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Abstract. — Tripolar coherent vortices are shown to emerge from the unstable evolution of
perturbed two-dimensional axisymmetric flows. They are obtained from the nonlinear
equilibration of barotropically linearly unstable normal modes, as well as from more general
initial perturbations. This instability is proposed as an important mechanism for the generation
of both dipolar and tripolar coherent vortex structures.

In recent years, strong isolated coherent vortex structures have been shown to play an
important role in the dynamics of two-dimensional (2D), as well as quasi-geostrophic (QG)
flows. Numerous examples have been observed and studied in both laboratory experiments
and geophysical situations[l,2]. Strong vortices spontaneously appear from stochastic
initial conditions in high-resolution numerical simulations of 2D [3, 4] and stratified QG [5]
turbulence. They also arise from mixed barotropie-baroclinic instabilities of strong jets, such
as western boundary currents in the oceans.

Many recent studies have focused on the generation and interactions (both baro-
tropic [6, 7] and baroclinic [8]) of isolated vortices. Until not long ago, two types of vortices
have received the greatest attention: the monopole and the dipole. The next structure in
complexity, commonly referred to as a tripole, has three vorticity maxima, of alternate signs
and rotates as a whole with constant angular velocity. Originally mentioned by Leith [9], the
first tripole was observed in a very high resolution simulation of plane turbulent flows by
Legras, Benzi and Santangelo [10). Polvani and Carton[11] have investigated the steady
configurations and the stability of the tripolar V-states (piecewise constant vorticity
patches), while Carton[12] has shown that tripoles appear in long-time evolutions of
barotropically unstable Karman streets. Moreover, tripoles have also been generated in
laboratory experiments with a rotating tank by Van Heijst and Kloosterziel [13].

One mechanism for the generation of tripoles was uncovered by Larichev and
Reznik [14]): they obtained a tripole via a nonsymmetric collision of two modons.
Reference [12] and some preliminary numerical experiments led us to investigate an
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alternative, and, we believe, more important mechanism: the generation of tripoles from the
instability of axisymmetric monopoles. In this letter, we wish to report on results obtained
through high-resolution numerical simulation of the long-time evolution of perturbed,
‘linearly unstable axisymmetric vortices. The results presented here are not fully com-
prehensive, but are representative of the main qualitative behaviors.

The general framework of the above studies was that of homogeneous, incompressible
two-dimensional nearly inviscid flows, described by the Euler equation. We start by
describing the linear problem of the barotropic instability and show how the eigenmodes
which have the largest growth rate can be obtained. Examples where linearly unstable
eigenmodes achieve a finite amplitude equilibration into a tripolar configuration are then
presented and analyzed in terms of fundamental physical processes.

For greater generality, we consider the equivalent-barotropic equations:

[0+ 7, Ng=0 and g=[V%—y*¢], M

where ¢ is the potential vorticity and ¢ the streamfunction, y is the ratio of a typical length
scale for the vortex to the deformation radius (a measure of the relative strength of gravity
vs. rotation). For y =0, the two-dimensional Euler equations are recovered.

We first study the linear stability of an axisymmetric vorticity distribution, whose
streamfunction z,!_/(r) is an exact solution of (1). We consider normal mode perturbations
proportional to exp [11(6 — ct)], where [ is the azimuthal wave number, and write the total
streamfunction 4(r, §) as follows:

L(r, ) =L() + ¢ (r) exp [iL(B—ct)], (2

where

'JJ’
A=u<<1.

2|

After substitution of (2) into (1) the linearized equation for ¢™™ has to be solved numerically
for the phase speed and the growth rate of the perturbation. In general, mode I =1 is found
to be barotropically stable [15]}, and mode [ =2 is the most unstable wave number [16].
Another important property of continuous two-dimensional flows is the existence of critical
layers, which make the numerical calculation of the normal modes arduous.

The next step is consider the finite-amplitude evolution of the most unstable normal mode
for a given y, [, and ¢. To study this we initialize a spectral model with the superposition of
the mean profile and this eigenvector. The initial amplitude A of the perturbation is usually
a few percent of the mean flow, and the horizontal resolution is (128)%. Due to the enstrophy
cascade, we employ the standard approach of adding a nonphysical hyperviscosity term on
the right-hand side of (1), proportional to V!g. This procedure does not alter the outcome of
the computation, however, for the enstrophy is conserved in all cases to a few parts in a
thousand.

From a large number of numerical experiments, we have found that the formation of
tripoles from unstable axisymmetric vortices requires both a certain type of unperturbed
radial vorticity profile (not too remote from the shape of the final structure, and moreover
only slightly barotropically unstable), and a sufficiently small amplitude of the normal mode
perturbation. The mean vortex must exhibit two regions of opposite-signed vorticity from
the center to the periphery. An example of such profiles is given by the following family of
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Yortices, indexed by a «steepness parameter» a:

7=(1-Fr)expl=r1, ®
which corresponds to a shielded vorticity monopole (having no net circulation—the
«shielding» is created by the opposite vorticity in the external region). For =3, and
A =0.05at t =0, the most unstable (I =2) normal mode is seen to equilibrate readily into a
tripole (see fig. 1). In fig. 2 we present the time evolution of the amplitude of the [ = 2 mode,
which shows a rapid equilibration after the period of exponential growth.

Whether the nonlinear evolution of the perturbed state of (3) yields a tripole depends on
the value of «, which controls the steepness of the vorticity gradients, and the initial
amplitude of the disturbance. In fig. 3, we present the regime diagram for this family of

t*=0 t*=3.5
t*=7 - t*=10.5
t*=14 t*=17.5

Fig. 1. — The emergence of a 2D tripole from a perturbed mean profile given by (3) with « =3. The
initial amplitude of the disturbance is 0.05. Frames are shown at t =0, 1.8z, 3.67, etc., where < is the
eddy turnover time (time advances to the right and downwards).
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Fig. 2. -~ The amplitude of the ! = 2 mode vs. time, as an initially perturbed two-dimensional vortex of
mean profile given by (3) equilibrates into a tripole. For this run « =3 and A =0.05 at t =0. 7 is the
eddy turnover time.

Fig. 8. — The regime diagram for finite amplitude evolution of the most unstable normal mode
disturbances on a 2D vortex, with mean profile (3). « represents the steepness of the shielded
monopole and A is the perturbation amplitude at ¢ = 0. Experiments were performed for every integer
value of « shown here, and with a 0.1 increment in A, from A=0 to A=10.6.

mean profiles. Unless « and the perturbation amplitude A are moderately small,
corresponding to smoothly varying mean profiles, the unstable vortex will split into two
dipoles.

Several other experiments have been conducted with either [# 2 and/or with mean
profiles other than a shielded monopole (we note that unshielded monopoles are uninterest-
ing, for they are stable by the Rayleigh criterion); they were found to lead to a catastrophic
growth of the perturbation, resulting in the breaking of the original vortex. We propose the
following interpretation: to yield a tripole, profiles which are initially too different from a
shielded monopole have to undergo a drastic topological change incompatible with the weak
instability (i.e. small growth rate) and low perturbation amplitudes required for
equilibration (such is the case of unshielded annuli, for instance). Higher-wave-number
disturbances need much larger values of « at the onset of instability than those observed for
{ = 2. Since the initial conditions of the nonlinear simulations are slightly distinet from a pure
normal mode (this is chiefly due to discretization errors, even at high resolution (256%)), the
spurious mode-2 component initially present grows to breaking, preventing a hypothetical
fragile stabilization for high wave numbers from occurring.

In the equivalent-barotropic case (y # 0), tripole generation seems to be a more common
phenomenon, and is observed for a number of different families of mean profiles (shielded
monopoles, shielded annuli—which differ from the former by a vanishing vorticity at the
origin). The phenomenon is very similar to the one we have just illustrated: an initially
unstable perturbation grows exponentially at early times, but eventually saturates. We
show this explicitly in fig. 4, where the amplitude of the most unstable [ = 2 mode is plotted
vs. time, for a mean profile J(r) = exp [— 7], with y=3.5and A =0.05at t =0. In this case,
the resulting tripole exhibits larger amplitude oscillations during the nonlinear regime than
the pure two-dimensional example.

Other examples of oscillating tripoles emerging from unstable axisymmetric vortices
have been observed in a two-layer quasi-geostrophic model, for both shielded and
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Fig. 4. — The amplitude of the nonaxisymmetric part of the potential vorticity vs. time, as an initially
perturbed equivalent-barotropic ¢ =exp[— %] vortex equilibrates into a tripole, for y=3.5 and
A=0.05 at t=0.

unshielded vortices ([17, 18]). In these examples also, the nonlinear evolution of the tripoles
is strongly oscillatory, and is complicated by the presence of baroclinic instability. The
periodic variation of the phase shift between the two layers plays a critical role in the
balance of the energy transfers during the finite-amplitude regime. (Incidentally, tripoles
have also appeared from the same instability in nongeostrophic regimes [19].)

A modal analysis was carried out for each of the runs we have performed, and showed
that, once the tripolar state is reached, most of the amplitude of the nonaxisymmetric
component of the flow is concentrated in a few small wave numbers. At that time, the
correction to the mean flow tends to reduce, though not completely, the linear instability.
Mode [ =2 oscillates regularly in amplitude, though its radial structure is very different
from the original eigenmode. Mode 4 is correlated in time with mode 2, but has a much
smaller intensity. Higher modes are virtually negligible. This is confirmed by & box diagram
of the energy exchanges[12], which shows dominant conversions between these few low
modes.

Normal mode perturbations are not the only means of generating tripoles from perturbed
axisymmetric initial conditions. Substitution of

r=[z?+((1+e)y)l]"

with ¢=0.05 into a profile similar to (3) leads to tripoles, provided the steepness of the
vorticity distribution is not too great. Runs with higher viscosity, which tends to smooth the
vorticity gradients, yield tripolar states from initially steeper profiles. In general, beyond
some maximum steepness, the splitting into two dipoles appears inevitable.

The barotropic (or baroclinic) instability of axisymmetric vortices is therefore an effective
means of generating tripoles, although the perturbation energy involved must remain small
compared to the energy of the axisymmetric flow. The variety of the long-time behaviors
nevertheless indicates a trend towards more vacillation when a greater number of degrees
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of freedom is present. From our results, we conclude that, in all cases studied, only a few
azimuthal modes of perturbation play a significant dynamical role in the nonlinear
equilibration process. A Landau equation describing the finite-amplitude evolution of the
perturbation amplitude A has been investigated, but the presence of a critical layer for the
marginal eigenmode precludes the possibility of a simple and rigorous derivation of such an
equation. A low-order Galerkin projection model, retaining only the first few harmonics, is
now being developed to describe semi-analytically the nonlinear stabilization regime, and to
account for its disappearance for stronger instability (i.e. for large ) [18].
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