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ABSTRACT

A new method for integrating shallow water equations, the contour-advective semi-Lagrangian (CASL) al-
gorithm, is presented. This is the first implementation of a contour method to a system of equations for which
exact potential vorticity invertibility does not exist. The new CASL method fuses the recent contour-advection
technique with the traditional pseudospectral (PS) method. The potential vorticity field, which typically develops
steep gradients and evolves into thin filaments, is discretized by level sets separated by contours that are advected
in a fully Lagrangian way. The height and divergence fields, which are intrinsically broader in scale, are treated
in an Eulerian way: they are discretized on an fixed grid and time stepped with a PS scheme.

In fact, the CASL method is similar to the widely used semi-Lagrangian (SL) method in that material con-
servation of potential vorticity along particle trajectories is used to determine the potential vorticity at each time
step from the previous one. The crucial difference is that, whereas in the CASL method the potential vorticity
is merely advected, in the SL method the potential vorticity needs to be interpolated at each time step. This
interpolation results in numerical diffusion in the SL method.

By directly comparing the CASL, SL, and PS methods, it is demonstrated that the implicit diffusion associated
with potential vorticity interpolation in the SL method and the explicit diffusion required for numerical stability
in the PS method seriously degrade the solution accuracy compared with the CASL method. Moreover, it is
shown that the CASL method is much more efficient than the SL and PS methods since, for a given solution
accuracy, a much coarser grid can be used and hence much faster computations can be performed.

1. Introduction

The shallow water equations (SWE) are widely used
in idealized studies of atmospheric and oceanic dynam-
ics. They are the simplest equations able to describe
both slow, balanced flows and fast, gravity wave oscil-
lations, the two main categories of fluid motion present
in the more complicated primitive equations, which are
commonly used for atmospheric, oceanic, and climate
modeling. For this reason SWE have been proposed as
an appropriate test bed for new numerical algorithms
(Williamson et al. 1992).

In this paper we present a new algorithm for the so-
lution of the SWE. The guiding idea behind the new
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algorithm rests on the well-established observation that,
even in the presence of relatively smooth, large-scale
flows, tracer fields in the atmosphere and the ocean read-
ily develop extremely fine scales, often by simple ki-
nematic stirring. The stratospheric circulation, long
thought to be dominated by large-scale features, pro-
vides a case point; recent aircraft observations combined
with trajectory filling techniques (Waugh et al. 1994;
Plumb et al. 1994) have demonstrated the existence of
extremely fine structure in the constituent distributions.
In the ocean, the recent observation of Wunsch and
Stammer (1995) of very small-scale features on the
ocean surface is another striking example. Furthermore,
recent studies suggest that fine scales can play an im-
portant role in stratospheric chemistry (McIntyre 1995;
Edouard et al. 1996; Tan et al. 1997).

For inviscid SWE, a conserved tracer of particular
dynamical significance (Hoskins et al. 1985) is the po-
tential vorticity. The main novelty of the new algorithm
rests in that the potential vorticity is represented by level
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sets separated by contours, which are advected in a fully
Lagrangian way. This technique allows one to compute
potential vorticity scales well below the grid scale, while
the fields that are not materially conserved by the flow
are numerically represented and time stepped on an Eu-
lerian grid. Hence the name of the new algorithm: the
contour-advective semi-Lagrangian (CASL) method for
SWE. As we demonstrate below, advecting potential
vorticity in a Lagrangian way allows one not only to
resolve features on scales that are much smaller than
the grid scale but also to maintain potential vorticity
gradients that are steeper than the grid resolution allows.
The net effect is that the convergence of the computed
solutions substantially improves as the grid is refined.
To the best of our knowledge, the CASL method pre-
sented in this paper is the first implementation of a
contour-based algorithm to a system of equations for
which no exact potential vorticity invertibility exists.

In the next section we describe the new numerical
method in some detail, as well as two other methods
that have been popular in recent years: the pseudospec-
tral method (PS) and the semi-Lagrangian method (SL).
In section 3 we compare these three by examining in
detail the evolution of a complex flow typical of at-
mospheric and oceanic situations: the nonlinear insta-
bility of a zonal jet. A brief discussion concludes the
paper in section 4.

2. The algorithm

In their simplest form, the SWE may be written in
terms of the velocity u [ (u, y) and surface height h.
In planar Cartesian geometry, this gives

Du ]h
2 fy 5 2g , (1)

Dt ]x

Dy ]h
1 fu 5 2g , (2)

Dt ]y

]h
1 = · (hu) 5 0, (3)

]t

where f is the Coriolis parameter (taken to be constant
here), g is the gravitational acceleration (or the reduced-
gravity in the oceanic context), and the material deriv-
ative is defined in the usual way,

D ]
[ 1 u · =. (4)

Dt ]t

Dissipative terms are not written, though they are re-
quired in many numerical methods as discussed below.

Instead of the two velocity components u and y , it is
customary to use the vorticity z and the divergence d,
defined by

]y ]u ]u ]y
z 5 2 and d 5 1 , (5)

]x ]y ]x ]y

as the prognostic variables. It is also useful to separate

the height h into a constant mean value h and a deviation
ĥ therefrom—that is, letting h [ h 1 ĥ—and to use h9
[ ĥ/h as the third prognostic variable. In terms of z, d,
and h9 the SWE take the form

]z
5 2= · [(z 1 f )u], (6)

]t

]d
2 2 21 c ¹ h9 2 f h9 5 f (z 2 fh9) 1 2J(u, y)

]t

2 = · (ud), (7)

]h9
1 d 5 2= · (uh9), (8)

]t

where c2 [ gh . We have explicitly segregated on the
left-hand side of (7) and (8) the terms that give rise to
linear rotating gravity waves, since these terms need to
be treated in a special way. It is worth recalling that
these equations possess one material invariant of fun-
damental dynamical importance, namely the potential
vorticity q, defined by

z 1 f
q [ . (9)

h

We now describe the three numerical methods we
have used for solving the SWE (6)–(8) in a doubly
periodic domain: PS, SL, and CASL. To keep the com-
parison as meaningful as possible, we have used an
identical scheme for solving the divergence (7) and con-
tinuity (8) equations in all three methods. The simplest
and most efficient scheme for this is the semi-implicit
pseudospectral method. This scheme consists of em-
ploying spectral representations for d and h9, fast Fourier
transforms (FFTs), evaluation of the nonlinear products
in physical space, semi-implicit leapfrog time stepping,
and a Robert–Asselin time filter.

The semi-implicit leapfrog time stepping is carried
out in a standard way (Ritchie 1988). In (7) and (8),
the partial time derivatives of spectral h9 and d are ap-
proximated by centered differences, the other terms on
the left-hand sides are approximated as averages over
the previous and next time levels (t 2 Dt and t 1 Dt),
and the terms on the right-hand sides are evaluated at
time t. Such time-discretized implicit equations are eas-
ily solved for each spectral component of h9 and d at
time t 1 Dt. The practical merit of this scheme is that
it is numerically stable for large time steps, whereas an
explicit scheme would be restricted by the speed of the
fastest gravity wave and the grid size. The disadvantage
is that small-scale gravity wave motions are numerically
inaccurate. In atmosphere and ocean modeling, it is
common practice to accept an inaccurate numerical so-
lution of these waves for the sake of being able to use
larger time steps.

This semi-implicit leapfrog scheme is not stable un-
less it is coupled with a Robert–Asselin time filter (Rob-
ert 1966; Asselin 1972). That filter replaces a field, say
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f, at time t by a combination of the fields at t 2 Dt, t,
and t 1 Dt just after the latter has been computed; that
is,

f(x, t) ← f(x, t) 1 A[f(x, t 2 Dt)

2 2f(x, t) 1 f(x, t 1 Dt)]. (10)

This operation in effect damps high-frequency modes,
since the term multiplying the filter coefficient A is a
finite-difference approximation to (Dt)2]2f /]t2. For
small A, this filter principally damps small-scale, high-
frequency gravity waves (a significant component of
which could be artificial). For such waves, ]/]t ; c=,
showing that they are subject to an effective viscosity
of Ac2Dt. The filter coefficient A, a dimensionless num-
ber, is typically in the range (0.05, 0.3). For the com-
putations presented in the next section, A 5 0.05; we
have found that values less than 0.03 lead to numerical
instability.

Given that the divergence and continuity equations
are solved identically for all three methods, it should
be clear that the key difference between the PS, SL, and
CASL methods rests in the solution of the vorticity
equation. We now describe each one in detail. We start
by briefly reviewing the PS and SL methods, in order
to provide a context for the new CASL method.

a. The pseudospectral method

In the PS method, (6) is replaced by

]z
2 n1 = · [(z 1 f )u] 5 2n(2¹ ) z. (11)

]t

The new term on the right-hand side of (11), usually
called ‘‘hyperdiffusion,’’ is necessary for numerical sta-
bility. In this paper we have used n 5 3. The value of
n is chosen, typically, so that the smallest features (i.e.,
those comparable to the grid scale) are efficiently dis-
sipated. Here, we have used the expression

n 5 C(hQ)/ ,2nkmax (12)

where C is a dimensionless constant, kmax 5 ng/2 is the
highest resolved wavenumber (ng is the grid size), and
Q is defined by

f
Q 5 max q 2 , (13)) )hx,y

where the maximum is taken over all points in the com-
putational domain. The idea behind (12) is that hQ is
the relevant timescale for the evolution of z. In spite of
the definition (13), the actual choice of n remains some-
what ad hoc, in the sense that the constant C can vary
substantially. When trying to compute solutions that are
as free of dissipation as possible, one picks a value of
C as small as possible, without producing too much
small-scale noise. For the results presented in the next
section, we have used C 5 1.

b. The semi-Lagrangian method

Whereas with the PS method only a slightly modified
version of (6) is solved, the SL and CASL are con-
structed on the principle that potential vorticity conser-
vation is a fundamental property of the SWE. Therefore
in both the SL and CASL methods, the third prognostic
variable z is replaced by the potential vorticity q, and
(6) is replaced by

Dq
5 0. (14)

Dt

In practice, (14) is solved by trajectory integration; that
is,

dx
5 u(x, t), (15)

dt

where x is the position of a fluid element; (15) is for-
mally equivalent to (14) since q does not change fol-
lowing x. The same method can be used to advect any
conserved tracer.

In the SL method, in order to determine q at t 1 Dt,
two distinct steps are required: for each grid point xa

(the ‘‘arrival’’ point), one first needs to integrate (15)
backward in time to determine the location xd (the ‘‘de-
parture’’ point) of that same fluid element at time t.
Since xd typically will not fall on a grid point, the second
step consists in interpolating q at xd at time t and finally
replacing that value at xa at time t 1 Dt. For both steps,
we use the simplest and most commonly used schemes
[for more details the reader is referred to Staniforth and
Côté (1991) and Gravel (1996)].

The back trajectory computation is done using the
midpoint method (Temperton and Staniforth 1987; Bates
et al. 1995),

x 1 xa dx 5 x 2 Dtu , t , (16)d a n11/21 22

together with a linear time extrapolation,

3 1
u(x, t ) 5 u(x, t ) 2 u(x, t ), (17)n11/2 n n212 2

and a bilinear spatial interpolation for the evaluation of
the velocity at departure points from (17) at tn11/2. The
second step is carried out using the so-called bicubic
Lagrange interpolation, which is commonly used in me-
teorological modeling (Bates et al. 1995; Ritchie et al.
1995). It is worth noting that no explicit dissipation
needs to be incorporated in the SL method. It is im-
plicitly provided, as the results of the next section will
demonstrate, by the interpolations of u and q that are
performed at each time step (Gravel 1996).

c. The contour-advective semi-Lagrangian method

The new CASL method for the SWE is also based
on the idea that potential vorticity conservation is es-
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sential, but it carries that idea much farther than the SL
method: q is represented in a fully Lagrangian way.
Specifically, q is discretized by level sets of uniform
value qj separated by contours across which it jumps by
Dq, each contour being represented by a set of nodes.
This discretization is at the heart of the contour dynam-
ics method, which has been implemented to solve a
variety of two-dimensional and quasigeostrophic prob-
lems (Dritschel 1989).

The original contour dynamics method rested on the
existence of a linear inversion relation (Dritschel 1989)
giving u directly and solely in terms of q. For q rep-
resented as a piecewise-uniform function, this permits
one to calculate u from integrals over the q contours.
However, for all but the simplest flows and linear in-
version relations, this process is computationally ex-
pensive, proportional to the square of the number of
points representing the q contours. A major improve-
ment in the computation of u for general flows was
recently introduced by Dritschel and Ambaum 1997
(hereafter DA), who developed the CASL method for
multilayer quasigeostrophic dynamics. Within the
CASL method, the computation of u at each time step
is carried out by first interpolating q onto a grid and
then performing a spectral inversion. The contour-to-
grid conversion, a very fast operation, not only elimi-
nates the need for the existence of an inversion relation
for potential vorticity (hence allowing a full general-
ization of the contour approach to the primitive equa-
tions), but also provides a very substantial improvement
in computational performance, typically of several or-
ders of magnitude.

The novelty of this paper is the implementation, for
the first time, of a contour-based method to a system of
equations for which no inversion relation exists. Since
the CASL method for the SWE presented in this paper
is a direct carryover from the CASL method for qua-
sigeostrophic dynamics, we limit the discussion here to
a broad sketch, and we refer the reader to DA for all
details.

Briefly, given q in terms of contours and the fields d
and h9 on a grid of size ng 3 ng at time t, each node xi

on the q contours needs to be advected to t 1 Dt. The
first step consists in computing the velocity u so that
(15) may be used. This is accomplished, as in the orig-
inal CASL method, by projecting the contoured poten-
tial vorticity onto a grid finer than ng (specifically, of
size mgng, where mg is typically equal to 4) and per-
forming an iterative averaging so as to obtain a smooth
q field on a grid of size ng. Once q is thus constructed,
the vorticity z is readily obtained from (9), since h is
also known on the grid. Finally, the gridded velocity
field u is computed directly from z and d using, as is
customary, the streamfunction c and the velocity po-
tential x defined by

z [ ¹2c and d [ ¹2x, (18)

and related to the velocity components via

]x ]c ]x ]c
u 5 2 and y 5 1 . (19)

]x ]y ]y ]x
These operations are performed with spectral trans-
forms.

Once the velocity u is known on the grid, each node
on the potential vorticity contours can be advected for-
ward to time t 1 Dt. This is done by solving (15) in a
manner identical to the one described above for the SL
method, the only difference being that in the CASL
method the advection is done forward rather than back-
ward. Hence, together with bilinear spatial interpolation,
(16) and (17) are used directly, exchanging xd with xa

and letting Dt → 2Dt. Once all the nodes on the q
contours are stepped forward, the nodes may be redis-
tributed; this is necessary because, while the area en-
closed by each q contour is approximately conserved,
its perimeter may increase drastically as the flow be-
comes complex, and thus nodes need to be added to
preserve accuracy (see DA for details).

The key difference between the SL method and the
CASL method is now apparent: in the CASL method,
once the nodes are time-stepped forward no interpo-
lation of q is necessary. In contrast, the SL method
requires that, once each grid point has been time-stepped
backward, the potential vorticity itself be interpolated
(e.g., with the bicubic Lagrange scheme). This inter-
polation of q results in substantial diffusion, as the re-
sults of the next section will show, and degrades the
accuracy of the method.

Of course, the extremely small scales in q that are
inevitably generated by the forward enstrophy cascade
in complex rotating, stratified flows pose a problem for
any method, whether Eulerian or Lagrangian, and they
need to be removed. In the CASL method this is ac-
complished with contour surgery. This procedure [fully
documented in Dritschel (1989) and with some refine-
ments added in DA] effectively acts only on the very
smallest scales by topologically reconnecting contours
and eliminating very finescale filamentary structures.

While contour surgery may rightly be viewed as an
ad hoc procedure, it is no more ad hoc than the familiar
hyperdiffusion used in the PS method. The key differ-
ence is that contour surgery does not diffuse q gradients,
a severe drawback of hyperdiffusion (Mariotti et al.
1994; Jiménez 1994; Macaskill and Bewick 1995; Yao
et al. 1995). Moreover, the surgery scale ds—below
which q ceases to be conserved—can be chosen to be
much smaller than the grid scale on which the d, h9,
and u fields are held, typically 10 times as small.1 Hence

1 The application of contour surgery at a tenth of the scale of the
grid on which the advecting winds are represented was originally
motivated by recent contour advection studies (Waugh and Plumb
1994; Norton 1994) using both observed and model winds. These
studies show that potential vorticity features down to a tenth of the
wind grid scale are negligibly influenced by the subgrid-scale velocity
field. Hence very thin potential vorticity filaments behave passively,
and can therefore be removed with little effect on the dynamics (see
also Methven and Hoskins 1998).
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FIG. 1. (a) The unperturbed potential vorticity q, (b) the corre-
sponding u velocity, and (c) perturbation height h9, all used for the
test case.

the CASL method is able to capture potential vorticity
structures much smaller than the grid scale, and this
considerably improves its convergence over both the PS
and SL methods.

One final CASL procedure needs to be discussed be-
fore presenting numerical test results. Assuming that the
initial condition (whether from a model or from data)
is given on a grid, one needs to generate q contours to
carry out the Lagrangian advection. The simplest way
is to first determine the minimum and maximum value
qmin and qmax in the computational domain. The range
(qmin, qmax) is then divided into nc 1 1 levels. Each level
corresponds to a region R j (possibly multiply connect-
ed) where q assumes a spatially uniform value qj defined
by

1
q [ q 1 j 2 Dq, j 5 1, . . . , n 1 1, (20)j min c1 22

with

q 2 qmax minDq 5 (21)
n 1 1c

representing the potential vorticity jump across each
contour. This simple scheme yields a potential vorticity
representation consisting of exactly nc 1 1 regions sep-
arated by nc contours.

3. Numerical tests

To test the new CASL method, and to compare it
directly with the PS and SL methods, we have chosen
a relatively simple initial flow—a perturbed unstable
zonal jet—which rapidly becomes very complex. We
believe that complexity is generic to geophysical flows,
and is precisely what makes the design of numerical
algorithms for the solution of the primitive equations
such a challenging task. Moreover, the nonlinear evo-
lution of unstable jets is commonly observed in both
the atmosphere and the ocean, and therefore this test is
highly relevant. We have considered using simpler test
cases, for example, the propagation of a single linear
Rossby wave or the advection of a height anomaly. Such
flows have been proposed by Williamson et al. (1992)
as test cases for the SWE in spherical geometry. We
believe, however, that many of those cases lack the com-
plexity necessary to adequately test the performance of
numerical algorithms that are being proposed for prac-
tical applications.

Hence, our initial flow is specified by prescribing the
potential vorticity as follows:

q(x, y, 0) 5 q 1 Q sgn(ŷ)(a 2 | |ŷ| 2 a|) (22)

for |ŷ| , 2a, and q 5 q otherwise; Q is the amplitude
of the potential vorticity anomaly, q is the mean po-
tential vorticity determined by the requirement of zero
mean relative vorticity, 2a is the distance from the min-
imum to the maximum potential vorticity, and

ŷ 5 y 1 cm sinmx 1 cn sinnx (23)

is a displaced y coordinate (which preserves the area of
differential elements) used to perturb the jet. For the
numerical integrations, we have chosen the scalings h
5 1, LR 5 c/f 5 0.5, a 5 0.5, hQ/f 5 1, and f 5 4p,
the latter implying that a unit time interval corresponds
to a day. Our doubly periodic domain spans the range
(2p, p), and thus covers about 12.5 deformation radii
in each direction, the jet itself being about four defor-
mation radii wide.

The unperturbed q profile (i.e., with cm 5 cn 5 0),
the associated zonal flow u, and the corresponding bal-
anced height field anomaly h9 are show in Fig. 1. Notice
that the h deviates by up to 40% from its mean value,
while max |u/c| ø 0.45; moreover, max |z/f | ø 0.9 (not
shown), demonstrating that this flow is strongly ageo-
strophic. The q profile in Fig. 1a is perturbed by choos-
ing m 5 2, n 5 3, c2 5 20.1, and c3 5 0.1 in (23).
With q thus specified, the initial depth h9 and divergence
d fields are then initialized using the balance conditions
]2h9/]t2 5 ]2d/]t2 5 0. It is more common to balance
a flow by setting ]nd/]tn 5 0 and ]n11d/]tn11 5 0, for
(small) integer n (cf. Norton 1988), but because there
is no rigorous definition of balance, our conditions are
equally acceptable; moreover, they give results that dif-
fer little from those obtained with zero second and third
time derivatives of divergence. This will be discussed
in a forthcoming article.

We start by illustrating the complexity that emerges
during the time evolution of such an apparently benign
initial condition. In Fig. 2a, the potential vorticity q is
shown for the first 10 days of a high-resolution CASL
calculation, using a grid size ng 5 256 for d and h9,
and with nc 5 20 contours used to discretize q. Notice
how steep potential vorticity gradients form very rapidly
(cf. the t 5 2 frame). We stress that such high gradients
are not peculiar to this initial condition, but are a generic
property of geophysical flows. The nonlinear evolution
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FIG. 2. (a) The evolution of the potential vorticity q at 2-day intervals for the perturbed unstable
jet of Fig. 1. This CASL solution is obtained with nc 5 20 contours to represent q, and a grid of
size ng 5 256 for d and h9. (b) The corresponding h9 field.

leads to the breakup of the initial jet into a number of
vortices, each eventually composed of a rather flat core
surrounded by a very complicated jumble of filamentary
structure (cf. the t 5 10 frame in Fig. 2a).

It is important to contrast this very complex q field
with the corresponding height field h9, shown in Fig.
2b. The deceptively smooth height field masks all the
real complexity of the flow evolution. For this reason
we consider this field (and for similar reasons the
streamfunction c) to be an inadequately sensitive mea-

sure with which to test the accuracy of a numerical
method.

For the reader perplexed as to whether the perhaps
surprisingly complex evolution of the above initial con-
dition may be an artifact of the contour representation
and surgery in the CASL method, we present in Fig. 3
a direct comparison of the potential vorticity field at day
10 at even higher resolution (ng 5 512) computed with
the three methods described in the previous section, and
using the same initial condition as for Fig. 2. First notice
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FIG. 2. (Continued )

how, at this very high resolution, the CASL method
(Fig. 3a), the PS method (Fig. 3b), and the SL method
(Fig. 3c) are all in rather good agreement. The com-
plexity of the evolution, therefore, is intrinsic to the
flow, not a numerical artifact.

Second, the key differences relate, as expected, to the
steepness of the potential vorticity gradients and to the
small-scale features. The CASL method is able to re-
solve scales one-tenth the grid size (where surgery is
applied) and hence can support much steeper gradients
than the other two methods. Moreover, since the CASL
method controls the cascade to small scales through
surgery, it does not diffuse the potential vorticity field.

This unwanted yet inevitable diffusion in both the PS
and SL method is readily apparent in Figs. 3b and 3c.
Consider for instance how, in both cases, the complex
filamentary structure surrounding most vortices is sub-
stantially smoothed out in the PS and SL solutions. In
this respect, it would seem that the SL method, in which
the numerical diffusion occurs through repeated inter-
polations and is thus not directly controllable, does
worse that the PS method. Contrast the two largest vor-
tices in the flow and notice how the PS solution has
captured steeper potential vorticity gradients. This may
be related to the fact that the PS method allows a more
direct control of the numerical diffusion via the param-
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FIG. 3. (a) The potential vorticity q at t 5 10 days for a CASL computation identical to the one in Fig. 2 but for a finer grid of size ng

5 512. (b) As in (a) but for a PS computation. The grid size is ng 5 512, as for the CASL case. (c) As in (a) but for a SL computation.
Again the grid is of size ng 5 512.

eter n, which was chosen according to (12) for the com-
putation in Fig. 3b.

Third, and most importantly, it could be objected that
the kind of complexity that the computations in Fig. 3
are able to resolve is of little practical interest. In typical
geophysical flows the generation of small scales is suf-
ficiently rapid that the resolution of successively finer

scales by grid refinement might start to resemble the
quest for the Holy Grail. Moreover, in realistic circum-
stances (e.g., for general circulation models) a large
portion of the computational resources need to be ded-
icated to physical processes other than the fluid dynam-
ics (e.g., chemical reactions or radiation schemes). In
practice, it could be argued, only modest grid resolutions
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TABLE 1. A comparison of the accuracy and efficiency of the CASL, PS, and SL methods for integrations of the initial condition (22)
to t 5 5 and t 5 10.

Method ng Dt e(5) e(10) c(5) c(10)

CASL
CASL
CASL
CASL
CASL

32
64

128
256
512

0.04
0.04
0.04
0.04
0.04

0.003197
0.001912
0.001230
0.000737
0.000454

0.004364
0.003195
0.002119
0.001568
0.001253

13.33
30.94
86.45

266.83
922.24

35.58
89.31

278.66
931.44

3436.82

PS
PS
PS
PS
PS

32
64

128
256
512

0.02
0.01
0.005
0.002
0.001

0.020451
0.011255
0.006502
0.004591
0.002964

0.024265
0.015660
0.010277
0.008347
0.006714

6.34
31.41

234.36
2287.62

18 933.88

12.68
62.81

468.72
4575.25

37 867.75

SL
SL
SL
SL
SL

32
64

128
256
512

0.04
0.04
0.04
0.04
0.04

0.018739
0.013122
0.008060
0.005093
0.003386

0.024377
0.018155
0.012212
0.008476
0.006752

5.66
16.86
61.79

244.21
999.26

11.31
33.72

123.57
488.42

1998.51

are affordable on which to compute the evolution of the
flow.

If one is willing to subscribe to this point of view,
the question then becomes: for a given grid size, which
numerical method yields the ‘‘best’’ solution? Or, more
interestingly yet: which method converges faster as the
resolution is increased? To answer these questions we
present, in Figs. 4 and 5, a direct comparison of the
numerical solutions of the initial condition (22) com-
puted with the CASL, PS, and SL methods and with
grid resolutions ng 5 32, 64, 128, and 256.

The potential vorticity field at day 5 is shown in Fig.
4a. At the highest resolution (cf. top row) all three meth-
ods are in good agreement, as expected. However, at
very low resolution (cf. bottom row) only the CASL
method manages to capture all the key features of the
flow, that is, the number, size, and location of the vor-
tices that result from the instability. The principal source
of error in the CASL method, at low resolution, is the
poor estimation of the advecting velocity field, which
is interpolated on a coarse grid. This affects the PS and
SL solutions as well, but they additionally suffer from
excessive diffusion: hyperdiffusion in the PS case, and
interpolation errors in the SL case. Such numerical dif-
fusion is the principal cause for the slower convergence
with increasing resolution of the PS and SL methods
compared with the CASL method. This is quantified
below.

Moreover, only at the higher resolutions do the PS
and SL solutions start to develop tight potential vorticity
gradients similar to those in the CASL solution. The SL
method appears to be diffusing more than the PS method
(contrast the PS and SL solutions at ng 5 32 and 64),
though the very small n we are employing for the PS
method (to allow it to diffuse as little as possible) is
barely marginal for numerical stability (hence the tiny
Gibbs phenomena). Of course at the highest resolution
(ng 5 256) all three methods yield nearly identical fea-

tures on the large scales, but the point here is that the
CASL method can afford a much coarser grid.

The corresponding height fields at day 5 are shown
in Fig. 4b. Here, except for the lowest resolution (cf.
bottom row), the PS and SL solutions appear to do rather
well. This is not surprising since h9 is a smooth field
and is thus much easier to compute. However, tracers
are not smooth fields and thus the comparison of Fig.
4a is more appropriate. Moreover, it is worth noting that
at our lowest resolution (ng 5 32) the initial jet spans
approximately 10 grid points. For most current atmo-
spheric general circulation models used for climate stud-
ies, a resolution of 18 is considered high; at such res-
olution, key features such as the subtropical jet span
only a few grid points (in the oceans, key features such
as the gulf stream tend to be an order of magnitude
smaller in scale and are immensely difficult to resolve).
Therefore, the CASL method, with its ability to capture
the basic large-scale features of smooth fields at very
low resolution, offers a substantial practical advantage.

Figure 5a shows the potential vorticity fields at day
10. Here the results in all cases converge more slowly,
but the flow field is in this case extremely complex.
Still, the CASL algorithm converges significantly more
rapidly than the other two. And here, the effect of nu-
merical diffusion in the PS and SL algorithms is par-
ticularly evident. With ng 5 64 (cf. third row) the CASL
method has managed to capture the number, size, and
location of the key features in the flow, whereas the PS
and SL methods have still not converged to the correct
number of vortices and their positions. The correspond-
ing height fields (shown in Fig. 5b) confirm the key idea
behind these tests, that is, that the CASL method is able
to capture accurate solutions with coarse grid resolutions
because it does not suffer from numerical diffusion.

We now quantify this statement in a precise way. We
measure the accuracy of each simulation by its ability
to conserve mass between isolevels of potential vorticity
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FIG. 4. (a) The potential vorticity q at t 5 5 days, for four different grid resolutions ng 5 32,
64, 128, and 256 and for the CASL, PS, and SL methods. (b) The corresponding height field h9
at t 5 5 days.

(the mass between any two material contours in shallow
water flows is conserved in the absence of dissipation).
The degree of mass conservation is important for a prop-
er assessment of transport properties; it is crucial, for
example, to ozone chemistry in the stratosphere
(Edouard et al. 1996), and it is no doubt equally im-
portant in the oceans.

The mass error is computed as follows. The initial q
field is divided into regions R j, j 5 2N, . . . , N, each
corresponding to a potential vorticity level qj as defined
in section 2c above. The mass in each region is mj 5

h dx dy. Ideally mj does not change in time, but in##R j

practice the numerical approximations inevitably lead
to changes in mj, and these changes are used to measure
the numerical error of each simulation.

The error at time t is defined as the rms difference
between mj(t) and mj(0), normalized by the product of
h and the domain area Adom; that is,

1/2
1 1

2e(t) 5 [m (t) 2 m (0)] , (24)O j j5 6hA 2N jdom

where the sum is over all j except j 5 0. The region
R 0 includes all of the fluid with zero anomalous po-
tential vorticity and is much larger than the others. In-
cluding this region in the sum above approximately dou-
bles the value of e in the PS and SL simulations, but
negligibly increases it in the CASL simulations. This
difference is due to the diffusion of q in the PS and SL
simulations.
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FIG. 4. (Continued )

To compute the mj, R j must be known sufficiently
accurately. Following Yao et al. (1995), we interpolate
q and h to a finer grid, in this case eight times finer in
each direction.2 We then determine j at each point on
this fine-resolution grid from the nearest integer value
of (q 2 q)/Dq and add to mj the value of h at this point,
multiplied by the area of a grid square. This procedure
is employed, with no variations, for all three simulation
methods. In the results presented next, we choose N 5
10, so that each region R j effectively lies between con-
tours in the CASL simulations. Note, however, that we

2 Using a grid only four times finer leads to differences on the order
of 1%.

do not take advantage of this fact in computing the mj’s
for the CASL method; as in the PS and SL simulations,
we compute the set of grid points lying within each
region R j and sum the h values.

The accuracy of any algorithm, as all would agree,
has little practical value per se. It needs to be contrasted
with its efficiency, since the best algorithm is not simply
the most accurate, but also the fastest. Hence we present,
in Table 1, the error e(t) at the two reference times, t
5 5 and t 5 10 (cf. Figs. 4 and 5), plotted versus the
cost c(t) (in seconds) needed to integrate the SWE to
those times with the three different methods. All the
simulations were performed on a vector-processing
Cray-J90 supercomputer, with great care taken to vec-
torize and, generally, to optimize the performance of
each algorithm.
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FIG. 5. (a) As in Fig. 4a but for t 5 10 days. (b) As in Fig. 4b but for t 5 10 days.

To provide an immediate visual understanding of how
the three algorithms compare, we plot in Fig. 6 the error
and efficiency data of Table 1, with the cost c(t) on the
abscissa and the error e(t) on the ordinate. The three
symbols used in that figure represent the three methods:
squares for CASL, circles for PS, and triangles for SL.
The filled points correspond to the values at the refer-
ence time t 5 5 in Table 1, the empty ones at t 5 10.
The size of the plotted points indicate the resolution.
For each method and each reference time, the data points
for the five grid resolutions employed (ng 5 32, 64, 128,
256, 512) are connected together. This makes the effect
of increasing resolution immediately clear: for all three
methods, increasing ng results in smaller errors and, of
course, greater cost.

Because of the coordinate choice in Fig. 6, it is readily

apparent that the CASL method outperforms both the
PS and SL method. The curves for the CASL solutions
(squares) are located closer to the lower-left corner of
the plot (where fast and accurate solutions lie) than the
curves for the PS and SL solutions. The comparison of
the latter two is quite interesting. The SL method is seen
to outperform the PS one despite the fact that, at the
same grid resolution, the PS method is slightly more
accurate (cf. Table 1 and Figs. 4 and 5 where, at the
same resolution, the SL method shows more diffusion).
The superiority of the SL methods, however, lies in that
the PS method is much more costly, due to the CFL
constraint on the time step. For a given accuracy, it costs
less to use an SL method than a PS one. However, it
costs even less to use the CASL method.

Consider furthermore that, as can be seen in Fig. 6,
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FIG. 5. (Continued )

the CASL curves lie almost entirely below the corre-
sponding PS and SL curves. At t 5 5 (filled curves),
one needs to go out to the finest grid ng 5 512 with the
PS and SL methods to achieve an accuracy similar to
the one that the CASL method achieves with the coarsest
grid ng 5 32. With reference to Table 1, this means that
for a comparable accuracy (say for an error around 0.003
at t 5 5), the CASL method speeds up the computations
by a factor of 75 over the SL method and by a factor
of 1450 over the PS method.

At t 5 10, the comparison is even better. As can be
seen directly in Fig. 6 (empty curves), the error of the
coarsest CASL computation is smaller that that of the
finest PS and SL computations. Thus, despite the fact
that with the coarsest grid (ng 5 32) the advecting ve-
locity field is very crudely represented, the contour dis-

cretization of q in the CASL method still manages to
conserve mass between q levels better than the PS and
SL simulations with the finest grid (ng 5 512). The lack
of mass conservation in the PS and SL simulations is
largely a result of numerical diffusion, of using a grid-
based scheme for the advection of q.

4. Summary and discussion

We have presented a new algorithm for the shallow
water equations in which potential vorticity, the fun-
damental dynamically active tracer, is discretized by lev-
el sets separated by contours that are advected in a fully
Lagrangian way. This technique allows for numerical
dissipation to act only on scales that are much smaller
than the scale of the grid on which the divergence and
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FIG. 6. The mass error, as defined by (24) vs the cost (in seconds)
for the solutions shown in Figs. 4 and 5. The symbols indicate the
different methods: squares for CASL, circles for PS, and triangles
for SL. Empty points correspond to the error-cost values at t 5 5
days, the filled points at t 5 10. The point size increases with res-
olution, from ng 5 32 (smallest) to ng 5 512 (largest).

height field are represented, and thus yields accurate
computations with much coarser grids than semi-La-
grangian or spectral methods.

The use of contour advection in the new algorithm
furthermore overcomes the numerical diffusion explic-
itly or implicitly associated with grid-based advection.
Numerical diffusion is required in grid-based methods
to avoid the buildup of artificial structure at the grid
scale; hyperdiffusion is used widely in pseudospectral
methods, and implicit diffusion occurs when interpo-
lating tracers in semi-Lagrangian methods. The new
CASL method, by contrast, is virtually free of numerical
diffusion. For the test case reported here, this results in
a speedup of nearly two orders of magnitude over the
semi-Lagrangian method, and more than three orders of
magnitude over the pseudospectral method, for similar
accuracy.

The contour representation can be extended directly
to any conservative tracer and may be particularly ap-
propriate for those circumstances (e.g., the stratospheric
circulation) where the velocity field stretches and folds
tracers into extremely fine filaments. Moreover, since
the contour-to-grid conversion is a very fast operation,
the contour representation can also be extended to re-
active tracers. A scheme for incorporating general dia-
batic terms in the potential vorticity equation has been
developed (Ambaum and Dritschel 1998).

With further work, contour advection could be im-
plemented in realistic atmospheric and oceanic models
for those fields, notably tracers, where finescales are
invariably generated and may be important for the chem-
ical, moisture, or energy balances. Already, a spherical

barotropic and a multilayer, Boussinesq, primitive-equa-
tion algorithm exists (manuscript in preparation), and a
spherical version of the present shallow water algorithm
is under development. We shall report on these in the
near future.
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