1. Introduction

Climate models project that the Hadley circulation (HC) will widen and weaken by the end of the 21st century (IPCC, 2013; Vallis et al., 2015). These circulation changes will have large societal impacts, affecting tropical and subtropical precipitation (IPCC, 2014). Note that changes in the HC are fundamentally different between the two hemispheres. The expansion of the circulation is projected to occur mostly in the Southern Hemisphere (SH) (Grise et al., 2019; Vallis et al., 2015). Over recent decades, reanalyses show a modest expansion of the SH HC (Davis & Davis, 2018; Grise et al., 2019), mostly driven by ozone depletion in the second half of the 20th century (Polvani et al., 2011; Son et al., 2009). With the unabated emissions of greenhouse gases into the atmosphere, the expansion in the SH is projected to emerge out of the internal variability by the mid-21st century (Grise et al., 2019). Over the last decades, several mechanisms have been proposed to explain the expansion of the HC (arguing that is caused by changes in sea surface temperature, eddy phase speed, tropopause height, static stability, etc.). Recently, by examining the HC response in the abrupt 4 × CO₂ experiment of the Coupled Model Intercomparison Project phase 5 (CMIP5), we showed that changes in static stability are the key factor in tropical expansion (Chemke & Polvani, 2019a), thus confirming previous studies who argued for its importance (Lu et al., 2008; Son et al., 2018; Vallis et al., 2015).

It is also important to note that HC expansion in the Northern Hemisphere (NH) is not projected to emerge from the internal variability between now and the end of this century (Grise et al., 2019).

Unlike the expansion of the tropical circulation, its weakening is projected to occur only in the NH (Figures 1a and 1b). Interestingly, over the last several decades, while climate models simulate a weakening of the NH HC, reanalyses indicate an erroneous strengthening. This discrepancy was recently shown to be due to artifacts in the representation of latent heating in reanalyses (Chemke & Polvani, 2019b).

Several mechanisms have been proposed to explain the NH HC weakening. We start with a brief review of six mechanisms that we analyze in this study. The first two mechanisms constrain the vertical flow using
moisture or thermodynamic balances. The first, proposed by Held and Soden (2006), posits the balance \(P = Mq \) between the convective flux \(M \) of boundary-layer mixing ratio \(q \) and precipitation \(P \). Under increased greenhouse gases, the faster increase in \(q \) with temperature (following the Clausius–Clapeyron relation) relative to \(P \) yields weaker convective fluxes. Since this balance mostly holds in the deep tropics, the suggested decline in \(M \) was found to correlate with the decline in tropical upward vertical velocity across the IPCC AR4 models (Vecchi & Soden, 2007). The second mechanism, based on the thermodynamic balance \(\omega \theta_p = Q \), argues that the increase in diabatic heating \(Q \) with increased greenhouse gases is mostly balanced by changes in the vertical potential temperature gradient \(\theta_p \), thus precluding intensification of the vertical velocity \(\omega \) (Gastineau et al., 2008; Knutson & Manabe, 1995). Furthermore, should \(Q \) not increase as rapidly as \(\theta_p \), \(\omega \) would decrease (Held & Soden, 2006).

The next two mechanisms argue that the direct radiative effects of CO\(_2\) on the temperature act to weaken the circulation. The first was aimed at explaining the fast decline in tropical circulation strength in CMIP5 models under abrupt 4 \(\times \) CO\(_2\) concentrations (Bony et al., 2013): increasing CO\(_2\) concentration acts to warm the atmosphere, by reducing the outgoing longwave radiation (OLR) more than the net surface heating, and this acts to stabilize the atmosphere, thus weakening the circulation. The second mechanism argues that the reduction in OLR (i.e., reduced heat loss), due to the increase in CO\(_2\) concentrations, is smaller in the descending branch than in the ascending branch of the circulation (due to the different longwave absorption by clouds across the tropics), and this difference reduces the meridional heat transport from low to subtropical latitudes (Merlis, 2015).

The last two mechanisms focus on the importance of changes in the temperature gradients. The first argues that changes in stratification, advected by the vertical background flow, act to weaken the HC in the Northern Hemisphere (Ma et al., 2012), as was also suggested in Vallis et al. (2015). The second, proposed by Seo et al. (2014), is based on the Held and Hou (1980) scaling theory, and argues that the weakening of the NH

![Figure 1](https://example.com/figure1.png)
HC by the end of the 21st century is due to a reduction in the meridional temperature difference between the tropics and subtropical-to-midlatitudes, as was also suggested in Gastineau et al. (2009).

One reason for the existence of multiple mechanisms to explain a single physical phenomenon is the strong coupling among different components in the climate system. Such coupling results in high correlations between the changes in the circulation and several climate components: this makes it very difficult to assess the relative importance of these components in affecting the circulation. To overcome this, and elucidate which mechanism is mostly responsible for weakening the NH HC, we here employ the same methodology as in Chemke and Polvani (2019a), and analyze the abrupt 4 × CO₂ experiment of CMIP5. Such strong and abrupt forcing (quadrupling of CO₂ concentrations) separates the mechanisms operating on different time scales and, by studying their transient response, allows us to quantify which component contributes the most to the weakening of the NH HC. A caveat: while some of the mechanisms mentioned above were not originally developed to explain the projected weakening of the HC, but rather to explain the weakening of the Walker circulation (e.g., Knutson & Manabe, 1995) or tropical convection (e.g., Held & Soden, 2006), we nonetheless examine them here, since they are often claimed to explain the weakening of the HC (e.g., Lu et al., 2008; Vallis et al., 2015).

2. Methods

We analyze 20 CMIP5 models (listed in Table S1) under the “r1i1p1” realization in four experiments: pre-industrial (PI), historical and RCP8.5, and abrupt 4 × CO₂. The strength of the HC (Ψmax) is defined by the maximum value at 500 mb of the meridional mass streamfunction (Ψ),

\[
\Psi(\phi, p) = \frac{2\pi a \cos \phi}{g} \int_{p_0}^{p} \bar{v}(\phi, p) dp',
\]

where \(\phi\) is latitude, \(p\) is pressure, \(a\) is Earth’s radius, \(g\) is gravity, \(v\) is meridional velocity, and overbar represents zonal and annual mean. To properly examine the proposed mechanisms across all models, the different regions and quantities for each mechanism are defined as follows:

1. The ascending branch of the HC is defined between the Inter Tropical Convergence Zone (ITCZ, where \(\Psi\) changes sign at 500 mb between the SH and NH HCs) and the latitude of \(\Psi_{\text{max}}\). Given the different responses of the HC between the hemispheres, we do not define the ascending branch over the other side of the ITCZ, in order to avoid including processes that are not relevant for the weakening of the NH HC.

2. The descending branch of the HC is defined between the latitude of \(\Psi_{\text{max}}\) and the edge of the HC. The latter is defined as the latitude where \(\Psi\) first changes sign northward of the latitude of \(\Psi_{\text{max}}\) after a 0.1° latitudinal cubic interpolation.

3. To evaluate the Held and Soden (2006) mechanism, we calculate \(Pq\) over the ascending branch, where \(q\) is vertically integrated throughout the tropical troposphere (between 200 and 850 mb). We evaluate the mechanism over the descending branch only, since over the ascending branch their mechanism also includes latent heating, which is not available in the above CMIP5 models.

4. We follow Knutson and Manabe (1995) and calculate OLR \(\theta_p^{-1}\) over the descending branch, where \(\theta_p\) is vertically integrated throughout the tropical troposphere (between 200 and 850 mb). We evaluate the mechanism over the descending branch only, since over the ascending branch their mechanism also includes latent heating, which is not available in the above CMIP5 models.

5. The mechanism by Bony et al. (2013) is evaluated by taking the difference between the OLR and net longwave radiative surface heating over the ascending branch (OLR – \(Q_{\text{surf}}\)).

6. To analyze the mechanism by Merlis (2015), we calculate the difference in OLR between the descending and ascending branches (OLR\(_d\) – OLR\(_a\))

7. To examine the role of static stability (Ma et al., 2012), we average the tropical tropospheric \(\theta_p\) over the ascending branch.

8. Following Seo et al. (2014) we estimate the meridional potential temperature difference between the tropics and higher latitudes (\(\Delta \theta_p\)) as the tropospheric (averaged between the surface and 400 mb) difference between the ascending branch and extratropics (averaged between the edge of the HC and 50°N).
To quantitatively compare the time evolution of each quantity with the time evolution of the HC strength, for any quantity $\chi(t)$ we plot its fractional change $\Delta \chi(t)$,

$$\Delta \chi(t) = 100 \frac{\chi(t) - \chi_{PI}}{\chi_{PI}} ,$$

where χ_{PI} denotes the value of the last 200 years from the PI. Finally, we calculate the response time of each quantity, defined by the first year a quantity reaches 90% of its steady-state value (the last 50 years of simulation). Choosing a different percentage cut-off value do not qualitatively changes the results.

3. Comparing the Two Hemispheres

Before examining the fractional changes in the HC under the abrupt $4 \times CO_2$ forcing, we first show (in absolute values) in Figure 1 that the projected weakening of the HC occurs mostly in the NH. By the end of the 21st century the multimodel mean NH Ψ_{max} is 16% weaker (it reduced by 1.2×10^{10} kg s$^{-1}$) than the PI value under the RCP8.5 scenario (Figure 1a). In contrast, the SH Ψ_{max} is only 3% smaller (Figure 1b). Thus, for the remainder of this manuscript, we will focus on the weakening of NH Ψ_{max}.

The different response of the HC in both hemispheres is also apparent in the abrupt $4 \times CO_2$ experiment: the NH Ψ_{max} reduces by 14%, while the SH Ψ_{max} by only 3% (black lines in Figures 1c and 1d). The similar response of Ψ_{max} to quadrupling CO_2 concentrations and to the RCP8.5 forcing provides us the confidence to elucidate the mechanism of HC weakening under the abrupt $4 \times CO_2$ experiment.

Before analyzing the different mechanisms, it is important to assess whether the response of Ψ_{max} to increased CO_2 concentrations is merely a response to the increase in surface temperature. The solid orange line in Figure 1c shows the time evolution of NH tropical surface temperature. Similar to other dynamic quantities (Chemke & Polvani, 2019a; Grise & Polvani, 2017), Ψ_{max} also shows a fast response to quadrupling CO_2 concentrations: it weakens in the first years of the simulation, with a response time of 7 years (black dashed vertical line in Figure 1c). In comparison, the tropical mean surface temperature shows a slower response time of 47 years (orange dashed vertical line), which demonstrates that the weakening of the circulation is not only due to the (slower) increase in surface temperature: one degree of surface warming in the early years might have a larger effect on Ψ_{max} than one degree of surface warming later in the simulation (Figure S1).

4. Evaluating the Mechanisms

Since some of the mechanisms discussed here were studied using either a single model or the previous generation of models (CMIP3), we first evaluate the robustness of each mechanism in the CMIP5 models. This is done by plotting the steady-state (the last 50 years of the $4 \times CO_2$ experiment) fractional change (relative to PI, denoted by Δ, see Equation 2) in Ψ_{max} against the change in key quantities relevant to each of the six mechanisms reviewed in Section 1 (Figure 2, left and middle columns).

We start with the mechanisms that constrain the vertical flow using moisture or thermodynamic balances. The changes in the Held and Soden (2006) estimate for the tropical mass flux (Pq^{-1}) shows a moderate correlation ($r = 0.56$) with the weakening of Ψ_{max} across the models (Figure 2a). However, Pq^{-1} overestimates the weakening of Ψ_{max} by $\sim 50\%$. This overestimate led Held and Soden (2006) to note that changes in mass flux are clearly insufficient to explain the weakening of the Hadley cell. Changes in OLR^{-1} (Gastineau et al., 2008; Knutson & Manabe, 1995) also show a moderate correlation ($r = 0.57$) with the weakening of Ψ_{max} across the models (Figure 2b). Note, however, that OLR^{-1} slightly underestimates the weakening of Ψ_{max}. Thus, unlike previous claims (e.g., Held & Soden, 2006), these two mechanisms might not be equivalent.

Next, we evaluate the mechanisms that argue for the importance of the direct radiative effects of CO_2 on temperature, by plotting the first-year fractional change (denoted by δ) in Ψ_{max} against the quantities of each mechanism. We focus on the first year, rather on the steady state, since these mechanisms aim to explain the direct fast response of the circulation to quadrupling CO_2 concentrations without the slow warming of
the surface. Although, as suggested by Bony et al. (2013), most models (17 out of 20) indeed show that in year-1 the OLR reduces faster than the net surface heating \(\text{OLR} - Q_{\text{sfc}} \) (negative x axis values in Figure 2d), it has a low correlation \(r = -0.43 \) with the weakening of \(\Psi_{\text{max}} \) across the models, thus unlikely to explain the fast response of \(\Psi_{\text{max}} \).

Not only the effects of CO\(_2\) on the vertical temperature profile show low correlation with the weakening of \(\Psi_{\text{max}} \) but also the CO\(_2\) effects on the meridional temperature structure (Figure 2e). The first-year fractional change in OLR\(_y\) (Merlis, 2015) also shows low correlation \(r = 0.03, \) and \(r = 0.19 \) excluding the rightmost
outlier point) with the weakening of Ψ_{max} across the models. Furthermore, unlike the single model used in Merlis (2015), most CMIP5 models analyzed here (13 out of 20) show that the OLR reduces more over the ascending branch than the descending branch (positive x axis values), which, according to Merlis (2015) argument, would result in a strengthening of the HC. Clearly, changes in OLR, cannot explain the weakening of Ψ_{max}.

Lastly, we evaluate the mechanisms that argue for the importance of changes in the temperature gradients. Both steady-state fractional changes in ∂_y (Ma et al., 2012) and δ_p (Seo et al., 2014) (see Figures 2g and 2h, respectively) show moderate correlations with the weakening of Ψ_{max} across the models: correlation of $r = 0.63$ for ∂_y and of $r = 0.59$ for δ_p. In agreement with the weakening of Ψ_{max} across all models, ∂_y also shows a decline under $4 \times CO_2$ (corresponding to a more stable atmosphere) in all models. On the other hand, only half of the models show a decline in δ_y at steady state, while the other half show an increase. This major disagreement across the CMIP5 models suggests that ∂_y cannot explain the steady-state weakening of Ψ_{max} across all models.

As mentioned in Section 1, one reason for the existence of correlations between multiple metrics and the weakening of Ψ_{max} is the strong coupling between the different components of the climate system. Note that while most quantities do not correlate with each other, the quantities that do show a moderate correlation with Ψ_{max} (Pq^{-1}, OLR, θ_y, and δ_p) also correlate with each other (Held & Soden, 2006) (Table S2). In particular, OLR, θ_y, and ∂_p are highly correlated, with $r = 0.92$, suggesting that these two mechanisms are not entirely distinct. Next, to further examine how the above quantities are related to Ψ_{max} and to disentangle them, we investigate their time evolution (blue and red lines in right column in Figure 2), and compare it to the evolution of Ψ_{max} (black lines in right column in Figure 2). Since most of the weakening of Ψ_{max} occurs in the first years, we zoom in on the evolution over the first 55 years.

Starting from Pq^{-1} (Held & Soden, 2006), one can see in Figure 2c that it severely overestimates the weakening of Ψ_{max} throughout the entire period (compare blue and black lines). Most importantly, in spite of the steady-state correlation across models between Pq^{-1} and Ψ_{max} (Figure 2a), the evolution of Pq^{-1} clearly does not accompany the evolution of Ψ_{max}: it does not capture the strong weakening of Ψ_{max} in the first few years, resulting in a slower response time of 29 years (blue dashed vertical line), compared to the fast 7-years response time of Ψ_{max} (black dashed vertical line). This mismatch between Ψ_{max} and Pq^{-1} confirms previous studies (e.g., Chou & Chen, 2010; Held & Soden, 2006; Schneider et al., 2010) who also argued that the Held and Soden (2006) balance is insufficient for explaining the weakening of the HC. Similarly, in spite of the steady-state correlation between OLR, θ_p^{-1} and Ψ_{max} (Figure 2b) the evolution of OLR, θ_p^{-1} (Gastineau et al., 2008; Knutson & Manabe, 1995) does not coincide with the evolution of Ψ_{max} (compare red and black lines in Figure 2c): it does not capture the fast response in the first years, and it has a considerably slower response time of 33 years (red dashed vertical line). Furthermore, OLR, θ_p^{-1} underestimates the weakening of Ψ_{max} not only at steady state, but also throughout the entire simulation.

Next we examine, in Figure 2f, the evolution of the radiative effects of CO$_2$ on temperature. First, as argued in Bony et al. (2013), the response of OLR − Q_{eff} should explain the fast weakening of Ψ_{max} before the increase in surface temperature. Indeed, OLR − Q_{eff} decreases only in the first two years (blue line in Figure 2f, see the initially small negative values in OLR − Q_{eff}), and then increases as the surface warms. However, the low correlation between OLR − Q_{eff} and Ψ_{max} even in the first years suggests that this mechanism does not explain the fast weakening of Ψ_{max}. Second, not only does the mechanism proposed by Merlis (2015) not hold at the first years (Figure 2e), but also throughout the entire time evolution (red line in Figure 2f): if that mechanism were operative, a strengthening, not a weakening, of the HC occur, since the OLR decreases more over the ascending than over the descending branch (see how OLR − Q_{eff} is positive for the entire simulation).

Finally, we examine the time evolution of temperature gradients. Although ∂_p decreases in all models and correlates with Ψ_{max} (Figure 2g) its evolution does not coincide with the evolution of Ψ_{max} (blue line in Figure 2f): it shows a much slower response (of 54 years, blue dashed vertical line). Similarly, in spite of the correlation between ∂_y and Ψ_{max} at steady state (Figure 2h), the evolution of ∂_y is very different than the evolution of Ψ_{max} (red line in Figure 2i). In the first year, ∂_y indeed shows a decline relative to PI, in accordance with the argument by Seo et al. (2014); however, it then increases, while at the same time Ψ_{max} monotonically weakens. This again suggests that ∂_y is not likely to explain the weakening of Ψ_{max}.

10.1029/2020GL090348
5. The Kuo-Eliassen Equation

Having shown that none of the above mechanisms is able to solely explain the weakening of the HC, we build on our previous work (Chemke & Polvani, 2018, 2019b; Chemke et al., 2019; Vallis et al., 2015), and investigate the Kuo-Eliassen (KE) equation, in order to isolate and quantify the terms that affect the HC response. The KE equation is derived from quasigeostrophic arguments (cf. Section 14.5.5 in Peixoto and Oort (1992)) and takes the following form:

\[L\Psi = D_Q + D_{\nu^2} + D_\nu + D_X, \]

(3)

where \(L = \frac{f^2 g}{2 \pi a \cos \phi} \frac{\partial^2}{\partial \phi^2} + S^2 \frac{g}{2 \pi a} \frac{\partial}{\partial \phi} \left(\frac{1}{a \cos \phi} \right) \) is a second-order elliptic operator, \(f \) is the Coriolis parameter, \(S^2 = -\frac{1}{\rho \theta} \) is static stability, \(\rho \) is density, \(D_Q = R \left(\frac{1}{p} \frac{\partial Q}{\partial \phi} \right) \) is the gas constant of dry air, \(Q \) is diabatic heating, \(D_{\nu^2} = -R \left(\frac{1}{p} \frac{\partial}{\partial \phi} \left(\frac{1}{a \cos \phi} \right) \frac{\partial \nu^2}{\partial \phi} \right) \) is eddy heat flux, \(D_\nu = f \left(\frac{1}{a \cos^2 \phi} \frac{\partial^2 \nu}{\partial \phi^2} \right) \) is eddy momentum flux and \(D_X = -f \frac{\partial X}{\partial \phi} \), where \(X \) is zonal friction; bars and primes represent zonal and monthly means, and deviation therefrom, respectively.

Using a successive overrelaxation method, we numerically solve Equation 3 with the right-hand side terms, and \(S^2 \) from the left-hand side operator, calculated from four models (GFDL-ESM2G, GFDL-ESM2M, MIROC5, and IPSL-CM5B-LR). We use these four models because they are the only ones for which daily output for calculating eddy fluxes and diabatic heating is available. We use the thermodynamic equation, \(\frac{DT}{Dt} = \alpha TR \frac{pc}{\rho c_p} \), to estimate the diabatic heating, where \(\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \), \(\mathbf{V} = (u, v, \omega) \), and \(c_p \) is specific heat capacity, and the mean zonal momentum quasigeostrophic equation, \(\vec{X} = \frac{1}{a \cos^2 \phi} \frac{\partial^2 \nu}{\partial \phi^2} \vec{v} - f \vec{v} \), to estimate the zonal friction. As for \(\Psi_{max} \), the maximum value of the solution for Equation 3 \((\Psi_{max}^{KE}) \) is evaluated at 500 mb.

Since the KE equation is derived under quasigeostrophic assumptions, which do not hold in the deep tropics, it needs not, a priori, capture the response of \(\Psi_{max} \) to increased greenhouse gases. However, the KE equation comprises key processes that control \(\Psi_{max} \) (e.g., diabatic heating, static stability, eddy fluxes). Furthermore, note that unlike in quasigeostrophic theory, here both \(f^2 \) and \(S^2 \) vary in space, in order to examine the effect of changes of \(S^2 \) on \(\Psi_{max} \), and to allow the KE equation to better capture the circulation of low latitudes. Thus, as shown below, the KE equation well captures the behavior of \(\Psi_{max} \).

First, we demonstrate that the evolution of \(\Psi_{max}^{KE} \) is very close to the evolution of \(\Psi_{max} \) (compare black and blue lines in Figure 3a); it not only captures the strong weakening in the first years, but also the interannual variability throughout the entire simulation (this occurs in each of the four models, Figure S2). As a result, the time response of \(\Psi_{max}^{KE} \) (10 years, blue vertical dashed line) is close to the time response of \(\Psi_{max} \) (black vertical dashed line). The good agreement between \(\Psi_{max}^{KE} \) and \(\Psi_{max} \), together with the fact that Equation 3 is linear, allow us to determine which RHS terms most contribute to the weakening of the circulation, and to evaluate the signature of static stability in the L operator on the LHS (e.g., Chemke & Polvani, 2019b).

We follow Kim and Lee (2001), and decomposed each of the terms in Equation 3 into their PI value and a change from it: \(L = L_{PI} + \delta L \), \(\Psi = \Psi_{PI} + \delta \Psi \) and \(D = D_{PI} + \delta D \). Substituting these decompositions to Equation 3 yields an equation for the changes in \(\Psi \) (\(\delta \Psi \)),

\[
L_{PI} \delta \Psi = \delta D - \delta L \Psi_{PI} - \delta L \delta \Psi,
\]

(4)

where \(\delta D \) accounts for changes in each of the RHS terms in Equation 3, \(\delta L \Psi_{PI} \) accounts for changes in the static stability, and \(\delta L \delta \Psi \) accounts for the multiplicative changes in static stability and in the streamfunction (calculated as a residual).
Figure 3b shows the contributions from each term in Equation 3 to changes in KE\textsubscript{\text{max}}\Psi\textsuperscript{\text{max}} (i.e., the terms are estimated at the location of KE\textsubscript{\text{max}}\Psi\textsuperscript{\text{max}}) over the first 10 years (the fast response, blue bars), and over the last 50 years (steady-state response, red bars). As suggested by Ma et al. (2012) and Vallis et al. (2015), the term that mostly contributes to the weakening of KE\textsubscript{\text{max}}\Psi\textsuperscript{\text{max}} in both periods is static stability (S2). Since static stability exhibits a slower response than \Psi\textsuperscript{\text{max}} (Figure 2i), it cannot solely explain the fast response of \Psi\textsuperscript{\text{max}}. Another component needs to oppose the slow increase in static stability (recall that S2 \sim -\partial/\partial p, and thus increases in all models), and yield in the faster response of \Psi\textsuperscript{\text{max}}. Interestingly, it is the meridional gradient of diabatic heating (Q\textsubscript{y}), not the diabatic heating itself (as was previously suggested, Gastineau et al., 2008; Knutson & Manabe, 1995), that acts to weaken the circulation in the initial stages, but to strengthen it at steady state. This Q\textsubscript{y} opposes the slow increase in static stability, and results in the fast 7-years response time of \Psi\textsuperscript{\text{max}}. The other components (e.g., eddy fluxes) have minor contributions to the weakening the HC, and show little change with time, and thus could not oppose the contribution of S2 (these results are robust across all four models, Figure S2). Note that Q\textsubscript{y} shows the largest spread across the models, suggesting that it might be responsible for the large spread in the projected weakening of the HC across CMIP5 models (Chemke & Polvani, 2019b).

To corroborate the importance of S2 and Q\textsubscript{y} (and their opposite effects on the circulation), and to verify that the 4 \times CO\textsubscript{2} results hold in a more realistic scenario, and with many more models (which increases the
significance of the result), we repeat the above analysis under the historical and RCP8.5 forcing using the CESM large ensemble (LE). The LE comprises 40 simulations that are subjected to the historical and RCP8.5 forcing between 1920 and 2100 (Kay et al., 2015). Figure 3c shows the evolution of Ψ_{max} from the LE (black), along with the solution from Equation 3 (blue). First, through most of the simulation, the evolution of Ψ_{max} from the LE is similar to the evolution of the CMIP5 models in Figure 1a. This gives us confidence to use the LE to understand the weakening of the HC. Second, as for the abrupt $4 \times CO_2$ experiment, here too the evolution of $\Psi_{\text{max}}^{\text{KE}}$ is very close to the evolution of Ψ_{max}.

Armed with these validations, we now decompose the evolution of $\Psi_{\text{max}}^{\text{KE}}$ into the different components (see Equation 3), and plot these in Figure 3d. First, the sum of all components (except for a small residual) is very similar to $\Psi_{\text{max}}^{\text{KE}}$ (compare blue lines in Figures 3c and 3d); this allows us to quantify their relative importance. Second, the key results obtained from the abrupt $4 \times CO_2$ experiment also hold under the historical and RCP8.5 forcing: the HC weakens as a consequence of S^2 (green line), with important cancelation from changes in Q_ℓ (black line). Most of the effect of Q_ℓ originates from the meridional gradient of latent heating ($Q_{\text{latent}}^{\text{latent}}$, Figure S3). Thus, the increase in latent heat release at upper levels over the ascending branch results in two opposite effects on the tropical circulation. On the one hand, it acts to increase Q_{latent}, and to strengthen the circulation. On the other hand, it acts to stabilize the atmosphere, which overcomes the effect of Q_{latent}, and eventually to weaken the circulation. The other components play only a minor role in weakening the HC. Finally, we note that the different components in Equation 3 are not independent. Thus, the contribution of Q_ℓ and S^2 may stem from changes in the other terms (as noted in Kim and Lee (2001)).

6. Conclusions

Analyzing the output of 20 CMIP5 models forced with $4 \times CO_2$, we have been able to shed new light on the mechanism underlying the ongoing and projected weakening of the HC, as that abrupt forcing effectively separates physical responses occurring on different time scales. First we have shown that, as for HC expansion (Chemke & Polvani, 2019a; Grise & Polvani, 2017), HC weakening occurs on much faster time scales than surface temperature warming, and is thus not a simple response to the increases in surface temperature alone. Second, we have revisited and evaluated six well-known mechanisms proposed to explain HC weakening (Bony et al., 2013; Held & Soden, 2006; Knutson & Manabe, 1995; Ma et al., 2012; Merlis, 2015; Seo et al., 2014). While some correlation across the models is suggestive of some of these mechanisms playing a potential role, we have shown that each mechanism alone cannot fully explain the weakening of the HC as they all fail to capture its time evolution under $4 \times CO_2$ forcing. Instead, we have explicitly shown that weakening (Bony et al., 2013; Held & Soden, 2006; Knutson & Manabe, 1995; Ma et al., 2012; Merlis, 2015; Seo et al., 2014), but with a considerable cancelation by an increase in the meridional gradient of latent heating.

Acknowledgments

We would like to thank Geoff Vallis and another anonymous reviewer for their very useful comments. R. Chemke and L. M. Polvani are funded by grants from the National Science Foundation to Columbia University. The CMIP5 data are available at https://esgf-node.llnl.gov/projects/cmip5/ and the CESM LE at http://www.cesm.ucar.edu/.

References

