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Abstract

We present theory and evidence on the effects of wage volatility on labor mo-
bility. Our model of job turnover explicitly incorporates variance of within-
job wages by assuming that wages evolve as random walk processes. With
the additional assumption that job changes entail “switching” costs, the key
theoretical result is that the optimal threshold of turnover — the minimum
wage difference between outside and inside jobs necessary for a job change
— is positively related to wage volatility. Data from the National Longitu-
dinal Surveys of Youth show that workers who hold more volatile jobs get
bigger wage gains when they quit and move to a new job, and that they quit
less frequently if their jobs are characterized by high within-job wage growth
rates. These findings are consistent with the implications of our theoretical
model.

Key words: Labor mobility, Within-job wage volatility, Random walk, Multi-
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1 Introduction

The shift in focus from labor mobility as a mere means of allocative efficiency in the labor

market to labor mobility as an outcome of individual investment decisions has provided im-

portant insights into the structure of inter-firm mobility. Since the prospect of higher wages

is a major impetus for voluntary job changes, the analysis of inter-firm labor mobility and

its associated (mobility) wage gains is a central topic in modern labor economics. How-

ever, it is somewhat surprising that the role of wage volatility has been largely unexplored

in the voluminous literature on labor mobility and wages, especially since within-job wage

evolution is often modeled as a stochastic process. In this paper we attempt to fill this gap

by presenting a theoretical and empirical analysis of wage volatility and its effects on labor

mobility. First, we present a theory of job turnover that explicitly models the role of wage

volatility in predicting labor mobility. Second, using data from the National Longitudinal

Surveys of Youth, we analyze the effects of wage volatility on quit rates and mobility wage

gains. Our empirical findings are consistent with the implications of the theory.

The modern literature on earnings dynamics views the evolution of labor productivity and

wages as stochastic processes. For example, in their classic 1982 article “A Theory of Wages,”

Harris and Holmstrom assume that a worker’s productivity on a job is subject to random

shocks. Since firms are risk neutral and workers are risk averse, they derive an equilibrium

wage contract that provides partial insurance against productivity shocks to the worker.

Although this wage contract (which is non-decreasing) is stochastic, it is clearly designed

to attenuate the presumed volatility in worker productivity. In another theoretical article

on wages and turnover, Mortensen (1988) explicitly models wage evolution as a stochastic

process. Topel and Ward (1992) present evidence that within-job wages do in fact evolve

as a random walk process with drift. Although the stochastic nature of productivity and

wage evolution is central in these studies, the literature has yet to address volatility effects

in labor markets. This omission is particularly striking given the enormous theoretical and

empirical significance of volatility effects in financial markets.

Our model of job turnover is based on a two-job framework where an employed worker

in every period has the option of either staying with the current (inside) job or switching
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to an outside (future) job.1 The important feature of the model is that the within-job wage

evolves as a random walk process. This random walk assumption is of course the source

of variance of within-job wages — i.e. of wage volatility. With the additional assumption

that job changes entail irrecoverable switching costs, the key theoretical result is that the

optimal threshold of turnover — i.e. the minimum wage difference between the outside job

and current job necessary for a worker to switch jobs — is positively related to wage volatility.2

The intuition follows from the fact that volatility increases the value of delaying the decision

to switch jobs. At the optimum threshold the worker is indifferent between switching jobs

now versus later. However, if volatility increases the worker can avoid the increased downside

risk by waiting. And this delay is achieved by setting a higher optimal threshold of turnover.

Although a few earlier studies (Kiefer and Neumann 1989; Macdonald 1988; Sargent 1987)

refer to the possible link between “labor market volatility” and the relative valuation of

outside versus inside jobs, no previous theoretical study has derived a link between volatility

and labor mobility. To our knowledge this is the first model of inter-firm labor mobility to

explicitly derive a relationship between within-job wage volatility and the optimal threshold

of turnover.3

The theoretical result that volatility is positively related to the optimal threshold of

turnover of course cannot be directly tested because we do not observe this threshold of

turnover. However, by considering the threshold effects on quit rates and mobility wage

gains, we can discern some testable implications of volatility on these observed mobility

1We consider embedding this two-job framework within a more realistic search framework where the
outside job is interpreted as arising periodically from a stationary distribution of outside jobs. In Section
2.4 we discuss how our model is related to job search theory.

2The model here is an adaptation of modern investment theory — which is in turn a generalization of finan-
cial option pricing theory — into the labor mobility framework. The options pricing approach to investment
is based on the insight that “irreversibility and the possibility of delay are very important characteristics of
most investments in reality” (p. 6 in Dixit and Pindyck 1994). These two features are well-known in the
labor mobility literature: first, job changes entail irrecoverable moving costs; and second, workers typically
have the option of delaying a switch from one job to another. What is absent in the labor literature, unlike
in the investment literature, is an analysis of the ramifications of wage evolution as a random walk process
on other related outcomes. As a consequence when the random walk assumption is explicitly introduced into
the mobility framework, the standard result from modern investment theory, which says that higher volatility
increases the value of delaying costly investments because the increased downside risk can be avoided by
waiting, also holds in the context of labor mobility.

3Search and mobility costs are of course key features of a variety of models that underpin empirical
analyses of the joint determination of wages and mobility (e.g. Black and Loewenstein 1991; Barron et al
1993; Kuhn 1993). Given this extensive literature on mobility costs we do not focus on the ramifications of
switching costs per se on mobility outcomes.
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outcomes. Moreover, our model identifies within-job wage growth as a factor that influences

the effect of volatility on quit rates that we can explicitly test.

The effects of volatility on quit rates and mobility wage gains are somewhat complicated

because volatility not only affects the threshold of turnover (as predicted by theory) but also

the distribution of the wage difference between the outside and inside jobs. For example, if

volatility only increased the threshold, then volatility will be negatively correlated with quit

rates because a higher threshold simply reduces the likelihood of a job switch. However,

this negative effect is counteracted by the fact that any positive wage difference between the

outside and inside jobs increases if wage volatility increases; thus making job switches more

likely for any given threshold. Hence the net effect of volatility on quit rates will depend

on which of these two effects dominate. In the model section we explicitly characterize this

condition and identify an implication to test the theory. Since the model shows that volatility

is more likely to have a negative effect on turnover if the within-job wage growth rate (the

drift parameter) is larger, we can explicitly test this implication by including an interaction

term between volatility and mean within-job wage growth in a quit regression.4

The effect of volatility on mobility wage gains is far less ambiguous. For instance, if

volatility does not lead to a higher quit rate — which is indeed possible if the positive effect

of volatility on the optimal threshold is sufficiently large — then volatility will necessarily

increase mobility wage gains. Of course, this positive relationship can hold even if the quit

rate increases, although not necessarily. Hence a positive coefficient on volatility in a mobility

wage gain equation and a negative coefficient on the interaction between volatility and mean

wage growth in a quit equation are empirical results that would support the theory.

The major challenge of testing these implications is the construction of an appropriate

empirical counterpart of within-job wage volatility. The difficulties are both conceptual and

practical. The first question is the employment context over which volatility is likely to

significantly vary. In econometric parlance, is wage volatility a job-, person-, industry- or

occupation-specific effect? If we follow the theoretical model then the most disaggregate

measure of volatility would be based on job-specific wage data. Panel data sources notwith-

4In the next section we present a simpler version of our model to more easily illustrate these theoretical
predictions and the conditions under which an increase in volatility leads to a reduction in quit rates.

3



standing, the practical difficulty of obtaining such a job-specific measure is the loss of a huge

fraction of the job sample due to under-selection of short duration jobs.5

An alternative measure — adopted in this paper — is to compute a person-specific wage

volatility measure based on within-job wage changes over the entire observed individual life

cycle of employment. The obvious advantage of a person-specific volatility measure is that

we avoid sample selection problems that plague the construction of a job-specific measure.

The disadvantage is that if a significant component of the variation in wage volatility is job-

specific and workers randomly move across jobs characterized by different volatilities, then

our person-specific measure could obscure this variation in volatility. As a result, any lack

of evidence of volatility effects using person-specific measures, would not necessarily rule out

the existence of job-specific volatility effects. On the other hand, evidence of person-specific

volatility effects would not also necessarily suggest that volatility is a person effect. For

example, if workers move among similar volatility jobs or industries or occupations then our

person-specific measure would simply proxy volatility variations across these different em-

ployment dimensions. Evidence of person-specific volatility effects, however, would provide

support for our theory and highlight the role of wage volatility in predicting labor mar-

ket outcomes even though we might not be able to pinpoint the exact source of volatility

variation. A decomposition analysis of wage volatility is a topic for a future research agenda.

In the empirical section we compute person-specific within-job wage growth and within-

job wage volatility measures, and estimate the effects of these measures on the likelihood

of quit rates and on mobility wage gains due to voluntary job changes. To preview our

findings: workers who hold more volatile jobs get bigger wage gains when they quit and

move to a new job, and they quit less frequently especially if their jobs are characterized

by high within-job wage growth rates. These findings are highly significant and robust to

various model specifications, sample selection corrections, and the inclusion of an extensive

array of control variables related to individual, job and other relevant characteristics.

5Note that most micro survey data provide only annual wage data and job durations are relatively short
especially among workers in the early part of their careers. Since a minimum of four within-job wage
observations are required to compute a sample variance of (de-trended) job-specific wages, many jobs will
have missing volatility information. Of course, even in principle, time series of job-specific wage data will
be limited because (nominal) wage adjustments, unlike say stock price data, occur infrequently for a variety
institutional and other reasons.
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Our empirical analysis of volatility effects is a significant departure from the existing

literature because no previous study has analyzed the effects of wage volatility on outcomes

related to labor mobility. The empirical literature on turnover and mobility wage gains is

largely motivated by testing implications of specific human capital and job search theories.

For example, Antel (1986) argues that the comparison of wages between movers and stayers

underestimates mobility wage gains (due to search) because stayers experience higher within-

job wage growth. Topel (1991) makes the converse case that the comparison of wages of

stayers and movers underestimates the true returns to specific skills because movers move to

more lucrative jobs. Mincer (1993) analyses differential wage gains conditional on quits and

layoffs across older and younger workers. He finds wage gains are typically positive, higher

for quits than for layoffs, and higher for younger than older movers. Bartel and Borjas

(1981) find that workers who quit due to finding a better job experience significant wage

gains compared to their counterparts who move for other reasons.

One final issue of interpretation is whether our empirical findings might be compatible

with risk aversion on the part of workers. For example, the fact that volatility reduces quit

rates and increases mobility wage gains could be consistent with risk aversion if volatility

pertains to wages of future jobs. Clearly, risk averse workers would be less likely to switch to

more volatile jobs, and if they did switch to such jobs, they would need a compensating wage

differential to offset the risk. A direct test of this hypothesis would correlate wage volatilities

of past versus future jobs with quit rates and mobility wage gains and evaluate whether the

effects of future job volatilities on these mobility outcomes are stronger. However, as men-

tioned earlier, data limitations prohibit the computation of job-specific volatility measures.

We do however present an indirect test of sorts by exploiting the exact timing of the inci-

dence of quits and observed mobility wage gains. For example, our person-specific measure

will largely reflect wage volatility of future/past jobs if the incidence of quits and mobility

wage gains occur early/late in a worker’s career.6 We can empirically address whether our

estimated effects of volatility are stronger in the early part of a worker’s career since our

6This interpretation of risk aversion of course hinges on the assumption that volatility is job specific.
Under this presumption the proposed test is somewhat imprecise because our person-specific measure of
volatility represents an aggregate over several jobs, even though we can determine at every point in time
whether our person-specific volatility measure is based on (largely) past or future wage observations.
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measure would then reflect wage volatility of future jobs. The evidence does not support the

risk aversion hypothesis.

The remainder of the paper is arranged as follows. The next section presents the the-

oretical analysis. In the first part we present a simpler version of our theory to clarify the

intuition behind the main theoretical result — i.e. the positive relation between volatility

and the optimal threshold of turnover — and to highlight the effects of volatility on mobility

wage gains and quit rates and to derive the various implications that we can test. Next we

present the general model of turnover, and derive the optimal switching rule and various

comparative static results. We conclude the theory section with a detailed discussion of the

relation of our model to job search theory. Section 3 presents the empirical analysis. First,

we describe the NLSY data and the construction of our volatility measure. Second, we detail

the estimation framework. Third, we present and discuss our empirical findings. Section 4

concludes with a brief summary.

2 Theoretical Analysis

2.1 A Motivating Example

In this section we present a simple example of our model of turnover to motivate the key

theoretical result of the paper and to illustrate the links between wage volatility and labor

mobility. Here we consider a simple model in which wages are permanently shocked only once

at the beginning of the second period. As a consequence the worker simply decides whether

to switch jobs in the current period or to postpone this decision to the next period. Despite

this restriction, our example helps to clarify the intuition for why volatility increases the

optimal threshold of turnover and to illustrate why wage volatility leads to higher mobility

wage gains and lower turnover especially if the within-job wage growth rate is high. In the

next subsection we present the full model where within-job wages evolve as a random walk

process.

Denote wi for i = a, b as wage of job i in period 1. Assume that job b is the currently-held

job. Suppose that for all i = a, b, wi can either increase by h with probability p, or decrease

by h with probability 1− p at the beginning of the second period. Hence the only decision
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for the worker is whether to switch now or to delay this decision to the second period.

The present value of expected net income Vswitch if the worker switches jobs in period 1

is given by:

Vswitch = wa − C +
β

1− β
(wa + ph− (1− p)h) , (1)

where C is the switching cost, and β is the discount factor. If the worker decides to delay the

switching decision to the second period then the present value of net income Vwait is given

by:

Vwait = wb +
β

1− β

⎛⎝ p2max
¡
wa + h,wb + h

¢
+ p (1− p)max

¡
wa − h,wb + h

¢
+p (1− p)max

¡
wa + h,wb − h

¢
+ (1− p)2max

¡
wa − h,wb − h

¢
⎞⎠

= wb +
β

1− β

¡¡
wa − wb − C

¢
(1− p (1− p)) + wb − h

¡
1 + 2p2 − 4p

¢¢
(2)

Equating (1) and (2) at the threshold wage differential s = wa−wb, and rearranging terms,

we get

s = γ1C + γ2 (3)

where γ1 =
1−β(2−p(1−p))
1−β(1−p(1−p)) and γ2 =

2βp(1−p)h
1−β(1−p(1−p)) . Note that mean within-job wage growth,

wjwg, is given by:

wjwg ≡ ph− (1− p)h = h (2p− 1) . (4)

Assume that p > 1/2 to make wjwg positive. Now consider the case where wjwg is held

constant. Clearly s increases as switching costsC increase. The more interesting comparative

static result is the effect of wage volatility on s. Note that from (4), p can be expressed as

follows:

p =
h+ k

2h
, (5)

where k = wjwg. Substituting (5) into equation (3), and taking the derivative with respect

to h, we get
∂s

∂h
> 0,

which follows from the fact that both γ1 and γ2 are increasing in h. Therefore the change

in the optimal threshold of turnover due to a change in volatility (h) is positive. Clearly an

increase in wage volatility leads to a higher optimal threshold of turnover.
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Since we do not observe s we cannot of course directly test this theoretical result of

the model. However, in the context of this simple example we can inquire about the likely

ramifications of an increase in wage volatility on the quit rate and mobility wage gains. Note,

the quit rate is determined by the frequency with which a given wage difference between the

outside job and current job reaches s. Starting from a given s, this frequency is a positive

function of h and a negative function of s. So whether an increase in h implies a higher or

lower quit rate depends precisely on how volatility (h) affects the optimal threshold s. If s

increases substantially due to an increase in h — i.e. where the derivative ds/dh is sufficiently

large — then the likelihood that volatility will have a negative effect on the quit rate will also

increase. So the question is under what conditions will this derivative of s with respect to

h will be relatively large. Note that d2

dhdk
γ1 > 0 and

d2

dhdk
γ2 > 0. So, from equation (3), the

cross derivative with respect to h and k — mean within-job wage growth — turns out to be

positive:

∂2s

∂h∂k
> 0.

This condition implies that the positive volatility effect on the threshold of turnover is in-

creasing with the within-job wage growth rate.7 Hence it is more likely that volatility will

have a negative effect on the quit rate if within-job wage growth is higher. This model

implication can be tested by including an interaction between volatility and within-job wage

growth in a quit regression. The model predicts that the estimated coefficient on this inter-

action term should be negative.

The effect of an increase in h on mobility wage gains is much less ambiguous. If an

increase in volatility does not lead to an increase in the quit rate then mobility wage gains will

necessarily increase with volatility. Note that every observation s that implies a job change

will have a correspondingly higher wage difference because of the volatility increase. But

even if the quit rate increases with volatility, mobility wage gains are still likely to increase

with volatility. If the quit rate increases then some positive wage differences that were

smaller than the threshold prior to the volatility increase would have to increase sufficiently

to cross the new threshold (even though this new threshold is now higher than it was before

7See the discussion following Theorem 2 below for a more formal explanation of this result.
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the volatility increase). Such observations could in principle have a negative effect on the

expected value of mobility wage gains. However, for volatility to have a net negative effect

on mobility wage gains, this possible negative effect must dominate the two positive effects

— via the increases in the threshold and in the positive wage differences — that result from

the increase in volatility.

Before we take these predictions to our empirical analysis we present the full model where

wages evolve as a random walk process in every period.

2.2 Model of Inter-Firm Mobility

In this section we present our full model where inter-firm mobility is based on irrecoverable

switching costs and the stochastic evolution of within-job wages. First, assume that a worker

is currently employed at say job b. The wage at this “inside” job evolves over time as a

random walk process with drift. Suppose at the beginning of each time period the worker

has the option to switch to an outside job a. If the worker switches to job a then the wage

in job a also evolves as a random walk process with drift.8 For analytical simplicity, assume

that all jobs evolve as symmetric random walk processes with drift. We begin with the

definition of wage dynamics:

Definition 1 (Wage Dynamics) For job i ∈ {a, b}, the incremental process {xt} is an
i.i.d. sequence with

Pr (xt = h) = p, Pr (xt = −h) = 1− p,

where p ∈ [0, 1] is the drift parameter and 0 < h <∞ is the scale parameter. Then the wage
of job i at time t is simply wi

t =
Pt

n=0 xn.

At the beginning of every time period t the worker decides whether to switch to the

outside job or to remain in the current job till the next period. If the worker decides to

switch jobs then she must incur a fixed and irrecoverable cost C.9 In addition, assume

that the worker is risk neutral — i.e. utility is a linear function of wages — and infinitely

8The modeling details below assume that both jobs a and b evolve simultaneously as independent and
identical random walk processes. The main conclusions of the model are robust to the alternative assumption
that either the inside or the outside job is frozen (Jun 2004). As it turns out the only relevant statistic for
labor mobility in this framework is the wage difference between the outside and inside jobs as long as jobs
are symmetric.

9Although we do not explicitly model the source of switching costs, the obvious reasons are direct monetary
and psychological costs of moving, and possible costs associated with relocation of family.
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lived. Hence the worker’s problem is to maximize the expected discounted stream of life-

time net income, where net income at any given time is the wage minus the switching cost

C, conditional on a job switch.

Since all jobs evolve as symmetric random walk processes the worker’s decision to switch

jobs depend only on the wage difference between the outside job option and the current job.

Therefore, given switching cost C, the worker only needs to evaluate the wage difference

between the outside job option and the current job to decide whether to switch or not. This

implies that there is a reservation value such that whenever the potential mobility wage

gain exceeds this value the worker will switch jobs. This reservation value will depend on

switching costs C, and more importantly, on the properties of the random walk process

of wages — i.e. within-job wage volatility. The point, however, is that the switching rule

depends on neither the level of wages nor the identity of jobs.

The Bellman representation of the decision problem faced by a worker can be stated as

follows:

vb
¡
wa, wb

¢
= max

£
wa − C + βV a, wb + βV b

¤
, (6)

where vi
¡
wa, wb

¢
denote the value function for a worker who is currently employed at job i,

given wa and wb. The continuation value of job i to worker is:

V i = p2vi
¡
wa + h,wb + h

¢
+ (1− p)2 vi

¡
wa − h,wb − h

¢
+

p (1− p) vi
¡
wa + h,wb − h

¢
+ p (1− p) vi

¡
wa − h,wb + h

¢
.

The solution to this problem is to find the optimal switching rule — the minimum wage

difference between the outside job and current job for a worker to switch jobs — given the

fixed cost C of switching jobs.

2.3 Optimal Threshold and Some Comparative Statics

We now derive the minimum wage difference between the outside job option and the current

job that is necessary for a worker to switch jobs. Let s denote this threshold for job turnover.

Theorem 1 below details the solution to the optimal job switching rule.

Theorem 1 (Optimal Job Switching Rule) The worker will switch jobs if the wage dif-
ference between the outside and inside jobs is greater than or equal to the optimal threshold
of turnover s, which is given by:
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(1.1) s = C (1− β) + 2βp (1− p) if s < h,
(1.2) s = C (1− β) + 2hρ 1−ρs/h

(1−ρ)(1+ρs/h+1)
if s ≥ h and s/h is an integer,

(1.3) s
³
1− ρl(1+ρ)

1+ρ2l+1

´
= C (1− β)

³
1 + ρl(1+ρ)

1+ρ2l+1

´
+ 2h

1+ρ2l+1

³
ρ1−ρ

2l

(1−ρ) − (ρ+ 1) kρl
´
,

if s ≥ h, s/h is not an integer, and where s/h < l < s/h+ 1, where
ρ = 2p(1−p)β

1−2βp2−β+2βp+
√
(1−4βp2−β+4βp)(1−β)

.

We present the details of the derivation in the Appendix. Here we outline a sketch of

our proof strategy. First, consider a worker who always switches jobs whenever the current

wage gain is at least as large as some minimum wage gain. Second, we compute the sum of

present discounted expected net incomes from this threshold rule of mobility. This enables us

to calculate the sequences of switching times, and the sum of present discounted net income

for each completed job spell. Third, for any arbitrary threshold wage differential we can

compute: (1) the expected wages from switching and then following some threshold rule,

and (2) the expected wages from staying and then also following the same threshold rule.

Finally, the optimal threshold wage differential, s, is defined and solved for where (1) and

(2) are equal.

Theorem 2 summarizes the main comparative static results.

Theorem 2 (Comparative Statics) Fix wjwg = h (2p− 1) and p > 1/2. Then the min-
imum mobility wage gain s: (1) increases in C, and (2) increases in h and this increase in
s with respect to h is larger when wjwg is high.

Using the Implicit Function Theorem, it is easy to show that the minimum mobility

wage gain s increases in C, increases in h, and decreases in p for p ∈ (1/2, 1) (See Jun 2001

for details). Now, fix wjwg = ph − (1− p)h = h (2p− 1). Even if we fix within-job wage

growth the minimum mobility wage gain still increases in switching costs C. Assume that

mean within-job wage growth is positive, p > 1/2. Note, for within-job wage growth to

remain constant, p and h must trade-off each other. For example, an increase in h must

be accompanied by a decrease in p. Therefore if h increases, then the minimum mobility

wage gain s increases more when wjwg is fixed because an increase in h is accompanied by

a decrease in p, which further increases the minimum mobility wage gain. This simply says

that an increase in h induces a higher minimum mobility wage gain when wjwg is fixed.

Moreover since a high p is equivalent to a high within-job wage growth rate, the increase in
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the minimum mobility wage gains due to an increase in volatility h, is larger when within-job

wage growth rate is at a higher level. The corollary of this result is that the negative effect

of volatility on turnover is more likely when within-job wage growth is high.

Some of the specifics of this model can be extended in several ways. First, it can be gen-

eralized to allow the evolution of outside and inside wages to be correlated. The implications

are discerned as follows: if the correlation is positive then the threshold wage differential

decreases, and if the correlation is negative then the threshold wage differential increases.

These results raise an empirical challenge because we do not observe the simultaneous evolu-

tion of wages in the current and outside jobs. Second, we can model optimal switching in an

environment where either the inside or outside wage is frozen. The same results hold since

only the wage difference between the outside and inside job matters for switching decisions.

In the next subsection we briefly discuss some related theory and especially how our

model might be related to search theory.

2.4 Job Search and Other Related Theory

The obvious shortcoming of our model is the unrealism of the two-job framework since

workers typically do not switch between the same two jobs over the life cycle of employment.

Of course, the outside wage option can arise from a distribution of outside job offers. But

the question is whether our simple two-job model and its theoretical implications can be

interpreted within a proper job search framework.

Although job search theory has various renditions, a non-degenerate distribution of out-

side job offers and imperfect information about the quality and location of job matches

are some of the salient characteristics of search models. In Jovanovic’s (1979) well-known

mismatch theory of turnover workers search from a non-degenerate distribution of outside

job offers. Although in equilibrium this distribution of outside offers is supported by the

assumption of heterogeneity of match quality, ex ante all outside jobs are identical because

jobs are treated as experience goods. Hence all jobs offer the same initial wage. Worker-firm

separations result because of the arrival of signals about match quality over the course of an

employment relationship. Since priors about match quality are presumed to be identically

non-informative across all jobs and Bayesian learning implies that within-job wage volatility
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decreases with job tenure, the mismatch theory is not well suited to study the effects of wage

volatility on labor mobility.

Both the mismatch theory and our model of turnover are also related to a larger theoret-

ical literature on multi-armed bandit problems. The well-known Gittins index rule, from the

classical formulation of the multi-armed bandit framework (Gittins 1979), shows that the

optimal strategy is to pick the arm with the highest Gittins index, where the computation

of the index of an arm is based only on the properties of that arm. Banks and Sundaram

(1994) argued that in the presence of switching costs any index rule will not be optimal.

The theoretical contribution of our model is that we derive an optimal rule in the presence

of switching costs. However, we do so by restricting our model to the two-armed bandit

framework. Bergemann and Välimäki (2001) have shown that if the distribution of arms is

stationary then a modified index rule is optimal even in the presence of switching costs. Note

that Jovanovic’s mismatch theory of turnover is structurally identical to this multi-armed

bandit framework since the stochastic element of each arm arises from the learning process

about underlying productivity of the arm. Hence, this framework, like Jovanovic’s, is not

ideally suited to study the effects of volatility on switching behavior. By contrast, our model

— because it allows volatility to play an exogenous role in predicting labor mobility — is better

suited to illustrate the links between wage volatility and the optimal threshold of turnover.

To return to the question posed earlier, can our two-job model of turnover be interpreted

within a job search framework? For example, suppose that the outside wage option arises

from a stationary distribution and that neither the worker nor the firm knows the match

quality at the time of job start. Hence ex ante all jobs must offer the same initial wage.

However, once a job commences, the evolution of within-job wages are determined by two

distinct stochastic processes — i.e. by a random walk component (which is exogenously given)

and a match quality component (which arises from Bayesian updating). With the further

assumption that job changes entail an irrecoverable switching cost, this framework clearly

maintains all the elements of the mismatch theory and our model of job turnover. The key

prediction of the mismatch model is that worker-firm separations are less likely to occur as

the employment relationship ages. Hence holding job tenure constant, wage volatility (due to

the random walk assumption) is still likely to be positively related to the optimal threshold
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of turnover — the key theoretical result of our model. The formalization of this conjecture is

a part of an ongoing research project.

3 Empirical Analysis

3.1 NLSY Data and Wage Volatility

We use the National Longitudinal Surveys of Youth (NLSY) data from 1979 to 1994 for

our empirical analyses. The NLSY tracks a panel of 12,686 young women and men, first

interviewed in 1979. The availability of work histories of early careers, including detailed

information on job duration and separation, labor market experience, wage rates, and other

individual and job characteristics, make this data ideal for our analyses of volatility effects

on labor mobility outcomes. We only track CPS (Current Population Survey) designated

jobs, although the NLSY tracks additional jobs. The CPS job is typically the main or most

recent job, and more information is available about CPS jobs. Wage rates are deflated by

the consumer price index from the Report of the President, where the base year is 1987.

One of our dependent variables is mobility wage gains. It is defined as the percentage

difference between the first wage in the future job and the last wage in the current job,

conditional on a voluntary job change. We ensure that the two wage observations occur

in contiguous years. The other dependent variable is the quit rate, where a quit is defined

as a voluntary job change between two contiguous survey years. Since these surveys are

conducted each year our quit models estimate an annual turnover rate.

The more contentious issue is the construction of our wage volatility measure. Since

we assume that wages evolve as a random walk with drift, our empirical analyses focus

on volatility of within-job wage changes. For each individual in our sample we estimate a

simple OLS within-job wage difference equation based on wage observations over the entire

life cycle. Obviously, we do not include wage changes due to job changes in this sample.

In these individual regressions, job tenure and experience are included as right hand side

variables to account for the concavity of the wage-experience and wage-tenure profiles. We

then take the sample variance of the error term from each of these individual regressions

as our sample measure of person-specific wage volatility. More explicitly, we can write the
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estimation equation for measuring volatility of worker i (volatility i) as follows:

wjwcit
¡
= wc

it − wc
it−1
¢
= α1 + α2experienceit + α3tenureit + �it,

where wc
it is the log wage of current job of worker i at time t. Then volatility i is simply the

variance of the error term of above regression:

volatilityi =
X³

wjwcit −\wjwcit
´2

/ (ni − 3) ,

where ni is the number of wjwc observations for individual i.

This wage volatility measure is of course the key predictor in our subsequent analyses of

quit rates and mobility wage gains. In our empirical analyses we also include the mean of

within-job wage growth among our independent variables.10 Also note that a key prediction

of the model is that it is more likely for volatility to have a negative effect on turnover if

within-job wage growth is higher.

We impose various sample restrictions on our data by excluding: (1) any observation

where the real wage (in 1987 dollars) is less than $1.50 or greater than $200.00, (2) if mobility

wage changes fall by more than 50% or exceed 300%, and (3) if within-job wage changes fall

by 50% or exceed by 300%. The primary purpose of these restrictions is to exclude obvious

outliers and data errors. Although these criteria are arbitrary, we check for robustness of

our results by experimenting with various alternative cutoffs with no qualitative changes and

only minor quantitative changes in our results.

3.2 Estimation Framework

In this section we outline the estimation framework to test volatility effects on mobility

wage gains and quit rates. We first derive our mobility wage gain equation as a reduced

form version of a standard human capital earnings function. Hence, consider wages in the

last period of the current job and the first period of the future job as

wc
it = Zitβ + µ1i + µ2i t+ εit and wf

it+1 = Zit+1β + µ1i + µ2i t+ εit+1,

10Here we depart from Topel and Ward (1992). Their evidence shows that “heterogeneity among jobs in
predictable wage growth is not an important feature of the data” (p. 459). As a consequence, their evidence
is consistent with the same drift parameter across all jobs. Since our framework is based on person-specific
effects, we proceed on the assumption that individuals are likely to differ in terms of this drift parameter.
Hence we include mean wage growth over the life cycle as a control variable in both our mobility wage gains
and quit equations.
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respectively.11 Note that w is the log wage and Z is a vector of worker characteristics such

as age, education, race, gender, and other determinants of wages subscripted by time t;

superscripts c and f on w designate wages in the “current” and “future” job, respectively.

We also allow for individual fixed effects as well as individual time trends, denoted by µ1i

and µ2i t, respectively. Since our focus is on mobility wage gains, we take the difference in

wages across the future job and current job. This yields an equation that is one step closer

to our estimating equation:

∆wit ≡ wf
it+1 − wc

it = ∆Zitβ + µ2i +∆εit. (7)

An individual’s mobility wage gain is now a function of the changes in explanatory

variables such as changes in marital status. The individual fixed effects in the error structure

of course drop out with the exception of the time trend terms which generate individual fixed-

effects in the mobility wage gain specification. We assume, however, that mobility wage gains

continue to be a function of time invariant factors such as education, gender, and race. Our

framework up to this point closely parallels Goldberg and Tracy (2001).

Our theoretical analysis of course implies that mobility wage gains will also be a function

of wage volatility. As a consequence we augment equation (7) to generate our estimating

equation:

∆wit = Xitβ + β1volatilityi + β2growthi + µ2i +∆εit,

where volatilityi is wage volatility and growthi is mean of within-job wage growth rate for

worker i. The vector X includes not only worker characteristics such as age, education,

gender and race, but also changes in time dependent covariates.

Since we observe mobility wage gains only if a worker voluntarily changes jobs, our

subsample of mobility wage gain observations is not a random sample of individuals with a

current job and a potential outside job option. As a result we need to explicitly introduce

a quit model in order to correct for potential sample selection bias in our estimation. Of

course this first stage quit model is of direct interest to us since our theoretical considerations

suggest that volatility is a likely determinant of the quit rate also. In particular, the model

11We assume the same β for both equations only for notational convenience. In our empirical specifications
we include current and lagged time dependent variables separately and thus estimate a different β for the
current and future wage equations.
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implies that the volatility effect on turnover is more likely to be negative if within-job wage

growth is higher.

We implement various Heckman-type sample selection corrections. Our selection equa-

tion is based on whether or not an individual quits her current job voluntarily. The basic

framework can be outlined by first considering a latent quit equation, and the corresponding

quit outcome.

q∗it = zitγ1 + volatilityiγ2 + growthiγ3 + volatilityi ∗ growthiγ4 + ηit,

qit = 1 if q∗it > 0, and qit = 0, otherwise.

The qit variable indicates whether worker i quits her current job at time t. Note that our

model predicts that γ4 < 0. Of course sample selection arises because mobility wage gains

are observed only if a worker quits her current job and moves to a new job. Hence:

∆wit = Xitβ1 + volatilityiβ2 + growthiβ3 +∆εit if qit = 1.

This model can be estimated either via maximum likelihood (Greene 1981) or by using

Heckman’s “two-step” procedure (Heckman 1976, 1979). In our empirical results section we

present estimates from both techniques.

Since in the presence of individual fixed effects this sample correction does not yield con-

sistent estimates, Woodbridge (1995) suggests an alternative procedure that yields consistent

estimates with fixed effects. The procedure exploits the panel nature of our data. The basic

idea is to generate Inverse Mills Ratios for each year and then to include not only this ratio

in our mobility wage gain regression (the standard two-step Heckman procedure), but also

interactions of this ratio with time dummies.12 Hence our final estimating equation is:

∆wit = Xitβ1 + volatility iβ2 + growthiβ3 + β4λit + Tλitβ5 +∆εit,

where λ is the Inverse Mills Ratio and T is a vector of time dummies. This procedure

provides consistent estimates in the presence of fixed effects.13

12See Chapter 17 of Woodbridge (2002) for details.
13See Woodbridge (1995) for details.
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3.3 Empirical Results

3.3.1 Summary Statistics

Table 1 lists the labels and descriptions of the key variables. Tables 2 through 4 present

various summary statistics. Table 2 pertains to person-specific variables. Tables 3 and 4 are

based on samples specific to the mobility wage gains and quit models, respectively. Table 2

is restricted to a sample of 6,099 individuals that have information on wage volatility. To

compute a volatility measure, an individual needs to have at least four valid within-job wage

observations. The average individual has about 7 such within-job wage observations, where

the range goes from the minimum of 4 to a maximum of 15 observations. In our sample

the average number of mobility wage gain observations per individual is about 1.7. The key

variable is the sample variance based on individual within-job wage regressions — our measure

of within-job wage volatility. The mean volatility is .075 and the standard deviation is .16.

This substantially high standard deviation bodes well for our efforts to study the effects

of volatility variations across individuals on their labor mobility outcomes. The within-job

wage growth is .08. Our sample is composed of slightly more than 50% male and about 60%

white. The average completed years of schooling in the sample is a little over 13 years.

The sample in Table 3 is based on observations from our mobility wage gain equations.

Since each individual can have multiple wage gain observations, individuals are repeated

in this sample. We include summary statistics for experience, tenure, on-the-job training,

and whether the job change entailed a change in the 2-digit industry classification. Table

4 repeats the same for the sample of observations on which our quit regressions are based.

Clearly this sample includes not only observations with valid mobility wage gains — i.e. when

a person quits — but also all the within-job observations when individuals do not quit their

jobs. Hence this sample size is considerably larger.

3.3.2 Volatility Effects on Mobility Wage Gains

Table 5 presents coefficients estimates from various mobility wage gains models. The first

and second columns show estimates fromOLS and random effects specifications, respectively.

Here we do not explicitly take into account the first stage quit equation. The remaining three

columns are estimates from models that explicitly take into account the first stage selection
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equation. Column 3 is based on the maximum likelihood specification that jointly estimates

both the mobility wage gain equation and the quit equation. (We show the coefficients of

the quit equation in column 4 of Table 6.) Column 4 includes the Inverse Mills Ratio from

the first stage selection equation that is based on Heckman’s two-step correction — i.e. the

quit equation. Column 5 includes in addition the interaction of this Inverse Mills Ratio with

time dummies to account for individual fixed effects, as discussed in the earlier section. All

the standard errors (except column 2) are corrected for multiple individual observations and

all are weighted regressions by the number of observations used to compute the volatility

measure. A host of control variables are included in all the models. Variables with a t

subscript pertain to the time period coinciding with the first period on the future job.

The key finding is a positive and highly significant coefficient on volatility. This positive

effect of volatility on mobility wage gains holds across all the different model specifications,

including those that correct for sample selection. Simple calculations show that an increase

of one standard deviation of our volatility measure has about a 10% increase in the mobility

wage gain rate. This positive correlation between volatility and mobility wage gains is of

course consistent with our model of job turnover. Also note that within-job wage growth is

negatively correlated with mobility wage gains.

The variable Career is the ratio of the number of prior within-job wage change observa-

tions at a given point in time to the total number of within-job wage change observations

over the entire observed life cycle of an individual.14 The negative coefficient on Career

simply says that mobility wage gains decrease as individuals progress along their careers.

Among other noteworthy findings are: men experience high mobility wage gains, entering a

union covered job leads to high gains, and conversely, leaving an union covered job leads to

lower gains.

3.3.3 Volatility Effects on Quit Rates

Table 6 presents coefficients from four quit models: a linear probability model, a probit

model, a random effects probit model, and the first stage of the maximum likelihood joint

estimation of mobility wage gains equation, respectively. (The last column here corresponds

14Note that our volatility measure of within-job wage changes is based on the latter number of observations.
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to the third column of Table 5.) We include a similar set of independent variables in these

models as in the mobility wage gain models except that we do not use information about

future jobs to predict the likelihood of a quit probability. In addition we also include the

current wage as a control for job value. The key difference however is that in these quit

models we include an interaction between volatility and within-job wage growth. Across

all these different model specifications we find that the estimated effect of this interaction

term is negative as predicted by our model. The coefficient on volatility is positive (and

significant) and the coefficient on within-job wage growth is negative (and not significant).

But the key model prediction is of course that volatility is more likely to have a negative

effect on turnover as within-job wage growth increases, which finds support in the negative

coefficient estimate on the interaction term. Previous studies have shown that past wage

growth on a job reduces the likelihood of turnover (Topel and Ward, 1992). Our negative

but insignificant effect of within-job wage growth on turnover should not be interpreted as

past wage growth on the job since our measure of within-job wage growth is a person- and

not a job-specific measure.

3.3.4 What about Risk Aversion?

If our measure of volatility pertained to wages of future jobs then these joint findings —

namely, that volatility reduces quit rates and increases mobility wage gains — would be

consistent with risk aversion on the part of workers. However, since our measure of volatility

is person-specific and based on the entire life cycle of wage observations these findings cannot

be interpreted as evidence of risk aversion. Although we are unable to directly test this risk

aversion hypothesis because job-specific volatility measures are infeasible, we attempt to

provide a discriminating test of sorts by exploiting the exact timing of when a quit occurs

in the course of an individual’s life cycle.

Note that a low Career value (close to zero) indicates not only an early point in an

individual’s observed career, but more precisely the fact that our person-specific volatility

measure is based more on wage observations of future jobs. Conversely, a high value (close

to one) would indicate that our volatility measure is based more on wage observations of

past jobs. With this variable we can address whether the negative effect of volatility on quits
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and the positive effect of volatility on mobility wage gains are stronger when our volatility

measure is based more on future than on past job wage observations by including Career

and its interaction with volatility as independent variables in our mobility wage gains and

quit regression models. Such evidence would provide some support for the risk aversion

hypothesis.

In Tables 5 and 6 we also include coefficient estimates of Career interacted with volatility.

In the wage gain models (Table 5) the sign of the interaction term is positive across all model

specifications, although the estimates are insignificant. A Negative coefficient would indicate

that past wage volatility has a negative impact on mobility wage gains and would lend

support to the risk aversion explanation. However given that these estimates are positive

(although insignificant) implies that we find no evidence of risk aversion. We also include

this interaction term in all of our quit models (Table 6). As we argued earlier, risk aversion

would predict a positive sign on the interaction term in the quit model. However, all the

coefficients of the interaction term are negative (and significant). Hence if anything this

set of results contradict the risk aversion explanation. In conclusion, we fail to find any

supporting evidence for the risk aversion hypothesis.

4 Conclusion

In this paper we present a theory about the role of wage volatility in predicting labor mo-

bility. The model is structurally equivalent to the options pricing approach to investments

where switching costs associated with moving from one job to another are explicitly incor-

porated and within-job wages are assumed to evolve as a random walk process. The key

theoretical result is that an increase in wage volatility implies a higher optimal threshold of

turnover. As a consequence volatility can reduce quit rates and increase mobility wage gains

conditional on workers voluntarily switching jobs. We present supporting evidence from the

National Longitudinal Surveys of Youth. The data show, under various specifications, that

volatility of within-job wage changes is negatively correlated with quits especially if within-

job wage growth is high, and positively correlated with wage gains, controlling for a variety

of individual and other characteristics.
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5 Appendix: Proof of Theorem 1

Proof. of Theorem 1.

We begin the proof of Theorem 1 by considering the difference:

va
¡
wa + h,wb + h

¢
− vb

¡
wa + h,wb + h

¢
.

Letwa−wb equal the threshold s. Note that it is optimal to stay in job a at va
¡
wa + h,wb + h

¢
.

The worker is indifferent between switching now and delaying at vb
¡
wa + h,wb + h

¢
since

mobility wage gain is equal to the threshold. Hence vb
¡
wa + h,wb + h

¢
has the same value

as va
¡
wa + h,wb + h

¢
− C if a switch is made to job a now. Therefore it follows:

va
¡
wa + h,wb + h

¢
− vb

¡
wa + h,wb + h

¢
= C. (8)

The same argument leads to:

va
¡
wa − h,wb − h

¢
− vb

¡
wa − h,wb − h

¢
= C. (9)

Now consider the difference va
¡
wa + h,wb − h

¢
−vb

¡
wa + h,wb − h

¢
. By the threshold defin-

ition, it is strictly optimal to choose job a in both va
¡
wa + h,wb − h

¢
and vb

¡
wa + h,wb − h

¢
.

Hence vb
¡
wa + h,wb − h

¢
and va

¡
wa + h,wb − h

¢
−C has the same value if a switch is made

to the job a. This implies:

va
¡
wa + h,wb − h

¢
− vb

¡
wa + h,wb − h

¢
= C. (10)

Hence only the following difference remains to be derived:

va
¡
wa − h,wb + h

¢
− vb

¡
wa − h,wb + h

¢
.

We first derive this difference if the threshold s is less than the jump h, which is the case of

Theorem 1.1. Notice that the wage differential in
¡
wa − h,wb + h

¢
is less than −s. Hence

a worker will switch to job b in va
¡
wa − h,wb + h

¢
and a worker with vb

¡
wa − h,wb + h

¢
will remain in job b. As a result, the value of va (s− h, h) + C is identical to the value

vb (s− h, h) if a switch is made to job b now. This implies va (s− h, h)−vb (s− h, h) = −C.

Substituting this and (8)− (10) into (6) and rearranging terms, we prove Theorem 1.1.
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Theorem 1.2 and 1.3 use identical arguments, and we only present the proof of Theorem

1.2. With the initial wage differential ∆0(= wa −wb) at time zero, suppose that a worker is

currently in job b and remains there until the wage differential becomes ∆τ = ∆0 + 2h for

the first time, where

τ ∈ {T > 0|∆j < ∆0 + 2h for all 0 < j < T and ∆T = ∆0 + 2h} . (11)

We assume that ∆0 < s and thus it is optimal to stay in job b until the time τ .

We derive the sum of present discounted value of wages between time 0 and τ . This

sum can be separated into two components: a “constant term” G and a fluctuation term.

The constant term denotes the sum of present discounted value of starting wage wb, and the

fluctuation term is the remainder. By definition, the fluctuation term does not depend on

the starting wage. We focus on the constant term. For each τ ≥ 1, there are multiple sample

paths that lead to the target wage difference ∆0 + 2h at random time τ . Let Nj denote the

set of such sample paths where the first hitting time to the target wage difference ∆0 + 2h

is a random time j, and nj is the cardinality of the set. Fixing j, the constant term on a

particular sample path is given by wb
Pj

i=1 β
i (there are nj of such sums). Denote φj as the

probability associated with the random time j. Then the constant term with starting wage

wb is:15

G
¡
wb
¢
= wb +

∞X
j=1

φjnjw
b

jX
i=1

βi = wb

"
1 +

∞X
j=1

φjnj

jX
i=1

βi

#
where φj ≡ Pr[j > 0|∆l < ∆0 + 2h for all 0 < l < j and ∆j = ∆0 + 2h].

We now proceed to derive the value function at the end of the “travel” to the target

difference ∆0 + 2h from ∆0. Consider the value function vb
¡
wa, wb

¢
. For each random time

j defined above, this value function at the end of the travel will be βjvb (∆0 + 2h).16 This

occurs on nj different paths, each with the probability φj of occurring. Since the stochastic

process of the wage differential ∆t does not keep track of wage at each job, the wage level of

each job can be anything at a random time j. However, all the wage pairs are equivalent as

long as they have the identical difference since the optimal switching rule only depends on

15Note that the first period wage wb is earned regardless of sample paths.
16For this notation only, we put the wage differential in the value function.
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the wage differential (as we showed earlier). Therefore we can show:17

vb
¡
wa + h,wb + h

¢
− vb

¡
wa, wb

¢
= G

¡
wb + h

¢
−G

¡
wb
¢
+

h

1− β

∞X
j=1

φjnjβ
j, (12)

which reduces to

1 +
∞X
j=1

φjnj

jX
i=1

βi =
1−

P∞
j=1 φjnjβ

j

1− β
. (13)

Note that
P∞

j=1 φjnjβ
j is simply the moment generating function of the “β-discounted” first

hitting time probability that the wage differential is reduced by 2h. Denote ρ as this m.g.f.

A standard exercise18 shows that ρ can be expressed as in Theorem 1. Rewrite (13) such

that:

1 +
∞X
j=1

φjnj

jX
i=1

βi =
1− ρ

1− β
. (14)

The equality in (14) is critical in deriving the optimal switching policy. In Lemma 1 below,

we derive va (s− h, h)− vb (s− h, h).

Lemma 1. Let k = s/h.

va (s− h, h)− vb (s− h, h) = −2h
(1− ρ)

¡
1− ρk

¢
(1− β) (1 + ρk+1)

+ C.

We prove the lemma from the two following claims.

Claim 1.

va (s, 0)− va (s− h, h) = h
1− ρ2k+2 − 2ρk + 2ρ2k+1
(1− β) (1− ρ2k+2)

.

Proof of Claim 1: The proof is done by constructing optimal paths. For va (s, 0), we

construct the following optimal rule. First define switching rule π11 as:

Γt = A for 0 ≤ t < τ1, where {τ 1 > 0|∆t > −s ∀t < τ 1,∆τ1 = −s} .
17The argument is as follows. For the value functions vb

¡
wa, wb

¢
and vb

¡
wa + h,wb + h

¢
, note that for

every sample path arriving at the wage differential ∆0 +2h from the pair
¡
wa, wb

¢
, there exists an identical

sample path from the pair
¡
wa + h,wb + h

¢
except that it is always h higher until the first hitting time

τ , since the wage differential between the wage pairs remains identical on every “matched” path, and the
optimal rule only depends on wage differential. Hence the sum of present discounted value of the difference
between vb

¡
wa, wb

¢
and vb

¡
wa + h,wb + h

¢
over all sample paths until the time τ can be expressed as the

difference between two constant terms: G
¡
wb
¢
and G

¡
wb + h

¢
. The existence of the identical sample paths

makes computation of the fluctuation term redundant since it will be canceled out in the difference between
the two value functions.
18Interested readers can find a derivation of ρ in Cox and Miller (1965).
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and next define π12 as:

Γt = B for τ 1 ≤ t < τ 01 where
©
τ 01 > τ 1|∆t < s+ 2h ∀τ 1 ≤ t < τ 01,∆τ 01

= s+ 2h
ª
,

Γt = A for τ 01 ≤ t < τ 001 where
©
τ 001 > τ 01|∆t > −s ∀τ 01 ≤ t < τ 001,∆τ 001

= −s
ª
.

We first apply π11 and then apply π12 at random time τ 1. Clearly, the constructed policy

π11 and the subsequent application of π12 satisfy optimality.

For va (s− h, h), we start by defining switching rule π21 as follows:

Γt = A for 0 ≤ t ≤ τ 2 where {τ2 > 0|∆t > −s− 2h ∀t < τ 2,∆τ2 = −s− 2h} .

Next define π22 as follows:

Γt = B for τ 2 ≤ t < τ 02,

where
©
τ 02 > τ 2|∆t < s ∀τ 2 ≤ t < τ 02,∆τ 02

= s
ª
;

Γt = A for τ 02 ≤ t < τ 002,

where
©
τ 002 > τ 02|∆t > −s− 2h ∀τ 02 ≤ t < τ 002,∆τ 002

= −s− 2h
ª
.

We first apply π21 and then apply π12 at random time τ 2. As in the previous case, it is easy

to check that the policy π21 and the subsequent application of π22 are optimal.

At the end of applying policy π12 and π22, the wage differential is −s and −s − 2h for

va (s, 0) and va (s− h, h), respectively, which is identical to the wage differential at time

t = τ 1 and t = τ 2 for each respective value function. This implies that starting with π11

and repeating π12 over and over again is an optimal rule. Denote this optimal rule as π∗1.

The optimal rule π∗2 can be constructed in a similar fashion. Let {τ ∗1} be the sequence of

switching times under π∗1 and {τ ∗2} be the sequence of switching time under π∗2.

Note that each {τ ∗i } can be decomposed into the sequence of independent hitting times

when the wage differential widens or shrinks by 2h for the first time from the previous wage

differential. Notice further that random times in {τ ∗1} and {τ ∗2} can be matched by matching

paths under the optimal rule. This implies that τ 1 = τ 2, τ 01 = τ 02, and τ 001 = τ 002. This means

that switching costs will disappear in the difference va (s, 0)− va (s− h, h).

We are now ready to derive the difference va (s, 0)− va (s− h, h). Note that the optimal

path before the first job switch to job b under π∗1 (and also π∗2) can be decomposed into

k (= s/h) independent “steps” where the wage differential shrinks by 2h in each step. (12)−
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(14) imply that the difference va (s, 0) − va (s− h, h) between any two adjacent steps until

the first job switch is exactly h (1− ρ) / (1− β). This is because, for each sample path from

va (s, 0) under the optimal rule π∗1, there exists an identical sample path from va (s− h, 0)

under the optimal rule π∗2 except that it is always h below. After k steps of 2h decreases

in each step, the wage differential will be −s and −s − 2h for va (s, 0) and va (s− h, h),

respectively. At this point in time, it is optimal to switch to job b for both value functions.

Similar arguments as above show that the difference between the two value functions from

the time of the first switch and up until the second switch is: −h (1− ρ) / (1− β). Since

{τ ∗i} is constructed as a repetition of optimal rules applied until the second (random) switch

defined in π12 and π22, the difference between the two value functions will also alternate

accordingly as the optimal rules.19 Using this argument, we get:

va (s, 0)− va (s− h, h)

= h
1− ρk

1− β
− ρkh

1− ρk+1

1− β

" ∞X
j=0

ρ2j(k+1) −
∞X
j=0

ρ(2j+1)(k+1)

#
.

Rearrangement completes the proof. k

Claim 2. With k = s/h

vb (s, 0)− vb (s− h, h) = h
2ρ−

¡
1 + ρk+1

¢
(1− β) (1 + ρk+1)

.

Proof of Claim 2 is based on the same argument as the proof of Claim 1, and it is omitted

here. Lemma 1 is then a straightforward implication of Claim 1 and Claim 2. k

Proof of Theorem 1: Since worker is indifferent between switching now and delaying at

the threshold s, plugging the result from Lemma 1 into (6) and using (8)− (10), we get:

s− C + β
¡
p2 + (1− p)2 + p (1− p)

¢
C − βp (1− p)

2h(1−ρ)(1−ρk)
(1−β)(1+ρk+1)

+ C = 0.

Rearrangement completes the proof. k

19In other words, whenever job a is chosen, for each sample path under π∗1, there exists an identical sample
path of π∗2 except that it is h below, and whenever job b is chosen, for each sample path of π∗1, there exists
an identical sample path under π∗2 except that it is h above.
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Table 1. Variable Descriptions

Variable Description # Obs Mean
mwg Mobility wage gain 19, 220 .1658
volatility Sample variance from wage change OLS regressions 55, 709 .0722
growth Mean within-job wage changes over entire career 69, 707 .0849
gender If male 160, 502 .5181
nonwhite If non-white 160, 502 .4019
grad Highest grade completed 159, 716 12.6670
wage Hourly pay rate deflated (in 1987 dollars) 113, 659 7.6538
afqt Armed Forces Qualifying Test Scores 151, 344 40.9813
tenure Job tenure, years 103, 568 2.6983
union If wages set by collective bargaining agreement 95, 044 .1803
quit If quit job since last interview 91, 808 .2437
training Required years of occupational training 115, 689 1.0693
married If married and living with spouse 137, 340 .4134
change_ind If changed industry at job change 92, 104 .3224
career Ratio of current to total completed experience 55, 353 .5328

Table 2. Summary Stastistics for Person-Specific Variables
(# Observations = 6,099)

Variable Mean Std. Minimum Maximum
n_mwg 1.6980 1.4960 0 9
volatility .0754 .1630 0 2.4303
growth .0797 .1032 −.1926 1.3407
n_vol 7.3777 2.7734 4 15
nonwhite .4030 .4905 0 1
gender .5302 .4991 0 1
afqt 45.0340 28.4611 1 99
grad 13.1623 2.3801 0 18

Note: n_mwg is the number of mobility wage gain observations for a worker, and n_vol
is the number of residual observations from which volatility is computed.
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Table 3. Summary Statistics: Moblity Wage Gain Variables
(# Observations = 10,355)

Variable Obs Mean Std. Minimum Maximum
mwg 10, 355 .1682 .4455 −.4997 2.9506
volatility 10, 355 .0763 .1654 0 2.3028
growth 10, 355 .0829 .1082 −.1926 1.3407
grad 10, 355 13.2673 2.3516 0 18
uniont−1 9, 949 .1302 .3366 0 1
tenuret−1 10, 277 1.9861 2.2244 .0192 19.6731
trainingt−1 10, 295 1.0415 .7350 .1667 5
change_ind 9, 584 .5581 .4966 0 1

Table 4. Summary Statistics: Quit Variables
(# Observations = 55,705)

Variable Obs Mean Std. Minimum Maximum
quit 55, 705 .1859 .3890 0 1
volatility 55, 705 .0721 .1516 0 2.4303
growth 55, 705 .0768 .0957 −.1926 1.3407
grad 55, 705 13.1525 2.3185 0 18
uniont−1 53, 457 .2094 .4069 0 1
tenuret−1 55, 332 3.2957 3.0873 .0192 19.6731
trainingt−1 55, 490 1.1127 .7508 .1667 5
change_ind 49, 538 .1956 .3966 0 1
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Table 5. Mobility Wage Gain Regressions
(# Observations = 10,268)

Dependent Variable: mwgt OLS OLS Sample Selection
(RE) MLE Two-Step Modified

Two-Step

Intercept
.0287
(.0385)

.0281
(.0397)

.1255
(.0395)

.0310
(.0400)

.0239
(.0406)

volatility
.1210
(.0362)

.1197
(.0382)

.1070
(.0374)

.1050
(.0370)

.1054
(.0370)

growth
−.4548
(.0544)

−.4596
(.0476)

−.4263
(.0555)

−.4496
(.0564)

−.4498
(.0563)

Career t
−.0622
(.0151)

−.0619
(.0168)

.0845
(.0173)

−.0512
(.0194)

−.0454
(.0224)

Denominator of Career t
.0042
(.0019)

.0044
(.0021)

.0194
(.0021)

.0059
(.0021)

.0056
(.0021)

volatility*Career t
.0350
(.0816)

.0445
(.0825)

.0909
(.0887)

.1348
(.0898)

.1358
(.0894)

Inverse Mills Ratio(IMR)
−.0294
(.0115)

−.0387
(.0206)

IMR*Time Dummies Included

gender
.0490
(.0085)

.0495
(.0093)

.0638
(.0089)

.0508
(.0089)

.0509
(.0089)

grad t
.0061
(.0025)

.0063
(.0025)

.0052
(.0025)

.0066
(.0025)

.0067
(.0025)

tenuret−1
−.0269
(.0049)

−.0274
(.0049)

−.0252
(.0051)

−.0244
(.0054)

−.0257
(.0054)

tenure2t−1
.0015
(.0005)

.0015
(.0005)

.0013
(.0005)

.0012
(.0005)

.0014
(.0005)

trainingt
.0369
(.0067)

.0366
(.0063)

.0391
(.0068)

.0373
(.0069)

.0368
(.0069)

trainingt−1
−.0241
(.0072)

−.0241
(.0066)

−.0216
(.0072)

−.0215
(.0074)

−.0217
(.0074)

uniont
.1412
(.0164)

.1406
(.0139)

.1455
(.0167)

.1447
(.0165)

.1445
(.0165)

uniont−1
−.0701
(.0119)

−.0695
(.0132)

−.0425
(.0122)

−.0697
(.0123)

−.0711
(.0123)

∆ind t
.0582
(.0091)

.0585
(.0093)

−.0941
(.0111)

.0369
(.0127)

.0395
(.0128)

R2 .0641 .0641 .0665 .0688
χ2 (1) 284.24

Note: Robust standard errors in parenthesis. In addition to the reported coefficients, we
also include the following independent variables: square of growth, race, AFQT scores, local
unemployment rate, if reside in SMSA, net experience, and marital status.
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Table 6. Quit Regressions
(# Obs = 55,153)

Dep. Variable: quit t OLS Probit Probit MLE
(RE) (Selection)

Intercept
.5029
(.0140)

.4949
(.0698)

.4949
(.0660)

.4789
(.0701)

volatility
.0723
(.0264)

.3248
(.1266)

.3249
(.1285)

.3577
(.1215)

growth
−.0366
(.0306)

−.0673
(.1394)

−.0673
(.1319)

−.1953
(.1409)

volatility*growth
−.1120
(.0618)

−.5721
(.3058)

−.5721
(.2859)

−.6771
(.2939)

Career t−1
−.3030
(.0088)

−1.2812
(.0448)

−1.2812
(.0334)

−1.2478
(.0448)

Denominator of Career t−1
−.0263
(.0006)

−.1340
(.0035)

−.1340
(.0033)

−.1319
(.0035)

volatility*Career t−1
−.1055
(.0373)

−.5104
(.2097)

−.5104
(.1583)

−.5131
(.2079)

waget−1
−.0054
(.0005)

−.0310
(.0031)

−.0310
(.0025)

−.0442
(.0037)

gender
−.0244
(.0031)

−.1130
(.0166)

−.1130
(.0156)

−.0974
(.0167)

grad
.0029
(.0008)

.0141
(.0044)

.0141
(.0041)

.0174
(.0044)

uniont
.0097
(.0049)

−.0416
(.0252)

−.0416
(.0243)

−.0336
(.0252)

uniont−1
−.0461
(.0047)

−.2345
(.0247)

−.2345
(.0233)

−.2266
(.0246)

tenuret−1
−.0031
(.0015)

−.0194
(.0089)

−.0194
(.0079)

−.0172
(.0089)

tenure2t−1
.0010
(.0001)

.0035
(.0007)

.0035
(.0007)

.0034
(.0007)

trainingt−1
−.0025
(.0021)

.0043
(.0111)

.0043
(.0107)

.0149
(.0112)

∆ind t
.3838
(.0060)

1.3368
(.0193)

1.3368
(.0170)

1.3305
(.0193)

R2 .3104 .3118
χ̄2 (1) 0.00 284.24

Note: Robust standard errors in parenthesis. In addition to the reported coefficients, we
also include the following independent variables: square of growth, race, AFQT scores, local
unemployment rate, if reside in SMSA, and martial status.
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