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Results from a series of simulations of unforced turbulence evolving within a shallow layer of fluid
on a rotating sphere are presented. Simulations show that the turbulent evolution in the spherical
domain is strongly dependent on numerical and physical conditions. The independent eftégts of
(hypendissipation and initial spectrung?) rotation rate, and3) Rossby deformation radius are
carefully isolated and studied in detail. In the nondivergent and nonrotating case, an initially
turbulent flow evolves into a vorticity quadrupole at long times, a direct consequence of angular
momentum conservation. In the presence of sufficiently strong rotation, the nondivergent long-time
behavior yields a field dominated by polar vortices—as previously reported by Yoden and Yamada.
In contrast, the case with a finite deformation radius., the full spherical shallow-water system
spontaneously evolves toward a banded configuration, the number of bands increasing with the
rotation rate. A direct application of this shallow-water model to the Jovian atmosphere is discussed.
Using standard values for the planetary radius and rotation, we show how the initially turbulent flow
self-organizes into a potential vorticity field containing zonal structures, where regions of steep
potential vorticity gradients(jets separate relatively homogenized bands. Moreover, Jovian
parameter values in our simulations lead to a strong vorticity asymmetry, favoring anticyclonic
vortices—in further agreement with observations. 1896 American Institute of Physics.
[S1070-663(96)02004-9

I. INTRODUCTION geometry, and free surface variations. Specifically, we are
interested in their respective roles on the morphology of self-
In recent years, much progress has been made in therganizing physical structures thgtontaneouslgrise in the
study of high Reynolds number, two-dimensiok2iD) tur-  turbulent shallow-water system.
bulence via direct numerical integration. The computational ~ Owing to differences in emphasis between the geophys-
approach provides a direct test of theoretical predictions anital and theoretical turbulence communities, a somewhat
offers a first step toward understanding turbulent phenomengonfusing nomenclature is found in the literature. In order to
relevant to atmospheric and ocean dynamics. However, exlarify the terminology and locate the present work with re-
cept for a few investigations, past 2-D turbulence simulationgpect to previous studies, a number of relevant cases and
have been mainly restricted to doubly periodic planar dotheir associated physical parameters are summarized in Table
mains with rigid surface, often without differential rotation. | (the role played by the different parameters, as will become
While useful for studying scaling-symmetry breaking due toclear, is discussed in the ensuing sections and is the primary
coherent structure formation or inverse cascade arrest due oncern of this papgrFor the case of planar 2-D turbulence,
anisotropic conditions, the rigid surface and planar restrica wealth of investigations is availabie’ while its spherical
tions are severely limiting for geophysical applications. Incounterpart has received little attentfSi® Similarly,
this paper, we proceed one step further and present resulgsplane turbulence has been well studfed* (though, al-
from simulations of rotatingshallow-waterdecaying turbu-  most exclusively under forced conditionsvhile the rotating
lence insphericalgeometry. spherical case has only been recently numerically
The shallow-water model represents a thin, homogesimulated®>1®°As for shallow water, only three studies of
neous layer of fluid with a free surface, which moves undethe f plane case are availabl&:*°To the best of our knowl-
the influence of gravitational and Coriolis forces. The modeledge, there has been no past study of shallow-water turbu-
in spherical geometry incorporates the effects of both differ{ence in the spherical geometry. This work is partially aimed
ential rotation(g effecy and stratificationthrough a finite  at filling this gap.
deformation radiusand is the simplest of the commonly Moreover, even in the 2-D cases confined to the plane,
used atmospheric dynamics models. Due to its higher commost of the turbulence simulations to date have not explored
plexity, the shallow-water system in spherical geometry althoroughly the dependence of the evolution on the numerical
lows a much greater variety of physical phenomena than theiissipation and initial conditions, making comparisons of re-
planar 2-D model. In this paper, we focus on the roles ofsults somewnhat difficuft® In freely evolving turbulence, a
simulation conditions, differential rotation due to sphericalcareful exploration is critical, since this dependence seems to
be more acute than in forced situations. For instance, San-
3Electronic mail: jcho@appmath.columbia.edu tangeloet al> have found striking differences in the evolu-
YElectronic mail: Imp@appmath.columbia.edu tion due to the steepness of the initial spectrum. Their initial
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TABLE I. Here f=2Q) sin¥ is the Coriolis paramete) is the rotation rate and is the latitude;3 is the
latitudinal gradient off; =V-v is the velocity divergencd;, = JgH/2() is the Rossby deformation radius,
and R=U/2QL is the Rossby number—whelt¢, U, L are the characteristic height, velocity, and length,

respectively.
Physical complexity
Nondivergent, Nondivergent, Divergent,
nonrotating rotating rotating
(6=0, Q=0) (6=0, Q+#0) (6#0, Q#0)
f=0 B=const f=const; =0
GEOMETRY Plane H,Lp, R—x® H, Lp—»; R<® H, Lp, R<«=
“planar 2-D” ** B-plane 2-D” “ f-plane SW”
2Q 20
f=0 B:?cosﬂ ﬁ:?COSﬁ
Sphere H"sbﬁéri;O;-D” H, Lp—o; R<o H, Ly, R<
“rot. sph. 2-D” “rot. sph. SW”

finding clearly demonstrates the need for performing a thor-  Physically, given the characteristic scales of length, ve-
ough simulation-parameter sensitivity study to ascertairocity, and height{L, U, andH, respectively, one can define
which behaviors are a direct consequence of parametéhe Rossby number and the Froude number,
choices.

In view of this, our paper is organized in the following R=—— andEF= L ®)
way. After a brief description of the physical models and the 20L \/g_H
numerical procedure in Sec. I, we start in Sec. lll by study-
ing the simplest possible spherical systéhe nondivergent,
nonrotating case of Tablg, lin order to clearly characterize
the dependence of the evolution on the hyperdissipation, ini
tial spectrum, and spherical geometry. Readers interested
more physical effects may skip this section. Having carefully R?2 [Lp\?
accessed the sensitivity to simulation conditions, we incre- BEEZZ(T) '
ment the physical complexity of the system by introducing
rotation and describe its effects on the flow evolution in SecWhereLp = JgH/2Q is the Rossby deformation radius. With
IV. In Sec. V, we allow for the variations in the height of the these definitions, one can obtain a general set of nondimen-
fluid layer (i.e., vortex-tube stretchingand consider the ad- Sional equations,

respectively, withQ) representing the rotation rate. These
quantities define the physically relevarR,F) parameter
space for the SWE. Another useful nondimensional quantity
iﬁ the Burger number:

4

ditiongl effeqts of removing the nond?vergence con§traint un- 5y 4v'.Wv'=—BR ! Vh'—R kxv’, (5)
der differential rotation. Having studied each physical effect
in detail, we demonstrate one direct application using Jovian d;h’+Vv'-Vh'=—(1+h")V.v’, (6)

parameters in Sec. VI. Our conclusions are then presented Where the following scaling has been used:
Sec. VII. '
(v,h)=[UV' ,H(1+h")], (7)

Il. PHYSICAL MODELS AND NUMERICAL sych thath’=h/H is the .nopﬂd'imensit')nal characteri§tig de-
PROCEDURE viation from the mean heighly is the dimensional deviation.
Note that, as we have defined lit, need not be small.

We begin by briefly reviewing the shallow-water system  With the above set of nondimensional equations, the re-
and its relationship to the simpler, nondivergent modsée  lationship between the shallow-water system and the simpler
Table ), which are also considered in this paper. It is well cases may easily be seen. WHen=0 (i.e., eitherh—0 or
known that a thin layer of homogeneo(monstant densily = H—x) Egs.(5)—(7) immediately reduce to the rotating 2-D
hydrostatically balanced, rotating fluid with a free surface iscase for whichLp—< (cf. the nondivergent, rotating-ol-
governed by the system ofhallow-water equations umn of Table ) and the fluid surface is rigid. In addition, in
(SWB).?! In general coordinates, the SWE have the follow-the limit R—c, the nonrotating case is obtainédf. the
ing form: nondivergent, nonrotatingolumn of Table ). The nondiver-

JW+V-Vv=—g Vh—fkxv, (1) gent equations for_ nonrqtating anq r_otating situatio_ns in their

more common dimensional vorticity-streamfunction form

dh+v-Vh=—-hV.y, (2) are, respectively,
wherev(x,t) is the horizontal velocity anth=h(x.t) is the Wi+ H, =0 (8
free surface height. The variablds the Coriolis parameter, and
proportional to the rotation rate, arglis the gravitational
acceleration. Wi+, (+1}=0, 9
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whereJ{-,-} is the Jacobian operatoy; is the streamfunc- ity potential, y, such that the vorticity’=r-Vxv=Ay and
tion, {(=A¢=Kk-VXxv is the relative vorticity, and+f=¢, the divergence¥=V.v=Ay. Given the truncation number, a
is the absolute vorticity. grid large enoughle.g., T176-512xX256 grid is used in
One of the objectives of this paper is to study the com-order to evaluate the transform integrals exactly and nullify
bined effects of a finite deformation radius and feffect.  aliasing errors to within machine accurady.
This cannot be accomplished in the doubly periodic planar  Finally, a word about our choice of scales. The charac-
domain since gravity waves would experience jump disconteristic length scaldl., is chosen to bera/2n,, whereng is
tinuities in the phase speed at the edges of the domaithe most-energetic scale. Throughout the paper, time is
Hence, unless one is willing to accept the limitations of as-scaled with an advective time scal@=a/U, where U
ymptotically approximating the SWE, the planar geometry = 2 this is uniformly chosen for all the runs rather than
must be abandoned, and the obvious one to choose is tlke enstrophy-based, vortex turnaround time commonly
sphere. On the sphere, the componenty,ofi=u(\,dJ,t) adopted in planar computations. The latter time scale can
andv=v(\,3,t), represent the eastward and the northwardvary significantly from run to run under different physical
velocities, respectively, at the locatioph,9)=(longitude, conditionsand within the duration of a single run.
latitude), while h=h(\,9,t) is the surface height of the thin

shell of fluid wrapping the sphere of radias such that
h<a. The Coriolis parametef,= 20 sin 9. Ill. SENSITIVITY TO SIMULATION CONDITIONS

In the absence of dissipation, the SWE possess a number - 5jmost without exception, past turbulence simulations

P : — /h\23
of useful invariants{1) the total heightH=(h)™ (conser- ,3ye pheen performed using a single choice of dissipation

X o f12, 2 et v : =
va'ilonz of mas}ﬁ (2) the total energy Z=(3(u"+v)h  4hq/0r initial condition without providing elements to assess
+3gh%), where £ is the sum of the potential and kinetic . degree to which their resultg.g., values of spectral

elnezrgies, respectively; and3) the potential enstrophy gjones " self-similarity claims, efcmay depend on their
(2£3h). The potential vorticityq={,/h, is a material invari-  .,nices 1n this paper, in order to clearly delineate this “nu-

ant in the shallow-water system. In the nondivergeémt ,ojcq| sensitivity” issue from the effects of the more com-
=cons) and the nonrotatingf(=0) cases, these expressions plicated physical systems of Secs. IV and V, we begin by

for the invarian.ts reduce accordingly. We note that, d'ue tc_l:onfining the system to the simplest possible situation with
the nonquadratic nature of the energy and enstrophy invarl merical dissipation—i.e., the nondivergent, nonrotating

ants, a_nz_ilytical theoriege.g., closure scher_n)esare muc_h system(see Table) governed by the equation
more difficult to construct for the SWE than in the nondiver-

gent situations. AL+, = (= 1Py, AP, (12)

To numerically integrate the equatieh governing the  \yhereJ{.,-} is now the spherical Jacobian operator.
dynamics in each of the spherical situations in Table I, @  Tq jsplate the sensitivity of the evolution due to the form
pseudospectral alg_orlthm that p.rOjec'ts the field variables intgs e dissipation, the power of the dissipation opergioin
a space qf spherical h'armomcs'wa' the GaUSS—LF—Tgend'i_eq_ (12), is varied while adjusting the diffusion coefficient,
transform is used” The time stepping is performed using @ ;) accordingly. Given all the other parameters in a run, the
second-order accurate leapfrog scheme with a Robertsmgiest possible value of,, is obtained empirically via a
Asselin filter, which can be used to control modal splittiig. preliminary set of runs, in which,, is initially chosen so
A triangular shape truncation in spectrai,f), space with 5t VZp[nt(nt+1)/a2]p:11 where n, is the truncation

up to 170 resolvech modes(denoted T17Dis employed; (maximally resolved scale. Note the geometrical factor of
here,m and n are the zonal and the total wave numbers,az; from here on the value of,, will be given in units of

respectively’® The truncation results in an initial spectral a2 for easier comparison with planar cases.
energy densityE(n,t=0) that is equipartitioned among the A for the initial condition, the same functional form is
m modes in each of the modes spanned by a triangular seq for all the runs presented in this paper.tAt0 the

mask in spectral space. The kinetic energy density is relategh|owing energy spectral density distribution is specified:
to the vorticity field,{={(\,9,t), by s
on

n 2 E(n,O)Zm.

1 a m
E(n,t)ZEm;n m|§n(t)|2- (10

(13

The value of 7 is directly related to the velocity scalé,
where {™(t) are the coefficients in the truncated, spherical'Vhile the parameters), and y, are used to control, respec-
harmonic expansion af: tively, t.he. p.e.ak_ Iocathn and the width of the spectrum. Each
mode is initialized with a random phase. The spectra for
, several different values of andng are shown in Fig. 1.
Z(Avﬁ:t):ngl m:E_n {r(HP(9)e™, (11 Figure 2a) illustrates a typical physical space evolution
of an initially random vorticity field at high resolution
whereP} are the standard associated Legendre polynomial§T170 with (P,v2p,Ng,7) =(8,3.0¢ 10°%,7,20). In Fig.
Other dynamical variables can be self-consistently re2(b), the spectral space evolution of the same run at three
lated via the Helmholtz theorem, in whish=f XxV¢+Vyis  representative timest=(0,1,9), corresponding to initial,
linearly decomposed into a rotational part involving theearly, and late times is shown. Here the timel corre-
streamfunctiony, and a divergent part involving the veloc- sponds to approximately ten vortex turnaround times.

ng n
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reached, the basic configuration is unchanged, even after 70

le+05 T =TT TTTTT advective times; no further reduction in the number of vor-
tices occur, even during several close encounters by the con-
le+03 _ - stituent vortices over this longjynamically activeperiod.
We point out that here only 0.3% of the total energy is lost at
le+01 the end of the run with no loss occurring after 10. The
quadrupole configuration is a direct consequence of angular
@ le-01 momentum conservation on the sphere, which forbids the
2 flux of energy in or out of then=1 mode, thus forcing a
m le-03 pile-up at then=2 mode; the early manifestation of this is
clearly visible in Fig. Zb) (contrast this with Fig. 2 in Ref. 1,
le-05 corresponding to a planar calculatjon
Having illustrated the general features of a typical high-
1e-07 ; . .
resolution spectral calculation, we now consider the effects
16-09 L4 g sl TR VT of varying the powerp, of the dissipation operator. Figure 4
1 10 100 shows the spectra &t 1 for runs usingp={1,2,4,§. All the
(a) Wavenumber, n runs begin with a common initial condition, which is identi-
cal to that of the run depicted in Fig. 2. Even at this repre-
) sentative “early” time (chosen to minimize the coherent
le+0S T T T TTTTT structure-associated effects on the spectt@o nontrivial
trends in the spectral behavior can be detedtedthe use of
le+03 - . hyperdissipation has the effect of extending the inertial
range, and?2) the inertial range slope [such thatE(n) ~n*
le+01 for 1<n<n.] appears less steep with increasimgvith the
> 1e.01 [ inertial ranges “converging” toward the one corresponding
50 to p=8. Here, we measure the slopes to range frerh0
u% 1e-03 +0.1 atp=1 to —3.3=0.1 atp=28 [see thex(1) column of
Table II] with the uncertainty reflecting our inability to ac-
1e-05 curately ascertain the true extent of the inertial rafige.
Both trends can be easily explained by the activity
le-07 present in the corresponding physical space, shown in Fig. 5.
A higher-powered dissipation operator allows more space-
le-09 RN | —ia filling, filamentary structures to be formed and sustained. As
1 10 100 has been shown in the two recent studies of simpler, vortex
(b) Wavenumber, n dynamics problem¥3! the largerp values lead to less dis-

sipation and sharper small-scale vorticity gradients. We
quantify this effect by the palinstrophyz(t)=(3(V{)?)
FIG. 1. Initial spectra for several parameter values(@fthe steepness, ZE:t:lr]AE(n’t); see Table Il. As shown in Fig. 6, these
y={6,12,20,40,6Pand (b) the peak wave numben,={2,3,7,14. The total  early differences lead to a substantial deviation in the subse-
energy in each case is identical. quent vortex population at later times; the energy spectra
(not shown for the two runs are also correspondingly differ-
ent.

Itis clear from these figures that the long-time evolution Next, we proceed to describing the effects of the shape
is qualitatively similar to those in high-resolution, decaying of prescribed initial spectrum on the turbulent evolution. Fig-
planar computations. In particular, note the following fea-ure 7a) summarizes the results for different initial spectral
tures: (1) the early creation of high-gradient, filamentary steepnessy={6,12,20,40,6]) as illustrated in Fig. (B). The
structures[t=[1:2] in Fig. 2(a)] and the beginning of the spectra in Fig. {@) are shown at timet,=9, corresponding to
inverse cascadgt=1 in Fig. Ab)]; and (2) the eventual the “late” stage of evolution when the coherent structures
emergence of long-lived coherent structufés[4:6] in have existed for many time periods and the enstrophy decay
Fig. 2(8)], with the corresponding steepening of the inertialbehavior is flat in all the runs. The parameters for these runs
range[t=9 in Fig. 2b)]. These features ageneraland are  are (p,v,,,Ng) =(4,3.0< 10" 177). As can be seen, the iner-
independent of planar or spherical geometry, as was previial range slope does not seem to be strongly affected by the
ously shown in the lower resolution, shorter integration time different initial steepness, even though the initial total enstro-
spectral computations of Yoden and Yamdda. phies differ by a factor of nearly 20, due to the different

On the sphere, however, \ery long-time integration values ofy. This behavior clarifies that reported in Ref. 5, in
shows that coherent structures ultimately evolve to awhich a similar difference of initial enstroph factor of 15
vortical-quadrupole state—rather than a dipole state, as onia that study led to a dramatic difference in the inertial
plane?® Figure 3 depicts a typical very long-time run, in range. Our study suggests that the strong dependence on the
which the quadrupole configuration is reached. Oncenertial range slope in their case is not due to initial steepness
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FIG. 3. Vortical quadrupole final-state configuration on a nonrotatig: o) sphere, a direct consequence of angular momentum conservation. In this run,
t=1 corresponds to approximately four vortex turnaround times. $dldhed contours depict positivénegative vorticity values.

but due to the initial peak location, which we now address.ported by Yoden and Yamadawhile for ng=2 the kink is
Figure 1b) shows the effect of varying,={2,3,7,14 downward, similar to observations reported by Santangelo

with fixed (p,v,p,y)=(2,1.0<107%,20). As can be seen etal?and Dritschef’ The ny=3 case exhibits the “cross-

from Fig. 1(b), the variations im, correspond to energy and over” between the two types of behaviors; it is similar to the

enstrophy being primarily contained in large,E2) or  spectra in McWilliam$and Benziet al* Hence, there exists

small (ny=14) scales. Itis clear from Fig(B) that, depend- a clear monotonic relationship betweep and the kink di-

ing onng, two distinct behaviors occur at the late stdge  rection.

defined above the vortex-size distributions are also corre- From our study of the influence of initial spectra, several

spondingly different. Fomy={7,14 the inertial range is new conclusions can be drawn. First, at the current resolu-

“kinked” upward, which is qualitatively similar to that re- tion, the spectral evolution is much more sensitive to the
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FIG. 4. Spectra at an early time=1, for runs A1-A4(cf. Table II), for
whichp={1,2,4,8, respectively. The inertial range is broader and less steep
with higher powered dissipation. The corresponding physical space picture
is shown in Fig. 5.

initially most-energetic scale than to the spectral bandwidth. (b)
Since the question of time scale is ruled out by comparing

the runs at the “well-decayed” phases of the evolutios., o
when all the runs are well into the flat region of enstropy s
decay and the coherent structures have existed for many gﬁ?

S

N2

turnaround time)s dissipation characteristics must play a sig- 2 (o0
nificant role here. Second, the isolation of sensitivityntp ;- > o8

also suggests that the variety of previous results concerning ‘..i‘\
the inertial range slope can be qualitatively understood in g.%g
terms of the initial peak-energy scale used by the different
investigations. And, third, the study also suggests that, in g
forced studies some of these sensitive, “free” features may =
be obscured or overwhelmed by the prescribed forcing, and (C)
that those studies might benefit from additional sensitivity
tests, supplementing the works of Refs. 13 and 33.

In summary, our exploration of the simulation conditions
leads us to conclude that while the general qualitative behav-
ior (i.e., the emergence of long-lived coherent structuies
robust, many quantitative aspects such as the slope of the
inertial range spectra and the population statistics of vortices
and filaments in the flow are severely affected by the choice
of dissipation and of the initial spectrum. Hence, our work
suggests that the recent findings of self-similar
universality** might be put on firmer ground in a series of

SN
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~a 33 L/ SNt n
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S o= P ey S
S £

CINTOUR raoK -.00018 TQ 00018 57 50002

T

TABLE Il. The p variation:ny=7, y=20, and T170 resolution. Here is

the power of the hyperdissipation operaterjs the viscosity coefficient, FIG. 5. The vorticity field in cylindrical-equidistant projection for runs
x(1) is the inertial range slope at=1, £ is the energy, and” is the A1-A4 [panels(a)—(d), respectively att=1. Solid (dashed contours de-
palinstrophy. pict positive (negative vorticity. The higher-powered dissipation admits
larger quantity of space-filling filamentary structures.

Run p Vap x(1) “(1)14(0) AL)IA0)

—4 . .
2; ; ig; 18*8 ‘g-gfg-i g-;gg g-ggg calculations such as the one presented here, showing the ro-
A3 4 30x10Y7  —36+01 0.950 176 bustness of that result to'a varlety'o?c S|mulgt|on gond|t|on§.
Al 8  3.0x10°% -3.3+01 0.997 2.64 On the other hand, the high sensitivity to simulation condi-

tions and the well-known inadequacy of a purely spectral
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FIG. 6. Th ticity field f A d Adb) att=9 i th hi y:{Q,;2,20,40,GDand(b) n,=12,3,7,14. Long tir_ne_ ev_olutic_m is not very
e vorticity field for runs Af) and A4b) & 'n orthographic sensitive toy, butny=2 andny,=(7,14) leads to distinctive differences with

projections. The contour levels are reducedanto reflect the greater loss “Kinks" in the obeosite direction. Heren —3 exhibits the “cross-over”
in energy. The large difference of vortex population in the two cases is du% 1 the t IOE havi ' 0
to dissipation. etween the two behaviors.

worth recalling that this equation is the fundamental state-
description of turbulence lend support to the recent attemptgent of the material conservation of potential vorticity,
to emphasize physical space diagno§tic§and justify our  q=/, (recall thath is constant in this modgln the inviscid
own emphasis on the robust physical space features to whigfinit. Note also that the rotating sphere offers one important
we now turn our attention. additional level of realism absent from the more

IV. ROTATION EFFECTS TABLE lll. The R variation:ny=7, y=20, p=4, 1,.=3.0x10"/, and T85

. . resolution. HereR is the Rossby numbex(t) is the inertial range slopes at
In this section, we move one step closer toward a geotime t, ng is the equatorial3 based Rhines scale, amdis the energy

physically realistic situation by introducing rotation into the centroid.
purely 2-D system described by Ed.2). The rotating, non-
divergent spherical systefef. Table ) with numerical dis- X(3) x(9) x(23) mg

sipation is governed by the nondimensional dynamical equa-B1 ~ ~ -3.6 -39 -4.9
B2 0400 -3.7 -3.7 —-3.6

Run R x(1) n (1) n (9) n (23

—-49 - 7.9 4.3 3.4
-40 18 79 3.8 2.6

tion: B3 0200 -38 -35 37 40 25 7.9 34 26
1o ayp+l b B4 0100 -38 —36 —39 —40 35 82 41 3.0
TP, GHRT A g=(=1)P vy APE, (14) B5 0025 -38 41 45 -53 70 92 59 52

which we directly integrate in the runs described in this sec- 6 0010 -4.6 -4.1 -44 -55 11. 101 63 58

tion; here, the curvatura/L is fixed and hence ignored. It is
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commonly usedB plane; namely, theg8 (not only f) varies In non-Cartesian geometry, freely evolvigggplane tur-
with latitude from the equator to the pole. This leads to in-bulent flow has been studied by Maréu, annular geom-
teresting differences in the behavior between polar and equatry, and the first high resolutioff 85) spherical simulations
torial regions, as discussed below. have recently been performed by Yoden and Yanta8iart-
The B-plane turbulence in a doubly periodic planar do-ing with initial conditions containing spatial symmetries and
main has been extensively studi€d®'* The constant pa- a spectrum,E(n,0)n%e¢ "2, Yoden and Yamada have
rameter, 8, absent in the nonrotating case, defines a newound considerable differences with their and earlg&plane
length scale, called the Rhines scaje= 72U/B, atwhich  simulations. When()=0, they detected a kinked inertial
the inverse energy cascade is strongly retarded by the anisaange withx~—3 for n=<10 andx~ —5 for n>10. Also,
ropy of the system—preventing the growth of vortices in thewhen Q) was increased, they observed the flow field to be
meridional directiort! Thus, when forced, a steady, alternat- anisotropic(as in the plangand reported the formation of an
ing field of elongated, zonal structures and jets is produced ianticyclonic(westward circumpolar vortex at higlf).
B-plane turbulence. This mechanism has been proposed by In this paper, we extend their results in three ways: long-
Williams®® as a possible explanation for the observed, altertime integrations are performed, no initial spatial symmetry
nating zonal jet patterns in the atmosphere of Jupiter. is imposed, and more than one initial spectrum is considered.

FIG. 8. Typical potential vorticity evolution under slow rotatioR+ 1) in the limit of Ly—oo: run B3 of Table Il in(a) orthographic projection centered
at (longitude, latitudg=(0,0), with positive (negative values in redblue), and(b) polar-stereographic projection at the North Pole. Herel corresponds
to 2 rotations of the sphere, ahd/a=1.
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FIG. 8. (Continued).

Table Il lists one series of runs used for discussion in thisslope x with Q for short integration time was previously
section. The values ofp(v,,,ng,y)=(4,3.0<10°%",7,20)  reported by Yoden and Yamatiand is due to the retardation
are fixed in these runs and on, or alternatively the of inverse cascade by thgeffect. However, as can be seen
Rossby numbeR, is varied. The listed rungt T85 resolu- from the slopes at later timdsf. Table 1ll), that behavior is
tion) are chosen for their initial spectrum, which is sharply not robust.

peaked about a scale smaller thap, allowing the flow field The energy centroid,

to undergo a significant amount of spectral broadening and

inverse cascad®.In all the runs, long-time integrations were =™ nE(n,t)

carried out until flat enstrophy decay behavior was observed. n (t)= “:1— (15)
We start by mentioning briefly some results regarding long- 2B

time evolution of the spectrum before presenting in detail the

physical evolution and how it is affected by rotation. with n(0)=11.9 (corresponding ta,=7) is tabulated for

The first result to report is that, as rotation increases, theeveral times in Table IlI; it provides a quantifying measure
inertial range slope at early times becomes stegpeg the of the inverse energy cascade arrest. At the early stages, the
X(1) column in Table Ill. This monotonic behavior of the inverse cascade is indeed retarded to a greater extent by a
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larger () (smallerR), leading to steeper spectra as in Ref. 9tative comparisons of spectral slopes, be they against other
[cf. then (1) column in Table Il]. However, this monotonic spherical results or against planar results, especially if only a
behavior with() is destroyed at later times when the flow single simulation condition is considered.

field contains highly intermittent vortical structurgsf. the The general physical space behavior, fortunately, can be
n (9) andn (23) columns in Table Il The vorticity kurtosis, considerably more robust. That is, from our many simula-
Kuéu(t)z<g,“4)/<§2>2 (used to quantify the intermittengyat  tions, we have found that the resolution amgvariations do
t=9 for run B1 is 18, approximately three times larger thannot qualitatively affect the features discussed below. The key
for the rest of the runs. On the other hand, we have foungbhysical results of this section is that the rotatfeiproduces
that the monotonic behavior can be sustained for longer pawo qualitatively different physical behaviors: of&t small
riods, using an initial spectrum with largeg. It should be () in which there is a substantial latitudinal motion by the
clear at this point that many spectral behaviors are possiblgrowing vortices, and the othéat large(}) in which struc-
and, the resulaigain points to the danger of making quanti- tures are initially latitudinally confined but quickly give way

FIG. 9. Typical potential vorticity evolution under rapid rotati(R<1 andLp—c): run B5 of Table IIl. The views are as in Fig. 8. The scale is shown
in the last frame ir(b). Notice the formation of the anticyclonic, circumpolar vortex. Herel corresponds to 16 rotations of the sphere, bgth=0.3.
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FIG. 9. (Continued).

to a field dominated by a pair of circumpolar vortices. Wetaining well-defined coherent vortices undergoing continuous
now give an illustration of each of these two behaviors.  mergers in the poleward direction; the mergers are clearly
First, Fig. 8 shows an orthographi@ and a polar- seen in the polar view of Fig.(B). These figures highlight
stereographicb) view of the potential vorticity evolution in  the fact that the rotating sphere is really a composite envi-
a typical “low-rotation” (R~ 1) case, specifically run B3 in ronment,B-plane-like at low latitudes anéi-plane-like near
Table I1I; in this figuret=1 corresponds to approximately 2 the poles, and exhibits a much more complex physical space
rotations of the sphere arid;/a=1, where the equatorial behavior than the simplgs plane.
value of 8 has been used since the valuegois variable. In Furthermore, Fig. &) clearly illustrates the long-time
this case, the effect of spatially varyimgjon the sphere can relaxation ofg toward a geostrophic, solid-body rotation
be clearly seen. In the early stages, the latitudinal variation oftate3’ Notice how, starting from a field containing both
[ separates the field, roughly speaking, into two dynamicapositive (red) and negativeblue) values ofqg in both hemi-
regions[see, for example, the=5 frame of Fig. 8)]: a  spheres att=0, the flow clearly separates via self-
low-latitude region populated with mostly elongated struc-organization into a northern hemisphere containing strictly
tures and large-scale waves and a high-latitude region compositive values ofg and a southern hemisphere containing
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only negative values af att=8. We note that the relaxation

is not due to dissipation, since only 4% of the initial energy 4

is lost at the end of the run and is mainly due to the inversely 3
2

cascading turbulent evolution. To the best of our knowledge,
this type of evolution ofq toward f from random initial
conditions has not been demonstrated in previous

simulations® 2 . -
Second, Figs. @ and 9b) illustrate a typical “high- 2

rotation” (R<1) case, specifically run B5 in Table Ill. In é

this examplet =1 corresponds to approximately 16 rotations ©

of the sphere ant ;/a=0.3. The distinctive behavior at high
rotation is the formation of anticyclonic circumpolar vorti- 2 - -
ces, as previously reported by Yoden and Yantattaour
computations, in which no initial spatial symmetries have
been used, we have found that polar vortices generally form 4 ] ] ] ]
at both poles—as might be expected. Moreover, when the 0 2 4 6 8 10
polar vortices, bounded by largg gradients, are fully (2) Advective Time, t

formed, q is well homogenized in their interiors—but not
elsewhergsee the last three frames of Fig, @ feature not _
obvious in Ref. 9 since thé field is plotted rather than the T I T
field (see Fig. 7 in Ref. :

Unlike in the forced planar casés*®zonal jet structures 100
are not particularly well defined in our rotating, nondivergent
decaying experiments. This is due to a combination of the
spatially varyingg, the anisotropic energy arrest in spectral
space, and the decaying nature of unforced evolution. It
would seem that steady jets in the pure 2-D case require a
continuous supply of enstrophy for sustenance. Table Il also L
shows that, at the stage when the inverse cascade has nearly
halted ¢=23),n< ng at high rotation rates, as was found in
the forced B-plane experiments of Vallis and Maltrdd. 10
Therefore, although the meridional alternations do generally :
increase in number for greater values(®finitially [see the I
n (23) column of Table Il], the Rhines scalk g does not -600 2300 0 300 600
appear in this case to be a viable measure of the number of Vorticity
bands on the sphere, and ultimately not even in a qualitative (b)
sense, since the jets do not last. This is particularly clear in
physical space, where the initially large number of alterna-
tions quickly gives way to a field dominated by strong poIarF'G-_lo- Absence of cyc!one/anticyclone asymmetry in the nondivergent,

. . . rotating case(a) the vorticity skewness time series for run B4 of Table Ill
\{ortlces, gnd _theq cor_ltours are_negrly ynlfo_rm in the me- and (b) the pdf of the vorticity field at—4.
ridional direction(cf. Fig. 9. In this situation, jets are barely
present and difficult to detect, except at the edges of the

polar vortices. _ . tions provide evidence that the effect alone is clearly not
Finally, in our series of many nondivergent runs underg,ficient to explain the predominance of anticyclonic vorti-
varying rotating conditions, no asymmetry between cycloniceeg in the atmospheres of the giant plat@tsis through the
and anticyclonit® vorticity is observed. The cyclone/ aqgition of one further physical complexity, specifically the
anticyclone asymmetry can be quantified and tracked via thgresence of free surface, that asymmetry between cyclones
skewness of the vorticity field, defined by and anticyclones is found to appear. The effects of a free
(23 surface is the subject of the next section.
Sk,(t)= s (16)

Counts

. .. . . V. DEFORMATION RADIUS EFFECTS
Figure 1Qa) shows the vorticity skewness time series for run

B4 in Table lll, a typical high rotation case. The small non- In this section, we further increase the physical complex-
zero values are due to the numerical discretization. A comity by considering a rotating fluid bounded by a free surface;
plimentary quantity, confirming the absence of vorticity this allows for horizontal divergence of the velocity field and
asymmetry in these nondivergent rotating cases, is the corrétence vortex-tube stretching in the flow. For this, the full set
sponding vorticity pdf, shown in Fig. 1b) for t=4. Note  of shallow-water equationSWE) must be used. The spheri-

the approximately equal areas in the left and right wingscal SWE in nondimensional vorticity-divergence form, as
corroborating the zero skewness. Therefore, our computahey are used in the numerical integration procedure, are
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FIG. 11. Typical potential vorticity evolution of a run with finite deformation radiug/@a= 0.03) in(a) orthographic andb) polar-stereographic views. The
field does not condense into a polar vortex and bands are formed.tHekesorresponds to approximately 20 rotations of the spheré-gfa=0.3. Thel g

scale is shown in the last frame @f); the L scale is too small to be shown.
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FIG. 11.(Continued)

andh’ are the three prognostic variables, representing abs@onsidered in the previous two sections correspond to the
lute vorticity, velocity divergence, and surface deviation, re-limit L— <, whereas it is finite in this system.

spectively, and In the asymptotic limit ofR<1 andF<1, where the

U=u’ \/1——,u2 SWE reduce to the so-called “equi.va'llent barotropic’_' equa-
_ tions on thef plane, the effect of a finitey on the vorticity
V o=v'V1-4? dynamics of a shallow rotating fluid have been studied in

with u=sin® anda=a/L. Here &/ is the hyperdissipation SOMe dgtaif.l‘43ln this case, it is well known that the vortex
operator, (- 1)P"11, AP. We remind the reader that the po- interaction decays exponentially with separation over an
tential vorticity, g, is now equal taZ,/h. e-folding scale comparable toy, in contrast with the non-
Whereas in the previous section the only physical lengttflivergent case where the interaction is long range and loga-
scale in the problem wals;, the presence of a free surface rithmic. The shorter range implies that when vortices are of a
introduces here a new important length scale in the physicaize that is large compared kg, they are less coherent since
systemLp = \gH/2Q. The nondivergent systems we have one side of the vortex does not “see” the other side; hence,

Phys. Fluids, Vol. 8, No. 6, June 1996 J. Y-K. Cho and L. M. Polvani 1545



90 T | T 90 T T T
e 30 - - 30 | -
E; g
o e D e - ) U UUURRRUUTS USSR _
g 0 '5 0
3 a0t - 3 30 -
-60 . -60 -
90 1 1 | .90 | | 1
-3 -2 -1 .O 1 2 -3 -2 -1 .O 1 2
@) Zonal Velocity (U) b) Zonal Velocity (U)
90 | ] ]
2 30 - 7 ®
(] [}
< =
—8 (I R R T T S - _g
3 2
2 a0k i 3
.60 _
90 | L L 90 | ! 1 L
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
Zonal Velocity (U Zonal Velocity (U
© n y () @ y (U)

FIG. 12. The zonally averaged, zonal velocity in units of characteristic velocity as a function of latitude for several rotatig@a)ridtescommon initial
profile and (b)—(d) the long-time, steady profiles for runs witiR=(1.5,0.15,0.015), respectively. All other parameters are identical:
(P, v2p:M0,7) = (3,4.0¢ 107197,18). The number of jets increase with asR becomes small.

for L>L, vortices are found to be *“blobby” and based on the observation that a solution of the scaled equa-
nonaxisymmetrié1=43 tions with a time scale of’(1) must have a sequence of time
As for the full SWE(i.e., in nonasymptotic parameter derivatives of the dependent variables, also“dfl). Thus,
regimes, the evolution of coherent structures has only re-terms in SWE that contribute to large time derivatives are
cently been studied in doubly periodic, planar geom¥ty?  identified by performing a scaling analysis and are con-
The key results are that the emergence and the eventual siggained to be on the same order as the slower, Rossby wave
of coherent structures are strongly influenced by the value dime scale. In theory, the higher the order of the constrained
the deformation radiugin our casel  provides asecond time derivative, the smoother the temporal evolution of the
apparently crucial, inverse-cascade arrest mechanisur-  flow. In practice, we have found a second-order time and
thermore, when the free surface variations are not small confirst-order ) bound to be adequate for this study.
pared to the mean thickness of the fluid lafjes., h’ =2(1) We start by illustrating the key result of this section in
such thatRB™1=0.13+0.04] a strong asymmetry develops Fig. 11: in the presence of a finite deformation radius, the
between cyclonic and anticyclonic vortices, favoring thepotential vorticity does not condense into a polar vortex but
latter!® takes the form of banded zonal structures—even wheda
Since the full SWE admit gravity waves, it is necessarylarge. Contrast the evolution in Figs.(aland 11b) with the
to initialize the flow with a balancing procedutein this  corresponding nondivergent case in Fig. 9. The runs in both
work, a bounded derivative methichas been used to bal- figures haveL ;/a=0.3; however, in Fig. 11 y/a=0.03,
ance the initial condition. The bounded derivative method isvhereas it is infinity in Fig. 9. The formation of banded
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structures leading to robust zonal jets is a general behavior
that we have found common to all the runs, wiitj/a<3 in 90 T
our many simulations. For larger valueslgf/a, the effect 030 —-—- A
of the free surface is negligible and the evolution resembles 60 - 0.18 -—— E S -
the nondivergent or nonrotating cases of the previous sec- 012 — LR
tions; we have spanned the valued gfa from 0.01 to 725. 30 |-
Notice further how, whern_ is finite, the zonal struc-
tures are somewhat spiraling out of the pole and are made of
regions of steep gradients separating well-homogenized
bands of potential vorticitysee, for instance, frame=8 in
Fig. 11(b)]. The polar regions, of course, behave more like
anf plane, and hence vortices are not sheared away bg the
effect; at the same time, note how the unsheared vortices do -60
not condense into a polar vortex, owing to the smigll
halting the inverse cascade. It is well worth emphasizing here -90 '
that the evolution of the flow is completelynforced to the -2 )
best of our knowledge, all previous studies that have pro- Zonal Velocity (U)
duced steady banded structures have done so under forced
conditions'®>!31* We are demonstrating here for the first FIG. 13. The zonal velocity profiles as in Fig. 12 for several valuebl of
time that a freely evolving flow spontaneously Se|f_0rganizegvith_fixed_ Q: theLp/a values are shovllrlloin the legend. All other parameters
into such banded structures, provided the deformation radil%'eecr'gggggalt:h% '(’;P'”O'y.) =(3,4.0¢10 757,18). AsH decreases, or ds,
P . . . , quatorial jet intensifies.
is finite and the rotation is high.
The second result is a direct consequence of the fact that

a finite deformation radius yields banded potential vorticitythe zonal winds decay with increasimy. In all our many
structures: one can directly obserive physical spachow  SWE simulations, the preferred direction of the intensifica-
the number of robust jetithe bunching ofg contours in-  tjon is westward and we believe this to be a general, distin-
creases as the rotation rate is increased—even after a |0|@ﬁ1|ishing feature of freely evolving shallow-water systems.
time. In Fig. 12 we demonstrate this by plotting zonally av-The fact that a number of equatorial jets in planetary atmo-
eraged zonal velocity=1/2mr[§"u(\,9)d\] profiles. Fig-  spheres are in fact eastward, points to the conclusion that
ure 12a) is the common, random initial condition, while physics beyond the freely evolving shallow-water model is
Figs. 12b)-12d) show the zonal profiles at long times for necessary to explain thdirection of the equatorial jet.

three different value of Rossby numbeRs=1.5, 0.15, and Finally, the presence of a free surface in the runs dis-
0.015, respectively. Aftet=23, the profiles are perfectly cussed in this section allows for a clear symmetry breaking
steady for all three cases. It is also clear that, in our simulain the populations of cyclones and anticyclones. In the pre-
tions with well-resolved and well-separatdd; and Lp  vious section we have shown thaialone is not sufficient to
scales, the former scale controls the jet scale and no secongroduce an asymmetric evolution. In fact, it is not even nec-
ary spectral peak in the vicinity of the latter scale is ob-essary since the asymmetry has been observed orf the
served. plane!®4

Latitude (deg)
(o]
|
i

Although the number of zonal jets clearly increases with  Figure 14 clearly illustrates the cyclone/anticyclone
rotation rate, as predicted by Rhinésagain we have been asymmetry. Shown is the relative vorticity field in the north-
unable to quantitatively use the Rhine scale as a predictor adrn hemisphere in polar-stereographic projection for a run
that number, showing that this behavior is not a result ofwith (P, v2p:Ng,¥) =(3,5.0¢ 107°,14,18), for which
forcing. In Fig. 12, the rough expected number of bands ,/a=0.02 andL z/a=0.3. The cyclonic vorticity is in red
using the Rhines scaler@/L ;) is 1, 4, and 12 in panel®),  and the anticyclonic vorticity is in blue. Note the predomi-
(c), and(d), respectively. As in Ref. 14, we suspect the spa-nance(especially at low latitudgsand the coherencénear
tial variation of 8 to play an important role in moderating the the pole of blue structures as the evolution proceeds; finer
number of bands and jets. We also point out that, unlike inremporal resolution of the early stage of evolution shows that
the forced B-plane simulations, our spontaneously formedanticyclones are able to merge more efficiently, leading to
bands on the sphere are not perfectly zonal; they spiral ahe dominance at late times in a fashion similar to the planar
high latitudes. Therefore, the zonal averaging procedure desehavior*® The anticyclones, which are associated with local
stroys some of thébandedl features, which are otherwise elevations of the fluid, correspond to greater effective local
more obvious in the full physical fielttf. Fig. 11). value of L, thereby interacting and merging more effi-

A third interesting result can be obtained by varying theciently with other like-signed vortices; in this way, anticy-
mean thicknessiH (hence thel ), at a fixed rotation rate. clones are able to more prominently assert themselves than
This is illustrated in Fig. 13, where the zonally averagedtheir cyclonic counterparts.
velocities at t=32 for four runs with In Fig. 15 we present the measures of asymmetry corre-
Lp/a=(0.30,0.18,0.12,0.08) are shown; all other parametersponding to the run in Fig. 14. Both the skewness and the pdf
are fixed. The point here is that a decreasing deformationf vorticity field show a marked asymmetry toward anticy-
radius yields an increasing equatorial jet; or, equivalentlyclonic vorticity. Figure 15 should be contrasted with the cor-
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FIG. 14. The relative vorticity field in polar-stereographic projection at the North Pole. Notice the appearance of cyclone/anticyclone asymmetry: cyclonic
vorticity (red) and anticyclonic vorticity(blue) for a run withL ;/a=0.3 andLp/a=0.02.

responding measure given in Fig. 10 for the case where théasymmetry parameter” is the combinatioRB™ !=F?R ™!
deformation radius approaches infinity. (the B=1 line, shown as a dotted line, is also drawn for
From the large number of simulations, we have identi-further justification of this point and is cleartyot the appro-
fied the region in R,F) space, where the evolution proceedspriate parameter of demarcatipmnd (2) an initial value of
asymmetrically. This is shown in Fig. 16, which summarizesgrg-1= 13+ 0.04 leads to cyclone—anticyclone symmetry

all the shallow-water parameter values we have eXploredoreaking' theRB1=0.13 line in ®,F) space is shown

The mflrks indicate mmal p‘?rz,a’meter vaIHes; the .asym,r,net'dashed in the figure. Note that physically the parameter
ric run” is marked with an “x,” and the “symmetric run

with a box. The asymmetry was determined by computingRB corresponds to the deviation from the average height

the vorticity skewness and the pdfs of the vorticity field. Asnd is @ measure Olf the ageostrophy. It is interesting to note
can be seen, our runs suggest two featuf®sthe relevant that anh’=c(RB"") value of 0.13 is sufficient to see a
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However, to the best of our knowledge, all previous
work along these lines has been done with forced systems
and is hence liable to the criticism that the bands may be a

10 direct product of a somewhat artificial forcing. Without de-

E nying the potentially important role of forcing, here we take
] a different angle of attack, along the lines of Ockham'’s fa-
mous razor. That is, we are interested in answering the ques-
-400 -200 Vor?icity 200 400 tion: how muchof the observed behavior can we capture
(b) with asimpler unforcednodel? We believe an answer to this

question will clearly discriminate between those features that
are a robust spontaneous characteristic of the free dynamics

FIG. 15. The vorticity skewness time series for the run in Figalldnd the i
pdf of the vorticity field for the same run &t 10 (b). Compare with Fig. 10 ang thosef thz.it may be dlreCtIy dependent on the Currently
for the case in which.p—«; skewness is negative, showing the dominance unknown 0I’C|.n'g. o .
of anticyclonicity. As a specific application, results from a T170 resolution
simulation with Jupiter parameterga=7.15x10" m,
| _ his value d q 0=1.76x10 *s % g=22.9 m/é, andH=2.0x 10" m) are
clear asymmetry, since this value daest correspond to a presented in Figs. 17 and 18. In the figures, a dimensional

large surface height variation. time unit of the Jupiter day is used. The dissipation and
In summary, we have presented a careful study of Paitial conditions for this run are

rameter effects on the turbulent evolution by systematically(p VoMo, y)=(3,1.0< 10 1214,18) and do not qualita-
1 p! 1 ) . 1 )

adding complexity, beginning from the simplest DOSSibletively affect the results, provided that the initial scale is small

sﬂua’;:ont.) Thde La(;]t that the_ mglusm_n of afflnit? rirolducetg i enough to allow a reasonable inverse cascade. The value of
zonally banded homogenized regions of potential vorticity gH is based on observations from Voyager encouffters

and favors anticyclonic vortices suggest that the dynamics nd follows the shallow-water simulations of Dowling and
play in this ultimately very simple modého vertical struc- Ingersolf® in a channel geometry, leading kg~ 2 X 166 m.
ture, no thermodynamics, no forcinmay be of relevance to Figure 17 showsj contours o,f this run for a long-time
the atmospheres of the giant planets. We therefore conclu ﬁtegration in orthographi¢a) and polar-stereographito)
this survey, with a specific application to the atmosphere o rojections. Many realistic features are seéd): there are

Jupiter. clear banded regions of homogeniagdoounded in latitude

by regions of highg gradients(notice themultiple bunching

of q contours; (2) there is a large amount of eddy activity
A number of authors have suggested that the zonal jetaccompanying the jets—the animations clearly show many

of the Jovian atmosphere can be understood, at least qualitatable anticyclones that are “rolling with the winds,” even at

VI. A SIMULATION WITH JOVIAN PARAMETERS
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FIG. 17. A simulation with standard Jupiter parameters:7.2x 10’ m, 0=1.8x10 *s™%, andLp=2x10° m. Here, positivgnegativg potential vorticity
contours are in fulldashed lines in (a) orthographic andb) polar-stereographic views. Heres 1 corresponds to 1 Jupiter day.

low latitudes;(3) while most of the cyclones are sheared out,the vorticity skewness, verifies the preponderance of anticy-
anticyclones clearly persist and are much more prevailisg clones over cyclones.
indicated by the skewness ef1.4+0.1 in Fig. 18; (4) there The main discrepancy between the observed Jovian flow
is a wavy structure with high azimuthal wave numberand the results of this simulation is that the equatorial jet is
straddled by vortices at high latitude, including vortex pairswestward in our simulation, whereas on Jupiter it is east-
(cf. t=120 andt=140 in Fig. 17; and(5) the number and ward. Since the westward direction of the equatorial jet is a
magnitude of the jets, including a strong equatorial compovery robust feature in our shallow-water simulatio®., we
nent, are in rough agreement with the observations. have been unable to find parameter regimes where the equa-
Figure 18a) shows the zonal jets corresponding to thetorial jet is robustly eastwajdwe are forced to conclude that
run in Fig. 17; the zonal wind profile can be contrasted withthe eastward direction of the Jovian equatorial jet must be
those presented in the previous section with smaller radiudue to yet unknown physics that is beyond our simple, freely
and rotation ratécf. Figs. 12 and 18 Figure 18b), showing  evolving, one-layer shallow-water model, at least at the cur-
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stages of its development; arid) we have systematically

90 ] varied only one parameter in a series of ritmtaling over
200 for a careful characterization of each parameter’s influ-
60 - ence on the evolution.
As a result, a number of phenomena previously not well
o 30 |- _ emphasized or observed have been demonstrated. First, the
8 spectral evolution was shown to be highly dependent on the
e initial conditions, with very sensitive behavior attributed to
= I 7 the initially most-energetic scale, as well as to the choice of
é dissipation. Also, in the absence of rotation and in the limit
— -30 - - of infinite deformation radiut  , the end state was found to
be in a vortical quadrupole configuration.
60 - 4 Second, in the presence of rotation, vortices undergo
" continuous inelastic interaction§.e., various degrees of
90 | | 1 mergers and strainir)if- in the polgward direction—evolving
2300 -150 0 150 300 finally toward a solid-body rotation end-state. At low rota-
Averaged Zonal Velocity (m/s) tion rates, some zonal jets form, but are not steady, since
(@) vortical structures are not well confined in the meridional
direction. At high rotation rate@ndL— =), the evolution
is dominated by a somewhat surprising circumpolar vortices.
3 T T T T T This last result independently confirms the earlier calculation
of Yoden and Yamadzover a much broader range of simu-
2 ' - lation conditions.
Third, the addition of a free surfag¢and thus of a finite
1 k- _ Lp) leads to a number of new and interesting behaviors. A

finite L, provides a second inverse cascade arrest mecha-
nism, and is responsible for the absence of polar vortices in
spherical shallow-water turbulence, even hagh rotation
rates Furthermore, a finite value dfy leads to the forma-
tion of robust, zonally elongated structures with a jet profile
containing an intensifying, westward, equatorial

Skewness

2 —~ component—increasing ds, is decreased.
In addition, we find that, as in the planar case, anticy-
3 ] L ] 1 I clonic vortices are favored over cyclonic ones and that the
0 50 100 150 200 250 300 asymmetry appears to be controlled by the paranfeer'.
Time (Jupiter Days) Although B is not required for asymmetry, it does seem to

®) enhance the asymmetry, in that anticyclones are always the

preferred vortical structures in the equatorial regions, where

the value ofg is large.
FIG. 18. Key features of Jupiter's atmosphere captured by our simple _Fmally, we have pe_rforlmfad a detailed simulation with
model: () a large number of jets in the zonal wind profile afiil a pre-  Jovian parameters. While it is clear that many of the key
ponderance of stable anticyclones. The equatorial jet is westward, howevequa”tative features of Jupiter’s atmosphere can be captured
in marked contrast with observations. by a free-evolving shallow-water system, at least one serious
qualitative discrepancy has clearly emerged, namely the di-
rection of equatorial winds. We hope future studies will shed

rent resolution. However, it is interesting to note that the ) .
new light on this matter.

equatorial jets on Uranus and Neptune are westwarl.
careful comparison of jet formation for all four Jovian giant

planets will be reported elsewhere. ACKNOWLEDGMENTS
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