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Results from a series of simulations of unforced turbulence evolving within a shallow layer of fluid
on a rotating sphere are presented. Simulations show that the turbulent evolution in the spherical
domain is strongly dependent on numerical and physical conditions. The independent effects of~1!
~hyper!dissipation and initial spectrum,~2! rotation rate, and~3! Rossby deformation radius are
carefully isolated and studied in detail. In the nondivergent and nonrotating case, an initially
turbulent flow evolves into a vorticity quadrupole at long times, a direct consequence of angular
momentum conservation. In the presence of sufficiently strong rotation, the nondivergent long-time
behavior yields a field dominated by polar vortices—as previously reported by Yoden and Yamada.
In contrast, the case with a finite deformation radius~i.e., the full spherical shallow-water system!
spontaneously evolves toward a banded configuration, the number of bands increasing with the
rotation rate. A direct application of this shallow-water model to the Jovian atmosphere is discussed.
Using standard values for the planetary radius and rotation, we show how the initially turbulent flow
self-organizes into a potential vorticity field containing zonal structures, where regions of steep
potential vorticity gradients~jets! separate relatively homogenized bands. Moreover, Jovian
parameter values in our simulations lead to a strong vorticity asymmetry, favoring anticyclonic
vortices—in further agreement with observations. ©1996 American Institute of Physics.
@S1070-6631~96!02004-9#

I. INTRODUCTION

In recent years, much progress has been made in the
study of high Reynolds number, two-dimensional~2-D! tur-
bulence via direct numerical integration. The computational
approach provides a direct test of theoretical predictions and
offers a first step toward understanding turbulent phenomena
relevant to atmospheric and ocean dynamics. However, ex-
cept for a few investigations, past 2-D turbulence simulations
have been mainly restricted to doubly periodic planar do-
mains with rigid surface, often without differential rotation.
While useful for studying scaling-symmetry breaking due to
coherent structure formation or inverse cascade arrest due to
anisotropic conditions, the rigid surface and planar restric-
tions are severely limiting for geophysical applications. In
this paper, we proceed one step further and present results
from simulations of rotatingshallow-waterdecaying turbu-
lence insphericalgeometry.

The shallow-water model represents a thin, homoge-
neous layer of fluid with a free surface, which moves under
the influence of gravitational and Coriolis forces. The model
in spherical geometry incorporates the effects of both differ-
ential rotation~b effect! and stratification~through a finite
deformation radius! and is the simplest of the commonly
used atmospheric dynamics models. Due to its higher com-
plexity, the shallow-water system in spherical geometry al-
lows a much greater variety of physical phenomena than the
planar 2-D model. In this paper, we focus on the roles of
simulation conditions, differential rotation due to spherical

geometry, and free surface variations. Specifically, we are
interested in their respective roles on the morphology of self-
organizing physical structures thatspontaneouslyarise in the
turbulent shallow-water system.

Owing to differences in emphasis between the geophys-
ical and theoretical turbulence communities, a somewhat
confusing nomenclature is found in the literature. In order to
clarify the terminology and locate the present work with re-
spect to previous studies, a number of relevant cases and
their associated physical parameters are summarized in Table
I ~the role played by the different parameters, as will become
clear, is discussed in the ensuing sections and is the primary
concern of this paper!. For the case of planar 2-D turbulence,
a wealth of investigations is available,1–7 while its spherical
counterpart has received little attention.8–10 Similarly,
b-plane turbulence has been well studied11–14 ~though, al-
most exclusively under forced conditions!, while the rotating
spherical case has only been recently numerically
simulated.8,15,16,9As for shallow water, only three studies of
the f plane case are available.17–19To the best of our knowl-
edge, there has been no past study of shallow-water turbu-
lence in the spherical geometry. This work is partially aimed
at filling this gap.

Moreover, even in the 2-D cases confined to the plane,
most of the turbulence simulations to date have not explored
thoroughly the dependence of the evolution on the numerical
dissipation and initial conditions, making comparisons of re-
sults somewhat difficult.20 In freely evolving turbulence, a
careful exploration is critical, since this dependence seems to
be more acute than in forced situations. For instance, San-
tangeloet al.5 have found striking differences in the evolu-
tion due to the steepness of the initial spectrum. Their initial
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finding clearly demonstrates the need for performing a thor-
ough simulation-parameter sensitivity study to ascertain
which behaviors are a direct consequence of parameter
choices.

In view of this, our paper is organized in the following
way. After a brief description of the physical models and the
numerical procedure in Sec. II, we start in Sec. III by study-
ing the simplest possible spherical system~the nondivergent,
nonrotating case of Table I!, in order to clearly characterize
the dependence of the evolution on the hyperdissipation, ini-
tial spectrum, and spherical geometry. Readers interested in
more physical effects may skip this section. Having carefully
accessed the sensitivity to simulation conditions, we incre-
ment the physical complexity of the system by introducing
rotation and describe its effects on the flow evolution in Sec.
IV. In Sec. V, we allow for the variations in the height of the
fluid layer ~i.e., vortex-tube stretching! and consider the ad-
ditional effects of removing the nondivergence constraint un-
der differential rotation. Having studied each physical effect
in detail, we demonstrate one direct application using Jovian
parameters in Sec. VI. Our conclusions are then presented in
Sec. VII.

II. PHYSICAL MODELS AND NUMERICAL
PROCEDURE

We begin by briefly reviewing the shallow-water system
and its relationship to the simpler, nondivergent models~see
Table I!, which are also considered in this paper. It is well
known that a thin layer of homogeneous~constant density!,
hydrostatically balanced, rotating fluid with a free surface is
governed by the system ofshallow-water equations
~SWE!.21 In general coordinates, the SWE have the follow-
ing form:

] tv1v–“v52g “h2 fk3v, ~1!

] th1v–“h52h“–v, ~2!

wherev~x,t! is the horizontal velocity andh5h~x,t! is the
free surface height. The variablef is the Coriolis parameter,
proportional to the rotation rate, andg is the gravitational
acceleration.

Physically, given the characteristic scales of length, ve-
locity, and height~L, U, andH, respectively!, one can define
the Rossby number and the Froude number,

R[
U

2VL
and F[

U

AgH
, ~3!

respectively, withV representing the rotation rate. These
quantities define the physically relevant (R,F) parameter
space for the SWE. Another useful nondimensional quantity
is the Burger number:

B[
R2

F2 5S LDL D 2, ~4!

whereLD [ AgH/2V is the Rossby deformation radius. With
these definitions, one can obtain a general set of nondimen-
sional equations,

] tv81v8–“v852BR21
“h82R21k3v8, ~5!

] th81v8–“h852~11h8!“–v8, ~6!

where the following scaling has been used:

~v,h!5@Uv8,H~11h8!#, ~7!

such thath8[h̃/H is the nondimensional characteristic de-
viation from the mean height;h̃ is the dimensional deviation.
Note that, as we have defined it,h8 need not be small.

With the above set of nondimensional equations, the re-
lationship between the shallow-water system and the simpler
cases may easily be seen. Whenh850 ~i.e., eitherh̃→0 or
H→`! Eqs.~5!–~7! immediately reduce to the rotating 2-D
case for whichLD→` ~cf. the nondivergent, rotatingcol-
umn of Table I! and the fluid surface is rigid. In addition, in
the limit R→`, the nonrotating case is obtained~cf. the
nondivergent, nonrotatingcolumn of Table I!. The nondiver-
gent equations for nonrotating and rotating situations in their
more common dimensional vorticity-streamfunction form
are, respectively,

] tz1J$c,z%50 ~8!

and

] tz1J$c,z1 f %50, ~9!

TABLE I. Here f[2V sinq is the Coriolis parameter;V is the rotation rate andq is the latitude;b is the
latitudinal gradient off ; d[“–v is the velocity divergence;LD [ AgH/2V is the Rossby deformation radius,
andR[U/2VL is the Rossby number—whereH, U, L are the characteristic height, velocity, and length,
respectively.

Physical complexity

GEOMETRY

Nondivergent,
nonrotating
~d50, V50!

Nondivergent,
rotating
~d50, VÞ0!

Divergent,
rotating
~dÞ0, VÞ0!

Plane
f50

H, LD , R→`
‘‘planar 2-D’’

b5const
H, LD→`; R,`
‘‘ b-plane 2-D’’

f5const;b50
H, LD , R,`
‘‘ f -plane SW’’

Sphere
f50

H, LD , R→`
‘‘spherical 2-D’’

b5
2V

a
cosq

H, LD→`; R,`
‘‘rot. sph. 2-D’’

b5
2V

a
cosq

H, LD , R,`
‘‘rot. sph. SW’’
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whereJ$•,•% is the Jacobian operator,c is the streamfunc-
tion, z5Dc5k–“3v is the relative vorticity, andz1 f[za
is the absolute vorticity.

One of the objectives of this paper is to study the com-
bined effects of a finite deformation radius and theb effect.
This cannot be accomplished in the doubly periodic planar
domain since gravity waves would experience jump discon-
tinuities in the phase speed at the edges of the domain.
Hence, unless one is willing to accept the limitations of as-
ymptotically approximating the SWE,22 the planar geometry
must be abandoned, and the obvious one to choose is the
sphere. On the sphere, the components ofv, u5u(l,q,t)
andv5v(l,q,t), represent the eastward and the northward
velocities, respectively, at the location~l,q!⇒~longitude,
latitude!, while h5h(l,q,t) is the surface height of the thin
shell of fluid wrapping the sphere of radiusa, such that
h!a. The Coriolis parameter,f52V sinq.

In the absence of dissipation, the SWE possess a number
of useful invariants:~1! the total height,H5^h&23 ~conser-
vation of mass!; ~2! the total energyE5^ 1

2(u
21v2)h

1 1
2gh

2&, whereE is the sum of the potential and kinetic
energies, respectively; and~3! the potential enstrophy
^ 1
2za

2h&. The potential vorticity,q[za/h, is a material invari-
ant in the shallow-water system. In the nondivergent~h
5const! and the nonrotating (f50) cases, these expressions
for the invariants reduce accordingly. We note that, due to
the nonquadratic nature of the energy and enstrophy invari-
ants, analytical theories~e.g., closure schemes! are much
more difficult to construct for the SWE than in the nondiver-
gent situations.

To numerically integrate the equation~s! governing the
dynamics in each of the spherical situations in Table I, a
pseudospectral algorithm that projects the field variables into
a space of spherical harmonics via the Gauss–Legendre
transform is used.24 The time stepping is performed using a
second-order accurate leapfrog scheme with a Robert–
Asselin filter, which can be used to control modal splitting.25

A triangular shape truncation in spectral, (m,n), space with
up to 170 resolvedn modes~denoted T170! is employed;
here,m and n are the zonal and the total wave numbers,
respectively.26 The truncation results in an initial spectral
energy densityE(n,t50) that is equipartitioned among the
m modes in each of then modes spanned by a triangular
mask in spectral space. The kinetic energy density is related
to the vorticity field,z5z(l,q,t), by

E~n,t !5
1

2 (
m52n

n
a2

n~n11!
uzn

m~ t !u2, ~10!

wherezn
m(t) are the coefficients in the truncated, spherical

harmonic expansion ofz:

z~l,q,t !5 (
n51

nt

(
m52n

n

zn
m~ t !Pn

m~q!eiml, ~11!

wherePn
m are the standard associated Legendre polynomials.

Other dynamical variables can be self-consistently re-
lated via the Helmholtz theorem, in whichv5r̂3“c1“x is
linearly decomposed into a rotational part involving the
streamfunction,c, and a divergent part involving the veloc-

ity potential,x, such that the vorticityz[r̂–“3v5Dc and
the divergenced[“–v5Dx. Given the truncation number, a
grid large enough~e.g., T170⇒5123256 grid! is used in
order to evaluate the transform integrals exactly and nullify
aliasing errors to within machine accuracy.27

Finally, a word about our choice of scales. The charac-
teristic length scale,L, is chosen to bepa/2n0 , wheren0 is
the most-energetic scale. Throughout the paper, time is
scaled with an advective time scale,T[a/U, where U
[ A2E ; this is uniformly chosen for all the runs rather than
the enstrophy-based, vortex turnaround time commonly
adopted in planar computations. The latter time scale can
vary significantly from run to run under different physical
conditionsandwithin the duration of a single run.

III. SENSITIVITY TO SIMULATION CONDITIONS

Almost without exception, past turbulence simulations
have been performed using a single choice of dissipation
and/or initial condition without providing elements to assess
the degree to which their results~e.g., values of spectral
slopes, self-similarity claims, etc.! may depend on their
choices. In this paper, in order to clearly delineate this ‘‘nu-
merical sensitivity’’ issue from the effects of the more com-
plicated physical systems of Secs. IV and V, we begin by
confining the system to the simplest possible situation with
numerical dissipation—i.e., the nondivergent, nonrotating
system~see Table I! governed by the equation

] tz1J$c,z%5~21!p11n2p Dpz, ~12!

whereJ$•,•% is now the spherical Jacobian operator.
To isolate the sensitivity of the evolution due to the form

of the dissipation, the power of the dissipation operator,p, in
Eq. ~12!, is varied while adjusting the diffusion coefficient,
n2p, accordingly. Given all the other parameters in a run, the
smallest possible value ofn2p is obtained empirically via a
preliminary set of runs, in whichn2p is initially chosen so
that n2p[nt(nt11)/a2] p51, where nt is the truncation
~maximally resolved! scale. Note the geometrical factor of
a2; from here on the value ofn2p will be given in units of
a2p for easier comparison with planar cases.

As for the initial condition, the same functional form is
used for all the runs presented in this paper. Att50 the
following energy spectral density distribution is specified:

E~n,0!5
Ang/2

~n1n0!
g . ~13!

The value ofA is directly related to the velocity scaleU,
while the parameters,n0 andg, are used to control, respec-
tively, the peak location and the width of the spectrum. Each
mode is initialized with a random phase. The spectra for
several different values ofg andn0 are shown in Fig. 1.

Figure 2~a! illustrates a typical physical space evolution
of an initially random vorticity field at high resolution
~T170! with (p,n2p,n0 ,g)5(8,3.0310235,7,20). In Fig.
2~b!, the spectral space evolution of the same run at three
representative times,t5(0,1,9), corresponding to initial,
early, and late times is shown. Here the timet51 corre-
sponds to approximately ten vortex turnaround times.
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It is clear from these figures that the long-time evolution
is qualitatively similar to those in high-resolution, decaying
planar computations. In particular, note the following fea-
tures: ~1! the early creation of high-gradient, filamentary
structures@t5[1:2] in Fig. 2~a!# and the beginning of the
inverse cascade@t51 in Fig. 2~b!#; and ~2! the eventual
emergence of long-lived coherent structures@t5[4:6] in
Fig. 2~a!#, with the corresponding steepening of the inertial
range@t59 in Fig. 2~b!#. These features aregeneraland are
independent of planar or spherical geometry, as was previ-
ously shown in the lower resolution, shorter integration time,
spectral computations of Yoden and Yamada.9

On the sphere, however, avery long-time integration
shows that coherent structures ultimately evolve to a
vortical-quadrupole state—rather than a dipole state, as on a
plane.28 Figure 3 depicts a typical very long-time run, in
which the quadrupole configuration is reached. Once

reached, the basic configuration is unchanged, even after 70
advective times; no further reduction in the number of vor-
tices occur, even during several close encounters by the con-
stituent vortices over this long,dynamically activeperiod.
We point out that here only 0.3% of the total energy is lost at
the end of the run with no loss occurring aftert510. The
quadrupole configuration is a direct consequence of angular
momentum conservation on the sphere, which forbids the
flux of energy in or out of then51 mode, thus forcing a
pile-up at then52 mode; the early manifestation of this is
clearly visible in Fig. 2~b! ~contrast this with Fig. 2 in Ref. 1,
corresponding to a planar calculation!.

Having illustrated the general features of a typical high-
resolution spectral calculation, we now consider the effects
of varying the power,p, of the dissipation operator. Figure 4
shows the spectra att51 for runs usingp5$1,2,4,8%. All the
runs begin with a common initial condition, which is identi-
cal to that of the run depicted in Fig. 2. Even at this repre-
sentative ‘‘early’’ time ~chosen to minimize the coherent
structure-associated effects on the spectra!, two nontrivial
trends in the spectral behavior can be detected:~1! the use of
hyperdissipation has the effect of extending the inertial
range, and~2! the inertial range slopex @such thatE(n);nx

for 1!n,nt# appears less steep with increasingp with the
inertial ranges ‘‘converging’’ toward the one corresponding
to p58. Here, we measure the slopes to range from24.0
60.1 atp51 to23.360.1 atp58 @see thex(1) column of
Table II# with the uncertainty reflecting our inability to ac-
curately ascertain the true extent of the inertial range.29

Both trends can be easily explained by the activity
present in the corresponding physical space, shown in Fig. 5.
A higher-powered dissipation operator allows more space-
filling, filamentary structures to be formed and sustained. As
has been shown in the two recent studies of simpler, vortex
dynamics problems,30,31 the largerp values lead to less dis-
sipation and sharper small-scale vorticity gradients. We
quantify this effect by the palinstrophy,P (t)[^ 1

2(“z)2&
5(n51

nt n4E(n,t); see Table II. As shown in Fig. 6, these
early differences lead to a substantial deviation in the subse-
quent vortex population at later times; the energy spectra
~not shown! for the two runs are also correspondingly differ-
ent.

Next, we proceed to describing the effects of the shape
of prescribed initial spectrum on the turbulent evolution. Fig-
ure 7~a! summarizes the results for different initial spectral
steepness,g5$6,12,20,40,60%, as illustrated in Fig. 1~a!. The
spectra in Fig. 7~a! are shown at time,t59, corresponding to
the ‘‘late’’ stage of evolution when the coherent structures
have existed for many time periods and the enstrophy decay
behavior is flat in all the runs. The parameters for these runs
are (p,n2p,n0)5(4,3.0310217,7). As can be seen, the iner-
tial range slope does not seem to be strongly affected by the
different initial steepness, even though the initial total enstro-
phies differ by a factor of nearly 20, due to the different
values ofg. This behavior clarifies that reported in Ref. 5, in
which a similar difference of initial enstrophy~a factor of 15
in that study! led to a dramatic difference in the inertial
range. Our study suggests that the strong dependence on the
inertial range slope in their case is not due to initial steepness

FIG. 1. Initial spectra for several parameter values of~a! the steepness,
g5$6,12,20,40,60% and~b! the peak wave number,n05$2,3,7,14%. The total
energy in each case is identical.
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FIG. 2. Typical 2-D evolution at a T170 resolution:~a! vorticity contours at times marked at the upper left of each frame, positive values are in red and
negative values are in blue; and~b! spectra att5(0,1,9). The evolution is qualitatively similar to that on the plane.
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but due to the initial peak location, which we now address.
Figure 7~b! shows the effect of varyingn05$2,3,7,14%

with fixed (p,n2p,g)5(2,1.031028,20). As can be seen
from Fig. 1~b!, the variations inn0 correspond to energy and
enstrophy being primarily contained in large (n052) or
small (n0514) scales. It is clear from Fig. 7~b! that, depend-
ing on n0 , two distinct behaviors occur at the late stage~as
defined above!; the vortex-size distributions are also corre-
spondingly different. Forn05$7,14% the inertial range is
‘‘kinked’’ upward, which is qualitatively similar to that re-

ported by Yoden and Yamada,9 while for n052 the kink is
downward, similar to observations reported by Santangelo
et al.5 and Dritschel.10 The n053 case exhibits the ‘‘cross-
over’’ between the two types of behaviors; it is similar to the
spectra in McWilliams1 and Benziet al.4 Hence, there exists
a clear monotonic relationship betweenn0 and the kink di-
rection.

From our study of the influence of initial spectra, several
new conclusions can be drawn. First, at the current resolu-
tion, the spectral evolution is much more sensitive to the

FIG. 3. Vortical quadrupole final-state configuration on a nonrotating (R→`) sphere, a direct consequence of angular momentum conservation. In this run,
t51 corresponds to approximately four vortex turnaround times. Solid~dashed! contours depict positive~negative! vorticity values.
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initially most-energetic scale than to the spectral bandwidth.
Since the question of time scale is ruled out by comparing
the runs at the ‘‘well-decayed’’ phases of the evolution~i.e.,
when all the runs are well into the flat region of enstropy
decay and the coherent structures have existed for many
turnaround times!, dissipation characteristics must play a sig-
nificant role here. Second, the isolation of sensitivity ton0
also suggests that the variety of previous results concerning
the inertial range slope can be qualitatively understood in
terms of the initial peak-energy scale used by the different
investigations. And, third, the study also suggests that, in
forced studies some of these sensitive, ‘‘free’’ features may
be obscured or overwhelmed by the prescribed forcing, and
that those studies might benefit from additional sensitivity
tests, supplementing the works of Refs. 13 and 33.

In summary, our exploration of the simulation conditions
leads us to conclude that while the general qualitative behav-
ior ~i.e., the emergence of long-lived coherent structures! is
robust, many quantitative aspects such as the slope of the
inertial range spectra and the population statistics of vortices
and filaments in the flow are severely affected by the choice
of dissipation and of the initial spectrum. Hence, our work
suggests that the recent findings of self-similar
universality34,4 might be put on firmer ground in a series of

calculations such as the one presented here, showing the ro-
bustness of that result to a variety of simulation conditions.
On the other hand, the high sensitivity to simulation condi-
tions and the well-known inadequacy of a purely spectral

FIG. 4. Spectra at an early time,t51, for runs A1–A4~cf. Table II!, for
whichp5$1,2,4,8%, respectively. The inertial range is broader and less steep
with higher powered dissipation. The corresponding physical space picture
is shown in Fig. 5.

TABLE II. The p variation:n057, g520, and T170 resolution. Herep is
the power of the hyperdissipation operator,n is the viscosity coefficient,
x(1) is the inertial range slope att51, E is the energy, andP is the
palinstrophy.

Run p n2p x(1) E~1!/E~0! P ~1!/P ~0!

A1 1 2.03 1024 24.060.1 0.768 0.254
A2 2 1.03 1028 23.860.1 0.799 0.899
A3 4 3.0310217 23.660.1 0.950 1.76
A4 8 3.0310235 23.360.1 0.997 2.64

FIG. 5. The vorticity field in cylindrical-equidistant projection for runs
A1–A4 @panels~a!–~d!, respectively# at t51. Solid ~dashed! contours de-
pict positive ~negative! vorticity. The higher-powered dissipation admits
larger quantity of space-filling filamentary structures.
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description of turbulence lend support to the recent attempts
to emphasize physical space diagnostics6,7,10 and justify our
own emphasis on the robust physical space features to which
we now turn our attention.

IV. ROTATION EFFECTS

In this section, we move one step closer toward a geo-
physically realistic situation by introducing rotation into the
purely 2-D system described by Eq.~12!. The rotating, non-
divergent spherical system~cf. Table I! with numerical dis-
sipation is governed by the nondimensional dynamical equa-
tion:

] tz1J$c,z%1R21 ]lc5~21!p11n2p Dpz, ~14!

which we directly integrate in the runs described in this sec-
tion; here, the curvaturea/L is fixed and hence ignored. It is

worth recalling that this equation is the fundamental state-
ment of the material conservation of potential vorticity,
q[za ~recall thath is constant in this model! in the inviscid
limit. Note also that the rotating sphere offers one important
additional level of realism absent from the more

TABLE III. The R variation:n057, g520, p54, n853.0310217, and T85
resolution. HereR is the Rossby number,x(t) is the inertial range slopes at
time t, nb is the equatorialb based Rhines scale, andn̄ is the energy
centroid.

Run R x(1) x(3) x(9) x(23) nb n (̄1) n (̄9) n (̄23)

B1 ` 23.6 23.9 24.9 24.9 ••• 7.9 4.3 3.4
B2 0.400 23.7 23.7 23.6 24.0 1.8 7.9 3.8 2.6
B3 0.200 23.8 23.5 23.7 24.0 2.5 7.9 3.4 2.6
B4 0.100 23.8 23.6 23.9 24.0 3.5 8.2 4.1 3.0
B5 0.025 23.8 24.1 24.5 25.3 7.0 9.2 5.9 5.2
B6 0.010 24.6 24.1 24.4 25.5 11. 10.1 6.3 5.8

FIG. 6. The vorticity field for runs A1~a! and A4~b! at t59 in orthographic
projections. The contour levels are reduced in~a! to reflect the greater loss
in energy. The large difference of vortex population in the two cases is due
to dissipation.

FIG. 7. Initial condition variations: spectra att59 for ~a!
g5$6,12,20,40,60% and ~b! n05$2,3,7,14%. Long time evolution is not very
sensitive tog, butn052 andn05(7,14) leads to distinctive differences with
‘‘kinks’’ in the opposite direction. Heren053 exhibits the ‘‘cross-over’’
between the two behaviors.
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commonly usedb plane; namely, theb ~not only f ! varies
with latitude from the equator to the pole. This leads to in-
teresting differences in the behavior between polar and equa-
torial regions, as discussed below.

The b-plane turbulence in a doubly periodic planar do-
main has been extensively studied.11,13,14 The constant pa-
rameter,b, absent in the nonrotating case, defines a new
length scale, called the Rhines scaleLb [ pA2U/b, at which
the inverse energy cascade is strongly retarded by the anisot-
ropy of the system—preventing the growth of vortices in the
meridional direction.11 Thus, when forced, a steady, alternat-
ing field of elongated, zonal structures and jets is produced in
b-plane turbulence. This mechanism has been proposed by
Williams15 as a possible explanation for the observed, alter-
nating zonal jet patterns in the atmosphere of Jupiter.

In non-Cartesian geometry, freely evolvingb-plane tur-
bulent flow has been studied by Marcus35 in annular geom-
etry, and the first high resolution~T85! spherical simulations
have recently been performed by Yoden and Yamada.9 Start-
ing with initial conditions containing spatial symmetries and
a spectrum,E(n,0)}n5e2n/2, Yoden and Yamada have
found considerable differences with their and earlier,b-plane
simulations. WhenV50, they detected a kinked inertial
range withx;23 for n<10 andx;25 for n.10. Also,
whenV was increased, they observed the flow field to be
anisotropic~as in the plane! and reported the formation of an
anticyclonic~westward! circumpolar vortex at highV.

In this paper, we extend their results in three ways: long-
time integrations are performed, no initial spatial symmetry
is imposed, and more than one initial spectrum is considered.

FIG. 8. Typical potential vorticity evolution under slow rotation (R;1) in the limit of LD→`: run B3 of Table III in ~a! orthographic projection centered
at ~longitude, latitude!5~0,0!, with positive~negative! values in red~blue!, and~b! polar-stereographic projection at the North Pole. Here,t51 corresponds
to 2 rotations of the sphere, andLb/a51.
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Table III lists one series of runs used for discussion in this
section. The values of (p,n2p,n0 ,g)5(4,3.0310217,7,20)
are fixed in these runs and onlyV, or alternatively the
Rossby numberR, is varied. The listed runs~at T85 resolu-
tion! are chosen for their initial spectrum, which is sharply
peaked about a scale smaller thanLb , allowing the flow field
to undergo a significant amount of spectral broadening and
inverse cascade.36 In all the runs, long-time integrations were
carried out until flat enstrophy decay behavior was observed.
We start by mentioning briefly some results regarding long-
time evolution of the spectrum before presenting in detail the
physical evolution and how it is affected by rotation.

The first result to report is that, as rotation increases, the
inertial range slope at early times becomes steeper@see the
x(1) column in Table III#. This monotonic behavior of the

slope x with V for short integration time was previously
reported by Yoden and Yamada9 and is due to the retardation
of inverse cascade by theb effect. However, as can be seen
from the slopes at later times~cf. Table III!, that behavior is
not robust.

The energy centroid,

n ~̄ t ![
(n51
nt nE~n,t !

(n51
nt E~n,t !

, ~15!

with n̄(0)511.9 ~corresponding ton057! is tabulated for
several times in Table III; it provides a quantifying measure
of the inverse energy cascade arrest. At the early stages, the
inverse cascade is indeed retarded to a greater extent by a

FIG. 8. ~Continued.!
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largerV ~smallerR!, leading to steeper spectra as in Ref. 9
@cf. the n̄ (1) column in Table III#. However, this monotonic
behavior withV is destroyed at later times when the flow
field contains highly intermittent vortical structures@cf. the
n̄ (9) andn̄ (23) columns in Table III#. The vorticity kurtosis,
Kuz(t)[^z4&/^z2&2 ~used to quantify the intermittency!, at
t59 for run B1 is 18, approximately three times larger than
for the rest of the runs. On the other hand, we have found
that the monotonic behavior can be sustained for longer pe-
riods, using an initial spectrum with largern0 . It should be
clear at this point that many spectral behaviors are possible;
and, the resultagainpoints to the danger of making quanti-

tative comparisons of spectral slopes, be they against other
spherical results or against planar results, especially if only a
single simulation condition is considered.

The general physical space behavior, fortunately, can be
considerably more robust. That is, from our many simula-
tions, we have found that the resolution andn0 variations do
not qualitatively affect the features discussed below. The key
physical results of this section is that the rotationV produces
two qualitatively different physical behaviors: one~at small
V! in which there is a substantial latitudinal motion by the
growing vortices, and the other~at largeV! in which struc-
tures are initially latitudinally confined but quickly give way

FIG. 9. Typical potential vorticity evolution under rapid rotation~R!1 andLD→`!: run B5 of Table III. The views are as in Fig. 8. TheLb scale is shown
in the last frame in~b!. Notice the formation of the anticyclonic, circumpolar vortex. Here,t51 corresponds to 16 rotations of the sphere, andLb/a50.3.
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to a field dominated by a pair of circumpolar vortices. We
now give an illustration of each of these two behaviors.

First, Fig. 8 shows an orthographic~a! and a polar-
stereographic~b! view of the potential vorticity evolution in
a typical ‘‘low-rotation’’ (R;1) case, specifically run B3 in
Table III; in this figure,t51 corresponds to approximately 2
rotations of the sphere andLb/a51, where the equatorial
value ofb has been used since the value ofb is variable. In
this case, the effect of spatially varyingb on the sphere can
be clearly seen. In the early stages, the latitudinal variation of
b separates the field, roughly speaking, into two dynamical
regions @see, for example, thet55 frame of Fig. 8~a!#: a
low-latitude region populated with mostly elongated struc-
tures and large-scale waves and a high-latitude region con-

taining well-defined coherent vortices undergoing continuous
mergers in the poleward direction; the mergers are clearly
seen in the polar view of Fig. 8~b!. These figures highlight
the fact that the rotating sphere is really a composite envi-
ronment,b-plane-like at low latitudes andf -plane-like near
the poles, and exhibits a much more complex physical space
behavior than the simplerb plane.

Furthermore, Fig. 8~a! clearly illustrates the long-time
relaxation of q toward a geostrophic, solid-body rotation
state.37 Notice how, starting from a field containing both
positive ~red! and negative~blue! values ofq in both hemi-
spheres at t50, the flow clearly separates via self-
organization into a northern hemisphere containing strictly
positive values ofq and a southern hemisphere containing

FIG. 9. ~Continued.!
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only negative values ofq at t58. We note that the relaxation
is not due to dissipation, since only 4% of the initial energy
is lost at the end of the run and is mainly due to the inversely
cascading turbulent evolution. To the best of our knowledge,
this type of evolution ofq toward f from random initial
conditions has not been demonstrated in previous
simulations.38

Second, Figs. 9~a! and 9~b! illustrate a typical ‘‘high-
rotation’’ (R!1) case, specifically run B5 in Table III. In
this example,t51 corresponds to approximately 16 rotations
of the sphere andLb/a50.3. The distinctive behavior at high
rotation is the formation of anticyclonic circumpolar vorti-
ces, as previously reported by Yoden and Yamada.9 In our
computations, in which no initial spatial symmetries have
been used, we have found that polar vortices generally form
at both poles—as might be expected. Moreover, when the
polar vortices, bounded by largeq gradients, are fully
formed, q is well homogenized in their interiors—but not
elsewhere~see the last three frames of Fig. 9!, a feature not
obvious in Ref. 9 since thec field is plotted rather than theq
field ~see Fig. 7 in Ref. 9!.

Unlike in the forced planar cases,11,13zonal jet structures
are not particularly well defined in our rotating, nondivergent
decaying experiments. This is due to a combination of the
spatially varyingb, the anisotropic energy arrest in spectral
space, and the decaying nature of unforced evolution. It
would seem that steady jets in the pure 2-D case require a
continuous supply of enstrophy for sustenance. Table III also
shows that, at the stage when the inverse cascade has nearly
halted (t523), n̄,nb at high rotation rates, as was found in
the forcedb-plane experiments of Vallis and Maltrud.14

Therefore, although the meridional alternations do generally
increase in number for greater values ofV initially @see the
n (̄23) column of Table III#, the Rhines scaleLb does not
appear in this case to be a viable measure of the number of
bands on the sphere, and ultimately not even in a qualitative
sense, since the jets do not last. This is particularly clear in
physical space, where the initially large number of alterna-
tions quickly gives way to a field dominated by strong polar
vortices, and theq contours are nearly uniform in the me-
ridional direction~cf. Fig. 9!. In this situation, jets are barely
present and difficult to detect, except at the edges of the
polar vortices.

Finally, in our series of many nondivergent runs under
varying rotating conditions, no asymmetry between cyclonic
and anticyclonic39 vorticity is observed. The cyclone/
anticyclone asymmetry can be quantified and tracked via the
skewness of the vorticity field, defined by

Skz~ t ![
^z3&

^z2&3/2
. ~16!

Figure 10~a! shows the vorticity skewness time series for run
B4 in Table III, a typical high rotation case. The small non-
zero values are due to the numerical discretization. A com-
plimentary quantity, confirming the absence of vorticity
asymmetry in these nondivergent rotating cases, is the corre-
sponding vorticity pdf, shown in Fig. 10~b! for t54. Note
the approximately equal areas in the left and right wings,
corroborating the zero skewness. Therefore, our computa-

tions provide evidence that theb effect alone is clearly not
sufficient to explain the predominance of anticyclonic vorti-
ces in the atmospheres of the giant planets.40 It is through the
addition of one further physical complexity, specifically the
presence of free surface, that asymmetry between cyclones
and anticyclones is found to appear. The effects of a free
surface is the subject of the next section.

V. DEFORMATION RADIUS EFFECTS

In this section, we further increase the physical complex-
ity by considering a rotating fluid bounded by a free surface;
this allows for horizontal divergence of the velocity field and
hence vortex-tube stretching in the flow. For this, the full set
of shallow-water equations~SWE! must be used. The spheri-
cal SWE in nondimensional vorticity-divergence form, as
they are used in the numerical integration procedure, are

FIG. 10. Absence of cyclone/anticyclone asymmetry in the nondivergent,
rotating case:~a! the vorticity skewness time series for run B4 of Table III
and ~b! the pdf of the vorticity field att54.
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] tza52
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]m~Ṽza!1D̂z, ~17!
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ã~12m2!
]l~Ṽza!2
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]m~Ũza!

2DS F22~11h8!1
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1
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]lṼ2

1

ã
]mŨ1R21m, ~20!
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1
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]lŨ1

1

ã
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FIG. 11. Typical potential vorticity evolution of a run with finite deformation radius (LD/a50.03) in~a! orthographic and~b! polar-stereographic views. The
field does not condense into a polar vortex and bands are formed. Here,t51 corresponds to approximately 20 rotations of the sphere andLb/a50.3. TheLb

scale is shown in the last frame of~b!; theLD scale is too small to be shown.
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andh8 are the three prognostic variables, representing abso-
lute vorticity, velocity divergence, and surface deviation, re-
spectively, and

Ũ[u8A12m2,

V˜[v8A12m2,

with m[sinq and ã[a/L. Here D̂ is the hyperdissipation
operator, (21)p11n2pD

p. We remind the reader that the po-
tential vorticity,q, is now equal toza/h.

Whereas in the previous section the only physical length
scale in the problem wasLb , the presence of a free surface
introduces here a new important length scale in the physical
system,LD 5 AgH/2V. The nondivergent systems we have

considered in the previous two sections correspond to the
limit LD→`, whereas it is finite in this system.

In the asymptotic limit ofR!1 andF!1, where the
SWE reduce to the so-called ‘‘equivalent barotropic’’ equa-
tions on thef plane, the effect of a finiteLD on the vorticity
dynamics of a shallow rotating fluid have been studied in
some detail.41–43In this case, it is well known that the vortex
interaction decays exponentially with separation over an
e-folding scale comparable toLD , in contrast with the non-
divergent case where the interaction is long range and loga-
rithmic. The shorter range implies that when vortices are of a
size that is large compared toLD they are less coherent since
one side of the vortex does not ‘‘see’’ the other side; hence,

FIG. 11. ~Continued.!
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for L@LD vortices are found to be ‘‘blobby’’ and
nonaxisymmetric.41–43

As for the full SWE ~i.e., in nonasymptotic parameter
regimes!, the evolution of coherent structures has only re-
cently been studied in doubly periodic, planar geometry.17–19

The key results are that the emergence and the eventual size
of coherent structures are strongly influenced by the value of
the deformation radius~in our case,LD provides asecond,
apparently crucial, inverse-cascade arrest mechanism!. Fur-
thermore, when the free surface variations are not small com-
pared to the mean thickness of the fluid layer@i.e.,h85O ~1!
such thatRB21>0.1360.04# a strong asymmetry develops
between cyclonic and anticyclonic vortices, favoring the
latter.19

Since the full SWE admit gravity waves, it is necessary
to initialize the flow with a balancing procedure.44 In this
work, a bounded derivative method45 has been used to bal-
ance the initial condition. The bounded derivative method is

based on the observation that a solution of the scaled equa-
tions with a time scale ofO ~1! must have a sequence of time
derivatives of the dependent variables, also ofO ~1!. Thus,
terms in SWE that contribute to large time derivatives are
identified by performing a scaling analysis and are con-
strained to be on the same order as the slower, Rossby wave
time scale. In theory, the higher the order of the constrained
time derivative, the smoother the temporal evolution of the
flow. In practice, we have found a second-order time and
first-order (R) bound to be adequate for this study.

We start by illustrating the key result of this section in
Fig. 11: in the presence of a finite deformation radius, the
potential vorticity does not condense into a polar vortex but
takes the form of banded zonal structures—even whenV is
large. Contrast the evolution in Figs. 11~a! and 11~b! with the
corresponding nondivergent case in Fig. 9. The runs in both
figures haveLb/a50.3; however, in Fig. 11LD/a50.03,
whereas it is infinity in Fig. 9. The formation of banded

FIG. 12. The zonally averaged, zonal velocity in units of characteristic velocity as a function of latitude for several rotation rates:~a! the common initial
profile and ~b!–~d! the long-time, steady profiles for runs withR5(1.5,0.15,0.015), respectively. All other parameters are identical:
(p,n2p,n0 ,g)5(3,4.0310210,7,18). The number of jets increase withV, asR becomes small.
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structures leading to robust zonal jets is a general behavior
that we have found common to all the runs, withLD/a, 1

3 in
our many simulations. For larger values ofLD/a , the effect
of the free surface is negligible and the evolution resembles
the nondivergent or nonrotating cases of the previous sec-
tions; we have spanned the values ofLD/a from 0.01 to 725.

Notice further how, whenLD is finite, the zonal struc-
tures are somewhat spiraling out of the pole and are made of
regions of steep gradients separating well-homogenized
bands of potential vorticity@see, for instance, framet58 in
Fig. 11~b!#. The polar regions, of course, behave more like
an f plane, and hence vortices are not sheared away by theb
effect; at the same time, note how the unsheared vortices do
not condense into a polar vortex, owing to the smallLD
halting the inverse cascade. It is well worth emphasizing here
that the evolution of the flow is completelyunforced; to the
best of our knowledge, all previous studies that have pro-
duced steady banded structures have done so under forced
conditions.15,13,14 We are demonstrating here for the first
time that a freely evolving flow spontaneously self-organizes
into such banded structures, provided the deformation radius
is finite and the rotation is high.

The second result is a direct consequence of the fact that
a finite deformation radius yields banded potential vorticity
structures: one can directly observein physical spacehow
the number of robust jets~the bunching ofq contours! in-
creases as the rotation rate is increased—even after a long
time. In Fig. 12 we demonstrate this by plotting zonally av-
eraged zonal velocity [ū[1/2p*0

2pu(l,q)dl] profiles. Fig-
ure 12~a! is the common, random initial condition, while
Figs. 12~b!–12~d! show the zonal profiles at long times for
three different value of Rossby numbers,R51.5, 0.15, and
0.015, respectively. Aftert523, the profiles are perfectly
steady for all three cases. It is also clear that, in our simula-
tions with well-resolved and well-separatedLb and LD
scales, the former scale controls the jet scale and no second-
ary spectral peak in the vicinity of the latter scale is ob-
served.

Although the number of zonal jets clearly increases with
rotation rate, as predicted by Rhines,11 again we have been
unable to quantitatively use the Rhine scale as a predictor of
that number, showing that this behavior is not a result of
forcing. In Fig. 12, the rough expected number of bands
using the Rhines scale (pa/Lb) is 1, 4, and 12 in panels~b!,
~c!, and~d!, respectively. As in Ref. 14, we suspect the spa-
tial variation ofb to play an important role in moderating the
number of bands and jets. We also point out that, unlike in
the forcedb-plane simulations, our spontaneously formed
bands on the sphere are not perfectly zonal; they spiral at
high latitudes. Therefore, the zonal averaging procedure de-
stroys some of the~banded! features, which are otherwise
more obvious in the full physical field~cf. Fig. 11!.

A third interesting result can be obtained by varying the
mean thickness,H ~hence theLD!, at a fixed rotation rate.
This is illustrated in Fig. 13, where the zonally averaged
velocities at t532 for four runs with
LD/a5(0.30,0.18,0.12,0.08) are shown; all other parameters
are fixed. The point here is that a decreasing deformation
radius yields an increasing equatorial jet; or, equivalently,

the zonal winds decay with increasingH. In all our many
SWE simulations, the preferred direction of the intensifica-
tion iswestward, and we believe this to be a general, distin-
guishing feature of freely evolving shallow-water systems.
The fact that a number of equatorial jets in planetary atmo-
spheres are in fact eastward, points to the conclusion that
physics beyond the freely evolving shallow-water model is
necessary to explain thedirectionof the equatorial jet.

Finally, the presence of a free surface in the runs dis-
cussed in this section allows for a clear symmetry breaking
in the populations of cyclones and anticyclones. In the pre-
vious section we have shown thatb alone is not sufficient to
produce an asymmetric evolution. In fact, it is not even nec-
essary since the asymmetry has been observed on thef
plane.19,46

Figure 14 clearly illustrates the cyclone/anticyclone
asymmetry. Shown is the relative vorticity field in the north-
ern hemisphere in polar-stereographic projection for a run
with (p,n2p,n0 ,g)5(3,5.031029,14,18), for which
LD/a50.02 andLb/a50.3. The cyclonic vorticity is in red
and the anticyclonic vorticity is in blue. Note the predomi-
nance~especially at low latitudes! and the coherence~near
the pole! of blue structures as the evolution proceeds; finer
temporal resolution of the early stage of evolution shows that
anticyclones are able to merge more efficiently, leading to
the dominance at late times in a fashion similar to the planar
behavior.19 The anticyclones, which are associated with local
elevations of the fluid, correspond to greater effective local
value of LD , thereby interacting and merging more effi-
ciently with other like-signed vortices; in this way, anticy-
clones are able to more prominently assert themselves than
their cyclonic counterparts.

In Fig. 15 we present the measures of asymmetry corre-
sponding to the run in Fig. 14. Both the skewness and the pdf
of vorticity field show a marked asymmetry toward anticy-
clonic vorticity. Figure 15 should be contrasted with the cor-

FIG. 13. The zonal velocity profiles as in Fig. 12 for several values ofH
with fixedV: theLD/a values are shown in the legend. All other parameters
are identical: (p,n2p,n0 ,g)5(3,4.0310210,7,18). AsH decreases, or asLD
decreases, the equatorial jet intensifies.
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responding measure given in Fig. 10 for the case where the
deformation radius approaches infinity.

From the large number of simulations, we have identi-
fied the region in (R,F) space, where the evolution proceeds
asymmetrically. This is shown in Fig. 16, which summarizes
all the shallow-water parameter values we have explored.
The marks indicate initial parameter values; the ‘‘asymmet-
ric run’’ is marked with an ‘‘x,’’ and the ‘‘symmetric run’’
with a box. The asymmetry was determined by computing
the vorticity skewness and the pdfs of the vorticity field. As
can be seen, our runs suggest two features:~1! the relevant

‘‘asymmetry parameter’’ is the combination,RB215F2R21

~the B51 line, shown as a dotted line, is also drawn for
further justification of this point and is clearlynot the appro-
priate parameter of demarcation!; and ~2! an initial value of
RB21>0.1360.04 leads to cyclone–anticyclone symmetry
breaking; theRB2150.13 line in (R,F) space is shown
dashed in the figure. Note that physically the parameter
RB21 corresponds to the deviation from the average height
and is a measure of the ageostrophy. It is interesting to note
that anh85O (RB21) value of 0.13 is sufficient to see a

FIG. 14. The relative vorticity field in polar-stereographic projection at the North Pole. Notice the appearance of cyclone/anticyclone asymmetry: cyclonic
vorticity ~red! and anticyclonic vorticity~blue! for a run withLb/a50.3 andLD/a50.02.
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clear asymmetry, since this value doesnot correspond to a
large surface height variation.

In summary, we have presented a careful study of pa-
rameter effects on the turbulent evolution by systematically
adding complexity, beginning from the simplest possible
situation. The fact that the inclusion of a finiteLD produces
zonally banded homogenized regions of potential vorticity
and favors anticyclonic vortices suggest that the dynamics at
play in this ultimately very simple model~no vertical struc-
ture, no thermodynamics, no forcing! may be of relevance to
the atmospheres of the giant planets. We therefore conclude
this survey, with a specific application to the atmosphere of
Jupiter.

VI. A SIMULATION WITH JOVIAN PARAMETERS

A number of authors have suggested that the zonal jets
of the Jovian atmosphere can be understood, at least qualita-

tively, as the consequence of the nonlinear dynamics of a
thin spherical shell of rotating fluid. The reader may consult
the recent reviews of Rhines37 and Yano47 for more details.

However, to the best of our knowledge, all previous
work along these lines has been done with forced systems
and is hence liable to the criticism that the bands may be a
direct product of a somewhat artificial forcing. Without de-
nying the potentially important role of forcing, here we take
a different angle of attack, along the lines of Ockham’s fa-
mous razor. That is, we are interested in answering the ques-
tion: how muchof the observed behavior can we capture
with asimpler unforcedmodel? We believe an answer to this
question will clearly discriminate between those features that
are a robust spontaneous characteristic of the free dynamics
and those that may be directly dependent on the currently
unknown forcing.

As a specific application, results from a T170 resolution
simulation with Jupiter parameters~a57.153107 m,
V51.7631024 s21, g522.9 m/s2, andH52.03104 m! are
presented in Figs. 17 and 18. In the figures, a dimensional
time unit of the Jupiter day is used. The dissipation and
initial conditions for this run are
(p,n2p,n0 ,g)5(3,1.0310212,14,18) and do not qualita-
tively affect the results, provided that the initial scale is small
enough to allow a reasonable inverse cascade. The value of
AgH is based on observations from Voyager encounters48

and follows the shallow-water simulations of Dowling and
Ingersoll49 in a channel geometry, leading toLD;23106 m.

Figure 17 showsq contours of this run for a long-time
integration in orthographic~a! and polar-stereographic~b!
projections. Many realistic features are seen:~1! there are
clear banded regions of homogenizedq, bounded in latitude
by regions of highq gradients~notice themultiplebunching
of q contours!; ~2! there is a large amount of eddy activity
accompanying the jets—the animations clearly show many
stable anticyclones that are ‘‘rolling with the winds,’’ even at

FIG. 15. The vorticity skewness time series for the run in Fig. 14~a! and the
pdf of the vorticity field for the same run att510 ~b!. Compare with Fig. 10
for the case in whichLD→`; skewness is negative, showing the dominance
of anticyclonicity.

FIG. 16. The (R,F) space: asymmetric runs~x’s! and symmetric runs
~boxes!. Solid lines demarcate valid region~to their left! for shallow-water
system;B51 line ~dotted! andRB2150.13 line~dashed! are also shown.
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low latitudes;~3! while most of the cyclones are sheared out,
anticyclones clearly persist and are much more prevailing~as
indicated by the skewness of21.460.1 in Fig. 18!; ~4! there
is a wavy structure with high azimuthal wave number
straddled by vortices at high latitude, including vortex pairs
~cf. t5120 andt5140 in Fig. 17!; and ~5! the number and
magnitude of the jets, including a strong equatorial compo-
nent, are in rough agreement with the observations.

Figure 18~a! shows the zonal jets corresponding to the
run in Fig. 17; the zonal wind profile can be contrasted with
those presented in the previous section with smaller radius
and rotation rate~cf. Figs. 12 and 13!. Figure 18~b!, showing

the vorticity skewness, verifies the preponderance of anticy-
clones over cyclones.

The main discrepancy between the observed Jovian flow
and the results of this simulation is that the equatorial jet is
westward in our simulation, whereas on Jupiter it is east-
ward. Since the westward direction of the equatorial jet is a
very robust feature in our shallow-water simulation~i.e., we
have been unable to find parameter regimes where the equa-
torial jet is robustly eastward!, we are forced to conclude that
the eastward direction of the Jovian equatorial jet must be
due to yet unknown physics that is beyond our simple, freely
evolving, one-layer shallow-water model, at least at the cur-

FIG. 17. A simulation with standard Jupiter parameters:a57.23107 m, V51.831024 s21, andLD523106 m. Here, positive~negative! potential vorticity
contours are in full~dashed! lines in ~a! orthographic and~b! polar-stereographic views. Here,t51 corresponds to 1 Jupiter day.
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rent resolution. However, it is interesting to note that the
equatorial jets on Uranus and Neptune are westward.50 A
careful comparison of jet formation for all four Jovian giant
planets will be reported elsewhere.

VII. CONCLUSION

Three main features characterize the present work:~1!
we have performed our work on a full spherical domain, with
a free surface, since the spherical geometry and the presence
of finite deformation radius are important to geophysical
~and possibly astrophysical! applications;~2! we have pre-
sented high-resolution, long-duration, unforced simulations
without initially imposing symmetry, allowing the system to
evolve freely according to its own dynamics through all

stages of its development; and~3! we have systematically
varied only one parameter in a series of runs~totaling over
200! for a careful characterization of each parameter’s influ-
ence on the evolution.

As a result, a number of phenomena previously not well
emphasized or observed have been demonstrated. First, the
spectral evolution was shown to be highly dependent on the
initial conditions, with very sensitive behavior attributed to
the initially most-energetic scale, as well as to the choice of
dissipation. Also, in the absence of rotation and in the limit
of infinite deformation radiusLD , the end state was found to
be in a vortical quadrupole configuration.

Second, in the presence of rotation, vortices undergo
continuous inelastic interactions~i.e., various degrees of
mergers and straining!51 in the poleward direction—evolving
finally toward a solid-body rotation end-state. At low rota-
tion rates, some zonal jets form, but are not steady, since
vortical structures are not well confined in the meridional
direction. At high rotation rates~andLD→`!, the evolution
is dominated by a somewhat surprising circumpolar vortices.
This last result independently confirms the earlier calculation
of Yoden and Yamada9 over a much broader range of simu-
lation conditions.

Third, the addition of a free surface~and thus of a finite
LD! leads to a number of new and interesting behaviors. A
finite LD provides a second inverse cascade arrest mecha-
nism, and is responsible for the absence of polar vortices in
spherical shallow-water turbulence, even athigh rotation
rates. Furthermore, a finite value ofLD leads to the forma-
tion of robust, zonally elongated structures with a jet profile
containing an intensifying, westward, equatorial
component—increasing asLD is decreased.

In addition, we find that, as in the planar case, anticy-
clonic vortices are favored over cyclonic ones and that the
asymmetry appears to be controlled by the parameterRB21.
Although b is not required for asymmetry, it does seem to
enhance the asymmetry, in that anticyclones are always the
preferred vortical structures in the equatorial regions, where
the value ofb is large.

Finally, we have performed a detailed simulation with
Jovian parameters. While it is clear that many of the key
qualitative features of Jupiter’s atmosphere can be captured
by a free-evolving shallow-water system, at least one serious
qualitative discrepancy has clearly emerged, namely the di-
rection of equatorial winds. We hope future studies will shed
new light on this matter.
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FIG. 18. Key features of Jupiter’s atmosphere captured by our simple
model: ~a! a large number of jets in the zonal wind profile and~b! a pre-
ponderance of stable anticyclones. The equatorial jet is westward, however,
in marked contrast with observations.
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