ̃i − λ�i )
′

+ 1

N

N∑
i=1

λ�i λ
�′
i

(
1

σ̃ 2
i

− 1

σ 2
i

)
.

The last term is Op(N−1/2T −1/2) +Op(T −1) which is shown in Bai
and Li (2012). The third term is Op(T −1). The first two terms
areV �Q� +Q�V �′ +Op(N−1/2T −1/2) +Op(T −1) by Proposition A.3.



638 Journal of Business & Economic Statistics, October 2016

Then it follows

1

N
�̃′
̃−1

ee �̃− 1

N
��′
−1

ee �
� = V �Q� +Q�V �′ +Op(N−1/2T −1/2)

+Op(T −1). (B.23)

Given the above results, (B.13) is equivalent to

Ndg

{
R̂11(Q� + V �Q� +Q�V �′)R̂′

11

}
= Op(N−1/2T −1/2) +Op(T −1).

Substituting (B.10) into the proceeding equation, we have

Ndg

{
R̂11(R−1

11 QR
′−1
11 + V �R−1

11 QR
′−1
11 + R−1

11 QR
′−1
11 V

�′)R̂′
11

}
= Op(N−1/2T −1/2) +Op(T −1).

Replace R̂11 = �̂R11 + R11, the left hand side is (neglecting Ndg)

Q+ �̂R11R
−1
11 Q+Q(�̂R11R

−1
11 )′ + �̂R11R

−1
11 Q(�̂R11R

−1
11 )′Q

+R11V
�R−1

11 Q+ �̂R11V
�R−1

11 Q+ R̂11V
�R−1

11 Q(�̂R11R
−1
11 )′

+QR′−1
11 V

�′R′
11 +QR′−1

11 V
�′�̂R

′
11 + (�̂R11R

−1
11 )QR′−1

11 V
�′R̂′

11

By neglecting the terms of smaller magnitude and noticing that
Ndg(Q) = 0, we have

Ndg
{(
�̂R11R

−1
11 + R11V

�R−1
11

)
Q+Q

(
�̂R11R

−1
11 + R11V

�R−1
11

)′}
= Op(N−1/2T −1/2) +Op(T −1). (B.24)

Let V = �̂R11R
−1
11 + R11V

�R−1
11 . Taking the half-vectorization opera-

tion vech(·) which stacks the elements on and below the diagonal of
the argument into a vector on both sides of (B.22), we get

vech(V + V′) = vech

[
1

T̄

T∑
t=K̄

(εt ε
′
t − Ir1 )

]
+Op(N−1) +Op(T −1).

By the definitions of duplication matrix Dr1 and its Moore-Penrose
inverseD+

r1
, and symmetrizer matrix Sr1 = (Ir2

1
+Kr1 )/2, the left hand

side of the above equation can be written as

vech(V + V′) = D+
r1

vec(V + V′) = 2D+
r1
Sr1 vec(V) = 2D+

r1
vec(V),

where the last equation is due to D+
r1
Sr1 = D+

r1
, we have

2D+
r1

vec(V) = D+
r1

vec

[
1

T̄

T∑
t=K̄

(εt ε
′
t − Ir1 )

]

+Op(N−1)+Op(T −1). (B.25)

Let veck(M) be the operation which stacks the elements below the
diagonal into a vector. Let D1 be the matrix such that veck(M) =
D1vec(M) for any symmetric matrix M. By (B.24), we have

veck(VQ+QV′) = Op(N−1/2T −1/2) +Op(T −1).

implying

D1[Q⊗ Ir1 + (Ir1 ⊗Q)Kr1 ]vec(V)

= Op(N−1/2T −1/2) +Op(T −1). (B.26)

The preceding two equations imply[
2D+

r1

D1[Q⊗ Ir1 + (Ir1 ⊗Q)Kr1 ]

]
vec(V)

=
[
D+
r1

vec
(

1
T̄

∑T

t=K̄ (εtε′
t − Ir1 )

)
0

]
+Op(N−1) +Op(T −1).

Let BQ be the matrix before vec(V) and P1 = [Ip, 0p×q ]′, then the
above result is equivalent to

vec(V) = B−1
Q P1D

+
r1

vec

[
1

T̄

T∑
t=K̄

(εt ε
′
t − Ir1 )

]
+Op(N−1) +Op(T −1).

Define V by

vec(V ) = B−1
Q P1D

+
r1

vec

[
1

T̄

T∑
t=K̄

(εt ε
′
t − Ir1 )

]
.

Then by the definition of V,

�̂R11R
−1
11 + R11V

�R−1
11 = V +Op(N−1) +Op(T −1). (B.27)

Post-multiplying R11 on both sides of (B.27), we have

�̂R11 = −R11V
� + VR11 +Op(N−1) +Op(T −1)

= Op(T −1/2) +Op(N−1) (B.28)

since V � = Op(T −1/2) and V = Op(T −1/2).
Now consider λ̂i − λi . By λ̂i = R̂11λ̃i and λi = R11λ

�
i , we have

λ̂i − λi = R̂11λ̃i − R11λ
�
i = �̂R11λ

�
i + R11(λ̃i − λ�i ) + �̂R11(λ̃i − λ�i ).

The last term of right hand side is Op(T −1) +Op(N−2) by λ̃i − λ�i =
Op(T −1/2) +Op(N−1) and �̂R11 = Op(T −1/2) +Op(N−1). By (B.28)
and (A.24), together with λi = R11λ

�
i , we have

λ̂i − λi = V λi + R11

(
1

T

T∑
t=1

f �t f
�′
t

)−1 (
1

T

T∑
t=1

f �t eit

)
+Op(N−1) +Op(T −1).

Using (B.4), the above expression can be rewritten as

λ̂i − λi = V λi +
(

1

T

T∑
t=1

φtφ
′
t

)−1 (
1

T

T∑
t=1

φt eit

)
+Op(N−1) +Op(T −1)

= (λ′
i ⊗ Ir1 )vec(V ) + �−1

φφ

(
1

T

T∑
t=1

φt eit

)
+Op(N−1) +Op(T −1).

To derive the remaining asymptotic results, we first consider �̂R21 =
R̂21 − R21. Notice

R̂21 − R21 = �̃−1
υυ�̃υε −��−1

υυ �
�
υε

= −��−1
υυ (�̃υυ −��

υυ )��−1
υυ �

�
υε +��−1

υυ (�̃υε −��
υε)

−(�̃−1
υυ −��−1

υυ )(�̃υυ −��
υυ )��−1

υυ �
�
υε + (�̃−1

υυ −��−1
υυ )(�̃υε −��

υε).

The last two terms of the right hand side are Op(N−2) +Op(T −1).
Substituting (B.17) and (B.18) into the above result, we have

�̂R21 = ��−1
υυ

1

T̄

T∑
t=K̄

υ�t (ε
�
t −��

ευ�
�−1
υυ υ�t )

′ −W�

−��−1
υυ �

�
υεV

� +Op(N−1) +Op(T −1).

However, by (B.7) and (B.8), we have R′
11εt = ε�t −��

ευ�
�−1
υυ υ�t and

υ t = υ�t . Given these results, we have

�̂R21 =

��−1
υυ

[
1

T̄

T∑
t=K̄

υ t ε
′
t

]
R11 −W� −��−1

υυ �
�
υεV

� +Op(N−1) +Op(T −1).

Notice that R21 = ��−1
υυ �

�
υε by (B.8) and 1

T̄

∑T

t=K̄ υ tυ
′
t = E(υ tυ ′

t ) +
Op(T −1/2) = �υυ +Op(T −1/2) = ��

υυ +Op(T −1/2), where the last
equality is due to υ t = υ�t by (B.7). Thus

�̂R21 = WR11 −W� − R21V
� +Op(N−1) +Op(T −1), (B.29)
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where W = �−1
υυ ( 1

T̄

∑T

t=K̄ υ t ε
′
t ). Notice γ̂i = γ̃i + R̂21λ̃i and γi =

γ �i + R21λ
�
i . Then

γ̂i − γi = (γ̃i − γ �i ) + (R̂21λ̃i − R21λ
�
i )

= (γ̃i − γ �i ) + �̂R21λ
�
i + R21(λ̃i − λ�i ) + �̂R21(λ̃i − λ�i ).

The last term of the right hand side of the above equation isOp(T −1) +
Op(N−2). Substituting (A.25), (A.24) and (B.29) into the above result,
we have

γ̂i − γi =
[

1

T

T∑
t=1

gtg
′
t

]−1 [
1

T

T∑
t=1

gteit

]

+Wλi + R21

[
1

T

T∑
t=1

f �t f
�′
t

]−1 [
1

T

T∑
t=1

f �t eit

]
+Op(N−1) +Op(T −1), (B.30)

by λi = R11λ
�
i . Consider the third expression, which, by (B.4), is equal

to

R21R
−1
11 R11

(
1

T

T∑
t=1

f �t f
�′
t

)−1 (
1

T

T∑
t=1

f �t eit

)

= R21R
−1
11

(
1

T

T∑
t=1

φtφ
′
t

)−1 (
1

T

T∑
t=1

φteit

)
.

Consider the last equation of (B.2). Post-multiplying g′
t on both sides

and taking expectation, by E(f �t g
′
t ) = 0, we have

R21R
−1
11 = −�−1

gg �gf .

The preceding two results imply that the third expression of (B.30) is
equal to

−�−1
gg �gf�

−1
φφ

[
1

T

T∑
t=1

φteit

]
+Op(T −1).

Let �t = �gf�
−1
φφφt . Given the above result, the asymptotic represen-

tation of γ̂i − γi can be rewritten as

γ̂i − γi = �−1
gg

[
1

T

T∑
t=1

(gt −�t )eit

]
+Wλi +Op(N−1) +Op(T −1). (B.31)

The above asymptotic representation has an alternative expression.
First, we define

ηt = gt − E(gtf
′
t )[E(ftf

′
t )]

−1ft = gt − �gf�
−1
ff ft . (B.32)

which implies that

�ηη = �gg − �gf�
−1
ff�fg

By the Woodbury formula, we have

�−1
gg = �−1

ηη − �−1
ηη �gf (�ff + �fg�

−1
ηη �gf )−1�fg�

−1
ηη (B.33)

With (B.33) and the relation that gt −�t = ηt + �gf�
−1
ff ft −

�gf�
−1
φφφt , we can rewrite the first term of the right hand side of

(B.31) as

�−1
gg

[
1

T

T∑
t=1

(gt −�t )eit

]
=

�−1
ηη

1

T

T∑
t=1

ηteit + �−1
ηη �gf

1

T

T∑
t=1

(�−1
ff ft − �−1

φφφt )eit

−�−1
ηη �gf (�ff + �fg�

−1
ηη �gf )−1�fg�

−1
ηη

1

T

T∑
t=1

ηteit

−�−1
ηη �gf (�ff +�fg�

−1
ηη �gf)

−1�fg�
−1
ηη �gf

1

T

T∑
t=1

(�−1
ff ft−�−1

φφφt)eit

Consider the term (�−1
ff ft − �−1

φφφt ). From the definition of φt = ft −
�fg�

−1
gg gt , we have

�φφ = �ff − �fg�
−1
gg �gf (B.34)

which can be used to derive

φt = ft − �fg�
−1
gg (ηt + �gf�

−1
ff ft ) = �φφ�

−1
ff ft − �fg�

−1
gg ηt

Then

(�−1
ff ft − �−1

φφφt ) = �−1
φφ�fg�

−1
gg ηt

With the above equation, the first term of the right hand side of (B.31)
can be further rewritten as

�−1
gg

[
1

T

T∑
t=1

(gt −�t )eit

]

= �−1
ηη

1

T

T∑
t=1

ηteit + �−1
ηη �gf�

−1
φφ�fg�

−1
gg

1

T

T∑
t=1

ηteit (B.35)

−�−1
ηη �gf (�ff + �fg�

−1
ηη �gf )−1�fg�

−1
ηη

1

T

T∑
t=1

ηteit

−�−1
ηη �gf (�ff + �fg�

−1
ηη �gf)

−1�fg�
−1
ηη �gf �

−1
φφ�fg�

−1
gg

1

T

T∑
t=1

ηteit

From the two basic facts that

�−1
φφ = �−1

ff + �−1
ff�fg�

−1
ηη �gf�

−1
ff ,

and

�−1
ff�fg�

−1
ηη = �−1

φφ�fg�
−1
gg .

we can rewrite the 2nd, 3rd and 4th terms on the right hand side of
(B.35) as

�−1
ηη �gf

(
�−1
φφ − �−1

ff − �−1
ff�fg�

−1
gg �−1

gf �−1
φφ

)
�fg�

−1
gg

1

T

T∑
t=1

ηteit

which equals zero by (B.34). So we can alternatively write the asymp-
totic representation of γ̂i − γi as

γ̂i − γi = �−1
ηη

[
1

T

T∑
t=1

ηteit

]
+Wλi +Op(N−1) +Op(T −1).



640 Journal of Business & Economic Statistics, October 2016

We proceed to consider f̂t − ft . Notice f̂t = R̂′−1
11 f̃t − R̂′−1

11 R̂
′
21gt

and ft = R′−1
11 f

�
t − R′−1

11 R
′
21gt . Then

f̂t − ft = R̂′−1
11 f̃t − R̂′−1

11 R̂
′
21gt − R′−1

11 f
�
t − R′−1

11 R
′
21gt

= −R′−1
11 (R̂′

11 − R′
11)R′−1

11 f
�
t + R′−1

11 (f̃t − f �t ) − R′−1
11 (R̂′

21 − R′
21)gt

+R′−1
11 (R̂′

11 − R′
11)R′−1

11 R
′
21gt

− (R̂′−1
11 − R′−1

11 )(R̂′
11 − R′

11)R′−1
11 f

�
t + (R̂′−1

11 − R′−1
11 )(f̃t − f �t )

− (R̂′−1
11 − R′−1

11 )(R̂21 − R21)gt

+ (R̂′−1
11 − R′−1

11 )(R̂′
11 − R′

11)R′−1
11 R

′
21gt

The last four terms of the above expression are Op(N−2) +Op(T −1).
Given this result, by (B.28), (B.29) and Proposition A.3, we have

f̂t − ft = −V ′(R′−1
11 f

�
t − R′−1

11 R
′
21gt ) −W ′gt

+
[

1

N

N∑
i=1

1

σ 2
i

λiλ
′
i

]−1 (
1

N

T∑
i=1

1

σ 2
i

λieit

)
+Op(N−1) +Op(T −1)

By ft = R′−1
11 f

�
t − R′−1

11 R
′
21gt , we have

f̂t − ft =
(

1

N

N∑
i=1

1

σ 2
i

λiλ
′
i

)−1 (
1

N

T∑
i=1

1

σ 2
i

λieit

)
− V ′ft

−W ′gt +Op(N−1) +Op(T −1).

This completes the proof of Proposition B.1. �
Proof of Theorems 1–3 under IRa. Theorem 1 follows from Proposition
B.1(a), Theorem 2 follows from Proposition B.1(b), and Theorem 3
follows from Proposition B.1(c). Theorem 4 follows from result (A.4)
in Proposition A.1, since σ 2

i does not have the identification problem
and the intermediate estimator and the final estimator are the same. �
Proof of Theorem 5 under IRa. This theorem is implied by the follow-
ing:

�̂k −�k =
(

T∑
t=K̄

utψ
′
t

)(
T∑
t=K̄

ψtψ
′
t

)−1

(ik ⊗ Ir ) − B ′�k +�kB
′

+Op(N−1) +Op(T −1)

We shall prove the above equation. Notice �̂k = R′−1�̂kR̂
′ and �k =

R′−1��
kR

′. Thus

�̂k −�k = R′−1�̂kR̂
′ − R′−1��

kR
′

= R′−1��
k�̂R

′ − R′−1�̂R
′
R′−1��

kR
′

+R′−1(�̂k −��
k)R

′ + V

where

V = (R′−1 − R′−1)�̂k�̂R
′ + (R̂′−1 − R′−1)(�̂k −��

k)R
′

− (R̂′−1 − R′−1)�̂R
′
R′−1 + R′−1(�̂k −��

k)�̂R
′

However, notice

�̂R = R̂ − R =
[
�̂R11 0
�̂R21 0

]
=
[ −R11V

� + VR11 0
WR11 −W� − R21V

� 0

]
+Op(N−1) +Op(T −1)

= BR − RB� +Op(N−1) +Op(T −1) (B.36)

where

B =
[
V 0
W 0

]
, B� =

[
V � 0
W� 0

]
and W = (

∑T

t=1 υ tυ
′
t )

−1(
∑T

t=1 υ t ε
′
t ). Then �̂R is Op(T −1/2) since

both B and B� are Op(T −1/2). This result together with �̂k −��
k =

Op(T −1/2) +Op(N−1) implies V = Op(N−2) +Op(T −1). Given this
result, together with �k = R′−1��

kR
′, we have

�̂k −�k = �kR
′−1�̂R

′ − R′−1�̂R
′
�k + R′−1(�̂k −��

k)R
′

+Op(N−2) +Op(T −1) (B.37)

Substituting (B.36) into the above equation, together with ut =
R′−1u�t , ht = R′−1h�t and Proposition A.4, we have

�̂k −�k =
(

T∑
t=K̄

utψ
′
t

)(
T∑
t=K̄

ψtψ
′
t

)−1

(ik ⊗ Ir )

−B ′�k +�kB
′ +Op(N−1) +Op(T −1)

This completes the proof of Theorem 5. �
SUPPLEMENTARY MATERIALS

The supplementary materials include Appendices C–E and
detailed derivations for the asymptotic results under IRb in Ap-
pendix C, and results under IRc in Appendix D. We also provide
the derivations for the asymptotic results of the impulse response
function in Appendix E.
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