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Barotropic vortex pairs on a rotating sphere
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Using a barotropic model in spherical geometry, we construct new solutions for
steadily travelling vortex pairs and study their stability properties. We consider pairs
composed of both point and finite-area vortices, and we represent the rotating back-
ground with a set of zonal strips of uniform vorticity. After constructing the solution
for a single point-vortex pair, we embed it in a rotating background, and determine
the equilibrium configurations that travel at constant speed without changing shape.
For equilibrium solutions, we find that the stability depends on the relative strength
(which may be positive or negative) of the vortex pair to the rotating background:
eastward-travelling pairs are always stable, while westward-travelling pairs are un-
stable when their speeds approach that of the linear Rossby–Haurwitz waves. This
finding also applies (with minor differences) to the case when the vortices are of finite
area; in that case we find that, in addition to the point-vortex-like instabilities, the
rotating background excites some finite-area instabilities for vortex pairs that would
otherwise be stable. As for practical applications to blocking events, for which the
slow westward pairs are relevant, our results indicate that free barotropic solutions
are highly unstable, and thus suggest that forcing mechanisms must play an important
role in maintaining atmospheric blocking events.

1. Introduction
Vortex pairs, which consist of two oppositely signed regions of vorticity travelling

together as a single entity, are important coherent structures of fluid dynamics, and
appear in a wide variety of physical domains. Of specific interest for geophysical
applications is the existence and stability of such pairs embedded in a rotating
background flow with a vorticity gradient, which gives rise to the well-known β-
effect. In this paper we present new vortex-pair solutions on the sphere obtained by
considering simplified distributions of vorticity chosen specifically to shed some light
on the interaction between the vortex pair and rotating background flow.

A broad range of vortex-pair solutions are known, from the simple modulated
point-vortices on a β-plane of Zabusky & McWilliams (1982) to the sophisticated
modon solutions on the sphere of Verkley (1984, 1987). However, a systematic
exploration of the full range of behaviour exhibited by vortex pairs and a unified
explanation of sources for the various instabilities is still lacking.

The simplest studies of point-vortex pairs in rotating fluid have noted the fun-
damental difference in behaviour between eastward- and westward-travelling pairs.
Both Hobson (1991) and Matsuoka & Nozaki (1992) noted that the former are
stable with respect to small perturbations, whereas the latter exhibit figure-eight-type
large-amplitude oscillations. These models, however, suffer from the limitation that
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while the vortex-pair motion is influenced by the rotating background, the latter is
unaffected by the motion of the vortex pair.

A more complex model, the ‘modon’ solution of Stern (1975) and Larichev &
Reznik (1976) for continuous vortex pairs on the β-plane, is capable of more subtle
behaviour and has received much attention (Flierl et al. 1980; McWilliams et al.
1981; Sutyrin et al. 1994). McWilliams (1980) has applied it to the phenomenon of
atmospheric blocking, and Tribbia (1984) has extended it to the spherical geometry.
The early studies seemed promising in this regard; however, few of these examined
the evolution of perturbed modons in order to determine their stability properties. In
fact, later studies have concluded that the modon solution is unstable (Verkley 1984,
1987; Nycander 1992) in ways reminiscent of point-vortex pairs. Sutyrin et al. (1994)
furthermore showed that vortex pairs may not survive when embedded in strong
background flows (they did not, however, perform a complete parametric study of
the possible regimes of behaviour). One aim of this study is to determine whether the
instability of the modon solution is an exceptional or a generic property of vortex
pairs in rotating flows.

We do this by constructing new solutions whose simplicity allows us to identify
the mechanisms of the instability. These solutions are obtained from a constructive
approach: we start by considering each one of the constituent elements in isolation –
the vortex pair first, the rotating background next – and then we couple them together
and determine their mutual influences. For simplicity, the rotating background flow
is approximated by strips of uniform vorticity, while the vortex pair is formed either
of point vortices or uniform patches of oppositely signed vorticity. The advantage
of our approach is that we are able to isolate which instabilities are due to the
vortex pair, which are due to rotating background flow and which are due to their
coupling.

The paper proceeds from the simplest to the most complex vorticity configurations
as follows. After reviewing some basic facts about barotropic dynamics on the
sphere, we construct point-vortex pairs in § 3 and the discretized uniformly rotating
background in § 4. We then consider in § 5 the simplest coupled system: a point-
vortex pair and two nearly-zonal contours. We determine both linear and nonlinear
equilibrium solutions and then investigate their stability. In § 6, while maintaining the
simplicity of point-vortices, we generalize the results to a multi-contour background
rotation, and we demonstrate how the two-contour system is able to capture the
main qualitative features of the problem. Finally in § 7, we consider finite-area vortex
patches, and show how the desingularization of the point vortices leads a further
instability mechanism related to the finite size of the vortices. A discussion concludes
this study in § 8.

2. Barotropic dynamics on the sphere
We use throughout this study the simplest possible fluid model of geophysical

relevance, the so-called ‘barotropic model’, in which the fluid is incompressible,
inviscid, of constant density and, in our case, lies on the surface of a unit sphere S .
The dynamics of such a fluid is dictated by the material conservation of vorticity ω:

Dω

Dt
= 0, (1)

where ω ≡ x·(∇×u), u is the two-dimensional velocity of the flow and x designates the
position on the sphere. Though the fluid covers a two-dimensional spherical surface, it
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is analytically and computationally simpler to express all vector and scalar quantities
in terms of the three-dimensional Cartesian coordinates (x, y, z), as opposed to the
more common latitude and longitude angular coordinates (Dritschel 1989; Polvani &
Dritschel 1993, hereinafter PD93).

Incompressibility requires that ∇ · u = 0 and implies the existence a streamfunction
ψ(x) of the form u ≡ x × ∇ψ. This yields the usual relationship between two-
dimensional vorticity and streamfunction ω = ∇2ψ. Inversion of this equation results
in the well-known expression

ψ(x) =

∫ ∫
S

G(x, x′) ω(x) dA′ , (2)

where the Green function G(x, x′) for the sphere is identical in form to the corre-
sponding Green function in the plane (Kimura and Okamoto 1987; Dritschel 1989),

G(x, x′) = − 1

4π
ln |x− x′|2 . (3)

Using the inversion expression (2) the velocity field can be written, after some
manipulation, in the form:

u(x) = −
∫ ∫

S

G(x, x′)[(x′ × ∇′)ω(x′)] dA′ , (4)

showing that, along with (1), the vorticity distribution ω entirely determines the
evolution of the flow.

Finally, it is worth recalling that Gauss’ theorem provides a strong constraint on
which vorticity distributions may exist on the sphere, since∫ ∫

S

ω(x′) dA′ =

∫ ∫
S

∇2ψ dA′ =

∫ ∫
S

∇ · ∇ψ dA′ = 0 , (5)

and the last equality follows from the fact that the sphere has no boundaries. Thus
only vorticity fields that integrate to zero are allowed on the sphere.

3. Point-vortex pairs in a non-rotating background
We start with the simplest vorticity configuration of relevance, a pair of point

vortices on the sphere with strengths Γ+ and Γ− of opposite sign, located at x+

and x−, respectively and lying on the same longitude. As illustrated in figure 1, two
parameters suffice to describe such a pair geometrically: the chord distance d between
the point vortices and the latitude λ of the midpoint between the two vortices.

Solutions for the special case Γ+ = −Γ− are given in Lamb (1932), who showed
that such a pair travels along a great circle. Since in following sections we will
be considering solid-body rotation of the fluid about the z-axis, we choose here,
without loss of generality, to have the vortex-pair rotate about the z-axis as well,
which naturally coincides with the pole. To do this, we extend the solutions given by

Lamb, and consider pairs where Γ+x+ + Γ−x− = Gk̂ (k̂ being the unit vector in the
z-direction) so that the pair travels around the pole at constant latitude λ. The ratio
Γ+/Γ− that results from the above expression defines the latitude λ. Furthermore,
and again without loss of generality, we may select G = 1; this sets the centre of
vorticity to unit magnitude, which is equivalent to choosing a timescale, and uniquely
determines the values of Γ+ and Γ−. Hence, once λ and d are chosen, the point-vortex
pair is completely defined.
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Figure 1. A point-vortex pair on the sphere, and the associated parameters. The dots indicate the
positions of the point vortices.

Notice that not all values of d and λ yield vortex pairs. Since the vortex strengths
are of opposite sign, the vortices must be placed ‘on the same side of the sphere’
in order to go around the pole. This implies the existence of a maximum latitude
λmax = (1 − (d/2)2)1/2 for any given separation distance d, otherwise one vortex will
be forced beyond the pole.

In figure 2 we draw the streamlines for two pairs with d = 0.2: an equatorial pair
(λ = 0◦) and a midlatitude pair (λ = 45◦). It is clear that the streamline patterns
of these spherical pairs bear close resemblance to their planar counterparts (see, for
instance, Batchelor 1967). In the inertial frame the streamlines are circular for the case
λ = 0◦ (figure 2a), as noted by Lamb, while for the more general case the streamlines
bend with no simple description of the shape (figure 2b). In the corotating frame
(figures 2c and 2d), i.e. the frame of reference where the vortex pair is stationary, the
patterns shows the existence of regions of trapped fluid travelling with the pair, and
of two ‘critical’ points where the separatrices cross†; notice also that, except in the
immediate vicinity of the pair, the corotating streamlines are nearly zonal.

It should be easy to see that point-vortex pairs are stable for all parameter values,
in the sense that small initial perturbations in their initial positions simply redefine
the axis and speed of rotation, while the two vortices still travel together as a single
entity.

4. Contour discretization of the solid-body rotation
In this section – and throughout this paper – we consider a spherical barotropic

flow in solid-body rotation whose vorticity is a linear function of z = sin ϑ (where
ϑ is the latitude), going from 1 at the north pole to −1 at the south pole; with
this choice, the angular velocity of the flow is 1

2
. Solid-body rotation thus implies

a uniform gradient of vorticity, and this is well known to support vorticity waves,

† It can be shown that the two critical points coalesce for d =
√

3 and disappear for large d. The
trapped-fluid regions then encompass the entire spherical surface.
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(a) (b)

(c) (d )

Figure 2. The streamlines associated with spherical point-vortex pairs in the inertial (a) and (b) and
corotating (c) and (d) frames, for an equatorial (λ = 0◦) case (a) and (c) and a midlatitude (λ = 45◦)
case (b) and (d). The distance between the point vortices is d = 0.2. The positions of the positive
and negative vortices are marked ‘+’ and ‘−’, respectively. The streamlines are not uniformly spaced
in value, and are chosen to illustrate the flow pattern associated with the vortex pairs.

which on the sphere are called Rossby–Haurwitz waves (Haurwitz 1940). The aim of
this section is to represent the solid-body rotation in such a way that its coupling to
the point-vortex motion can be treated with a maximum of simplicity.

To this end, we discretize the above linear vorticity distribution by considering
N + 1 zonal strips of uniform vorticity separated by N contours. For simplicity, we
take the strips to be of equal area, so that the N contours separating them are located
at positions

z0k = 1− 2k

N + 1
, (6)

where k labels the contours, from 1 to N. The value of vorticity in each strip is chosen
to be the average of the linear profile of solid-body rotation within that strip. This
implies that the vorticity jump ω̃k across the kth contour is given by

ω̃k = 1
2
(z0(k−1) − z0(k+1)) , (7)

where we define z00 ≡ 1 and z0(N+1) ≡ −1. For piecewise-uniform vorticity distribu-
tions, the expression (4) for the velocity reduces to a sum of simpler one-dimensional
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integrals around the N contours Ck ,

u(x) = −
N∑
k=1

ω̃k

∮
Ck
G(x, xk) dxk . (8)

For a derivation of this identity, and many other details on Contour Dynamics,
see Dritschel (1989). With the vorticity jumps selected according to (7), the angular
velocity computed from (8) is exactly equal to 1

2
at each contour location of the

discretized system.
In order to evaluate the effectiveness of this strip-wise discretization, we have tested

how well it is able to capture the most important behaviour of a fluid in solid-body
rotation, namely the Rossby–Haurwitz waves. Following Dritschel & Polvani (1992,
hereinafter DP92), we perturb each zonal contour Ck by a small amount ζk(φ, t),
where φ is the longitude, so that the kth contour is located at

zk(φ, t) = z0k + ζk(φ, t). (9)

Substitution of this into the z-component of the velocity expression (8) yields, upon
linearization,

dζk
dt

=
∂ζk
∂t

+
1

2

∂ζk
∂φ

= −
N∑
j=1

1

2πN

∫ 2π

0

|x0j(α)− x0k(φ)|2 ∂ζj
∂α

dα, (10)

which is identical to equation (8) of DP92, with Ω0k = 1
2

and ω̃k = 2/N. Letting

ζk = ζ̂k ei(mφ−σt) + c.c., (11)

where m is the azimuthal wavenumber of the perturbation, yields the eigenvalue
problem

[A− σI ]ζ̂ = 0, (12)

where σ is the frequency of the eigenmode, and ζ̂ is a vector of length N whose

components are the amplitudes ζ̂k . A is an N ×N matrix with components

Ajk = − 2

N
Fm(z0j , z0k) + δjk

m

2
, (13)

and, as in DP92,

Fm(za, zb) =

(
1− z>
1 + z>

1− z<
1 + z<

)m/2
,

where z> = max(za, zb) and z< = min(za, zb).
For a given number of contours N, equation (12) yields N meridional eigenmodes

for each azimuthal wavenumber m. Each of these is the discretized equivalent of the
corresponding continuous Rossby–Haurwitz wave whose structure is the spherical
harmonic Y n

m , where n = m + p; the number p (p = 0, . . . , N − 1) represents the
meridional wavenumber of each mode.

In figure 3, we show the phase speeds σ/m for the lowest eight values of the total
wavenumber n, versus the number of contours N. The dotted lines show the values
1
2
−1/(n(n+1)), which are the phase speeds of the continuous Rossby–Haurwitz waves

(Haurwitz 1940). It is clear that the phase speeds of the discretized Rossby–Haurwitz
waves quickly approach the continuous values as N increases; it would seem that as
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Figure 3. Phase speeds of linear waves propagating on a background in solid-body rotation dis-
cretized by N contours. The dashed lines show the phase speeds of the continuous Rossby–Haurwitz
waves; they also correspond to the discretized m = 1 waves (which happen to propagate at the
exact phase speed of the continuous Rossby–Haurwitz waves). For the discrete waves, as for the
continuous waves, the phase speed accumulate at 1

2
as n→∞.

few as eight contours give a fair approximation for the large-scale modes. Notice that
as n becomes large, the continuous phase speeds accumulate at 1

2
(as do the discrete

phase speeds); this is the angular velocity of the solid-body rotation.

Beyond the linear approximation, one could compute exact discrete nonlinear
analogues of Rossby–Haurwitz waves; one avenue would be to extend the algorithm
of PD93 to many contours. Since this is not the main purpose of the present study, we
limit ourselves here to showing how an approximation to a large-amplitude discrete
Rossby–Haurwitz wave maintains its shape over many rotations.

To accomplish this, we place the N contours along the non-zonal streamlines of
the continuous Rossby–Haurwitz wave such that all strips of vorticity enclose an
equal area; the vorticity jump is therefore the same across each contour. This is
equivalent to using expression (7) where the value of z0k refers to the average latitude
of the kth contour. Although such a construction is not an exact nonlinear discrete
Rossby–Hauwitz wave, it behaves very much like one.

Figure 4 shows the evolution of a 16-contour approximation to a Rossby–Haurwitz
wave with n = 5 and m = 3, whose continuous analogue is stable according to Baines
(1976). After six wave periods there is little noticeable change in shape. As expected
for such waves, the motion is retrograde with respect to the solid-body rotation. We
have found similar robust behaviour for many discrete versions of Rossby–Haurwitz
waves, with a variety of wavenumbers (n, m) and number of contours N.

From such experiments we conclude that a strip-wise discretization of solid-body
rotation, as described above, retains the most important dynamical features of the
continuous problem. Moreover, a relatively small number of contours suffice to do
this.



114 M. T. DiBattista and L. M. Polvani

t = 0

Initial wave

Three revolutions

Six revolutions

0.81 1.61

2.42 3.23 4.03

4.84 5.65 6.46

Figure 4. An example of an approximate discrete Rossby–Haurwitz wave with n = 5 and m = 3.
Six periods of the wave are shown in the inertial frame. The time t is in ‘days’, measured by the
revolution time of the background that is in solid-body rotation.

5. Point-vortex pairs in a two-contour background
Given that relatively few contours can capture the general behaviour of Rossby-

wave propagation, we now consider a point-vortex pair in a background solid-body
rotation with only two contours, as illustrated in figure 5. As we will show, this
simplest configuration is sufficient to capture most of the qualitative behaviour of the
interaction between the point-vortex pairs and the solid-body rotation.

Although extremely idealized, the configuration of figure 5 is defined by several
parameters. In addition to the distance d between the two point vortices in the pair
and the latitude λ of the pair, two more geometrical parameters appear to be required
for the two contours representing the solid-body rotation, namely the location z01

and z02 of the two contours. However, in order for the pair to rotate uniformly about
the pole, the contours must induce the same angular velocity on both vortices, and
this implies that only one parameter may be specified. We choose this parameter to
be the vertical distance D between the two contours; given D ≡ z01 − z02, the values
of z01 and z02 are thus uniquely determined.

In addition to these geometrical parameters, the vortex strengths Γ+ and Γ− as well
as the vorticity jumps across the contours ω̃1 and ω̃2 must be specified. The latter two
are chosen using equation (7), which sets to unity the centre of vorticity associated
with the solid-body rotation. As in § 3, we must require that the pair travel uniformly
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Figure 5. Geometric parameters for a point-vortex pair with two background contours.

about the pole, which requires Γ+x+ + Γ−x− = Gk̂. Unlike § 3, however, we cannot
set G = 1 here without loss of generality.

In fact, G is the key parameter of this and the remaining sections. It measures
the relative strengths of the point-vortex pair to the solid-body rotation. Positive
G corresponds to eastward-travelling vortex pairs, negative G to westward-travelling
pairs. In the limits G→ ±∞ the solid-body rotation is very weak in comparison to the
strength of the pair, and the solutions of § 3 are recovered. The interesting behaviour
occurs for |G| 6 1, when the vortex pair is comparable to or weaker than the rotating
background flow.

In order to limit the amount of computational work, we have opted not to
systematically explore all the possible values of the four parameters λ, d, D and G,
but to focus only on a few representative cases. To this end, we have considered only
two values of λ chosen to yield the qualitative latitudinal dependence of the results:
an equatorial case (λ = 0◦) and a midlatitude case (λ = 45◦). For configurations
of practical interest, changes in the parameters d and D do not qualitatively affect
the results; hence, we have not methodically explored all values of these parameters.
The parameter G, on the contrary, is crucial in determining both the shape of the
equilibrium solutions for vortex pairs and their stability; we have thus explored many
values of this parameter, as detailed in what follows.

5.1. Linear two-contour equilibrium solutions

We first determine the linear equilibrium solutions for a steadily-translating vortex
pair surrounded by two contours described by the above parameters. Since the vortex
locations are set a priori, the solution consists in determining the linear perturbations
induced by the vortex pair upon the contours. This is easily done with a slight
modification of the expressions used in § 4.

The non-zonal component of the contour locations ζk(φ, t), see (9), obey an equation
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similar to (10) except for two extra terms due to the point vortices:

dζk
dt

=
∂ζk
∂t

+
1

2

∂ζk
∂φ

= −
2∑
j=1

1

4π

∫ 2π

0

|x0j(α)− x0k(φ)|2 ∂ζj
∂α

dα

+
Γ+

2π

(
x+ × x0k

|x+ − x0k|2

)
· k̂ +

Γ−

2π

(
x− × x0k

|x− − x0k|2

)
· k̂ (14)

where x+ and x− are the location of the point vortices, x0k is the position along the
kth contour in the absence of point vortices, and k = 1, 2. The linear equation is
asymptotically valid in the limit of weak point vortices, which corresponds to G� 1.
We then expand ζk(φ, t) in azimuthal components

ζk = ζ̂ke
i(mφ−σGt) + c.c. , (15)

where the angular velocity σG is determined uniquely by the choice of the parameters
d, λ, D and G, and is the sum of the angular velocity of the vortex pair plus the
angular velocity induced by the contours on the vortex pair. Substitution of this into
(14) yields the following linear equation for each mode m,

[A− σGI ]ζ̂ = γ̂ , (16)

where γ̂ is a vector of length N whose components γ̂k represent the meridional velocity
induced by the two point vortices on the kth contour, projected on the mode with
azimuthal wavenumber m. Contrasting this equation with equation (12) it is clear that
the point vortices act as forcing terms on the contours.

The inhomogeneous matrix equation (16) can be solved provided the angular
velocity σG of the solution does not match the phase speed of one of the freely
propagating eigenmodes of A. The eigenmodes of A are simply discretized Rossby
waves, as described in § 4, and their phase speeds are retrograde with respect to
the solid-body rotation, which is equal to 1

2
with our scaling. Hence, there is a

clear asymmetry between eastward- and westward-travelling solutions; for σG >
1
2

solutions always exist, while for σG <
1
2

there is a countably infinite set of values for

which ζ̂ → ∞, two for each m in this simplest two-contour case. These resonances
are located in a band corresponding to slow westward solutions, which we refer to
as the ‘forbidden region’, and accumulate at the angular velocity 1

2
of the solid-body

rotation.
In figures 6 and 7, we show the amplitudes of the linear solutions for two cases, each

with representative values d = 0.2 and D = 0.5. The first case, for λ = 0◦, corresponds
to an equatorial pair, for which the undisturbed contours are symmetrically located

across the equator. This implies that ζ̂1 = −ζ̂2 ≡ ζ̂0 for all m. We show ζ̂0 as a function
of G for several values of m in figure 6. Notice that each curve diverges at a single
value of G, at which point σG is identical to the phase speed of the mth varicose mode
of the matrix A. The sinuous modes do not cause resonances owing to the symmetry
in the right-hand side of (16). The dark vertical lines delimit the forbidden region
where resonances occur.

In figure 7, the amplitudes are illustrated for the second case, a midlatitude vortex

pair with λ = 45◦. Since here ζ̂1 6= −ζ̂2 they need to be shown separately, ζ̂1 in figure

7(a) and ζ̂2 in figure 7(b). For this midlatitude case, each curve diverges at two distinct
values of G as σG resonates with both the sinuous and the varicose eigenmodes of A
for each m. Again, the dark vertical lines delimit the forbidden region.

Notice that the m = 1 mode is special. Although figures 7(a) and 7(b) show a
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Figure 6. The linear amplitudes induced by an equatorial point-vortex pair upon the symmetric
two-contour background as a function of the parameter G, which measures the ratio of the
vortex-strength to the solid-body rotation represented by the two contours. Each curve corresponds
to a different azimuthal wavenumber m; the curves for 1 6 m 6 7 are shown. The dark vertical
lines demarcate the forbidden region where resonances occur.
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Figure 7. (a) The linear amplitudes induced by the vortex pair on the upper contour, for the
midlatitude case λ = 45◦. For the sake of clarity only the curves for m = 1, 2, 3 are shown. The dark
vertical lines demarcate the forbidden region. The left-most resonance associated with the m = 1
mode is spurious, as explained in the text. (b) As (a), but for the lower contour.
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resonance near G = −1.2 for the m = 1 mode, this resonance is spurious, since the
m = 1 sinuous mode moves the angular momentum of the solid-body rotation off
the pole and is thus not allowed. Hence, the outermost resonance, defining the edge
of the forbidden region, is given by the m = 2 mode. The signature of the azimuthal
wavenumber of the eigenmode that defines the left-most boundary of the forbidden
region, which is different in the two cases above, will become apparent in the character
of the nonlinear solutions.

5.2. Nonlinear two-contour equilibrium solutions

We now extend the above linear results and determine equilibrium solutions for a pair
of point vortices and two contours where the deviations of the contours from latitude
circles are not assumed to be infinitesimal. For this we have extended the algorithm
of PD93 to allow for the presence of point vortices. Given values of the parameters d,
λ, D and G which describe a specific vorticity distribution similar in topology to the
one shown in figure 5, the algorithm determines both the positions of the contours
and the angular velocity σG such that the system (comprised of two point vortices
and two contours) rotates at constant σG about the pole without change in shape.

The details of the algorithm are quite involved, and can be found elsewhere
(DiBattista 1997). Suffice it to say the algorithm, a modification of that used in PD93,
starting from some initial condition, iteratively tries to make the contour positions
coincide with the streamlines of the flow, thus producing a solution which does not
change in shape. To account for the significant contour deviations from zonality in
the presence of the point-vortex pair, we must modify the way in which vorticity
jumps are assigned to the contours in a way that is consistent with their representing
a flow in solid-body rotation. Hence we generalize definition (7) with

ω̃k =
Ak−1 − Ak

4π
, (17)

where Ak−1 and Ak are the areas of the vorticity strips bounding the kth contour. This
definition reduces to (7) in the case of zonal contours.

Figures 8(a) and 8(b) show a range of nonlinear equilibria for both the equatorial
and midlatitude vortex pairs, respectively, and for values of the vortex-strength ratio
G = −1.0,−0.1,−0.01, 1.0. These four values of G span the range of behaviours
exhibited by point-vortex pairs, which will be discussed subsequently. Notice that
for the nonlinear equilibria, the deviations of the contours do not greatly differ
from one another except for the equilibria corresponding to G = −0.01, for which
the linear solution is placed squarely in the forbidden region. The deviation of the
equatorial equilibria for G = −0.01 has a pronounced m = 1 character (figure 8a),
while the deviations of the midlatitude equilibria for the same G have a definite m = 2
character (figure 8b), both of which match the slowest linear eigenmodes excited by
the point-vortex pair.

Figures 9(a) and 9(b) show the speeds of the equatorial and midlatitude nonlinear
equilibria, respectively; the dashed line represents the phase speeds of the linear
solutions while the squares, circles and crosses locate a few of the nonlinear solutions
we have found. The most striking feature of the diagrams are the deviations of the
nonlinear speeds when approaching the forbidden regions: the nonlinear phase speeds
slow down and ultimately turn back (figure 9b), never crossing into the forbidden
region. The maximum nonlinear phase speed for negative G is greater for equatorial
point-vortex pairs than for midlatitude pairs, since the forbidden region for the
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Figure 8. (a) Nonlinear equilibrium solutions for a point-vortex pair and a two-contour background
for the equatorial case for G = −1.0,−0.1, −0.01 and 1.0. These values of G span the full range of
stability behaviour. Notice that the maximum contour deformation occurs for small negative values
of G, corresponding to weak westward-travelling pairs, and it projects mostly on the varicose m = 1
mode. (b) As in (a), but for the midlatitude case. The contour deformation at G = −0.01 projects
mostly on the sinuous m = 2 mode, as suggested by linear theory.
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Figure 9. (a) The angular velocities and stability behaviour of the nonlinear two-contour
point-vortex equilibrium solutions (illustrated in figure 8a). The different symbols mark the different
stability behaviour, as explained in the text. The dashed lines show the phase speeds of linear
solutions. (b) As in (a), but for the midlatitude case.

midlatitude pair is larger. The different symbols refer to the stability of the solutions,
as discussed next.

5.3. Stability of the nonlinear two-contour equilibrium solutions

Instead of carrying out a complicated eigenvalue stability calculation of the above
vortex-pair nonlinear equilibrium solutions (along the lines, for instance, of Dritschel
1985), we have opted for the simpler method of numerically integrating the evolu-
tion of initially perturbed equilibria. We use the Dritschel’s (1989) Contour Surgery
algorithm, modified to account for the presence of point vortices, to integrate our
initial-value problems. This approach, while perhaps not as precise as a full linear
analysis, yields not only the stability boundaries of the problem but also gives insight
into the nonlinear evolution of the disturbed vortex pairs.

In order to establish the sensitivity of the results to the initial conditions, we have
tried several different types of perturbations: gently shifting the pair latitudinally
from its equilibrium position, slightly distorting the contours in front or behind the
vortex pair, and mildly tilting the vortex pair in the meridional direction. We have
found that the latter method is the one that generates the clearest instabilities. Hence,
in the following figures, we have perturbed the equilibrium solutions by rotating the
point vortices 2.5◦ about their common centre. Stable equilibria preserve their shape
for dozens of rotations, whereas unstable equilibria generally evolve very quickly,
often within a rotation time.

The key result is the following: point-vortex pairs in a rotating background com-
posed of two contours exhibit only three distinct types of stability behaviour on the
sphere. They may be stable, they may exhibit what we term an ‘oscillatory’ instability,
in the sense that the point vortices oscillate around the equilibrium latitude while
remaining together as a pair, or they be may torn apart by what we term a ‘tearing’
instability, in which case the point vortices are separated by the background flow. Not
only does this general result apply to the two-contour solutions in this section, but it
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t = 0 0.40  0.80

1.9 1.59  1.99

2.38 2.73  3.18

Figure 10. The evolution of an unstable ‘oscillating’ pair with G = −0.05. The pair is initially tilted
by 2.5◦ with respect to zonal direction. Time is measured in days, and the plots are rotated so that
the pair always appears at the same longitude.

holds for the cases of multi-contour background and of finite-area vortices described
in later sections.

Stable point-vortex pairs, which occupy both ends of the nonlinear phase-speed
curves, are marked with squares in figures 9(a) and 9(b). All eastward-travelling pairs
(G > 0) were found to be stable. For westward-travelling pairs, on the contrary,
there is a threshold beyond which the pairs are sufficiently weak with respect to the
background and become unstable; in the equatorial case (λ = 0◦) this occurs around
G = −0.15, while for midlatitude pairs (λ = 45◦) this occurs around G = −0.1.
Perturbed stable pairs wobble about the initial latitude in response to the perturbation,
but this excursion in latitude does not grow with time, and the background contours
never develop any discernible wave activity.

Unstable oscillating point-vortex pairs were found in the interval −0.1 < G < −0.02
for the equatorial case, and −0.15 < G < −0.02 for the midlatitude case, and are
marked with circles in figures 9(a) and 9(b). The latitudinal excursions of these
perturbed unstable pairs grow in amplitude, and for sufficiently small G assume
figure-eight-like trajectories. An example of this behaviour is shown in figure 10, for
an equatorial case with G = −0.05. Notice that the pair remains a coherent structure
as it wanders about the sphere.

Unstable tearing point-vortex pairs were found in the small interval −0.02 <
G < 0.0 for both equatorial and midlatitude cases, and are marked with crosses in
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t = 0 1.35  2.71

4.06 4.73  5.41

4.06 4.73  5.41

Figure 11. As in figure 10, but for an unstable ‘tearing’ pair with G = −0.01. In order to show the
wave activity excited on the background contours as the pair is torn apart, the bottom row shows
the same three time frames as the middle row, rotated westward by 90◦.

figures 9(a) and 9(b). The evolution of these pairs is characterized by a slow increase
in the distance between the two vortices, as the pair is torn apart by the much stronger
background contours. An example of this behaviour is given in figure 11, for the case
G = −0.01. It is interesting to note that, as the vortices separate, a large amount of
wave activity is excited on the background contours (the last row of figure 11 shows
the same time frames as the middle row rotated by a quarter turn) indicating a strong
energy exchange between the pair and the background flow.

6. Point-vortex pairs in a multi-contour background
We now increase the complexity of the problem and consider a point-vortex pair

embedded in a background rotation discretized with 4, 8 and 16 contours. The
aim here is to determine whether the findings of the previous sections are strongly
dependent on the number of background contours.

In the presence of the point-vortex pair, the N background contours are obviously
not simply zonal, and their equilibrium positions are in fact unknowns of the problem.
However, we choose the average latitude zk of the kth contour to be equal to the
expression for z0k given in (6), so that the vorticity jump across that contour obeys
(7). This choice is made so that the background contours, although non-zonal, be
representative of solid-body rotation.
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Equatorial vortex pairs
G −1.0 −0.15 −0.12 −0.1 −0.08 −0.05 −0.03 −0.01 0.025 1.0

N = 2 S S O O O O O T S S
N = 4 S S O O O O O T S S
N = 8 S S O O O O O T S S

Midlatitude vortex pairs
G −1.0 −0.15 −0.12 −0.1 −0.08 −0.05 −0.03 −0.01 0.025 1.0

N = 2 S S S S O O O T S S
N = 4 S S S S O O O T S S
N = 8 S S S S O O O T S S

Table 1. The stability results for the multi-contour point-vortex pair solutions. The letters S, O
and T indicate stability, oscillatory instability and tearing instability, respectively. Notice that the
boundaries separating the different stability regions are independent of the number of contours N.

In figures 12(a) and 12(b) and we show, respectively, the equatorial and midlatitude
multi-contour vortex-pair equilibrium solution for G = −1.0, d = 0.2 and N = 2, 4, 8
and 16. These were obtained with a modified version of the algorithm used in § 5.2 (see
DiBattista 1997). Notice that the majority of the background contours are very nearly
zonal, except those that are immediately next to the vortices, indicating the presence
of a trapped-fluid region (cf. figure 2c). We note in passing that the trapped-fluid
region is present for all values of G, increasing very slightly in size to its maximum
as G→ ±∞. We have obtained similar solutions for many values of G.

As in the previous section, the stability of these multi-contour vortex-pair solutions
was tested with initial-value problems. Surprisingly, we have found that the stability
results are virtually independent of the number of contours N. This is summarized
in table 1. As the number of contours is increased, no new types of instability are
observed beyond those described in the previous section. Moreover, the boundaries
of the stability regions appear to be very insensitive to the number of background
contours.

Even the actual evolution of unstable pairs was found to be insensitive to N,
especially for oscillatory pairs. An example is provided in figure 13, where the unstable
solution for G = −0.05 and N = 8 is shown. This figure should be contrasted with
figure 10, showing the same case for N = 2; the similarity is remarkable. The main
difference as N is increased can be seen in the long-term evolution of the more
unstable cases. For instance, the tearing instability at G = −0.01 for the N = 8 case,
shown in figure 14, deviates from the corresponding case with N = 2 (see figure 11)
after about four days. In the eight-contour case, the tearing apart of the vortex pair
occurs mainly in the meridional direction (see the last frame of figure 14), in contrast
with a much more zonal separation in the two-contour case.

7. Finite-area vortex pairs
To increase the realism of the solutions we consider, in this last section, the

desingularized analogues of the point-vortex pairs presented above; we simply replace
the singular point vortices by patches of uniform vorticity and determine both the
equilibrium shapes of these vortices and their stability. Such solutions (often termed
‘V-states’) have been obtained for many vorticity configurations in the plane and on
the sphere since the original paper of Deem & Zabusky (1978). Specifically relating
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(a)

(b)

N = 2 4

8 16

N = 2 4

8 16

Figure 12. (a) Nonlinear equatorial equilibrium solutions for the westward-travelling point-vortex
pair with G = −1.0 in multi-contour backgrounds composed of N = 2, 4, 8 and 16 contours. (b) As
in (a), but for the midlatitude case.
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t = 0 0.40  0.80

1.19 1.59  1.99

2.38 2.73  3.18

Figure 13. As in figure 10, but with N = 8 background contours.

to vortex pairs, planar finite-area vortex-pair equilibrium solutions were obtained by
Pierrehumbert (1980), and later completed by Saffman & Tanveer (1982). We present
here first the spherical analogues of the Pierrehumbert solutions, and then generalize
these solutions to allow for the presence of a background in approximate solid-body
rotation.

7.1. In the absence of solid-body rotation

In addition to the two geometrical parameters d (the distance between the centre
of vorticity of the patches) and λ (the average latitude of the centres of vorticity)
that are analogous to the ones used to define point-vortex pairs (see figure 1), the
finite-area solutions require extra parameters specifying the area of the vortex patches.
In principle one could specify different areas for the positive and negative vortices. To
reduce the computational effort and minimize the parameter space, we limit ourselves
here to determining solutions where the positive and negative vortices have equal
area A.

In figures 15(a) and 15(b) we present spherical finite-area vortex-pair solutions for
the equatorial (λ = 0◦) and midlatitude (λ = 45◦) cases, respectively. For several values
of d we have determined families of solutions of increasing area A. Like their planar
counterparts, the solutions become progressively more elongated as A increases, and
eventually terminate when the two vortices touch. Details of the algorithm used to
obtain these solutions can be found in DiBattista (1997). The solid and dotted lines
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t = 0 0.68  1.35

2.03 2.71  3.38

4.06 4.73  5.41

Figure 14. As in figure 11, but with N = 8 background contours.

indicate the stability of the solutions, which was tested via initial-value problems as
above.

As is common for most vortex-patch equilibrium solutions, an instability appears
when the vortex areas are greater than a critical value (Dritschel 1985). This can be
seen from the line style in figure 15; the dotted curves designate the unstable solutions,
while the solid lines designate stable ones. In the midlatitude case (figure 15b) there is
no symmetry between the positive and negative vortex (even though they have equal
area) and our algorithm ceases to converge even when the solutions are relatively far
from the case when the vortices touch. However, it does go far enough in A to allow
us to determine the stability boundary. For fixed d, equatorial pairs become unstable
at a lower A than do midlatitude pairs; hence, in some sense, one can say that vortex
pairs are most unstable at the equator.

The instability of these finite-area pairs has no analogue in the point-vortex case;
it is a novel feature that follows from the desingularization of the point vortices. We
show one representative example of this ‘finite-area’ instability in figure 16. The key
feature is that the instability proceeds by rearranging the vorticity so as to produce
a vortex pair with smaller area, which is thus stable; this is accomplished by the
shedding of a small vortex behind the pair (see the last frame of figure 16). This
behaviour is generic to all the unstable cases we have tested in figure 15, and has also
been observed for vortex pairs on the plane (Dritschel 1995).
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(a)

(b)

d = 0.20 0.30

0.40 0.50

d = 0.2 0.3

0.4 0.5

Figure 15. Finite-area equilibrium-solution families for (a) equatorial and (b) midlatitude vortex
pairs on the sphere in a uniform-vorticity background, for four different values of the distance d
between the centres of vorticity. Solid (dotted) lines indicate stable (unstable) solutions.
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t = 3.00 3.60  3.80

3.90 4.13  4.21

4.40 4.49  4.67

Figure 16. The nonlinear evolution of a slightly perturbed unstable finite-area vortex pair. The
parameters of this unstable equilibrium solution are: d = 0.1 and A = 0.07.

7.2. In the presence of solid-body rotation

In this section, we construct the final and most elaborate set of solutions for vortex
pairs on the sphere by embedding the above finite-area pairs in a solid-body rotation
represented by N contours, as in § 4. For a number of representative values of G, these
solutions are presented in figures 17(a) and 17(b) with N = 8 for the equatorial and
midlatitude cases, respectively; these solutions were obtained with one more variation
of the algorithm used in previous sections. As in § 6, the vorticity strips enclose equal
areas and, as in § 7.1, the positive and negative vortices are of equal size.

These solutions should be contrasted with the ones in figures 8(a) and 8(b) for the
much simpler case of two background contours and two point vortices. The multi-
contour finite-area solutions are much more computationally expensive to obtain
and it is more difficult to get the algorithm to converge, but they do not differ in
any major way from their simpler counterparts; basically, as the area of the vortices
increase the background contours become more deformed. The midlatitude solutions
(figure 17b) are particularly difficult to obtain; we were unable to find solutions for
G = −0.01 and thus have shown the closest value of G = −0.03 for which our scheme
converges. When the vortices are strong compared to the solid-body rotation (i.e. for
large G) the lower vortex becomes more elongated as the area increases, consistent
with the solutions in figure 15(b). However, for small G the situation reverses and it
is the upper vortex that elongates more as A increases.

The solutions in figure 17 are both finite-area and embedded in a solid-body
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(a)

(b)

G = –1.0 –0.1

1.0–0.01

G = –1.0 –0.1

1.0–0.03

Figure 17. Finite-area equilibrium-solution families for (a) equatorial and (b) midlatitude vortex
pairs embedded in a background solid-body rotation represented with N = 8 contours. Solid
(dotted) lines indicate stable (unstable) solutions.
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t = 0 0.24  0.48

0.72 0.95  1.19

1.43 1.67  2.00

Figure 18. The nonlinear evolution of a slightly perturbed unstable finite-area vortex pair in a
background solid-body rotation. The parameters of this unstable equilibrium solution are: G = 0.05
and A = 0.06. In the absence of the background flow (i.e. for |G| → ∞) the vortex pair is stable.
Notice that this is an eastward-travelling unstable solution.

rotation: it is then plausible that both point-vortex (cf. § 5.3) and finite-area (cf. § 7.1)
instabilities appear in this case. In fact, we have found that the stability behaviour of
these solutions is simply a combination of the finite-area and point-vortex instabilities
already discussed.

First, the solid-body rotation destabilizes the corresponding finite-area solutions
in the absence of a background flow. An example is given in figure 18, where an
eastward-travelling pair with G = 0.05 and A = 0.06 is slightly perturbed and allowed
to evolve. In the absence of solid-body rotation (|G| → ∞), this set of parameters yields
a stable solution; the background, however, induces an instability of the finite-area
type, whereby vorticity is shed from the one vortex resulting in a smaller, more stable
pair. Secondly, finite-area multi-contour solutions for values of G where point-vortex
instabilities exist (either oscillating or tearing) are not made stable by the solid-body
rotation.

More generally, the behaviour of these finite-area multi-contour solutions is a
combination of finite-area and point-vortex behaviours. Representative examples are
found in figure 19, showing a combination of oscillating and finite-area instabilities,
and figure 20, showing a combination of tearing and finite-area instabilities. These
two figures should be compared with figures 13 and 14, which exhibit only the point-
vortex instabilities. The large-scale features are very similar, and the finite-area nature
of the vortices only adds more complexity to the flow.
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t = 0 0.40  0.80

1.19 1.59  1.99

Figure 19. As in figure 18, but for an unstable oscillating case with G = −0.05 and A = 0.06.
Compare this with the evolution of the corresponding point-vortex solution in figure 13.

t = 0 0.68  1.35

2.03 2.71  3.38

4.06 4.73  5.41

Figure 20. As in figure 18, but for an unstable tearing case with G = −0.01 and A = 0.04.
Compare this with the evolution of the corresponding point-vortex solution in figure 14.
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A global view of the stability results for these finite-area multi-contour solutions
can be obtained from figure 17, where solid (dotted) lines are used to show stable
(unstable) solutions. It is easy to see that stable solutions exist only if (i) G is either
positive or sufficiently negative – otherwise a point-vortex instability occurs, and (ii)
the vortex areas are not too large – otherwise finite-area instabilities are present.

8. Discussion
The main objective of this study has been to understand under what conditions it is

possible to construct steady and stable solutions for vortex pairs within a background
flow possessing a vorticity gradient. We have constructed steady vortex-pair solutions
of increasing complexity, from simple point vortices surrounded by only two contours
to finite-area pairs in a multi-contour background.

While it is possible to construct steady solutions for almost any parametric regime,
the question of stability is really the crucial one. We have found that the critical
parameter for stability is the ratio G of the strengths of the vortex pair to the
background flow, and we have carefully explored how the nonlinear evolution of
initially perturbed steady solutions depends on this parameter.

Strong westward (approximately G < −0.1) and all eastward (G > 0) pairs are
stable, unless the the vortex sizes are too large (in which case finite-area instabilities
occur). An oscillatory instability sets in as westward pairs become weak (approxi-
mately −0.1 < G < −0.01); the vortex pairs wander all over the sphere (see figures
13 and 19 for typical examples). Finally, very weak westward pairs are destroyed by
a tearing instability (see e.g. figures 14 and 20).

Though some of these behaviours have been previously observed on the β-plane,
our study is the first to systematically explore the stability behaviour on the sphere.
In particular, the stability of strong westward pairs and the onset of instability as
pairs become weak are novel results which cannot be obtained by β-plane studies,
because they are crucially dependent on the curvature of the sphere.

As for the original question of whether or not the instability of the modon solution
is an exceptional or generic property of vortex pairs in rotating flows, we argue that
it is probably generic since it can be isolated in the simplest vortex-pair model (cf.
§ 5) and it persists as the model is made more complex. The resonance with Rossby
waves appears very clearly in the simplest linear model and adding complexity, as
we have shown, does not remove this fundamental mechanism for instability. In fact,
more complexity introduces futher modes of instability.

Finally, one may ask to what degree these results may be applied to the under-
standing of atmospheric blocking events. The solutions of interest to atmospheric
blocking fall in the weak westward regime (McWilliams 1980). In that regime, all of
the steady solutions presented in this paper (independent of their complexity), as well
as the modon solutions (Nycander 1992), are known to be unstable. This fundamental
instability makes it difficult to argue that blocking events somehow correspond to
unforced barotropic solutions of the sort we have presented here. Hence, the results
of this paper suggest that the robustness and persistence of blocking events must
be attributed to not yet fully understood forcing mechanisms, as has been discussed
elsewhere (Shutts 1983, 1986; Nakamura, Nakamura & Anderson 1997).

The computations herein were performed at the Pittsburgh Supercomputing Center.
This work is supported by the United States National Science Foundation, and by
the DOE through a Computational Science Fellowship to MTD.
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