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Identifying a human signal in the North Atlantic
warming hole
Rei Chemke 1✉, Laure Zanna2,3 & Lorenzo M. Polvani 1,4

North Atlantic sea surface temperatures have large climate impacts affecting the weather of

the Northern Hemisphere. In addition to a substantial warming over much of the North

Atlantic, caused by increasing greenhouse gases over the 21st century, climate projections

show a surprising region of considerable future cooling at midlatitudes, referred to as the

North Atlantic warming hole. A similar pattern of surface temperature trends has been

observed in recent decades, but it remains unclear whether this pattern is of anthropogenic

origin or a simple manifestation of internal climate variability. Here, analyzing state-of-the-art

climate models and observations, we show that the recent North Atlantic warming hole is of

anthropogenic origin. Our analysis reveals that the anthropogenic signal has only recently

emerged from the internal climate variability, and can be attributed to greenhouse gas

emissions. We further show that a declining northward oceanic heat flux in recent decades,

which is linked to this surface temperature pattern, is also of anthropogenic origin.
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Identifying a human fingerprint in the climate system is an
integral part in the line of evidence of the effects of human
activity on climate. Given the large variability of the climate

system, detecting such fingerprints involves separating the internal
variability of the system from its forced response to anthropogenic
emissions. Here we focus on identifying a human impact on North
Atlantic sea surface temperatures (SSTs), since they play a major
role in the climate of the Northern Hemisphere1–6.

Unlike previous studies which have focused on linking the SST
patterns in the North Atlantic to changes in the oceanic
circulation3,7–16, we here perform a formal detection-attribution
analysis in order to identify the human fingerprint in North
Atlantic SST over recent decades.

Results
The North Atlantic warming hole. We start by illustrating the
recent (1982–2017) North Atlantic SST trends (Fig. 1). Two SSTs
datasets, which combine satellite and in-situ measurements (the
high-resolution NOAA SST17 and HadISST18, Methods), show
stronger warming at high and low latitudes than at midlatitudes,
resulting in the so-called North Atlantic Warming Hole
pattern6,7,10–12,14,15,19 (Fig. 1a, b). We focus here on the most
recent 36 years in order to include at least one high-resolution
observational product (the high-resolution NOAA SST is only
available since 1982), and because this warming hole pattern in

the North Atlantic is absent prior to the 1980’s (Supplementary
Fig. 1). Recently, a similar warming hole pattern in the North
Atlantic was found using a single simulation of high-resolution
global circulation model run with doubled CO2 concentrations14.
The analysis of a single idealized forced simulation does not allow
for the attribution of the recent SST patterns to greenhouse gas
emission, as the role of internal variability and of the recent
changes in both natural and anthropogenic forcing agents cannot
be assessed. As a first step to determining if the observed trends
constitute the system’s forced response to anthropogenic emis-
sion, we compare the observed SST trends with the 1982–2017
mean trends from two ensembles of model simulations: the
Community Earth System Model 40-members Large Ensemble
(CESM-LE)20 and the Max Planck Institute Earth System Model
100-members Grand Ensemble (MPI-GE)21 (Methods). Recall
that all simulations are subjected to the same Historical forcing
from 1850 to 2005, and the same Representative Concentration
Pathway 8.5 (RCP8.5) through 2100. To the degree that the
models realistically capture the behavior of the climate system,
and provided the ensemble size is sufficiently large, the mean of
the ensemble members represents the system’s response to
external forcings, as the internal variability is eliminated by
averaging across the members of the ensemble (Methods).

The forced response of the SST in the mean of the CESM-LE
and MPI-GE (Fig. 1c, d) show a pattern similar to the observed
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Fig. 1 Annual mean sea surface temperature trends (Kyr−1). The 1982–2017 sea surface temperature trends from satellite-based observations in
a NOAA, and b HadISST. The 1982–2017 simulated sea surface temperature trends from the mean of the c Community Earth System Model Large
Ensemble (CESM-LE), dMax Planck Institute for Meteorology Grand Ensemble (MPI-GE), and e Coupled Model Intercomparison Project Phase 5 (CMIP5).
The 1982–2100 simulated sea surface temperature trends from the mean of f CESM-LE, g MPI-GE, and h CMIP5. The small black crosses show where
the sea surface temperature trends are statistically insignificant based on a Student t-test (p-value > 0.05).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15285-x

2 NATURE COMMUNICATIONS |         (2020) 11:1540 | https://doi.org/10.1038/s41467-020-15285-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


one, with warming at high and low latitudes and weak cooling
trend at midlatitudes15. The similarity of the forced response in
CESM-LE and MPI-GE suggests that the smaller ensemble size of
the CESM-LE does not affect the forced signal (Supplementary
Fig. 2). One reason for the stronger cooling—and its different
shape—in the ensemble means compared to the observations
might be that internal variability obscures part of the system’s
forced response (ensemble members exhibit considerable differ-
ences in the shapes and amplitudes of the warming hole,
Supplementary Fig. 3). But the strong cooling in the ensemble
means could also be due to biases in these two models’ physical or
numerical formulations (e.g., biases in external forcing or subgrid
parameterizations) that prevent them from accurately simulating
the behavior of the climate system. To address this we also
analyze 35 model simulations from the Phase 5 of the Coupled
Model Intercomparison Project22 (CMIP5, Methods). These
simulations also run under the Historical and RCP8.5 scenarios,
but each simulation is carried out with a different model. Thus,
the CMIP5 multi-model mean removes part of the internal
variability, and also part of the spread due to the different model
formulations, assuming no systematic biases across all models
(Supplementary Fig. 4). Figure 1e shows the 1982–2017 SST
trends from the mean of the CMIP5 ensemble, which also shows
a similar warming hole pattern. Unlike for CESM-LE and MPI-
GE, the warming hole in the CMIP5 mean is weaker and located
poleward owing to the averaging across models with different
patterns (potentially related to the different locations of deep
water formation and strength of the oceanic circulation across the
models13). Nonetheless, a warming hole pattern is clearly present
in the CMIP5 mean.

Detecting a human signal in the North Atlantic. Given the
similarity between the observed and forced model-mean SST

patterns, can one formally detect the externally forced signal in
the observed SST? To answer that we follow previous studies23–26

and use a standard fingerprint detection analysis over the North
Atlantic region, based on computing the signal-to-noise ratio
(SNR) (Methods). First, the externally forced fingerprint is
defined using the leading empirical orthogonal function (EOF) of
the 1982–2017 North Atlantic SST anomalies (defined relative to
the 1982–2017 climatology) in the mean of each ensemble
(Fig. 2a–c). These fingerprints explain most of the SST variability
(~90%), and are very similar to the forced SST trends in the
respective model ensembles (Fig. 1c–e). Second, the signal is
defined by computing trends of increasing lengths of the pro-
jection of the observed SST anomalies onto these fingerprints (i.e.,
the spatial sum, at each year, of the product of the observed
anomalies and each fingerprint, Methods). The fact that these
projections increase with time indicates that the observed SST
become progressively more similar to the externally forced fin-
gerprints (Supplementary Fig. 5). The noise is defined in a similar
way, but using the SST from the preindustrial control runs (where
the anthropogenic forcing is absent, and only the internal varia-
bility of the climate system is present) rather than the observed
SST. The externally forced fingerprint is then detected in the
observation once the signal exceeds the 5% significance threshold
relative to the noise (Methods). This SNR calculation can be done
not only for the observations but also for each realization in the
three ensembles.

Figure 2d–f shows the SNR calculated from observations (green
and orange lines) and from each ensemble member in the CESM-
LE, MPI-GE, and CMIP5 (gray lines), along with the 5% signi-
ficance threshold (horizontal blue lines). As in previous studies24,25,
the increase in SNR drops after 1991 due to anomalous cold
temperatures after that year, perhaps associated with the volcanic
eruption of Mt. Pinatubo. Thereafter, the SNR monotonically
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Fig. 2 Fingerprints and signal-to-noise analysis. The leading mode (fingerprint) of the 1982–2017 North Atlantic sea surface temperature anomalies in the
a Community Earth System Model Large Ensemble (CESM-LE), b Max Planck Institute for Meteorology Grand Ensemble (MPI-GE), and c Coupled Model
Intercomparison Project Phase 5 (CMIP5). The percentage in each panel represents the variability explained by each mode. Signal-to-noise ratio for North
Atlantic sea surface temperature as a function of the length of trends (and corresponding last year of trend) since 1982 using the fingerprint and noise from
d CESM-LE, e MPI-GE, and f CMIP5. The signal in the green and orange lines is calculated using the satellite-based observations in NOAA, and HadISST,
respectively. The signal in the gray lines in each panel is calculated using each realization in the CESM-LE, MPI-GE, and CMIP5 datasets. The blue
horizontal line marks the 5% significance threshold.
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increases and the externally forced fingerprints from each of the
ensembles are clearly detectable in the two satellite-based observa-
tions. These fingerprints emerge from the internal variability of the
system around the year 2000. Furthermore, we emphasize that
the fingerprint is detectable in nearly all individual members of
the CESM-LE and MPI-GE after the year 2000, implying that these
models well capture the observed SST pattern changes. Given the
similarity of the forced fingerprints in CESM-LE and MPI-GE,
the more rapid increase in SNR in CESM-LE than in MPI-GE
implies that the larger variability in the MPI-GE preindustrial run
delays the emergence of the forced signal: one standard deviation of
the noise fromMPI-GE is 35% larger than one standard deviation of
the noise from CESM-LE. For the CMIP5, the larger spread of SNR
across the models, when compared to the CESM-LE and the MPI-
GE spreads, illustrates the effects of the different models’ formulation
on the emergence of the forced SST pattern.

Are the externally forced fingerprints that we detect in the
observations anthropogenic or natural? To answer this question
we make use of four large ensembles of model simulations nearly
identical to the CESM-LE, but with one forcing agent kept
constant: greenhouse gases (LE-fixGHG), aerosols (LE-fixAER),
biomass burning (LE-fixBMB) and land use/land change (LE-
fixLUC) (Methods). Figure 3a–d shows the fingerprints of the
1982–2017 SST anomalies in each of these ensembles. When the
greenhouse gases are fixed, the CESM-LE fingerprint disappears
(compare Figs. 3a and 2a). In contrast, when fixing the aerosols,
biomass burning or land use/land change the CESM-LE
fingerprint persists, attesting that the detectable fingerprints in
the observation can be attributed to greenhouse gas emissions.
One is then led to ask how this SST pattern will evolve over the
21st century, when greenhouse gases are projected to constantly
increase. Not surprisingly, the warming hole pattern in the three

ensembles persist through the end of the 21st century7,9,13,15

(Fig. 1f–h), confirming that it is indeed related to the ongoing
anthropogenic emissions.

The underlying mechanism of a human signal in North
Atlantic. Finally we ask, can one also attribute the mechanisms
that are responsible for the formation of the forced SST finger-
print to greenhouse gas emissions? To answer this we first
quantify the relative importance of the processes that affect the
SST pattern. We analyze the CESM-LE mixed-layer temperature
tendency equation for the North Atlantic midlatitudes over
the warming hole region (20°W – 40°W and 45°N – 55°N). We
use the CESM-LE, rather than the MPI-GE or CMIP5, since the
model output needed for calculating the mixed-layer tempera-
ture equation is only available for that ensemble. According to the
mixed-layer temperature tendency equation (Eq. (1), Methods27),
four terms govern its temporal behavior: air–sea heat fluxes, zonal
and meridional advection, and vertical heat transfers.

The annual mean time evolution of the four terms governing
the mixed-layer temperature tendency equation for the North
Atlantic midlatitudes shows that throughout the 21st century the
main balance in the CESM-LE simulations is between air–sea heat
fluxes and meridional heat advection (Fig. 4a–d). An increasing
trend in air-sea heat flux (Fig. 4a), which is mostly driven by a
reduction in latent heat fluxes, acts to warm the SST. However,
since the early 90’s, meridional heat advection drives a cooling
trend by transferring less heat to midlatitudes (Fig. 4c). This
cooling trend opposes and—in some locations overcomes—the
warming by air–sea heat fluxes resulting in the North Atlantic
warming hole. This shows that the CESM-LE fingerprint (Fig. 2a)
is due to a decline in meridional heat advection, confirming
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Fig. 3 Attribution analysis for North Atlantic sea surface temperature. The leading mode (fingerprint) of the 1982–2017 North Atlantic sea surface
temperature anomalies in the four Community Earth SystemModel (CESM) ensembles with a fixed greenhouse gases (LE-fixGHG), b fixed aerosols (LE-fixAER),
c fixed biomass burning (LE-fixBMB), and d fixed land use/change (LE-fixLUC). The percentage in each panel represents the variability explained by each mode.
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previous studies3,7–16. The other two terms (zonal and vertical
heat transfers) do not contribute to the formation of the warming
hole in the CESM-LE (Fig. 4b, d).

Lastly, to examine whether the recent decline in meridional
heat advection can be attributed to greenhouse gas emissions, we
compare its 1982–2017 trends in the CESM-LE to the trends in
LE-fixGHG, LE-fixAER, LE-fixBMB, and LE-fixLUC in Fig. 4e.
As for the SST fingerprint in Fig. 3, the recent meridional heat
advection decline is again mostly associated with greenhouse gas
emissions: in comparison to the other forcings, only fixing
greenhouse gases results in a lack of forced decline in meridional
heat advection. This mechanism is consistent with a weakening of
the ocean circulation found in future climate projections8,13.

Discussion
In conclusion, we note that recent and projected North Atlantic
warming hole is, at first glance, a surprising feature, since one
naively expects SSTs to warm with increasing greenhouse gases.
What we have shown here is that the SST pattern in the North

Atlantic that includes reduced warming at midlatitudes, relative
to other latitudes, is indeed caused by anthropogenic emissions of
greenhouse gases, and is related by changes in the oceanic cir-
culation. And, if the human influence on North Atlantic SST
documented in this study continues in coming decades, it is likely
to further impact the climate of the many regions of the Northern
Hemisphere, including the U.S., Europe and parts of Africa1–6.

Methods
Observations. Two data sets of sea surface temperature, which combine satellite
and in-situ measurements, are used: the high-resolution NOAA SST17 and the
Hadley Centre HadISST18. The NOAA SST is derived using the Advanced Very
High Resolution Radiometer (AVHRR). The data is produced daily with 0.25° grid
resolution since 1982. The HadISST is taken from the Met Office Marine Data
Bank and is produced monthly with 1° grid resolution since 1870.

Large ensembles. Two ensembles of ocean-atmosphere coupled model simula-
tions are used; the Community Earth System Model 40-members Large Ensemble
(CESM-LE)20, and the Max Planck Institute for Meteorology 100-members Grand
Ensemble (MPI-GE)21. The CESM-LE is conducted using the CESM128 and
includes 40 simulations (members) running from 1920 to 2100. From 1920 to 2005
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Fig. 4 Attribution analysis for the North Atlantic sea surface temperature fingerprint mechanism. The Community Earth System Model Large Ensemble
(CESM-LE) annual mean mixed-layer temperature tendency equation anomalies (Wm−2, Eq. (1), Methods), relative to the 1920–1960 period, averaged
over the warming hole region (see text); a Surface air-sea heat fluxes. b Zonal heat advection. c Meridional heat advection. d Vertical heat transfers. The
gray and black lines represent all CESM-LE members and their mean, respectively. e The 1982–2017 meridional heat advection trends in five CESM
ensembles with all forcing agents (CESM-LE), fixed greenhouse gases (LE-fixGHG), fixed aerosols (LE-fixAER), fixed biomass burning (LE-fixBMB), and
fixed land use/change (LE-fixLUC).
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all members are subjected to the Historical forcing, and from 2006 to 2100 to the
Representative Concentration Pathway 8.5 forcing (RCP8.5). The MPI-GE is
conducted using the Max Planck Institute Earth System Model (MPI-ESM1.1) and
includes 100 simulations (members) running from 1850 to 2100 under the same
Historical and RCP8.5 scenarios. For disentangling the forced response and the
internal climate variability each member in the ensembles is initialized with dif-
ferent initial conditions. The mean of each ensemble averages out the internal
variability, thus represents the forced response of the system. Additional multi-
century preindustrial control runs, using constant 1850 forcing, are used for
each model, where the coupled CESM1 runs for 1800 years, and the MPI-ESM for
2000 years. The constant forcing in these simulations enables accounting only the
internal climate variability.

Finally, for attributing the detectable fingerprint to a specific forcing agent we
make use of four ensembles that are identical to the CESM-LE, but each ensemble
excludes the time evolution of one forcing agent: greenhouse gases (LE-fixGHG,
include 20 members), aerosols (LE-fixAER, include 20 members), biomass burning
(LE-fixBMB, include 15 members), and land use/land change (LE-fixLUC, include
5 members).

CMIP5. We also analyze 35 models that participate in the Coupled Model Inter-
comparison Project Phase 522 (CMIP5), and select the ’r1i1p1’ member between
1850 and 2100 with the Historical and RCP8.5 scenarios (Supplementary Table 1).
The last 200 years of each model’s preindustrial control run are used for the
fingerprint analysis, as discussed below.

Fingerprint analysis. To assess whether a forced fingerprint is statistically iden-
tifiable in the observations we follow previous studies23–26, and employ a standard
fingerprint detection method using a signal-to-noise ratio approach. In this
approach, one quantifies that the pattern similarity between the observations and
the fingerprint increases with time (the signal) and emerges out of the internal
variability of the system (the noise). This analysis is conducted over the North
Atlantic region, shown in the figures in the manuscript, between 83°W – 8°E and
26°N− 67°N. First, the forced fingerprint (FP) is defined as the leading empirical
orthogonal function (EOF) of the 1982–2017 annual mean North Atlantic SST
anomalies (relative to the 1982–2017 climatology) in the mean of each ensemble.
As discussed above, the mean of the ensembles averages out the internal variability,
thus accounts only the forced response of the system. Although we here analyze
only the observed period, the 1982–2017 fingerprints based on the ensembles
continue throughout the 21st century (Supplementary Fig. 6).

Second, the annual mean observed SST’s anomalies (OB) are projected onto the
fingerprints yielding a time series, SðtÞ ¼ Σx OBðx; tÞ � FPðxÞ, where x represents
the grid points and t the years. All fields used in the analysis are regridded to the
same 1° × 1° grid, and are area-weighted by multiplying each field by the square
root of the cosine latitude. Supplementary Figure 5 shows these time series using
the two satellite-based SSTs and the three model fingerprints (the three ensembles).
The “signal” is then defined by calculating trends over different lengths in each
projection. The trends are first calculated over 5 years (from 1982 to 1986) and
then over consecutive lengths of trends (from 1982 to 1987, 1988...2017).

Finally, to determine whether the forced fingerprint is statistically identifiable in
the observations, the signal (the trends with different lengths) is compared to
Gaussian distributions of trends with the same lengths from a preindustrial control
run. The sole presence of internal variability of the climate system in the control
run allows one to verify whether the fingerprint emerged out of the internal
variability. The trends from the control run are calculated in the same manner as in
the observations, but by projecting the annual mean SST’s anomalies from the
control run onto the fingerprints. This is done for the CESM-LE and MPI-GE using
all overlapping trends from all years from their control runs, and for the CMIP5,
following previous studies24–26, by concatenating the last 200 years of the control
run of each model (total of 7000 years). In each control run, the mean value of the
annual mean SST’s is first removed, and the data is detrended at each grid point in
order to avoid any drifts. The noise is then defined as one standard deviation (σ) of
the distribution of each length of trends from the control run of each data set. The
forced fingerprint is statistically identifiable in the observations once the signal
exceeds a significance threshold (p-value) relative to the noise of 5% (1.645σ, using
one-sided Student’s t-test).

Mixed layer temperature equation. The mixed layer temperature equation27 can
be written as follows,

ρcph
∂SST
∂t ¼ Qair � ρcph ug þ uτ

� �
1

a cos θ
∂SST
∂ϕ � ρcph vg þ vτ

� �
1
a
∂SST
∂θ

� ρcphw
∂SST
∂z þ ρcphwQtur

ð1Þ

where, t is time, ϕ and θ are longitude and latitude, respectively, a= 6371 × 103 m is
Earth’s radius, ρ= 1027 kgm−3 is sea-water density, cp= 3985 Jkg−1K−1 is the ocean
specific heat capacity, h= 100 m is a reference North Atlantic mixed layer depth29,
Qair represents the air–sea heat fluxes (i.e., radiative longwave and shortwave fluxes,
as well sensible and latent heat fluxes), ug and vg are the zonal and meridional
geostrophic velocities, respectively, and uτ and vτ are the zonal and meridional
Ekman velocities, respectively. The geostrophic velocities are calculated based on

geostrophic balance, Vg¼ g
f ∇hSSH, where Vg is the horizontal geostrophic velocity

vector, g= 9.81ms−2 is gravity, f ¼ 2Ω sin θ is the Coriolis parameter, where Ω=
7.292 × 10−5 s−1 is Earth’s rotation rate and SSH is the sea surface height. The
Ekman transport in the mixed layer is calculated as hVτ ¼

R
Vτdz ¼ � 1

ρf ´ τ,
where Vτ is the horizontal Ekman velocity vector and τ is the wind stress. The two
rightmost terms on the right hand side of Eq. (1) represent any vertical heat transfers
(advection, entrainment at the base of the mixed layer and turbulent mixing), where
w is the vertical velocity and Qtur is vertical heat transfer through turbulent mixing.
Because the last two terms (vertical heat transfers) are not available, and in order to
close the budget, these terms are calculated as the residual between the SST tendency
(left hand side of Eq. (1)) and the air–sea heat fluxes and horizontal advection terms.

Data availability
The data used in the manuscript is publicly available from NOAA SST (https://www.esrl.
noaa.gov/psd/), HadISST https://www.metoffice.gov.uk/hadobs/hadisst/), CESM-LE
(http://www.cesm.ucar.edu/), MPI-GE (https://www.mpimet.mpg.de/en/grand-
ensemble/), and CMIP5 data (https://esgf-node.llnl.gov/projects/cmip5/).

Code availability
Any codes used in the manuscript available upon request from rc3101@columbia.edu.

Received: 2 October 2019; Accepted: 24 February 2020;

References
1. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/

Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33, L17712 (2006).
2. Smith, D. M. et al. Skilful multi-year predictions of Atlantic hurricane

frequency. Nat. Geosci. 3, 846–849 (2010).
3. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J.

Response of the North Atlantic storm track to climate change shaped by
ocean-atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

4. O’Reilly, C. H., Huber, M., Woollings, T. & Zanna, L. The signature of low-
frequency oceanic forcing in the Atlantic Multidecadal Oscillation. Geophys.
Res. Lett. 43, 2810–2818 (2016).

5. O’Reilly, C. H., Woollings, T. & Zanna, L. The dynamical influence of the
atlantic multidecadal oscillation on continental climate. J. Clim. 30, 7213–7230
(2017).

6. Josey, S. A. et al. The recent atlantic cold anomaly: causes, consequences, and
related phenomena. Ann. Rev. Mar. Sci. 10, 475–501 (2018).

7. Drijfhout, S., van Oldenborgh, G. J. & Cimatoribus, A. Is a decline of AMOC
causing the warming hole above the North Atlantic in observed and modeled
warming patterns? J. Clim. 25, 8373–8379 (2012).

8. Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic meridional overturning
circulation (AMOC) in CMIP5 models: RCP and historical simulations. J.
Clim. 26, 7187–7197 (2013).

9. Marshall, J. et al. The oceanas role in the transient response of climate to
abrupt greenhouse gas forcing. Clim. Dyn 44, 2287–2299 (2015).

10. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic
Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

11. Robson, J., Ortega, P. & Sutton, R. A reversal of climatic trends in the North
Atlantic since 2005. Nat. Geosci. 9, 513–517 (2016).

12. Piecuch, C. G., Ponte, R. M., Little, C. M., Buckley, M. W. & Fukumori, I.
Mechanisms underlying recent decadal changes in subpolar North Atlantic
Ocean heat content. J. Geophys. Res. 122, 7181–7197 (2017).

13. Menary, M. B. & Wood, R. A. An anatomy of the projected North Atlantic
warming hole in CMIP5 models. Clim. Dyn 50, 3063–3080 (2018).

14. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed
fingerprint of a weakening Atlantic Ocean overturning circulation. Nature
556, 191–196 (2018).

15. Gervais, M., Shaman, J. & Kushnir, Y. Mechanisms governing the
development of the North Atlantic warming hole in the CESM-LE future
climate simulations. J. Clim. 31, 5927–5946 (2018).

16. Zanna, L., Khatiwala, S., Gregory, J.M., Ison, J. and Heimbach, P. Global
reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad.
Sci. USA. 116, 1126–1131 (2019).

17. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface
temperature. J. Clim. 20, 5473–5496 (2007).

18. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and
night marine air temperature since the late nineteenth century. J. Geophys.
Res. 108, 4407 (2003).

19. Meyssignac, B. et al. Causes of the regional variability in observed sea level, sea
surface temperature and ocean colour over the period 1993–2011. Surv.
Geophys. 38, 187–215 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15285-x

6 NATURE COMMUNICATIONS |         (2020) 11:1540 | https://doi.org/10.1038/s41467-020-15285-x | www.nature.com/naturecommunications

https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.metoffice.gov.uk/hadobs/hadisst/
http://www.cesm.ucar.edu/
https://www.mpimet.mpg.de/en/grand-ensemble/
https://www.mpimet.mpg.de/en/grand-ensemble/
https://esgf-node.llnl.gov/projects/cmip5/
www.nature.com/naturecommunications


20. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble
project: a community resource for studying climate change in the presence of
internal climate variability. Bull. Am. Meteor. Soc. 96, 1333–1349 (2015).

21. Maher, N. et al. The max planck institute grand ensemble: enabling the
exploration of climate system variability. J. Adv. Mod. Earth Syst. 11, 1–21 (2019).

22. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the
experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).

23. Hasselmann, K. F. On The Signal-to-noise Problem In Atmospheric Response
Studies. 251–259 (Royal Meteorological Society, London, 1979).

24. Santer, B. D. et al. Identifying human influences on atmospheric temperature.
Proc. Natl Acad. Sci. USA. 110, 26–33 (2013).

25. Santer, B. D. et al. Human and natural influences on the changing thermal
structure of the atmosphere. Proc. Natl. Acad. Sci. USA. 110, 17235–17240
(2013).

26. Santer, B. D. et al. Human influence on the seasonal cycle of tropospheric
temperature. Science 361, eaas8806 (2018).

27. Dong, S., Gille, S. T. & Sprintall, J. An assessment of the southern ocean mixed
layer heat budget. J. Clim. 20, 4425 (2007).

28. Hurrell, J. W. et al. The community earth system model: a framework for
collaborative research. Bull. Am. Meteor. Soc. 94, 1339–1360 (2013).

29. de Boyer MonteGut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D.
Mixed layer depth over the global ocean: An examination of profile data and a
profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

Acknowledgements
We are grateful to Ben Santer for his encouragement. LMP is funded, in part, by a grant
from the National Science Foundation to Columbia University.

Author contributions
R.C. downloaded and analyzed the data and together with L.Z and L.M.P discussed and
wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15285-x.

Correspondence and requests for materials should be addressed to R.C.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15285-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1540 | https://doi.org/10.1038/s41467-020-15285-x | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-020-15285-x
https://doi.org/10.1038/s41467-020-15285-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Identifying a human signal in the North Atlantic warming hole
	Results
	The North Atlantic warming hole
	Detecting a human signal in the North Atlantic
	The underlying mechanism of a human signal in North Atlantic

	Discussion
	Methods
	Observations
	Large ensembles
	CMIP5
	Fingerprint analysis
	Mixed layer temperature equation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




