The response of the ozone layer to quadrupled CO₂ concentrations:

implications for climate

Gabriel Chiodo*

Department of Applied Physics and Applied Mathematics,

Columbia University, New York, NY, USA

and Institute for Atmospheric and Climate Science,

ETH Zurich, Zurich, Switzerland

Lorenzo M. Polvani

Department of Applied Physics and Applied Mathematics,

Columbia University, New York, NY, USA

and Lamont-Doherty Observatory, Palisades, NY, USA

and Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA

*Corresponding author address: Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland

E-mail: chiodo@columbia.edu
ABSTRACT

The quantification of the climate impacts exerted by stratospheric ozone changes in abrupt $4 \times \text{CO}_2$ forcing experiments is an important step in assessing the role of the ozone layer in the climate system. Here, we build on our previous work on the change of the ozone layer under $4 \times \text{CO}_2$, and examine the effects of ozone changes on the climate response to $4 \times \text{CO}_2$, using the Whole Atmosphere Community Climate Model. We show that the global mean radiative perturbation induced by the ozone changes under $4 \times \text{CO}_2$ is small, due to nearly total cancellation between high and low latitudes, and between longwave and shortwave fluxes. Consistent with the small global mean radiative perturbation, the effect of ozone changes on the global mean surface temperature response to $4 \times \text{CO}_2$ is negligible. However, changes in the ozone layer due to $4 \times \text{CO}_2$ have a considerable impact on the tropospheric circulation. During boreal winter, we find significant ozone-induced tropospheric circulation responses in both hemispheres. In particular, ozone changes cause an equator-ward shift of the North Atlantic jet, cooling over Eurasia and drying over Northern Europe. The ozone signals generally oppose the direct effects of increased CO$_2$ levels, and are robust across the range of ozone changes imposed in this study. Our results demonstrate that stratospheric ozone changes play a considerable role in shaping the atmospheric circulation response to CO$_2$ forcing in both hemispheres, and should be accounted for in climate sensitivity studies.
1. Introduction

Stratospheric ozone, and its response to anthropogenic forcings, provide an important pathway for the coupling between atmospheric composition and climate (Isaksen et al., 2009). Quantifying the impact of that ozone response on tropospheric and surface climate is a key step towards assessing the importance of an interactive stratospheric ozone chemistry in climate change projections and, more generally, on the role of the ozone layer in the climate system.

It has recently been suggested that stratospheric ozone feedbacks can reduce - by up to 20% - the climate sensitivity (Nowack et al., 2015), quantified as the global mean surface temperature response to abrupt quadrupling of CO$_2$ (hereafter $4\times$CO$_2$). Ozone feedbacks have also been shown to influence the tropospheric circulation response to CO$_2$, such as a reduction in the poleward shift of the SH jet (Chiodo and Polvani, 2017), and a strengthening of the Walker circulation (Nowack et al., 2017). However, the magnitude of these feedbacks appears to be model-dependent. Most notably, the effect of ozone on climate sensitivity ranges between 20% (Nowack et al., 2015), to 7-8% (Dietmüller et al., 2014; Muthers et al., 2014) to nil (Marsh et al., 2016). Understanding the origin of this intermodel spread is of crucial importance towards determining whether ozone chemistry feedbacks can significantly contribute to inter-model spread in climate sensitivity.

One possible source of uncertainty in the magnitude of the ozone chemistry feedback is the model-dependency of the ozone response to CO$_2$, and the accompanying (radiative and/or dynamical) effects. As a first step, we examined the response of the ozone layer to a simple $4\times$CO$_2$ forcing in a recent study (Chiodo et al., 2018) (hereafter refereed to as C18), using four different chemistry-climate models (CCMs). All models showed a decrease in stratospheric ozone concentrations in the tropical lower stratosphere (TLS) (30-100 hPa), and an increase elsewhere in the stratosphere, not unlike the ozone changes seen in future scenarios using anthropogenic green-
house gases (GHGs) and ozone depleting substances (Zubov et al., 2013; WMO, 2014; Douglass et al., 2014). While this pattern is robust, a sizable inter-model spread (up to 40%) was found in the magnitude of the ozone response in the TLS region, which was attributed to spread in tropical upwelling (C18). A similar impact of upwelling on inter-model spread in ozone has also been documented for future CCM projections of ozone recovery (Oman et al., 2010; Douglass et al., 2014). Decreased ozone concentrations in the TLS can induce a substantial radiative perturbation (Hansen et al., 2005), and are thought to be the key element for the strong negative feedback reported by Nowack et al. (2015). There is also uncertainty in the magnitude of the ozone response in high latitudes, although a smaller portion of the spread is explained by dynamical changes there. Overall, spread in lower stratospheric ozone response can cause uncertainty in the radiative and dynamical response, and hence in the magnitude of the ozone feedbacks.

In addition, even if the model’s ozone changes were very similar, different models might have different responses to those changes in ozone, due to differences in their stratospheric zonal wind climatologies (Lin et al., 2017). Both possibilities can be explored, by (i) running one single model using different ozone forcings, or (ii) by running different models with one single ozone forcing. Here, we explore the former.

In this paper, we seek to document the climate implications of changes in the ozone layer under $4\times\text{CO}_2$, along with their inter-model spread, by specifying the different ozone changes reported in C18 in the same climate model. First, we quantify the radiative forcing exerted by ozone and its changes under $4\times\text{CO}_2$. Second, we evaluate the ozone-induced temperature and circulation response, by imposing the ozone changes in ocean-coupled model integrations. The forcing ($4\times\text{CO}_2$) and length of the simulations (100-year) enable us to identify robust responses. Lastly, specifying ozone as external forcing alongside CO$_2$ allows us to gather conclusive evidence on the impact of ozone changes on the climate response to increased CO$_2$ concentrations. These effects
are absent in most CMIP5 simulations, as the vast majority of $4 \times \text{CO}_2$ experiments with those models lack interactive chemistry (Nowack et al., 2018).

2. Models and method

a. Model

In this study we employ the Specified-Chemistry version of the Whole Atmosphere Community Climate Model (SC-WACCM), a stratosphere-resolving version of the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) version 1.2.0. The atmospheric model has a resolution of 1.9° longitude by 2° latitude and 66 levels in the vertical domain, with a model top at 5.96×10^{-6} hPa (~ 140 km), and parameterizations for gravity waves. This atmospheric model is coupled to land, ocean and sea ice components, which are identical to those described in Marsh et al. (2013). In SC-WACCM, ozone as well as other chemical species (NO, O, O$_2$ and CO$_2$) are prescribed throughout the atmosphere, and not calculated interactively (see Smith et al. (2014) for details). Hence, SC-WACCM is designed to be run with prescribed ozone concentrations, and is hence ideally suited for this paper’s purposes, since it allows us to control the ozone concentrations and investigate their impact on the modeled climate.

In addition to SC-WACCM, we perform offline radiative transfer calculations using the Parallel Offline Radiative Transfer, which is part of the Community Earth System Model system (CESM-PORT) (Conley et al., 2013). CESM-PORT uses the same radiative transfer scheme as SC-WACCM, and allows us to calculate the stratosphere-adjusted radiative perturbation induced by ozone, by radiatively equilibrating the temperature profile above the tropopause using the fixed dynamical heating approximation, keeping all tropospheric and surface properties fixed (Conley et al., 2013).
b. Experiments

We start by performing a set of four 100-year long ocean-coupled integrations with SC-WACCM using pre-industrial control (hereafter referred to as "piControl") forcings for the year 1850 (Table 1) and imposing a fixed (seasonally-varying) monthly-mean zonal-mean ozone climatology from the four CCMs documented in C18. These are the interactive chemistry version of the CESM model (WACCM) (Marsh et al., 2013), the Goddard Institute of Space Studies v2 model (GISS-E2-H) (Miller et al., 2014), the GFDL Global Coupled Model CM3 (GFDL) (Donner et al., 2011), and the coupled model for studies of Solar-Climate-Ozone Links (SOCOL) (Stenke et al., 2013).

By running SC-WACCM piControl integrations with an ozone forcing derived from each of these CCMs, we test the impact of differences in the ozone climatology across these models [cf. C18, Figure S2] on the mean climate of SC-WACCM. We find that imposing the piControl ozone from WACCM, GFDL and SOCOL has a negligible effect on the zonal mean temperature and wind climatology simulated by SC-WACCM. On the other hand, imposing the ozone climatology from GISS-E2-H into SC-WACCM leads to a significantly warmer polar stratosphere (by 5 K), a much weaker stratospheric polar vortex (by 6 m/s) and an increase in the frequency of sudden stratospheric warmings (SSWs) in SC-WACCM from 0.4 SSWs year$^{-1}$ (Smith et al., 2014) to 0.7 SSWs year$^{-1}$. This is due to much larger polar cap ozone abundances in GISS-E2-H compared to other CCMs [cf. C18, Figure S2], and the resulting enhanced SW absorption resulting from imposing this ozone climatology in SC-WACCM (not shown). Because of this bias in the circulation, we have decided to discard the ozone forcing from GISS-E2-H, and use only the ozone data-sets from three models in this study: WACCM, GFDL and SOCOL. An additional reason behind this choice is that by keeping the ozone forcings that do not significantly alter the basic state in SC-WACCM,
we obtain a common "reference state" to which the climate change impacts from 4×CO₂ can be compared to.

Then, for each of these three ozone data-sets, we perform two additional runs with SC-WACCM: an abrupt 4×CO₂ using a pre-industrial ozone climatology ("4x" suffix in Table 1), and an abrupt 4×CO₂ using 4×CO₂ ozone ("4xO₃" suffix in Table 1). This yields a total of nine 100-year SC-WACCM runs: three using the ozone from the WACCM model (WPI, W4x and W4xO₃), three using the ozone from the GFDL model (GPI, G4x and G4xO₃) and three using the ozone from the SOCOL model (SPI, S4x and S4xO₃; see Table 1). Each of the three ozone forcing data-sets was obtained from the climate sensitivity runs (i.e. piControl and 4×CO₂) of the corresponding CCMs, and we have already documented those ozone datasets in C18. We prescribe a seasonally-varying monthly-mean zonal-mean (2-D) ozone climatology derived from the three CCMs, and linearly interpolate that ozone field onto the vertical and horizontal grid of SC-WACCM. In all cases, we keep the ozone depleting substances (ODS), and all forcings except CO₂ fixed at 1850 levels. Given the lack of ozone-hole formation in these runs, prescribing monthly-mean zonal-mean ozone is unlikely to introduce the biases documented in modeling studies which have focused on ozone depletion (Neely et al., 2014; Seviour et al., 2016).

Accordingly, the ozone changes with the 4×CO₂ forcing in one set of perturbed integrations (4xO₃), but not in the other (4x). The difference between 4x and PI runs quantifies the climate response to CO₂ in the absence of any ozone changes in SC-WACCM (i.e., W4x minus WPI for WACCM; G4x minus GPI for GFDL, and S4x minus SPI for SOCOL). In contrast, the difference between 4xO₃ and 4x quantifies the impact of ozone changes resulting from 4×CO₂ on the climate system: this is the key aim of the present paper.

To quantify the radiative perturbation arising from ozone changes, we perform offline calculations using CESM-PORT, imposing the ozone changes under 4×CO₂. For each of the three
ozone climatologies (WACCM, GFDL and SOCOL), we compute a reference case with a piControl ozone climatology. Then, we add the ozone response to $4 \times \text{CO}_2$, derived from each of the three models. Each of the CESM-PORT runs is 5 years long, allowing stratosphere to reach radiative equilibrium. Finally, we take differences in the radiative flux at the piControl tropopause between each perturbed and reference case, to obtain the stratosphere-adjusted radiative flux change induced by the ozone response to $4 \times \text{CO}_2$ in each of the CCMs; we will refer to these as R_{adj}.

c. The imposed ozone forcing

We first present the annual mean ozone response to $4 \times \text{CO}_2$ simulated by three coupled CCMs: WACCM, GFDL and SOCOL. More specifically, we analyze the ozone response in the runs using interactive chemistry from these CCMs; this response is used to prescribe ozone in the SC-WACCM and PORT runs. Following C18, the ozone response is quantified as the difference between the piControl and the last 50 years of the $4 \times \text{CO}_2$ runs of each of the CCMs, and is shown in number density units in Fig. 1 for WACCM (a), GFDL (b) and SOCOL (c). For simplicity, we will refer to these ozone changes as $\Delta O_3(4 \times \text{CO}_2)$ throughout the paper. As reported in C18, the pattern of $\Delta O_3(4 \times \text{CO}_2)$ at low latitudes consists of an increase in the upper stratosphere (1-10 hPa) ozone, a decrease in the TLS ozone, and negligible changes in tropospheric ozone (Fig. 1). The upper stratospheric ozone increase is linked to the CO$_2$-induced radiative cooling, which affects the reaction rates involved in the Chapman cycle, resulting in increased ozone concentrations (Haigh and Pyle, 1982; Jonsson et al., 2004). On the other hand, the TLS ozone decrease is linked to enhanced tropical upwelling (Shepherd, 2008). At high latitudes and in both hemispheres ozone increases in the stratosphere (10-100 hPa), with larger increases in the NH. Calculating $\Delta O_3(4 \times \text{CO}_2)$ in number density units rather than mixing ratio [cf. C18, Figure S1] allows us to more directly relate ozone changes with radiative absorption changes (Goody and
Yung, 1989), highlighting stratospheric regions where ozone changes mostly contribute to R_{adj}, and hence its possible climate effects.

As reported in C18, while the pattern of $\Delta O_3(4\times CO_2)$ is quite similar among the models, there are differences in the magnitude. For example, SOCOL shows much larger TLS ozone decrease (Fig. 1c), a feature linked to larger tropospheric warming and upwelling from $4\times CO_2$ in that model (C18). Conversely, the GFDL model shows a larger ozone increase in the extratropical lower stratosphere than the other 2 models (Fig. 1b). As a result of this uncertainty, the stratospheric column ozone (SCO) response in the tropics is uncertain, as some models show weakly positive SCO increases (WACCM) while others (GFDL and SOCOL) show decreases (Fig. 1d-e). Note that a very similar pattern is obtained when using the full (150-year) difference rather than just the last 50-year portion of the $4\times CO_2$ runs, as ozone quickly equilibrates within the first few decades of the $4\times CO_2$ runs.

3. Impact of ozone forcing on radiative fluxes and climate sensitivity

Next, we evaluate the influence of the ozone changes under $4\times CO_2$ discussed in the previous section, by imposing them in one single model (SC-WACCM), and by analyzing the resulting climate change. We start by computing the annual mean zonal-mean R_{adj} resulting from $\Delta O_3(4\times CO_2)$ derived from each of the three CCMs: this is plotted in Fig. 2 for the shortwave (SW, blue), longwave (LW, red) and net (black) components. Recall that the ozone layer strongly absorbs solar radiation, resulting in a reduction of the incident SW flux at the tropopause (Ramanathan and Dickinson, 1979; Lacis et al., 1990). Hence, changes in SCO under $4\times CO_2$ (Fig. 1d-e) will either reinforce or weaken the radiative effect of the piControl ozone, thereby determining the sign of the SW R_{adj} (blue line in Fig. 2). In response to $4\times CO_2$, SCO increases in the polar re-
gions (Fig. 1d-e); this reduces the incident SW flux, leading to a negative SW R_{adj}. In the tropics, SCO changes in the three CCMs are small (Fig. 1d-e), resulting in a small SW R_{adj}.

Conversely, the LW R_{adj} (red line in Fig. 2) is largely influenced by local perturbations in ozone abundances near the tropopause, as these affect the absorption of LW and SW radiation, leading to temperature changes, and consequently in LW emission (Ramanathan and Dickinson, 1979; Lacis et al., 1990). As the largest ozone number density changes are found in the lower stratosphere (Fig. 1), it is the ozone response in this region that largely determines the LW R_{adj}. Ozone decreases in the TLS reduce SW absorption, leading to cooling and consequently a negative LW R_{adj}. Conversely, lower stratospheric ozone increases in the mid and high latitudes exert a positive LW R_{adj}.

Although the LW and SW flux changes are opposite in sign, the net R_{adj} can be locally as large as $0.5 \ Wm^{-2}$. Most importantly, the net R_{adj} (black line in Fig. 2) is negative in the tropics, and positive at high latitudes. As a result of oppositely signed R_{adj} in high and low latitudes, $\langle R_{\text{adj}} \rangle$ (where $\langle \rangle$ denote area-weighted global mean) is small: $-0.07 \ Wm^{-2}$, $0.02 \ Wm^{-2}$ and $-0.08 \ Wm^{-2}$.

This cancellation is robust in all three ozone data-sets, indicating a small radiative perturbation from $\Delta O_3(4\times CO_2)$. Replacing the piControl with the $4\times CO_2$ tropopause in the offline PORT calculations has a small impact on the results (i.e. 5-10 %). Hence, the R_{adj} values shown in Fig. 2 are robust to the tropopause definition.

It has been suggested that most of the climate impacts of ozone changes under $4\times CO_2$ forcing originates from the ozone decrease in the TLS region (Nowack et al., 2015), owing to the large radiative efficiency of perturbations in the cold-trap region (Hansen et al., 2005). We confirm this feature here across all three ozone data-sets; it is largest in SOCOL, consistent with the larger TLS decrease in that ozone (Fig. 1c). However, ozone in the extratropical lower stratosphere (30°-50°N) increases in all models, including SOCOL, leading to positive LW R_{adj} there,
which counteracts the negative LW R_{adj} in the tropics. As a result, the radiative perturbation from $\Delta O_3(4 \times CO_2)$ is negligible, even in ozone data-sets exhibiting larger changes in the lower stratosphere, such as SOCOL.

While R_{adj} gives an indication of the potential effects on global mean surface temperature $\langle T_s \rangle$ (Myhre et al., 2013), it need not be a good predictor of the $\langle T_s \rangle$ equilibrium response, especially in the case of spatially and vertically non-homogeneous forcing agents, such as ozone (see, e.g., Joshi et al. (2003); Stuber et al. (2005)). To quantify the effects of ozone on climate sensitivity, simulations with coupled ocean are needed.

So, we now turn to the ocean-coupled SC-WACCM integrations, to establish if ozone changes due to $4 \times CO_2$ alter the climate sensitivity. The $\langle T_s \rangle$ evolution for the three sets of SC-WACCM integrations listed in Table 1 is shown in Fig. 3. Here, we show the piControl integrations (dash-dotted), the $4 \times CO_2$ integrations with piControl ozone (dotted lines) and the $4 \times CO_2$ integrations with ozone from $4 \times CO_2$ (bold lines): the three colors indicate WACCM ozone (blue), GFDL ozone (green) and SOCOL ozone (red). We see that the piControl integrations (WPI, GPI and SPI) are virtually identical. More importantly, the temperature increase simulated after 100 years is identical, whether one uses piControl ozone or $4 \times CO_2$ ozone (Fig. 3a). This same result is also seen in individual seasons (e.g., DJF and JJA, not shown), and suggests that the ozone forcing does not alter the climate sensitivity in SC-WACCM, consistent with the small $\langle R_{adj} \rangle$ shown in Fig. 2. From this, we can conclude that model-dependencies in the ozone feedback seen in earlier studies (Dietmüller et al., 2014; Muthers et al., 2014; Nowack et al., 2015; Marsh et al., 2016) are likely to be due to differences in the models, and not due to differences in $\Delta O_3(4 \times CO_2)$.

According to these results, any feedbacks resulting from $\Delta O_3(4 \times CO_2)$ do not affect the global mean surface temperature of our model, confirming previous findings (Marsh et al., 2016), and expanding on them, as these results hold for two additional ozone data-sets showing larger ozone
changes in the TLS (and consequently larger negative R_{adj}), notably SOCOL. Climate sensitivity, quantified in terms of global mean surface temperature response to CO$_2$, is an important metric for model inter-comparisons, as it captures many aspects of a climate model’s response to CO$_2$ forcing (Knutti and Hegerl, 2008; Knutti et al., 2017). However, the atmospheric circulation response exerts a larger control on regional aspects of climate change than global mean surface temperature (Grise and Polvani, 2014a; Shepherd, 2014). Hence, we next evaluate the impact of $\Delta O_3(4\times$CO$_2)$ on the modeled atmospheric circulation response to 4×CO$_2$ in SC-WACCM, in other words the impact of ozone changes on the “dynamical sensitivity” (Grise and Polvani, 2014a). It has been shown that dynamical sensitivity correlates poorly with climate sensitivity in the mid-latitudes (Grise and Polvani, 2016).

4. Impact of ozone forcing on the atmospheric circulation response to CO$_2$

a. Temperature

We start by examining the annual mean, zonal-mean temperature response from SC-WACCM in Fig. 4. In the top row, we plot the response to 4×CO$_2$ alone with ozone fixed at piControl levels (Figs. 4a-c). As expected, the 4×CO$_2$ responses in SC-WACCM exhibit the characteristic pattern of tropospheric warming and stratospheric cooling; this is nearly identical in the three runs, even though these use different piControl ozone climatologies (Fig. 4a-c), suggesting that the structure of the temperature response to 4×CO$_2$ in SC-WACCM is largely insensitive to inter-model differences in the piControl ozone climatology.

Next, we quantify the influence of $\Delta O_3(4\times$CO$_2)$ on the response in SC-WACCM, by differencing the three sets of 4×CO$_2$ integrations, using 4×CO$_2$ (W4xO$_3$, G4xO$_3$, S4xO$_3$) vs piControl ozone (W4x, G4x, S4x), as shown in Figs. 4d-f. It is clear that $\Delta O_3(4\times$CO$_2)$ induces cooling in
the TLS and warming elsewhere in the stratosphere (Fig. 4d-f). In the tropics, the structure is coherent with the pattern of $\Delta O_3(4\times CO_2)$ (Fig. 1). The ozone-induced TLS cooling ranges between 2 K and 4 K in the runs using WACCM and SOCOL ozone forcings, respectively (Figs. 4d-f), consistent with the spread across these data-sets in the magnitude of ozone decrease in that region (Fig. 1). This indicates that the ozone-induced TLS cooling is largely a result of reduced SW absorption. At high latitudes on the other hand, the spread in the lower stratospheric warming is not as strongly correlated with the spread in ozone forcing, suggesting that dynamical heating (which is less linearly related to ozone abundancies than SW absorption) plays a larger role.

Via its effects on TLS temperature, $\Delta O_3(4\times CO_2)$ also causes a reduction in stratospheric water vapor concentrations in SC-WACCM (not shown); this ranges between 10% in the runs using WACCM ozone, 15% in those using GFDL ozone, and 25% in those using SOCOL ozone. Hence, changes in the stratospheric water vapor feedback induced by ozone (Stuber et al., 2001, 2005; Dietmüller et al., 2014; Nowack et al., 2015) are captured in our SC-WACCM runs, but their effects on tropospheric and surface climate are negligible. The key result here is that in the lower stratosphere, the temperature response to $\Delta O_3(4\times CO_2)$ (Fig. 4d-f) is of same order of magnitude as the response to CO_2 in this region (Fig. 4a-c), indicating that ozone can substantially alter the CO_2-induced stratospheric cooling. This is consistent with the impact of ozone forcing in RCP scenarios documented in Maycock (2016). In the stratosphere (30-70 hPa), the pattern of temperature change due to $\Delta O_3(4\times CO_2)$ changes sign between tropics and high latitudes, while the temperature response to $4\times CO_2$ monotonically increases with height, with little variation across different latitudes. CO_2 induces a change in the meridional temperature gradient, but only in the lowermost extratropical stratosphere (100-300 hPa).
289 *b. Zonal wind*

290 The temperature response to $\Delta O_3(4 \times CO_2)$ implies a reduction in the meridional temperature
291 gradient near the tropopause, which has major consequences for the atmospheric circulation in
292 SC-WACCM, as shown next. The annual mean, zonal-mean, zonal wind response to $4 \times CO_2$ in
293 the absence of ozone change (W4x, G4x, S4x) is plotted in Fig. 5a-c. In response to $4 \times CO_2$, we
294 see the well-known strengthening of the westerlies in the stratosphere, and the poleward migration
295 of the tropospheric mid-latitude jet in both hemispheres, as indicated by the dipole of positive
296 (negative) anomalies of 0.5-1 m/s poleward (equatorward) of the climatological location of the
297 wind maximum at 850-500 hPa (Fig. 5a-c). This feature is seen in both hemispheres, although the
298 largest signal is in the Southern Hemisphere (SH), consistent with the CMIP5 models (Barnes and
300 Let us now consider the impact of ozone changes from $4 \times CO_2$, shown in Fig. 5d-f, starting from
301 the SH. An important result of our study is that $\Delta O_3(4 \times CO_2)$ leads to zonal-mean zonal wind
302 anomalies of opposite sign in the stratosphere (i.e. easterlies), which extend to the troposphere in
303 the SH in the annual mean (Fig. 5d-f). This SH signal is largest during DJF (Fig. 5g-i), suggesting
304 a reduction of the Austral circulation response to CO_2 in that season, as reported in Chiodo and
305 Polvani (2017). This SH effect is robust across different ozone data-sets, although the magnitude
306 depends on the specific ozone data-set, being largest for SOCOL ozone (Fig. 5i) and smallest for
307 the WACCM ozone (Fig. 5g). In the annual mean, SC-WACCM integrations with piControl ozone
308 climatology under $4 \times CO_2$ exhibit a southward (i.e. poleward) shift in the SH jet location (calcu-
309 lated based on zonal-mean zonal wind at 850 hPa) of 0.9-1.1° (Table 2). When ozone changes are
310 included, a smaller shift (by 20-50%) is found (Table 2).
More importantly, in DJF, even in the NH ozone changes cause a significant change in zonal-mean zonal wind in SC-WACCM (Fig. 5g-i). The seasonality of the NH tropospheric circulation response is consistent with the seasonality of Arctic ozone, whose increase in response to $4 \times CO_2$ in the coupled CCMs peaks around boreal winter and spring [cf. C18, Figure 8]. Jet shifts in the SH are well known to be caused by ODS-induced ozone changes (WMO, 2014). Unlike the case of ODS-induced ozone depletion, we find here that ozone changes induced by CO$_2$ are capable of shifting the mid-latitude jet even in the NH: this is a key result of this paper.

Unlike the SH, the tropospheric circulation in the NH is less zonally symmetric. Hence, zonal averaging may mask zonally asymmetric features (e.g., Barnes and Polvani (2013); Grise and Polvani (2014b)). Thus, we analyze next the near-surface (850 hPa) zonal wind response to CO$_2$ during boreal winter in SC-WACCM (Fig. 6). First, we see that $4 \times CO_2$ leads to positive (negative) zonal wind anomalies on the poleward (equatorward) flank of the Pacific jet located at 40°N and in the Atlantic basin near 50°N (Fig. 6a-c). Most importantly, $\Delta O_3(4 \times CO_2)$ leads to the opposite pattern (Fig. 6d-f), consisting of negative (positive) anomalies on the poleward (equatorward) side of the mid-latitude jets. Over the North Atlantic, this pattern is robust across all three ozone forcings, and is associated with positive Sea Level Pressure (SLP) anomalies over the Arctic, which are reminiscent of a negative North Atlantic Oscillation (NAO) pattern (not shown).

Contrasting the jet latitude in the model runs, we find a poleward shift of the North Atlantic jet in response to $4 \times CO_2$ of 1.4-1.9° without ozone changes (see Table 2). The SC-WACCM integrations using the ozone forcing from $4 \times CO_2$ simulate a much smaller poleward shift, ranging between 0.8° (WACCM ozone forcing) and 0.1° (SOCOL ozone forcing). Hence, $\Delta O_3(4 \times CO_2)$ substantially reduces the poleward shift of the Atlantic jet due to CO$_2$ in SC-WACCM, with the reduction ranging between ∼ 50% (WACCM ozone forcing) and a near complete cancellation (SOCOL ozone forcing). Over the North Pacific, a similar reduction is seen, with the exception
of the runs forced with GFDL ozone (Table 2). These results are consistent with the ozone-
induced temperature perturbation near the tropopause, and the resulting change in the meridional
temperature gradient at these levels, being largest in the S4xO3 run (Fig. 4f) due to larger TLS
ozone decrease in the SOCOL model (Fig. 1c).

c. Surface temperature and precipitation patterns

Are these changes in the NH tropospheric circulation also associated with changes in regional
climate? To answer this question, we turn to the DJF surface temperature response to CO2 and
\(\Delta O_3(4 \times CO_2)\), which is plotted in Fig. 7. In the absence of ozone changes, the \(4 \times CO_2\) forcing
leads to warming of up to 8 K over the Arctic, northern Eurasia and North America (Fig. 7a-c).
Interestingly, \(\Delta O_3(4 \times CO_2)\) leads to cooling over wide parts of Eurasia (Fig. 7d-f) up to 1.6 K in
the SOCOL ozone run, i.e. a 20% reduction of the warming due to \(4 \times CO_2\). This local temperature
change is consistent with the southward shift of the North Atlantic jet induced by \(\Delta O_3(4 \times CO_2)\)
shown in Fig. 6d-f, resulting in reduced heat advection in Eurasia (Hurrell et al., 2003). A similar
pattern is also typically observed in the aftermath of sudden stratospheric warmings (Baldwin and
Dunkerton, 2001; Charlton and Polvani, 2007), consistent with easterly wind anomalies in the NH
polar stratosphere (Fig. 5g-i).

Changes in the near-surface zonal wind over the North Atlantic are typically associated with
changes in precipitation: these are plotted in Fig. 8. In response to CO2 alone, we find drying over
the subtropical Atlantic and Mediterranean basin, and wetting northward of 45°N (Fig. 8a-c); this
is in agreement with CMIP5 model projections in high emission scenarios [cf. Collins et al. (2013),
Figure 12.22]. Again, \(\Delta O_3(4 \times CO_2)\) leads to the opposite pattern: drying over the northern portion
of the North Atlantic and parts of Scandinavia, and wetting over central/southern Europe, although
the location and magnitude of the peak anomalies varies among the experiments. The precipitation
changes can be locally as large as 0.4-0.6 mm/day, which constitutes a large fraction (∼40%) of the local precipitation response to 4×CO\textsubscript{2}. Overall, these signals are consistent with surface climate responses to Arctic ozone variability reported in earlier studies (Smith and Polvani, 2014; Calvo et al., 2015; Ivy et al., 2017).

These results suggest that the ozone layer, via its response to 4×CO\textsubscript{2}, can significantly alter the tropospheric circulation in both hemispheres. In a nutshell: increases in CO\textsubscript{2} concentrations cause an acceleration of the Brewer-Dobson circulation, as well as stratospheric cooling. In the lower stratosphere, these result in a decrease in ozone abundances in the tropics and an increase in the high-latitudes. These ozone responses lead to a reduction of the meridional temperature gradient near the tropopause on both sides of the equator, which weakens the stratospheric polar vortex. In the NH, this is in turn associated with surface signals over the Atlantic basin, such as a southward displacement of the Atlantic jet, cooling over Eurasia and drying over portions of Northern Europe. Hence, changes in the ozone layer due to 4×CO\textsubscript{2} prove to be a strong mitigating factor to increasing CO\textsubscript{2}.

Presently, plans for the Coupled Model Intercomparison Project 6 (CMIP6) indicate that models which do not interactively simulate ozone chemistry (i.e. the vast majority) will run 4xCO\textsubscript{2} experiments using prescribed pre-industrial ozone concentrations (Eyring et al., 2016), and may thus neglect the effects documented in this paper. It is also worth noting that the stratospheric ozone changes under 4×CO\textsubscript{2} documented in this paper are similar in magnitude to those occurring in 2080-2100 under the RCP8.5 scenario, due to concomitant influence of decreasing ODS emissions in the latter (not shown). Hence, the changes in surface climate documented in this paper are highly relevant to more realistic climate change scenarios, to the degree that climate responses are linear to the forcing magnitude.
5. Discussion and Conclusions

We have investigated the climatic implications of the ozone response to an abrupt quadrupling of CO$_2$, by imposing the range of ozone responses ΔO$_3$(4×CO$_2$) across three different coupled CCMs in one climate model, SC-WACCM. The main results are as follows:

- The pattern of ΔO$_3$(4×CO$_2$) produces a negligible global-mean R_{adj}. This is largely due to opposing contributions of LW and SW fluxes, and cancellation between negative and positive R_{adj} in low and high latitudes.

- Consistent with the small global mean R_{adj}, ΔO$_3$(4×CO$_2$) does not impact the climate sensitivity of SC-WACCM. This also holds for ozone data-sets derived from CCMs showing a large negative tropical R_{adj}, such as SOCOL.

- In spite of its small impact on global mean surface temperature, ΔO$_3$(4×CO$_2$) considerably affects stratospheric temperatures, reducing the meridional temperature gradient in the lower stratosphere.

- Ozone-induced stratospheric temperature changes affect the tropospheric circulation, resulting in an equatorward shift of the SH mid-latitude jet in all seasons, which opposes the (CO$_2$-induced) poleward shift.

- In boreal winter, ΔO$_3$(4×CO$_2$) also substantially affects the circulation in the NH, resulting in changes to Eurasian surface climate, such as cooling and drying over Northern Europe. These effects generally oppose those caused by increased CO$_2$ levels, and are robust across the three different ozone forcing data-sets used in this study.

In this paper, we have imposed the ozone response to CO$_2$ as a “forcing” in climate sensitivity experiments. As shown in previous studies (Nowack et al., 2015, 2018), this ”semi-offline” ap-
Approach is useful to reproduce the behavior of a chemistry climate model using a model without interactive ozone chemistry. One may, however, question the validity of this approach. That is, does SC-WACCM reproduce the response to $4 \times \text{CO}_2$ simulated by the model configuration with interactive ozone chemistry (WACCM)? To answer this, we compared the $4 \times \text{CO}_2$ integration from SC-WACCM against the WACCM integration with interactive ozone documented in Chiodo and Polvani (2017), and found that the SC-WACCM integrations with $4 \times \text{CO}_2$ and piControl ozone ($W4x$ and $W4xO_3$) are indistinguishable from WACCM $4 \times \text{CO}_2$ integrations, both in global mean temperature, as shown in Marsh et al. (2016), and also in their simulated circulation response (not shown). Hence, in agreement with Nowack et al. (2015, 2018), prescribing the ozone as a forcing in a model without interactive chemistry, as we do in this paper, is a valid approach to reproduce the climate of a CCM, and thus any changes induced by the ozone response to $4 \times \text{CO}_2$.

Confirming earlier studies based on this same model (Marsh et al., 2016; Chiodo and Polvani, 2017), we find that ozone, as it responds to $4 \times \text{CO}_2$, does not reduce the projected global-mean surface temperature increase. This also holds for ozone forcings exhibiting larger changes in the TLS, such as SOCOL. Due to large cancellation between R_{adj} at high and low latitudes, ozone is unlikely to induce a sizable effect on global mean temperature projections. Hence, uncertainty in the ozone response is unlikely to explain model-dependencies in the ozone feedback documented in earlier studies (Dietmüller et al., 2014; Nowack et al., 2015; Marsh et al., 2016).

The caveat here is that our results are based on a single model (SC-WACCM). This model, like its interactive chemistry counterpart (WACCM) may not be realistically sensitive to negative feedbacks induced by ozone, e.g. due to missing (or weaker) interaction between ozone and other physical feedbacks, such as clouds and/or lapse-rate. The next step, we suggest, is to study the impact of the same ozone forcing in different climate models. Also, the effects of zonal asymmetries of ozone on the circulation needs to be carefully quantified; this will be of special interest for the
SH, given the larger asymmetries there in the modeled ozone response in $4 \times \text{CO}_2$ [cf. C18, Figure 10] and also the presence of large depletion and recovery trends (Crook et al., 2008; Waugh et al., 2009). These issues will be investigated in a follow-up study.

In spite of these caveats, our results demonstrate that the ozone layer can significantly reduce the dynamical sensitivity, quantified in terms of the poleward shift of the mid-latitude jet in response to anthropogenic greenhouse-gases (e.g. Grise and Polvani (2014a)). Therefore, it is important to produce CO$_2$-consistent ozone forcing data-sets for models without interactive chemistry, as suggested by Eyring et al. (2013). Moreover, it would also be desirable to include the CCM-related uncertainty in projected CO$_2$-induced changes in the ozone layer.

Acknowledgments. This work is funded, in part, by a grant from the U.S. National Science Foundation to Columbia University. G.C. is also funded by a cooperative agreement between NASA and Columbia University, and by the SNF Ambizione grant PZ00P2-180043.

References

6. Figures and tables
LIST OF TABLES

Table 1. List of SC-WACCM integrations analyzed in this study. All experiments are performed with coupled land, ocean and sea-ice components, and are 100-year long. 29

Table 2. $4 \times CO_2$ response in latitudinal position of the mid-latitude jet in SC-WACCM, calculated based on 850 hPa zonal mean zonal wind, for SH annual mean (first column), SH in DJF (second column), North Atlantic (0°-90°N, 60°W-0°) in DJF (third column), and North Pacific (0°-90°N, 135°E-125°W) in DJF (fourth column). Negative (positive) numbers mean southward (northward) shift in degrees latitude; confidence intervals indicate the standard deviation of the mean. 30
<table>
<thead>
<tr>
<th>experiment</th>
<th>CO₂ (ppmv)</th>
<th>O₃ forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPI</td>
<td>287</td>
<td>piControl</td>
</tr>
<tr>
<td>W₄x</td>
<td>1148</td>
<td>piControl</td>
</tr>
<tr>
<td>W₄xO₃</td>
<td>1148</td>
<td>4×CO₂</td>
</tr>
<tr>
<td>GPI</td>
<td>287</td>
<td>piControl</td>
</tr>
<tr>
<td>G₄x</td>
<td>1148</td>
<td>piControl</td>
</tr>
<tr>
<td>G₄xO₃</td>
<td>1148</td>
<td>4×CO₂</td>
</tr>
<tr>
<td>SPI</td>
<td>287</td>
<td>piControl</td>
</tr>
<tr>
<td>S₄x</td>
<td>1148</td>
<td>piControl</td>
</tr>
<tr>
<td>S₄xO₃</td>
<td>1148</td>
<td>4×CO₂</td>
</tr>
</tbody>
</table>

TABLE 1. List of SC-WACCM integrations analyzed in this study. All experiments are performed with coupled land, ocean and sea-ice components, and are 100-year long.
<table>
<thead>
<tr>
<th>difference</th>
<th>SH ANN (°)</th>
<th>SH DJF (°)</th>
<th>North Atlantic DJF (°)</th>
<th>North Pacific DJF (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W4x - WPI</td>
<td>-0.9 ± 0.1</td>
<td>-1.6 ± 0.1</td>
<td>+1.7 ± 0.3</td>
<td>+3.1 ± 0.4</td>
</tr>
<tr>
<td>W4xO3 - WPI</td>
<td>-0.7 ± 0.1</td>
<td>-1.3 ± 0.1</td>
<td>+0.8 ± 0.3</td>
<td>+2.3 ± 0.3</td>
</tr>
<tr>
<td>G4x - GPI</td>
<td>-1.1 ± 0.1</td>
<td>-1.8 ± 0.1</td>
<td>+1.9 ± 0.3</td>
<td>+3.1 ± 0.4</td>
</tr>
<tr>
<td>G4xO3 - GPI</td>
<td>-0.8 ± 0.1</td>
<td>-1.4 ± 0.1</td>
<td>+0.7 ± 0.3</td>
<td>+3.5 ± 0.3</td>
</tr>
<tr>
<td>S4x - SPI</td>
<td>-1.1 ± 0.1</td>
<td>-1.8 ± 0.1</td>
<td>+1.4 ± 0.4</td>
<td>+2.6 ± 0.3</td>
</tr>
<tr>
<td>S4xO3 - SPI</td>
<td>-0.4 ± 0.1</td>
<td>-1.2 ± 0.1</td>
<td>+0.1 ± 0.3</td>
<td>+2.0 ± 0.2</td>
</tr>
</tbody>
</table>

Table 2. 4×CO₂ response in latitudinal position of the mid-latitude jet in SC-WACCM, calculated based on 850 hPa zonal mean zonal wind, for SH annual mean (first column), SH in DJF (second column), North Atlantic (0°-90°N, 60°W-0°) in DJF (third column), and North Pacific (0°-90°N, 135°E-125°W) in DJF (fourth column). Negative (positive) numbers mean southward (northward) shift in degrees latitude; confidence intervals indicate the standard deviation of the mean.
Fig. 1. Annual mean zonal mean ozone response to $4\times$CO$_2$ (ΔO$_3$(4xCO$_2$)), in number density units (molec/cm3), for the coupled runs from (a) WACCM, (b) GFDL and (c) SOCOL. The thick violet line identifies the thermal tropopause for the piControl experiment. Non-significant differences (at the 95% confidence level) are stippled. (d-e) Annual mean zonal mean response in the stratospheric ozone column in (d) WACCM, (e) GFDL, and (f) SOCOL model. Units DU.

Fig. 2. Annual mean zonal mean stratosphere-adjusted radiative flux change at the tropopause (R_{adj}), induced by ΔO$_3$(4xCO$_2$) in (a) WACCM, (b) GFDL, and (c) SOCOL. The red and blue lines show the LW and SW (R_{adj}), respectively, while the black line identifies the net forcing. Numbers indicate the global area-weighted mean $\langle R_{adj} \rangle$. Units W/m2.

Fig. 3. (a) Time-series of global area-weighted mean surface temperature $\langle T_s \rangle$ in the nine SC-WACCM model integrations listed in Table 1. The dash-dotted lines identify the piControl integrations, specifying the piControl ozone climatology obtained from the WACCM (WPI), GFDL (GPI) and SOCOL (SPI) model runs documented in C18. The dotted and thick lines identify the $4\times$CO$_2$ integrations using SC-WACCM, specifying the piControl and $4\times$CO$_2$ ozone climatology, respectively, obtained from WACCM (W4x and W4xO$_3$), GFDL (G4x and G4xO$_3$), and SOCOL (S4x and S4xO$_3$). Units K.

Fig. 4. (a-c) Annual mean zonal mean temperature response to $4\times$CO$_2$, in SC-WACCM integrations imposing the piControl ozone climatology from (a) WACCM (W4x-WPI), (b) GFDL (G4x-GPI) and (c) SOCOL (S4x-SPI). (d-e) Change in zonal mean temperature in SC-WACCM, induced by ΔO$_3$(4xCO$_2$) in (d) WACCM (W4xO$_3$-W4x), (e) GFDL (G4xO$_3$-G4x), and (f) SOCOL (S4xO$_3$-S4x). Non-significant differences (at the 95% confidence level) are stippled. Units K.

Fig. 5. As in Fig. 4, for annual mean zonal-mean zonal wind from the SC-WACCM runs. Black contour lines show climatological zonal mean zonal wind in each SC-WACCM piControl experiment using piControl ozone climatologies, i.e. WPI for WACCM (panels a,d), GPI for GFDL (panels b,e), and SPI for SOCOL (panels c,f)). Also shown is the boreal winter (DJF) mean response to ΔO$_3$(CO$_2$) simulated by SC-WACCM (panels g-i). Units m/s. Non-significant differences (at the 95% confidence level) are stippled.

Fig. 6. (a-c) Boreal winter (DJF) mean response to $4\times$CO$_2$ in zonal wind at 850 hPa in SC-WACCM integrations imposing piControl ozone climatology from the (a) WACCM, (b) GFDL and (c) SOCOL model. (d-e) Change in zonal wind at 850 hPa in SC-WACCM, induced by ΔO$_3$(4xCO$_2$) in (d) WACCM, (e) GFDL, and (f) SOCOL model. Green contour lines show the climatological zonal wind in each piControl experiment. Units m/s. Non-significant differences (at the 95% confidence level) are stippled.

Fig. 7. (a-c) Boreal winter (DJF) mean surface temperature response to $4\times$CO$_2$ in SC-WACCM integrations imposing the piControl ozone climatology from the (a) WACCM, (b) GFDL and (c) SOCOL model. (d-e) Change in surface temperature in SC-WACCM, induced by ΔO$_3$(4xCO$_2$) in (d) WACCM, (e) GFDL, and (f) SOCOL. Units K. Non-significant differences (at the 95% confidence level) are stippled.

Fig. 8. (a-c) Boreal winter (DJF) mean precipitation response to $4\times$CO$_2$ over the North Atlantic and Eurasia in SC-WACCM integrations imposing the piControl ozone climatology from (a) WACCM, (b) GFDL and (c) SOCOL. (d-e) Change in precipitation in SC-WACCM,
induced by $\Delta O_3(4\times CO_2)$ in (d) WACCM, (e) GFDL, and (f) SOCOL. Units mm/day.

Non-significant differences (at the 95% confidence level) are stippled.
\(\Delta O_3(4xCO_2) \)

Fig. 1. Annual mean zonal mean ozone response to 4\(\times \)CO\(_2\) (\(\Delta O_3(4xCO_2) \)), in number density units (molec/cm\(^3\)), for the coupled runs from (a) WACCM, (b) GFDL and (c) SOCOL. The thick violet line identifies the thermal tropopause for the piControl experiment. Non-significant differences (at the 95\% confidence level) are stippled. (d-e) Annual mean zonal mean response in the stratospheric ozone column in (d) WACCM, (e) GFDL, and (f) SOCOL model. Units DU.
Fig. 2. Annual mean zonal mean stratosphere-adjusted radiative flux change at the tropopause (R_{adj}), induced by $\Delta O_3(4xCO_2)$ in (a) WACCM, (b) GFDL, and (c) SOCOL. The red and blue lines show the LW and SW (R_{adj}), respectively, while the black line identifies the net forcing. Numbers indicate the global area-weighted mean $\langle R_{adj}\rangle$. Units W/m2.
Fig. 3. (a) Time-series of global area-weighted mean surface temperature \(\langle T_s \rangle\) in the nine SC-WACCM model integrations listed in Table 1. The dash-dotted lines identify the piControl integrations, specifying the piControl ozone climatology obtained from the WACCM (WPI), GFDL (GPI) and SOCOL (SPI) model runs documented in C18. The dotted and thick lines identify the 4×CO₂ integrations using SC-WACCM, specifying the piControl and 4×CO₂ ozone climatology, respectively, obtained from WACCM (W4x and W4xO₃), GFDL (G4x and G4xO₃), and SOCOL (S4x and S4xO₃). Units K
Fig. 4. (a-c) Annual mean zonal mean temperature response to $4\times$CO$_2$, in SC-WACCM integrations imposing the piControl ozone climatology from (a) WACCM (W4x-WPI), (b) GFDL (G4x-GPI) and (c) SOCOL (S4x-SPI). (d-e) Change in zonal mean temperature in SC-WACCM, induced by ΔO$_3$(4xCO$_2$) in (d) WACCM (W4xO$_3$-W4x), (e) GFDL (G4xO$_3$-G4x), and (f) SOCOL (S4xO$_3$-S4x). Non-significant differences (at the 95% confidence level) are stippled. Units K.
Fig. 5. As in Fig. 4, for annual mean zonal-mean zonal wind from the SC-WACCM runs. Black contour lines show climatological zonal mean zonal wind in each SC-WACCM piControl experiment using piControl ozone climatologies, i.e. WPI for WACCM (panels a,d), GPI for GFDL (panels b,e), and SPI for SOCOL (panels c,f)). Also shown is the boreal winter (DJF) mean response to ΔO_3(CO$_2$) simulated by SC-WACCM (panels g-i). Units m/s. Non-significant differences (at the 95% confidence level) are stippled.
Fig. 6. (a-c) Boreal winter (DJF) mean response to 4×CO$_2$ in zonal wind at 850 hPa in SC-WACCM integrations imposing piControl ozone climatology from the (a) WACCM, (b) GFDL and (c) SOCOL model. (d-e) Change in zonal wind at 850 hPa in SC-WACCM, induced by ∆O$_3$(4×CO$_2$) in the (d) WACCM, (e) GFDL, and (f) SOCOL model. Green contour lines show the climatological zonal wind in each piControl experiment. Units m/s. Non-significant differences (at the 95% confidence level) are stippled.
Fig. 7. (a-c) Boreal winter (DJF) mean surface temperature response to $4 \times CO_2$ in SC-WACCM integrations imposing the piControl ozone climatology from the (a) WACCM, (b) GFDL and (c) SOCOL model. (d-e) Change in surface temperature in SC-WACCM, induced by $\Delta O_3(4xCO_2)$ in (d) WACCM, (e) GFDL, and (f) SOCOL. Units K. Non-significant differences (at the 95% confidence level) are stippled.
Fig. 8. (a-c) Boreal winter (DJF) mean precipitation response to $4\times CO_2$ over the North Atlantic and Eurasia in SC-WACCM integrations imposing the piControl ozone climatology from (a) WACCM, (b) GFDL and (c) SOCOL. (d-e) Change in precipitation in SC-WACCM, induced by $\Delta O_3(4xCO_2)$ in (d) WACCM, (e) GFDL, and (f) SOCOL. Units mm/day. Non-significant differences (at the 95% confidence level) are stippled.