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Cover credit: 
The cover shows a cropped image of the warming stripes (seen in full below), as developed by 
Ed Hawkins (Reading University, UK). Each vertical line shows the global average temperature 
of a whole year, starting at 1850 on the far left and ending with 2019 on the far right. The un-
derlying data are from the HadCRUT4.6 dataset of the UK Met Office Hadley Centre. To create 
stripes of other regions and countries visit https://showyourstripes.info/. Image created on 23 
June 2020 by https://showyourstripes.info/ under a CC BY 4.0 licence.

Global Climate is one chapter from the State of the Climate in 2019 annual report and is avail-
able from https://doi.org/10.1175/BAMS-D-20-0104.1 Compiled by NOAA’s National Centers for 
Environmental Information, State of the Climate in 2019 is based on contributions from scien-
tists from around the world. It provides a detailed update on global climate indicators, notable 
weather events, and other data collected by environmental monitoring stations and instru-
ments located on land, water, ice, and in space.  
The full report is available from https://doi.org/10.1175/2020BAMSStateoftheClimate.1.
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a. Overview—R. J. H. Dunn, D. M. Stanitski, N. Gobron, and K. M. Willett

The assessments and analyses presented in this chapter focus predominantly on the measured 
differences of climate and weather observables from previous conditions, years, and decades 
to place 2019 in context. Many of these differences have direct impacts on people, for example, 
their health and environment, as well as the wider biosphere, but are beyond the scope of these 
analyses. 

For the last few State of the Climate reports, an update on the number of warmer-than-average 
years has held no surprises, and this year is again no different. The year 2019 was among the three 
warmest years since records began in the mid-to-late 1800s. Only 2016, and for some datasets 
2015, were warmer than 2019; all years after 2013 have been warmer than all others back to the 
mid-1800s. Each decade since 1980 has been successively warmer than the preceding decade, 
with the most recent (2010–19) being around 0.2°C warmer than the previous (2000–09). 

This warming of the land and ocean surface is reflected across the globe. For example, lake 
and permafrost temperatures have increased; glaciers have continued to lose mass, becoming 
thinner for the 32nd consecutive year, with the majority also becoming shorter during 2019. The 
period during which Northern Hemisphere (NH) lakes were covered in ice was seven days shorter 
than the 1981–2010 long-term average, based on in situ phenological records. There were fewer 
cool extremes and more warm extremes on land; regions including Europe, Japan, Pakistan, and 
India all experienced heat waves. More strong than moderate marine heat waves were recorded 
for the sixth consecutive year. And in Australia (discussed in more detail in section 7h4), moisture 
deficits and prolonged high temperatures led to severe impacts during late austral spring and 
summer, including devastating wildfires. Smoke from these wildfires was detected across large 
parts of the Southern Hemisphere (SH).

The year 2019 was also one of the three warmest above Earth’s surface and within the tropo-
sphere, while middle and upper stratospheric temperatures were at their lowest recorded values 
since 1979, as is expected because of the increasing concentration of greenhouse gases in the 
atmosphere.

The continuing warm conditions also influenced water around the globe, with atmospheric 
water vapor (specific humidity) being high over the ocean surface (one of the moistest years on 
record) and also aloft, and well above average near the land surface. However, in terms of satura-
tion (relative humidity), the atmosphere was very dry near the land surface, setting a new record 
low for the global average, and about average over the ocean surface and aloft. There were strong 
hemispheric differences in soil moisture anomalies with, on average, negative anomalies in the 
south and positive anomalies in the north. Globally, the second half of 2019 saw an increase in 
the land area experiencing drought to higher, but not record, levels by the end of the year, but 
annual precipitation amounts were around average, with regional peaks in intense rainfall from, 
for example, Cyclones Idai and Kenneth in southeastern Africa. 

Many climate events in Africa, Asia, and Australia were influenced by the strong positive 
Indian Ocean dipole (IOD), while the weak-to-neutral prolonged El Niño–Southern Oscillation 
(ENSO) conditions during 2019 appeared to have only limited impacts. 

2. GLOBAL CLIMATE
R. J. H. Dunn, D. M. Stanitski, N. Gobron, and K. M. Willett, Eds.
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As a primary driver for our changing climate, the abundance of many long-lived greenhouse 
gases continues to increase. Globally averaged CO2 at Earth’s surface reached 409.8 ± 0.1 ppm, 
a 2.5 ± 0.1 ppm increase from 2018; and CH4 reached 1866.6 ± 0.9 ppb in 2019, a 9.2 ± 0.9 ppb increase 
from 2018, which is among the three largest annual increases (with 2014 and 2015) since 2007, 
when a rapid rise in methane concentration began. The mean global atmospheric N2O abundance 
in 2019 was 331.9 ± 0.1 ppb, an increase of 1.0 ± 0.2 ppb from 2018. However, the atmospheric 
abundances of most ozone-depleting substances (ODS) are declining or leveling off, decreasing 
the stratospheric halogen loading and radiative forcing associated with ODS.

Stratospheric water vapor variability is strongly affected by the absolute humidity of air enter-
ing the stratosphere in the tropics, which is in turn largely determined by the temperature of the 
tropical cold point tropopause. Following 2018, a year in which lower stratospheric water vapor 
in the tropics dropped to a very low value (~20% below the 2004–19 average in December), water 
vapor abundance in the tropical lower stratosphere increased during 2019 to about 10% above 
average in the latter half of the year.

Both hemispheric average and global average tropospheric ozone in 2019 indicate a continuing 
increase from previous years based on satellite measurements (starting year 2004) and surface 
measurements (starting in the mid-1970s). The largest trends in tropospheric ozone over the last 
15 years occurred above India and East/Southeast Asia at a rate of ~ +3.3 DU decade−1 (~ +1% yr−1); 
these increases are consistent with expected increases of ozone precursor emissions across this 
region.

The year saw exceptional fire events over Australia, Indonesia, and parts of Siberia, but was 
also marked by lower amounts of dust over most of the Sahara. In the latter part of 2019, the 
Raikoke (Russia) and Ulawun (Papua New Guinea) volcanic eruptions and the large Australian 
wildfires loaded the stratosphere with aerosol levels unprecedented since the post-Mt. Pinatubo 
era 25 years ago. Despite this, 2019 was near-record warm at the surface. 

The responses of the terrestrial biosphere to climatic conditions were also visible. Phenological 
land indicators show an average excess of eight days for the duration of the growing season in the 
NH in 2019 relative to the 2000–10 baseline. A deficit of plant productivity in the SH resulted in a 
lighter surface and hence higher albedo, whereas northern latitudes presented a darker surface 
and lower albedo, largely due to below-average snow cover. However, the rate of photosynthesis 
increased in eastern China with vegetation growth due to major human changes in land use.

New additions to this chapter in 2019 include lake water levels (last included in 2011) and side-
bars on lake ice cover and stratospheric aerosols. Marine temperature extremes are also included 
this year alongside the land–surface indices, and we see the return of an update on the Mauna 
Loa solar transmission record.

Time series and anomaly maps for many of the variables described in this chapter are shown 
in Plates 1.1 and 2.1, respectively. A number of sections refer to supplemental figures that can be 
found in Appendix 2.
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Plate 2.1. (a) NOAA NCEI Global land and ocean surface annual 
temperature anomalies (°C); (b) Satellite-derived lake surface 
water temperature anomalies (°C) in 2019. The anomalies are 
calculated for the meteorological warm season (JJA in NH; DJF 
in SH, and over Dec–Aug 2018/19 within 23.5° of the equator). 
The longitude of some of the lakes has been shifted slightly 
to enable them to be displayed clearly. The latitude has been 
maintained; (c) GHCNDEX warm day threshold exceedance 
(TX90p); (d) GHCNDEX cool night threshold exceedance 
(TN10p); (e) ERA5 annual temperature anomalies of LTT (°C). 
Stippling indicates grid points in which the 2019 value was the 
highest of the 41-year record; (f) ERA5 annual temperature 
anomalies of LST (°C); (g) HadISDH surface specific humidity 
anomalies (g kg–1);
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Plate 2.1. (cont.) (h) HadISDH surface relative humidity 
anomalies (% RH); (i) ERA5 reanalysis of TCWV anomalies 
(mm). Data from GNSS stations are plotted as filled circles; 
(j) “All sky” microwave-based UTH dataset annual average 
UTH anomalies (% RH); (k) GPCP v2.3 annual mean precipita-
tion anomalies for 2019 (mm yr−1); (l) Anomalies for the 2019 
GPCC-First Guess Daily R10mm index (days); (m) Lake water 
level anomalies (meters) based on satellite altimeters for 198 
large lakes; (n) Global cloudiness anomalies (%) generated 
from the 30-year PATMOS-x /AVHRR cloud climatology;
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Plate 2.1. (cont.) (o) Global distribution of river discharge anomalies (m3 s−1) from JRA-55; (p) Global 
distribution of runoff anomalies (mm yr−1) from JRA-55; (q) Changes in annual-mean terrestrial water 
storage (the sum of groundwater, soil water, surface water, snow, and ice, as an equivalent height of 
water in cm) between 2018 and 2019, based on output from a GRACE and GRACE-FO data-assimilating 
land surface model. No data are shown over Greenland, Antarctica, the gulf coast of Alaska, parts of 
Patagonia, and most polar islands; (r) ESA CCI Soil Moisture average surface soil moisture anomalies 
(m3 m−3). Data were masked as missing where retrievals are either not possible or of very low qual-
ity (dense forests, frozen soil, snow, ice, etc.); (s) GLEAM land evaporation anomalies (mm yr−1); (t) 
Mean scPDSI for 2019. Droughts are indicated by negative values (brown), wet episodes by positive 
values (green). No calculation is made where a drought index is meaningless (gray areas: ice sheets 
or deserts with approximately zero mean precipitation);
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Plate 2.1. (cont.) (u) HadSLP2r surface pressure anomalies (hPa); (v) Surface wind speed anomalies 
(m s−1) from the observational HadISD3 dataset (land, circles), the MERRA-2 reanalysis output (land, 
shaded areas), and RSS satellite observations (ocean, shaded areas); (w) ERA5 Aug–Dec average 850-hPa 
eastward wind speed anomalies (m s−1); (x) Total aerosol optical depth (AOD) anomalies at 550 nm; (y) 
Number of days with extremely high AOD (extreme being defined as above the local 99.9th percentile 
of the 2003–18 average; (z) Total column ozone anomalies (DU) in 2019 from Global Ozone Monitor-
ing Experiment-2 (GOME-2A) measurements with respect to the 1998–2008 mean determined from 
the merged multi-sensor data combining GOME, SCIAMACHY, and GOME-2 (GSG, Weber et al. 2018); 
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Plate 2.1. (cont.) (aa) Tropospheric ozone anomalies (DU) for 2019, relative to 2005–18 average, as de-
tected by the OMI/MLS satellite instruments; (ab) CAMS reanalysis total column CO anomalies (%); (ac) 
Land surface visible albedo anomalies (%); (ad) Land surface near-infrared albedo anomalies (%); (ae) 
FAPAR anomalies; (af) GFAS1.4 carbonaceous emission anomalies (g C m−2 yr−1) from biomass burning. 
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b. Temperature
1) Global surface temperature— 

A. Sánchez-Lugo, C. Morice, J. P. Nicolas, and 
A. Argüez
The 2019 global land and ocean 

surface temperature was 0.44°–0.56°C 
above the 1981–2010 average (Table 
2.1) and was among the three high-
est yearly temperatures since global 
records began in the mid-to-late 1800s 
(Fig. 2.1), according to three independent 
in situ analyses (NASA-GISS, Lenssen 
et al. 2019; HadCRUT4, Morice et al. 
2012; NOAAGlobalTemp, H.-M. Zhang 
et al. 2019). The NOAAGlobalTemp and 
NASA-GISS datasets ranked 2019 as the 
second-warmest year on record, just 
0.04°C behind 2016. The HadCRUT4 da-
taset ranked 2019 as the third-warmest 
year, behind 2016 (+0.50°C) and 2015 
(+0.47°C). A weak El Niño was present 
across the tropical Pacific Ocean at the 
start of the year (see section 4b). The 
presence of an El Niño (La Niña) typi-
cally has a warming (cooling) influence 
on global temperatures (e.g., Foster and 
Rahmstorf 2011). The El Niño transi-
tioned to El Niño–Southern Oscillation 
(ENSO) neutral by mid-2019.

The three in situ global surface tem-
perature analyses assessed here are 
derived from air temperatures observed 
at weather stations over land and sea 
surface temperatures (SSTs) observed 
from ships and buoys. Differences be-
tween analyses are mainly due to how 
each methodology treats areas with 
little to no data and how each analysis 
accounts for changes in measurement 
methods (for more details see Kennedy 
et al. [2010]; Hansen et al. [2010]; and 
Sánchez-Lugo et al. [2017]). Although 
each analysis differs in methodology, 
leading to minor differences in tempera-
ture anomalies and ranks, the three in 
situ datasets are overall in close agree-
ment (Fig. 2.1), with an average rate 
of increase of 0.07°C per decade since 
1880 and a little over double that rate at 
0.18°–0.19°C per decade since 1971. The 

Fig. 2.1. Global average surface air temperature anomalies (°C; 
1981–2010 base period). In situ estimates are shown from NOAA/
NCEI (H.-M. Zhang et al. 2019), NASA-GISS (Lenssen et al. 2019), Had-
CRUT4 (Morice et al. 2012), CRUTEM4 (Jones et al. 2012), HadSST3 
(Kennedy et al. 2011a,b). Reanalyses estimates are shown from ERA5 
(Hersbach et al. 2020), and JRA-55 (Kobayashi et al. 2015).
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last six years (2014–19) were the six warmest years since global records began in the mid-to-late 
1800s, contributing to the warmest decade on record with a decadal temperature of 0.32°–0.39°C 
above the 1981–2010 mean. Each decade since 1980 has been successively warmer than the pre-
ceding decade, with the 2010–19 decadal temperature departure from average surpassing the 
previous record warm decade of 2000–09 by 0.15°–0.22°C. 

While annual temperature rankings provide a simple measure of the state of global tempera-
tures, a recently introduced global annual temperature score (Argüez et al. 2020) complements 
the annual temperature ranking by providing a basic characterization of the impacts of natural 
variability on global temperature relative to the sustained upward trend since the mid-1970s. 
Scores range from 1 to 10, with a score of 1 (10) indicating the coldest (warmest) 10% of anomalies 
relative to the trend line. In an era of seemingly perpetual near-record warm rankings, the an-
nual temperature scores can help characterize whether the annual temperature ranking attained 
in a given year was due primarily to continuation of the trend, natural variability, or both. For 
example, 2016 was not only the warmest year on record, but it also exhibited a temperature score 
of 10, whereas 2014 previously attained a ranking of warmest yet exhibits a temperature score of 4 
(on the colder half of the scale). This indicates that, on top of the long-term upward trend, natural 
variability had a prominent contribution to the record temperature in 2016, whereas natural vari-
ability did not have a prominent contribution to 2014’s previous record temperature. Using global 
annual time series from 1975 through 2019, the year 2019 registers a global annual temperature 
score of 9 (corresponding to the 80th to 90th percentile) in the NASA-GISS and NOAAGlobalTemp 
datasets and a score of 7 (60th to 70th percentile) in the HadCRUT4 dataset. This indicates that 
2019 was moderately-to-considerably warmer than we would expect due to continuation of the 
upward trend alone, suggesting that its ranking as second or third warmest was attributable to 
the combined effects of natural variability and progression of the upward temperature trend. 

The 2019 annual surface temperatures were above average across much of the world’s land and 
ocean surfaces (Plate 2.1a; Figs. A2.1, A2.2). The most notable positive anomalies (+1.0°C or higher) 
were observed across Alaska, the Gulf of Alaska, northeastern Canada, Baffin Bay, Greenland, 
Europe, the Middle East, Russia, eastern Asia, Australia, southern Africa, and parts of Brazil. In 
contrast, near- to below-average conditions were present across a large swath of North America 
and across parts of the southeastern and southwestern Pacific Ocean, the Atlantic Ocean, and 
Indian Ocean. 

The global temperature over land surfaces was 0.70°–0.83°C above average—the second high-
est on record, behind 2016. The global ocean temperature was 0.38°–0.40°C above average and 
the second or third highest on record, depending on the dataset. 

Globally averaged surface air temperatures are also estimated using full-input reanalyses. A 
full-input reanalysis uses an objective algorithm and a weather prediction model to combine in-
formation from a range of satellite, aircraft, and in situ observational data sources to reconstruct 
historical weather and climate across the whole globe. A surface-input reanalysis is similar but 
combines information from only surface-based observations. Both can suffer from regional model 
biases and the effects of changes in the observation network during the analysis period. However, 
surface temperatures from reanalyses should be consistent with in situ analyses in regions of 
good observational coverage. Here, two full-input reanalyses are considered: ERA5 (Hersbach et 
al. 2020) and JRA-55 (Kobayashi et al. 2015). Currently, these reanalyses provide data from 1979 
onward for ERA5 and from 1958 onward for JRA-55.

For both reanalyses, the globally averaged annual mean 2-m air temperature over land and 
ocean for 2019 was the second highest since the start of their respective records, being 0.59°C 
above average in ERA5 and 0.51°C above average in JRA-55 (Table 2.1). These estimates fall within 
the range of those derived from the three observational datasets mentioned above. Comparatively, 
the two reanalysis temperatures for 2016 (the warmest year on record) were 0.63°C and 0.56°C 
above average, respectively.
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For 2019, the reanalyses also show warmer-than-average conditions over many regions of the 
world (Figs. A2.3, A2.4), particularly over high northern latitudes. Over both global ocean and 
global land, the two reanalyses agree that the 2019 2-m air temperature was the second highest 
on record and that the last five years (2015–19) were the five warmest years on record over both 
global ocean and global land (as well as globally). 

2) Lake surface temperature—L. Carrea, R. I. Woolway, C. J. Merchant, M. T. Dokulil, C. L. DeGasperi, E. de Eyto,  
S. Kelly, R.S. La Fuente, W. Marszelewski, L. May, A. M. Paterson, M. Pulkkanen, J. A. Rusak, O. Rusanovskaya, S. G. Schladow,  
M. Schmid, S. V. Shimaraeva, E. A. Silow, M. A. Timofeyev, P. Verburg, S. Watanabe, and G. A. Weyhenmeyer
In 2019, the worldwide averaged satellite-derived 

lake surface water temperature (LSWT) warm-
season (June–August in the Northern Hemisphere 
[NH]; December–February 2018/19 in the Southern 
Hemisphere [SH]; and December–August 2018/19 
for the tropical region of 23.5°N–23.5°S) anomaly 
was +0.025 ± 0.022°C compared with the 1996–2016 
base period. The mean warming trend from 1995 
to 2019 was 0.21 ± 0.02°C decade−1, broadly consis-
tent with previous analyses (Woolway et al. 2017, 
2018; Carrea et al. 2019). On average, anomalies 
(with respect to the 1996–2016 baseline) in 2019 
were less positive than in 2018 and in 2017, 0.23°C 
and 0.19°C less, respectively. The warm-season 
anomalies for each lake are shown in Plate 2.1b. 
Per lake, the LSWT anomaly was positive for 47% 
of lakes, and negative for 53%. Some similarities 
between the 2019 warm-season lake temperature 
anomalies and the ice cover anomalies, in terms 
of spatial distribution in the NH (Sidebar 2.1; Fig. 
SB2.1), can be observed in regions where longer ice 
duration is related to negative lake water tempera-
ture anomalies. 

In the NH, distinctive warmer and cooler regions 
can be identified: Alaska, Greenland, Europe (ex-
cept the northeast) show clearly positive anomalies, 
while Tibet and parts of North America show clear 

Table 2.1. Temperature anomalies (°C) and uncertainties (where available) for 2019 w.r.t. the 1981–2010 base 
period. Where uncertainty ranges are provided, the temperature anomalies correspond to the central values 
of a range of possible estimates. Uncertainty ranges represent a 95% confidence interval. Note that for the 
HadCRUT4 column, land values were computed using the CRUTEM.4.6.0.0 dataset (Jones et al. 2012), ocean 
values were computed using the HadSST.3.1.1.0 dataset (Kennedy et al. 2011a,b), and global land and ocean 
values used the HadCRUT4.6.0.0 dataset (Morice et al. 2012).

Global
NASA-GISS

(°C)
HadCRUT4

(°C)

NOAA
GlobalTemp

(°C)

ERA5
(°C)

JRA-55
(°C)

Land +0.83 +0.70 ± 0.13 +0.78 ± 0.14 +0.87 +0.78

Ocean +0.38 +0.38 ± 0.07 +0.40 ±  0.16 +0.48 +0.39

Land and Ocean
+0.56 
±0.05

+0.44 ± 0.08 +0.51± 0.15 +0.59 +0.51

Fig. 2.2. Satellite-derived annual LSWT anomalies 
(°C; relative to 1996–2015) from 1995 to 2019 for 
Europe, Africa, Tibet, and Canada. These values 
were calculated for the meteorological warm season 
(Jun–Aug in the NH; Dec–Feb in the SH; and over the 
whole year in the tropics).
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negative anomalies. Four regions are shown in more detail: Europe (n = 127), Tibet (n = 106), 
Africa (n = 68), and Canada (n = 244). The warm-season LSWT calculated from the satellite data 
shows a warming tendency of +0.39 ± 0.03°C decade−1 in Europe and +0.22 ± 0.04°C decade−1 in 
Canada. In Africa and Tibet the tendency is more neutral (Fig. 2.2.). The year 2018 was the warm-
est since records began in 1995 for European lakes over the June–August (JJA) period (similar to 
the finding for July–September [JAS] in Carrea et al. 2019). The anomaly in Europe in 2019 was 
more moderately positive than in 2018, due to the contribution of cooler lakes in northern Europe 
and Ireland (see section 7f for details). In particular, the border between Scandinavia and Fin-
land delimits regions with contrasting behaviors, i.e., positive anomalies for Scandinavia and a 
few negative anomalies for Finland and the Karelia region of Russia, respectively. Modeled lake 
temperature anomalies in the ECMWF ERA5 reanalysis (Hersbach et al. 2020) are available that 
include lakes smaller than are observable in the satellite data (≥ ~1 km2), modeled as the fraction 
of each land surface grid cell covered by inland water (so-called “lake tiles”). The reanalysis lake 
tile temperatures are shown in Fig. 2.3. For the lakes in Ireland, the observed LSWT anomalies 
are moderately negative in contrast to the moderately positive ERA5 modeled data, while LSWT 
anomalies from satellite data are generally consistent with the ERA5 data in Canada, Tibet, 
and Africa (Fig. 2.3). ERA5 data are driven by the reanalysis surface meteorological conditions 
(Balsamo et al. 2012) and in general, the lake temperature anomalies broadly track observed air 
temperature, although factors such as wind speed, humidity, insolation, and the thermal time 
constants of lakes influence variations within this broad pattern. 

LSWT time series were derived from satellite observations from the series of Along Track 
Scanning Radiometers (ATSR) and the Advanced Very High Resolution Radiometers (AVHRR) 
on MetOp A and B platforms. The retrieval method of MacCallum and Merchant (2012) was ap-
plied on image pixels filled 
with water according to both 
the inland water dataset of 
Carrea et al. (2015) and a 
reflectance-based water de-
tection scheme. The satel-
lite-derived LSWT data are 
spatial averages for each of a 
total of 927 lakes, for which 
high-quality temperature re-
cords were available through 
August 2019. Lake-wide av-
erage surface temperatures 
have been shown to give a 
more representative picture 
of LSWT responses to climate 
change than single-point 
measurements (Woolway and 
Merchant 2018). In addition, 
in situ LSWT observations 
have been analyzed (n = 32) 
for which long time-series are 
available.

Eighty-one percent (n = 26) 
of lakes with in situ LSWT 
measurements were found 
to have positive anomalies in 

Fig. 2.3. Satellite-derived LSWT anomalies in 2019 (colored points) together 
with surface lake water temperature from the ECMWF ERA5 modeled data 
in Europe, Africa, Canada, and Tibet. The two sets of LSWT anomalies (°C; 
relative to 1996–2015) are calculated for the meteorological warm season 
(Jun–Aug in NH; Dec–Feb in SH; and over the whole year in the tropics). 
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2019. Similar to the satellite data, positive anomalies were found for Europe in 2019. For example, 
the second-largest lake in Sweden by surface area, Vättern, experienced an LSWT anomaly of 
+0.98°C in 2019, while that of Mondsee, Austria, was +2.1°C. The average LSWT anomaly in lakes 
with in situ data was +0.6 ± 0.15 °C in 2019, which is substantially higher than the global average 
anomaly calculated from the satellite-derived observations (+0.025°C). This difference can be 
due to various factors, including the restricted global coverage of lakes with in situ data (these 
lakes are primarily situated in Europe and North America), the difference in lake size among the 
datasets (more lakes with in situ data tend to be small) and, unlike the in situ observations, which 
are restricted to a single point within a lake, the satellite data capture the intra-lake heterogene-
ity of LSWT anomalies, thus capturing within-lake regions that are either warming rapidly or 
experiencing relatively minimal change (Woolway and Merchant 2018).

3) Land and marine temperature extremes—R. J. H. Dunn, S. Perkins-Kirkpatrick, R. W. Schlegel, and 
M. G. Donat
Over land, 2019 recorded the most number of warm days (TX90p, see Table 2.2 for definition) 

in the record dating to 1950, with over 60 days compared to the average of 36.5 (Fig. 2.4). The 
number of cool nights (TN10p) 
was low compared the last 70 
years, but above average for the 
most recent decade. As the spatial 
coverage of the in situ GHCNDEX 
(Donat et al. 2013) dataset is not 
complete due to delayed or lack-
ing report of up-to-date station 
data in many regions, the time 
series from the ERA5 reanaly-
sis (Hersbach et al. 2020; Fig. 
2.5; Fig. A2.5) is also shown. A 
similar picture emerges, but the 
number of warm days does not 
exceed the record maximum set 
in 2016. Similarly, the number of 
cool nights is also close behind 
the record minimum of 2016. Dif-
ferences with GHCNDEX may be 
the result of the more complete 
coverage of ERA5.

The number of warm days is 
high over Europe and Austra-
lia from GHCNDEX (Plate 2.1c), 

Table 2.2. WMO Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang et al. 2011) 
temperature indices used in this section and their definitions.

Index Name Definition

TX90p Warm days
Count of days where the maximum temperature was above the 

climatological 90th percentile (defined over 1961–90, days)

TN10p Cool nights
Count of days where the minimum temperature was below the 

climatological 10th percentile (defined over 1961–90, days)

TNx
Maximum “night-time” 

temperature
Warmest minimum temperature (TN, °C)

Fig. 2.4. Time series of (a) TX90p (warm days) and (b) TN10p (cool nights). 
The red dashed line shows a binomial smoothed variation, and the shaded 
band the uncertainties arising because of incomplete spatio-temporal 
coverage estimated using ERA5 following Brohan et al. (2006). The dot-
ted black line shows the percentage of land grid boxes with valid data in 
each year. (Source: GHCNDEX.)
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corresponding with the strong 
heat wave events in both these 
regions during 2019. In June large 
parts of Europe experienced daily 
maximum temperatures over 35°C, 
and France broke its national 
record with 46.0°C at Vérargues 
on the 28th. In July, France also 
sweltered under its record warm-
est night (TNx), with a national 
average of 21.4°C on 24–25 July, 
and a new maximum temperature 
record of 42.6°C was set for Paris on 
the 25th. Many other nations also 
experienced temperatures over 
40°C during this period, with na-
tional station records broken in the 
United Kingdom (38.7°C), Germany 
(42.6°C), the Netherlands (40.7°C), 
Belgium (41.8°C), and Luxembourg 
(40.8°C). The World Meteorological 
Organization (WMO) declared the 
month of July 2019 tied as the hot-
test on record for the globe (WMO 
2019), based on ERA5 (Hersbach et al. 2020). 

Australia experienced heat waves both early and late in the year. A prolonged and extensive 
heat wave affected much of the country from late December 2018 through January 2019. Records 
set include Adelaide’s hottest day on record at 46.6°C on 24 January (with new records also set at 
neighboring stations) and Canberra’s longest run of days above 40°C on four consecutive days 
(14–17 January 2019). The all-time national average maximum temperature record was set on 17 
December 2019 at 41.9°C, 1.59°C above the 2013 record, and 2.09°C above average (1961–90). Janu-
ary, March, and December 2019 were nationally the warmest on record for the respective months, 
with February, April, July, October, and November each among their respective 10 warmest. The 
most recent Australian heat wave in summer 2019/20 is presented in detail in Sidebar 7.6.

Heat waves also occurred in May and June in Japan, with a maximum temperature of 39.5°C 
(Saroma, Hokkaido) on 26 May (monthly record for this site), and also Pakistan (51.1°C Jacobabad 
on 1 June) and India with (50.8°C Churu, 2 June). In February, the United Kingdom experienced 
above-average temperatures with maxima of 21.2°C recorded in London on the 26th (monthly 
record), around 14°C above average. Extreme temperatures also occurred over South America in 
2019. Overall, the continent observed its second-warmest year on record, with heat waves dur-
ing January in Chile and southeastern Brazil contributing to the warmth. Santiago, Chile, set a 
new maximum temperature record of 38.3°C on 27 January. In North America, the state of Alaska 
experienced its warmest year on record. Please refer to the relevant sections in Chapter 7 for more 
regional temperature details. 

GHCNDEX (Donat et al. 2013), a gridded dataset of ETCCDI (Expert Team on Climate Change 
Detection and Indices) extremes indices, was used to characterize the extreme temperatures over 
land. Indices are calculated from daily temperature values from the GHCND (Menne et al. 2012) 
and have been interpolated onto a 2.5° × 2.5° grid. As can be seen in Plates 2.1c,d, the spatial cov-
erage is sparse, with available data for 2019 restricted to North America and parts of Eurasia and 
Australia. This lack of coverage arises both from gaps in the historical coverage (e.g., sub-Saharan 

Fig. 2.5. Time series of (a) TX90p (warm days) and (b) TN10p (cool 
nights). The red dashed line shows a binomial smoothed variation. 
(Source: ERA5.) 
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Africa) and also from delays in data transmission. ERA5 reanalysis (Hersbach et al. 2020) can be 
used to fill in some of these gaps, but because this dataset has a shorter temporal coverage, the 
reference period is necessarily different (1981–2010 compared to 1961–90 in GHCNDEX), which 
can lead to apparently different temporal behavior (Dunn et al. 2020).

Extreme heat, known as marine heat waves (MHWs), may enter the oceans through surface 
heat flux or advection. Satellite observations of SST can be used to monitor and categorize MHWs, 
as defined in Hobday et al. (2016, 2018). A category “I Moderate” MHW is defined as a period of 
time in which SST is above the 90th-percentile threshold of temperatures at a given location and 
day-of-year for five days or longer (Hobday et al. 2018). The MHW is categorized as “II Strong” if 
the largest temperature anomaly during the event is more than twice as large as the difference 
between the seasonally varying climatology and the 90th-percentile threshold. The MHW is 
“III Severe” if the largest anomaly is more than triple the difference, and “IV Extreme” if four 
times the difference or greater. Using NOAA OISST v2.1 (Banzon et al. 2020), the MHW category 
recorded most often in the ocean for 2019 was “II Strong” (41% of ocean surface), exceeding the 
lower category “I Moderate” (30%) for the sixth consecutive year (Fig. 2.6). Category “III Strong” 
MHWs (2%) were exceeded by “IV Extreme” MHWs (3%) for the fourth consecutive year. In total, 
84% of the surface of the ocean experienced an MHW in 2019. There was an average of 74 MHW 
days per ocean pixel, an increase from 61 in 2018, but below the 2016 record of 83. The average 
daily MHW occurrence throughout the ocean was 20%, an increase over the 2018 average of 17%, 
and less than the 2016 record of 23%. 

4) Tropospheric temperature—J.R. Christy, C. A. Mears, S. Po-Chedley, and L. Haimberger
The 2019 global lower tropospheric temperature (LTT), which encompasses the atmosphere 

from the surface to ~10 km, ranked second warmest in seven datasets and first or third in the 
remaining two (Fig. 2.7). These records extend back to 1958 using radiosonde (balloon-borne 
instrumentation) data and one reanalysis dataset (JRA55), which demonstrate reasonable agree-
ment with the 40+ year satellite record (since late 1978) and two other reanalysis datasets (since 
1979 and 1980, ERA5 and MERRA2, respectively). A weak El Niño contributed to increased global 
temperatures as 2019 values were +0.44° to +0.68°C higher than the 1981–2010 average (depend-
ing on the dataset), being just slightly cooler (~0.07°C on average) than the record warm year 
of 2016. At least four of the five globally complete datasets (ERA5, MERRA2, JRA55, RSS, UAH) 
recorded each of the four months—June, September, November, and December—as experiencing 
their warmest monthly global LTT. 

Fig. 2.6. Annual MHW occurrence using a climatology base period of 1982–2011. (a) Daily average percent of the ocean 
that experienced a MHW. (b) Total percent of the ocean that experienced a MHW at some point during the year. The 
values shown are for the highest category of MHW experienced. (c) Total average of daily MHW occurrence throughout 
the entire ocean. (Source: NOAA OISST.)
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The warming rate of the global tro-
posphere since 1958, as the median 
of available datasets, is +0.18 (range 
+0.16 to +0.20) °C decade−1. The median 
warming rate since 1979 is also +0.18 
(range +0.13 to +0.21) °C decade−1, which 
includes records derived from micro-
wave satellite measurements (Table 2.3). 
Taking into consideration the temporary 
cooling due to volcanic aerosols caused 
by eruptions in 1982 and 1991, as well as 
the El Niño/La Niña cycle, there remains 
a global warming trend since 1979 of 
+0.12 ± 0.04°C decade−1 unexplained by 
these ephemeral, natural phenomena 
(Christy and McNider 2017, updated and 
calculated using ERA5, RSS, and UAH 
datasets). 

The spatial details of the departures 
of LTT from the 1981–2010 mean are 
depicted in Plate 2.1e as provided by 
the European Centre for Medium-Range 
Forecasts Reanalysis version 5 (ERA5). 
Above-average anomalies dominate 
the 2019 ERA5 map with negative 
regions occupying only 8.1% of the 
global surface area, including much of 

North America, a portion 
of South Asia, and midlati-
tude regions of the south-
ern oceans. These below-
average LTTs comprise the 
third-smallest such area 
after 2016 and 2017. 

Much higher-than-aver-
age temperatures included 
several regions that expe-
rienced record high tem-
peratures relative to this 
41-year period of observa-
tions. Alaska, Greenland, 
central Europe, and south-
ern Africa were especially 
warm. The broad warmth 
of the tropical belt is a 
typical signature of an El 
Niño year. 

The warming trend may 
be depicted in a geographi-
cal context by determining 

Table 2.3. Estimates of lower tropospheric temperature (LTT) and tropical 
tropospheric temperature (TTT) decadal trends (°C decade−1) beginning in 1958 
and 1979 from the available datasets.

Area Global Global Tropical Tropical

Layer LTT LTT TTT TTT

Start Year 1958 1979 1958 1979

Radiosonde NOAA/RATPACvA2 +0.18 +0.21 +0.16 +0.16

RAOBCOREv1.7 +0.18 +0.19 +0.15 +0.15

RICHv1.7 +0.20 +0.21 +0.19 +0.22

Satellite RSSv4.0 — +0.21 — +0.18

UAHv6.0 — +0.131 — +0.13

NOAA/STARv4.1 — — — +0.23

UWv1.0 — — — +0.17

Reanalyses ERA5 — +0.17 — +0.16

JRA-55 +0.16 +0.16 +0.16 +0.15

NASA/MERRA-22 — +0.17 — +0.16

Median +0.18 +0.18 +0.16 +0.16
1The UAH LTT weighting function is slightly different in order to reduce the impact of surface 
emissions and enhance the tropospheric signal, resulting in a global trend value typically cooler 
by 0.01°C decade−1 relative to the standard LTT weighting function.

2NASA/MERRA-2 begins in 1980.

Fig. 2.7. Time series of global annual temperature anomalies (°C) for 
the lower troposphere from (a) radiosondes, (b) satellite microwave 
emissions, and (c) reanalyses.
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the year in which the extreme high (and low) annual values at each grid point occurred, then 
summing those areally-weighted grids by year. If all regions of Earth experienced a monotoni-
cally increasing temperature, then each new year would see 100% of the global area achieving a 
record high temperature; however, if the global trend were zero over the 41-year period of record 
but characterized by random inter-annual variability, each year would experience, on average, 
an area of 2.4% of record high (or low) temperatures. With our climate system characterized by 
both an increasing trend and inter-annual variations since 1979, the area in 2019 of record high 
temperatures was 15.6% (calculated as the average of ERA5, RSS, and UAH). The stippling in 
Plate 2.1e identifies these grids (see also Fig. A2.6). Two years with major El Niño events, 1998 
and 2016, recorded areal extents for the highest temperatures of 16.9% and 20.1%, respectively 
(no repeated records). Since 1979, the year with the largest coverage of record low annual-average 
temperatures was 1985 with 19.8% due in part to a concurrent La Niña event.

Global and tropical trends are listed in Table 2.3. When examining the time series of these 
three methods (radiosondes, satellites, reanalyses), the radiosondes display an increasing trend 
over the past 10 years relative to the other methods (see trend values in column Global LTT 1979 
and Fig. A2.7) This may be related to a change in software installed after 2009 in many stations 
to improve the tropospheric humidity and temperature values (Christy et al. 2018). 

The tropical (20°N–20°S) tropospheric temperature (TTT, surface to ~15 km) variations and 
trends are similar to those of the global values. The median TTT trends from the available da-
tasets since 1958 and 1979 are both +0.16°C decade–1 with ranges of +0.15 to +0.19 and +0.13 to 
+0.23°C decade–1, respectively (Table A2.1). This layer in the tropics is a key area of interest due 
to its expected significant response to forcing, including that of increasing greenhouse gas con-
centrations (McKitrick and Christy 2018; see Fig. A2.8). 

Radiosondes provide coverage wherever the stations exist. Considerable areas of the globe are 
thus not sampled, and this can lead to a misrepresentation of the global average. Satellites es-
sentially observe the entire Earth each day, providing excellent geographic coverage, but whose 
radiances provide bulk-layer atmospheric measurements only. There are some key adjustments 
that are required too, and the methods adopted by different teams lead to the range in the results 
(Haimberger et al. 2012; Po-Chedley et al. 2015; Mears and Wentz 2016; see also Figs. A2.7 and 
A2.9). Full input reanalyses use essentially all available data, including radiosonde and satellite, 
ingested into a continuously updated global circulation model, thus providing full geographic 
and vertical coverage. Given the many differences in how the reanalyses are constructed from 
center to center, the consistency among their 41-year trends is encouraging.

5) Stratospheric temperature—W. J. Randel, C. Covey, and L. Polvani
Temperatures in the middle and upper stratosphere continued to decline to their lowest recorded 

values since 1979, i.e., the beginning of the satellite era. Lower stratosphere temperatures have 
been relatively constant since ~1998, with small interannual changes. The polar stratospheric 
regions were influenced by sudden stratospheric warming (SSW; Charlton and Polvani 2007) 
events in both hemispheres, in the Arctic in January 2019 and in the Antarctic in September 2019. 
The Antarctic event was highly unusual, being only the second SSW observed in the SH since 
1979 (see Sidebar 6.1 for more details).

Time series of annual anomalies of middle and upper stratosphere temperatures from satellite 
observations are shown in Figs. 2.8a–c. These data represent ~20-km thick layer measurements 
from the Stratospheric Sounding Unit (SSU) merged with more recent satellite measurements 
(Randel et al. 2016; Zou and Qian 2016). Middle and upper stratospheric temperatures show 
distinctive cooling since 1979, with stronger negative trends at higher altitudes, which is a char-
acteristic response to increases in atmospheric CO2 (Manabe and Wetherald 1967). The cooling is 
modulated by upper stratospheric ozone changes, with somewhat weaker stratospheric cooling 
after 1998 tied to observed increases in ozone. The ozone is evolving as a response to changes 
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in ozone depleting substances (ODS) linked to the Montreal Protocol (see section 2g4; Maycock 
et al. 2018; WMO 2018). In addition to long-term cooling, the time series highlight modulation by 
the 11-year solar cycle in the upper stratosphere and transient warming from volcanic eruptions 
in 1982 and 1991. 

Time series of global lower strato-
spheric temperature (LST; layer mean 
over ~13–22 km) from satellites, radio-
sondes, and reanalyses in Figs. 2.8d–f 
all show long-term cooling trends, in 
addition to transient warming events 
tied to large volcanic eruptions in 
1963, 1982, and 1991. The time series 
also show very small changes since 
1998. Over most of the globe the LST 
layer more or less spans the cross-over 
between tropospheric warming and 
stratospheric cooling associated with 
CO2 increases; long-term LST cooling 
prior to ~1998 is tied to observed ozone 
decreases in the lower stratosphere, 
while small ozone changes thereafter 
are linked to nearly constant tempera-
tures (Maycock et al. 2018). 

Fig. 2.8. (a)–(c) Annual anomalies of global middle to upper stratospheric temperatures from Stratospheric Sounding Unit 
channels 1–3, representing thick-layer averages centered near 30, 38, and 45 km (SSU1, SSU2, and SSU3, respectively). 
Results from two different merged datasets are shown (Randel et al. 2016; Zou and Qian 2016). (d)–(f) Annual anoma-
lies of global lower stratosphere temperature (LST; ~13–22-km layer average) from (a),(d) radiosondes; (b),(e) satellites; 
and (c),(f) reanalyses. For direct comparison, the radiosondes and reanalyses have been convolved with the satellite LST 
weighting function. 

Fig. 2.9. Daily time series of 50-hPa temperatures for 60°–90°S for 
2018 (blue) and 2019 (red), against the background of percentile 
variability (gray lines and shades) since 1980. 
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Transient but common features of stratospheric temperature variability are polar SSWs that 
occur episodically during winter, mainly in the NH. At least one SSW occurred in 34 of the past 
62 winters in the NH, while only one was observed in the SH (in 2002) prior to 2019. Time series 
of 50-hPa temperature over the Antarctic during the last several years are shown in Fig. 2.9, in 
the context of the historical average and range of observations. The September 2019 SSW resulted 
in a 50-hPa temperature increase over the polar cap of ~30°C over two weeks, with temperatures 
well outside the range of previous variability. While these SSW events have strong effects on polar 
temperatures, they have minimal influence on global mean stratospheric temperatures. However, 
Australian hot and dry extremes are statistically associated with weakening and warming of the 
Antarctic stratospheric polar vortex (Lim et al. 2019). The September 2019 SSW is one of many 
possible factors contributing to this year’s eastern Australian bushfires (see section 7h4 for more 
details; Phillips and Bogrady 2020).

c. Cryosphere
1) Permafrost thermal state—J. Noetzli, H. H. Christiansen, K. Isaksen, S. Smith, L. Zhao, and D. A. Streletskiy

The global picture of permafrost state and changes continued in 2019: permafrost is warming 
in both mountain and polar regions, and the highest increase is observed where permafrost tem-
peratures and ice contents are lowest. At warmer and ice-rich locations the temperature change 
is smaller due to the energy uptake during ice melt processes. The thickness of the active layer 
(ALT)—the uppermost ground layer above the permafrost subject to positive temperatures during 
summer—is globally increasing. 

In the Arctic regions, permafrost temperatures measured at 20-m depth at many of the moni-
toring sites during 2019 were the highest observed during the observation period, continuing the 
trend reported by Meredith et al. (2019). Observations now cover up to four decades at several sites. 
At some locations, temperatures were 2°–3°C higher than 30 years ago. More details on the Arctic 
region are given in Chapter 5. For Antarctica, increasing permafrost temperatures were reported 
for the past decade (cf. Noetzli et al. 2019). However, for 2019 no data update is available yet.

Mountain permafrost accounts for nearly 30% of the global permafrost area (Hock et al. 2019), 
but datasets for many mountain regions are obtained at only a limited number of sites. Data are 
primarily available from boreholes and networks in the European Alps, the Nordic countries, 
and central Asia (Qinghai-Tibetan Plateau, QTP). A general warming trend during recent decades 
until 2016 is also reported for mountain ranges in Canada, Mongolia, and Tien Shan in central 
Asia (Hock et al. 2019). Due to the high spatial variability in characteristics and permafrost tem-
peratures, warming rates are highly heterogeneous, depending on topography, snow regime, 
and ground ice content.

Permafrost temperatures observed in the European Alps in 2019 were influenced by an early 
and long-lasting snow cover—trapping the heat from summer 2018—followed by another extremely 
warm summer in 2019. Permafrost temperatures continued the increasing trend since 2010 after 
a temporary interruption of the warming trend due to snow-poor winters reported in 2017 (Fig. 
2.10; Noetzli et al. 2018; PERMOS 2019). At most sites, the temperatures at 10-m depth in 2019 were 
slightly below the record temperatures measured in 2015 (updated from PERMOS 2019). Likewise, 
permafrost temperatures at 20-m depth increased since 2018, but not above the previous high 
from 2015. Repeated electrical resistivity tomography at several borehole sites indicate a decrease 
in ice content, particularly for sites close to 0°C (Mollaret et al. 2019; PERMOS 2019). Permafrost 
temperatures measured at steep bedrock sites at high elevation are typically not influenced by 
annual snow conditions and have continuously increased, with 2019 values higher than those 
previously recorded down to 10-m depth (updated from PERMOS 2019; Magnin et al. 2015). Fur-
ther, rock glacier creep velocities generally follow permafrost temperatures and have increased 
considerably in the past decade (PERMOS 2019).

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/8/S9/4988923/bam

sd200104.pdf by guest on 28 Septem
ber 2020



S352 . G L O BA L  C L I M AT EAU G U S T  2 0 2 0  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 1 9

In Nordic countries, 
permafrost temperatures 
increased to their highest 
levels in both cold and 
warm permafrost (updated 
from Isaksen et al. 2007; 
Christiansen et al. 2010). 
In southern Norway, per-
mafrost at 20-m depth 
warmed between 2015 
and 2019 (for Juvvasshøe 
+ 0.04°C yr−1), following 
a period of cooling be-
tween 2010 and 2014 (Fig. 
2.10). In northern Norway 
(Iškoras since 2008), latent 
heat exchanges appeared 
to dominate the annual 
temperature amplitude at 
10-m depth in the begin-
ning of the series. Since 
2013/14, an increase in 
annual temperature am-
plitude has been observed 
with present temperatures 
well above 0°C (Fig. 2.10). 
At 20-m depth, ground 
temperatures have risen 
to 0°C. Borehole tempera-
tures measured in the hin-
terland of the QTP showed 
remarkable warming ten-
dencies with variable rates 
that are highest in lower-
temperature permafrost 
(Cheng et al. 2019; Sun  
et al. 2019).

The ALT continued to in-
crease in 2019 for the majority of the observational sites. Out of 92 sites that reported data in 2018/19 
in the Northern Hemisphere (NH), only a few had below-average ALT relative to the 2003–12 period. 
About 66% of the sites had larger 2019 ALT than in 2018. At North American sites, ALT continues 
to increase since the beginning of the observations in the mid-1990s, with the highest increase in 
the Alaskan Interior and smaller increases in the Mackenzie Valley of northwestern Canada and 
the Alaska North Slope. In 2019, ALT was close to maximum values at the group of sites located in 
the Pacific Arctic sector (Alaska, Chukotka). At many interior Alaska sites, the active layer did not 
freeze completely down to the underlying permafrost due to a combination of long-term warming 
and the relatively mild and snowy past two winters (2017/18 and 2018/19). During all previous years 
of observations, complete active layer freeze-up was observed. North Atlantic Arctic sites had the 
largest or close-to-largest ALT in 2019; sites in Svalbard and Greenland show at least 0.05 m larger 
ALT than average. The Russian Arctic, with the exception of northeast Siberia, experienced a 

Fig. 2.10. Permafrost temperature (°C) measured in boreholes in the European 
Alps and the Nordic countries at a depth of approximately 10 m (monthly means) 
and 20 m (annual means). (Sources: Swiss Permafrost Monitoring Network 
PERMOS; Norwegian Meteorological Institute and the Norwegian Permafrost 
Database NORPERM, updated from Magnin et al. 2015.)
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larger-than-average ALT, 
with deviations from the 
mean of 0.05 m in north-
ern European Russia to 
0.02 m in West Siberia 
(see section 5h for more 
details). In Scandinavia 
and the European Alps, 
values up to about 0.05 
m above or near-record 
maximum values were 
observed at many of the 
sites. ALT also continued 
to increase at sites located 
in permafrost regions of 
the hinterland of the QTP 

by about 0.2 m decade−1 since the 1980s (Fig. 2.11; Cheng et al. 2019; Zhao et al. 2019). In 2019, ALT 
was, on average, slightly smaller in the QTP than in 2018 (0.02 m).

Long-term observation of permafrost change relies on ground temperatures measured in 
boreholes, which are collected in the framework of the Global Terrestrial Network for Permafrost 
(GTN-P) as part of the Global Climate Observing System of the World Meteorological Organization. 
Borehole temperatures are logged manually or continuously using multi-sensor cables down to at 
least the depth of the zero annual amplitude (ZAA), the depth where seasonal variations become 
negligible. An assessment of the measurement accuracy of borehole temperatures in permafrost 
worldwide varied from 0.01° to 0.25°C and a mean overall accuracy of about 0.1°C can be assumed 
(Biskaborn et al. 2019; Romanovsky et al. 2010). The current global coverage of permafrost tem-
perature monitoring in boreholes is sparse and very limited in regions such as Siberia, central 
Canada, Antarctica, and the Himalayan and Andes Mountains. The distribution of observation 
sites is typically biased to accessible locations (highways or cable cars).

2) Northern Hemisphere snow cover extent—D.A. Robinson
Annual snow cover extent (SCE) over NH lands averaged 24.8 million km2 in 2019. This is 0.8 

million km2 smaller than the 2018 mean extent and 0.3 million km2 smaller than the 50-year aver-
age (mapping extends back to late 1966; however, several early years in the record are incomplete) 
and ranks 2019 as having the 17th-least extensive cover on record (Table 2.4). SCE over Eurasia and 
North America, including the Greenland ice sheet (GrIS), is considered in this analysis. Monthly 
SCE in 2019 ranged from 47.2 million km2 in January to 2.5 million km2 in August. 

January 2019 NH SCE was near average, ranking as the 27th-most extensive over the past 53 
years. Both Eurasia and North America ranked similarly. The NH as a whole had near-average SCE 
in February; however, North America and Eurasia ranked fourth and 42nd largest, respectively. 
The continental disparity continued into March with the combined rank falling into the lowest 
third. This decline became greater through the spring and early summer, with both continents 
ranking in the lower tercile throughout this interval. June had the largest negative monthly NH 
anomaly of the year (3.6 million km2 or 38% below normal). NH SCE has been below average for 
14 of the past 15 years in May and all of the past 15 years in June (Fig. 2.12).

Autumn SCE emerged at an average pace in September but increased rapidly in October, having 
the largest positive monthly anomaly of 2019 at 3.8 million km2. October and November SCE each 
ranked fifth largest of the satellite era for their respective months. NH SCE has now been above 
average in 10 of the past 11 years in October and all of the past 11 years in November. December 
SCE was also above average over North America, but Eurasian cover increased slowly during 

Fig. 2.11. Annual ALT (cm) and air temperature anomaly (°C) across the Qinghai 
Tibet Highway. 
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the month, resulting in the 
13th-smallest December extent 
(Table 2.4).

The 2019 SCE over the con-
tiguous United States was 
near average in January. Feb-
ruary and March had their 
fourth- and sixth-most exten-
sive SCE, respectively. April 
SCE returned to near average, 
while May SCE was quite low. 
While not much in terms of 
coverage, September SCE was 
record large for the month, fol-
lowed by the third-largest Oc-
tober extent, and 11th-largest 
November extent, which was 
similar to Canada. SCE was 
near-average in December.

SCE is calculated at the Rut-
gers Global Snow Lab from 
daily SCE maps produced by 
meteorologists at the National 
Ice Center (a U.S. joint NOAA, 

Navy, and Coast Guard facility), who rely 
primarily on visible satellite imagery to con-
struct the maps (https://snowcover.org). 

3) Glaciers—M. S.Pelto and World Glacier  
Monitoring Service 
The World Glacier Monitoring Service 

(WGMS) record of mass balance and terminus 
behavior (WGMS 2017) provides a global in-
dex for alpine glacier behavior. Glacier mass 
balance is the difference between accumula-
tion and ablation, reported here in millimeter 
of water equivalence (mm). In 2019, a nega-
tive annual mass balance was reported from 
all 45 glaciers where annual mass balance 
was measured and reported to the WGMS, 
including 26 glaciers of the reference glacier 
network. The mean mass balance of the 
reference glaciers reporting for the 2018/19 
hydrological year is −1241 mm; this includes 
data from 12 nations on four continents. This 
makes 2019 the 32nd consecutive year with 

a global alpine reference glacier mass balance loss and the 10th consecutive year with a mean 
global mass balance loss greater than 700 mm.

Figure 2.13 illustrates glacier mass balance for a set of global reference glaciers with more than 
30 continuous observation years for the time period 1950–2019. Global values are calculated using 

Fig. 2.12. Twelve-month running anomalies of monthly snow 
cover extent (million km2) over NH lands as a whole and Eur-
asia and North America separately plotted on the seventh 
month using values from Nov 1966 to Dec 2019. Anomalies 
are calculated from NOAA snow maps. Mean hemispheric 
snow extent is 25.1 million km2 for the full period of record. 
Monthly means for the period of record are used for nine 
missing months between 1968 and 1971 in order to create 
a continuous series of running means. Missing months fall 
between Jun and Oct; no winter months are missing.

Table 2.4. Monthly and annual NH and continental snow extent (million km2) 
between Nov 1966 and Dec 2019. Included are the numbers of years with 
data used in the calculations, means, standard deviations, 2019 values, and 
rankings. The years 1968, 1969, and 1971 have 1, 5, and 3 missing months 
respectively, thus are not included in the annual (Ann) calculations. Ranks 
are from most extensive (1) to least (ranges from 50 to 54 depending on the 
month).

Years 
of data

Mean 
SCE

Std. dev. 2019
2019 
NH  

rank

2019 
Eurasia 

rank

2019 
N Am. 
rank

Jan 53 47.2 1.5 47.2 26 25 27

Feb 53 46.0 1.8 46.0 23 42 4

Mar 53 40.5 1.8 39.5 37 47 9

Apr 53 30.5 1.7 29.1 42 41 35

May 53 19.2 1.9 17.1 44 46 46

Jun 52 9.5 2.4 5.9 49 46 50

Jul 50 3.9 1.2 2.6 44 38 47

Aug 51 3.0 0.7 2.5 41 40 34

Sep 51 5.4 0.9 5.1 32 27 36

Oct 52 18.5 2.7 22.3 5 7 3

Nov 54 34.2 2.1 37.1 5 14 3

Dec 54 43.7 1.8 43.5 36 42 18

Ann 50 25.1 0.8 24.8 34 40 20
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a single value (averaged) for each 
of 19 mountain regions in order 
to avoid a bias to well-observed 
regions. In the hydrological year 
2016/17, all observed glaciers ex-
perienced an ice loss of −550 mm, 
and 2017/18 of −720 mm. For the 
2018/19 hydrological year, a region-
ally averaged value will become 
available in late 2020; however, 
the overall mean of all reference 
glaciers was −1241 mm, compared 
to −1183 mm in 2017/18. Zemp et al. 
(2019) calculated that the collective 
loss of alpine glaciers from 2006 
to 2016 contributed to a global sea 
level rise of 0.92 ± 0.39 mm yr−1.

The decadal-averaged annual 
mass balance for the reference gla-

ciers was −172 mm in the 1980s, −460 mm in the 1990s, −500 mm for the 2000s, and −889 mm 
for the 2010s. The increasing rate of glacier mass loss, with 8 out of the 10 most negative mass 
balance years recorded after 2010, during a period of retreat, indicates that alpine glaciers are not 
approaching equilibrium and retreat will continue to be the dominant terminus response (WGMS 
2017). The lack of retained snow cover on two WGMS reference glaciers is a visual illustration of 
the mass balance loss (Fig. 2.14).

All 14 glaciers in the Alps with mass balance observations had negative measurements, averag-
ing −1100 mm in 2019. In Austria in 2018, of the 93 glaciers with annual terminus observations, 89 
(95.7%) withdrew and four remained stationary (Lieb and Kellerer-Pirklbauer 2019). This retreat 
trend has continued in 2019 based on preliminary observations. The 2018/19 winter in the Alps 
featured above-average snowpack. During several heat waves in the summer of 2019, glacier melt 
peaked, leading to another year with large losses in ice mass balance loss. 

Fig. 2.14. Lemon Creek Glacier, United States, and Alfotbreen, Norway, had significant negative annual mass balance in 
2019 at −2400 mm and −3400 mm. Alfotbreen’s boundary is marked by white dots. On Alfotbreen, less than 20% of the 
glacier has retained snow cover in this 26 Aug Landsat image. On Lemon Creek Glacier, there is no significant snow ac-
cumulation retained in this 8 Aug Landsat image. The darkest blue color is bare glacier ice, with firn that is more than 
year old a medium blue and snow from the 2019 winter a light blue.

Fig. 2.13. Global alpine glacier annual mean mass balance record (× 103 
mm w.e.) of reference glaciers submitted to the WGMS 1980–2018, based 
on average annual value determined for 19 different alpine regions. The 
2019 value is the mean of all reporting reference glaciers.
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In Norway, the seven glaciers reporting mass balance had an average loss of −1354 mm in 
2019. This loss leads to continued retreat; in 2018, of 32 glaciers measured, 28 retreated more than  
10 m, and four were approximately stationary, retreating, or advancing less than 6 m (Kjøllmoen  
et al. 2019).

In Alaska and Washington, all 15 glaciers observed in 2019 had a negative mass balance, aver-
aging −1372 mm. This is significantly larger than the long-term average of four USGS benchmark 
glaciers, which have a cumulative mass loss since the mid-twentieth century that average from 
−580 to −300 mm yr−1 (O’Neel et al. 2019). During the 74-year annual mass balance record for 
Taku Glacier, Alaska, the end of summer snowline, which is the equilibrium line altitude, had 
never exceeded 1225 m until 2018, when it reached 1425 m, and then reached a new maximum of  
1450 m in 2019 (Pelto 2019).

In South America, 2019 mass balance data were reported from one glacier in Chile and three 
in Argentina, and indicate a mean of −1559 mm. This is greater than the 2000–18 average loss 
observed in the Andes of −720 ±  220 mm, with the Patagonia Andes having the highest rate of 
loss at −780  ±  250 mm (Dussaillant et al. 2019). 

In High Mountain Asia, all five reporting glaciers had negative mass balances. King et al. (2019) 
found no substantial difference in the mass loss of debris-covered and clean-ice glaciers but more 
negative mass balances for lake-terminating glaciers for the 1974–2015 period. The continued 
expansion of established proglacial lakes and the formation of new proglacial lakes will enhance 
ice mass loss from the region in coming decades (King et al. 2019). 

Sidebar 2.1: Lake Ice—S. SHARMA AND R.I. WOOLWAY

Lake ice is a sensitive indicator of climate as it integrates 
antecedent air temperatures in the range of weeks to months 
prior to ice breakup and closely tracks the 0°C isotherm (Brown 
and Duguay 2010). Lake ice has long fascinated people because 
of its importance to transportation, refrigeration, and recreation, 
thus comprising some of the earliest records of climate before 
the advent of meteorological stations (Magnuson et al. 2000; 
Sharma et al. 2016). Records of lake ice phenology (defined as 
the timing of ice-on and ice-off) benefit from in situ records with 
high temporal resolution, satellite records, and reanalyses (i.e., 
ERA5) with high spatial resolution. This section covers the 2018/19 
Northern Hemisphere (NH) winter, with ice-on data from autumn 
2018 and ice-off from spring 2019. The winter season spans two 
years and is defined as the time lakes experience seasonal ice 
cover, typically between November and April. For example, the 
1981 winter would typically begin in November 1980 and end 
in April 1981.

In 2019, lake ice phenology anomalies across the NH, derived 
from ice cover data from ERA5 reanalysis (Hersbach et al. 2020), 
showed that on average, ice-on was one day later and ice-off 
was two days earlier than the 1981–2010 base period over the 
winter season (Figs. SB2.1 and SB2.2). Lake ice froze later, melted 
earlier, and had shorter seasonal ice duration over western North 
America, northern Europe, and northern Asia. In contrast, lake 
ice-on was earlier, ice-off was later, and ice duration was longer 
across Canada (except the west), the northern United States, and 
southern Eurasia (Fig. SB2.1). 

Ice-on was four days later and ice-off was three days earlier 
on average for lakes distributed across the NH in 2019 based on 
long-term in situ phenological records (Fig. SB2.2). For moni-
tored lakes in Europe, ice duration was 18 days shorter than the 
1981–2010 base period. In contrast, for North American lakes, ice 
duration was nine days longer. Generally, across the NH, lake ice 
cover followed the long-term warming trend such that since 1981, 
lake ice duration is seven days shorter per decade on average for 
the 18 lakes with in situ measurements. Lake ice-on is five days 
later decade−1, with the most negative trend at 0.2 days earlier 
decade−1 (95% confidence interval: −3.6, 3.3 days decade−1) and 
the most positive trend at 11 days later decade−1 (95% confidence 
interval: 5, 17 days decade−1). Lake ice-off is on average two days 
earlier decade−1, but varies from 4.1 days earlier decade−1 (95% 
confidence interval: −5.9, −2.3 days decade−1) to 1.2 days later 
decade−1 (95% confidence interval: −2.1, 4.5 days decade−1). 

This year, the Great Lakes of North America had greater maxi-
mum ice cover, suggesting a cooler winter. On average, the Great 
Lakes had 30.1% additional ice coverage than the 1981–2010 
normal. The larger and most northern of the Great Lakes had the 
highest positive anomaly, such that Lake Superior (82 103 km2) 
had 34.2% more ice cover, whereas the smaller southern lakes, 
such as Lakes Erie (25 744 km2) and Ontario (18 960 km2), had 
13% additional maximum ice coverage (Fig. SB2.3). During the 
2019 winter, Lakes Superior, Huron, and Erie had ice coverage 
across more than 90% of their respective surfaces. 
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The changes in ice cover in 2019 relate to air temperature 
anomalies across the NH. Specifically, the spatial pattern in ice-
on, ice-off, and ice duration are consistent with NH cold season 
(November–April) averaged surface air temperature anomalies 
(Fig. SB2.1). Regions with shorter ice duration, later ice-on, and 
earlier ice-off, such as northern Eurasia and western North 
America, are those with positive air temperature anomalies during 
the cold season in 2019 (Fig. SB2.1d). Conversely, regions with 
longer ice cover duration, such as the Great Lakes region, are 
those with negative air temperature anomalies during the cold 
season in 2019. Thus, lake ice cover anomalies in 2019 broadly 
track surface air temperatures (section 2b1), although factors 
such as wind speed, humidity, snow cover, hydrology, and lake 

morphometry contribute to variations in ice cover (Brown and 
Duguay 2010). The relationship between air temperature and lake 
ice cover, published in previous studies (Palecki and Barry 1986; 
Weyhenmeyer et al. 2004; Brown and Duguay 2010), suggest that 
antecedent air temperatures are the most important drivers of ice 
cover and phenology in 2019. For example, in past years, winter 
air temperatures alone explain 93% of variation in ice duration 
in Lake Muggelsee, Germany (Adrian and Hintze 2000), and in 
55 Alaskan lakes, air temperature, along with lake area, explain 
over 80% of the variation in ice-off dates (Arp et al. 2013). 

Ice-on, ice-off, and ice duration were derived from EC-
MWF’s ERA5 reanalysis product for land pixels filled with water 
(>1% coverage) on a 0.25° × 0.25° latitude-longitude grid  

Fig. SB2.1. Lake ice 2019 anomalies for (a) ice-on, (b) ice-off, and (c) ice duration for lakes 
across the NH (base period: 1981–2010). (Source: ERA5.) (d) Nov–Apr 2018/19 air tempera-
tures. (Source: GISTEMP.)
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Fig. SB2.2. ERA5 (teal line) and in situ-derived (gray line) anomalies (days) based on an arithmetic mean for (a) ice-on, (b) 
ice-off, and (c) ice duration from 1980 to 2019.

(Hersbach et al. 2020). Ice cover within ERA5 is simulated via 
the Freshwater Lake model (FLake; Mironov 2008; Mironov 
et al. 2010), which is implemented within the Hydrology Tiled 
ECMWF Scheme for Surface Exchanges over Land (HTESSEL; 
Dutra et al. 2010; Balsamo et al. 2012) of the European Centre 
for Medium-Range Weather Forecasts (ECMWF) Integrated Fore-
casting System (IFS). A detailed description of the model and its 
implementation in ECMWF’s IFS is provided by ECMWF (2018). 

In situ ice phenology data were acquired for 18 lakes across 
the NH where ice-on, ice-off, and ice duration have been col-
lected for at least 130 years (Benson et al. 2000). We updated 
ice phenology data to 2019 for 10 lakes in Sweden and Finland, 
one lake in Russia, and seven lakes in the United States. We 

calculated trends using linear regression models and calculated 
95% confidence intervals for the slope of the line. Lastly, we 
acquired annual maximum ice cover for the Great Lakes encom-
passing 1973–2019 from the Great Lakes Environmental Research 
Laboratory. The maximum amount of ice coverage observed over 
the winter season is calculated across the entire area of each of 
the Great Lakes by using a combination of composite ice charts 
and observations from satellites, ships, and air craft (https://www 
.glerl.noaa.gov/data/ice/). 

Surface air temperature data for November–April were down-
loaded from the NASA Goddard Institute for Space Studies (GISS) 
surface temperature analysis (Lenssen et al. 2019). Temperature 
anomalies were calculated relative to the 1981–2010 average. 
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d. Hydrological cycle
1) Surface humidity—K. M. Willett, A. J. Simmons, M. Bosilovich, and D. I. Berry

Surface specific humidity remained high in 2019 (Fig. 2.15). Over land, the global average 
anomaly relative to the 1981–2010 average was between 0.14 and 0.25 g kg−1 across all estimates, 
slightly higher than in 2018. Over ocean, 2019 had higher anomalies than 2018 and was one of 
the moistest years on record, between 0.21 and 0.35 g kg−1. 

Simultaneously, 2019 was the driest year on record in terms of relative humidity over land 
for all products, ranging between −0.86 and −1.27 %RH below average, albeit not significantly 
so given the 2 std. dev. uncertainty spread for HadISDH at least (Fig. 2.15). Over ocean, relative 
humidity anomalies were close to or below average, between −0.29 and 0.03 %RH. This moister, 
yet less saturated, land surface atmosphere occurred along with near-record temperatures over 
land and ocean (section 2b).

Collectively, 2019 humidity continued the long-term trends of increasing moisture over land 
and ocean while decreasing levels of saturation over land. From HadISDH, the corresponding 
1973–2019 trends (90th percentile confidence intervals) are 0.09 (0.07 to 0.11) g kg−1 decade−1,  

Fig. 2.15. Global average surface humidity annual anomalies (1981–2010 base period). For the in situ 
datasets, 2-m surface humidity is used over land and ~10-m over the oceans. A 2 std. dev. uncertainty 
range is shown for HadISDH, capturing the observation, gridbox sampling, and spatial coverage un-
certainty. For the reanalysis, 2-m humidity is used over the whole globe. For ERA5 ocean series, only 
points over open sea are selected, and background forecast values are used as opposed to analysis 
values because of unreliable use of ship data in producing the analysis. (Sources: HadISDH [Willett 
et al. 2013, 2014, in review]; NOCSv2.0 [Berry and Kent 2009, 2011]; ERA5 [C3S 2017; Hersbach et al. 
2020]; JRA-55 [Ebita et al. 2011]; MERRA-2 [Gelaro et al. 2017]; and 20CRV3 [Slivinski et al. 2019].)
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0.08 (0.06 to 0.09) g kg−1 decade−1, and −0.16 (−0.29 to −0.03) %RH decade−1, respectively. Water 
vapor increased relative to 2018 far more over ocean compared to land. The 2019 record low land 
relative humidity is consistent with the small land specific humidity increase. Global specific 
humidity values over both land and ocean have remained above the 1981–2010 average for a 
decade now, and land relative humidity values have remained below average since the early 
2000s, although HadISDH uncertainty spread crosses the zero-line periodically, particularly for 
ocean specific humidity. Both ERA5 and HadISDH suggest that ocean relative humidity has been 
lower in recent years, but the wide uncertainty spread suggests low confidence in this. Overall, 
the 2010s were the moistest yet least saturated decade since records began (Fig. 2.15).

Spatially (Plates 2.1g,h; Figs. A2.10–A2.13), 2019 specific humidity was moister than average 
over the tropical Pacific Ocean and drier than average over Australia. Although such features are 
often seen during El Niño years, generally, spatial patterns were not ENSO-like. 

The high specific humidity signal came largely from the Indian Ocean and is consistent with 
other variables (see section 2d) and the strong Indian Ocean dipole (IOD). There were also very 
strong moist anomalies over southern Asia, the central and northeastern Pacific Ocean, the Gulf 
of Mexico, and the southern tropical Atlantic to some extent. These ocean regions were also 
anomalously warm during 2019. Aside from southern Asia and especially India, much of the 
land had weaker moister-than-average anomalies with widespread drier-than-average anomalies 
that were particularly strong over southern Africa and Australia. The very high specific humid-
ity anomalies over India were associated with much higher-than-average relative humidity 
anomalies. Conversely, most of the land and oceans had lower-than-average relative humidity 
anomalies. HadISDH has uncertainty estimates from observation quality, gridbox sampling, and 
spatio-temporal coverage (Willett et al. 2014, 2020 - in review; Fig. 2.15). These uncertainties are 
larger for relative humidity than specific humidity and larger over ocean than land, particularly 
for recent years when digital ocean metadata are unavailable. They do not bring the long-term 
trend into question nor the fact that 2019 was much moister and yet less saturated than average. 

The degree to which the products agree or disagree also provides uncertainty information. 
Although there is reasonable agreement in the year-to-year variability and long-term trends, 
there are differences between the in situ and reanalysis products and between the reanalyses 
themselves. Relative humidity is particularly problematic, with MERRA-2 showing moistening 
over Asia, unlike ERA5, and HadISDH land and ocean relative humidity showing quite different 
features. It is not clear which is most reliable. Recently, Freychet et al. (2020) found and adjusted 
inhomogeneities in Chinese stations. Resulting long-term relative humidity trends were near con-
stant and were larger in wet-bulb temperature compared to ERA5. These trends also differ from 
those in HadISDH where homogenization was necessarily automated and, therefore, unlikely to 
be as powerful as regionally applied methods that utilize known changes.

This year version 3 of the 20th Century Reanalysis (20CRv3) is included. Although ending  in 
2015, it is a useful monitoring tool to compare with other products. ERA-Interim (Dee et al. 2011) 
is no longer being updated and has been replaced by ERA5. These are similar for the global land 
surface but differ over ocean, especially for relative humidity (Willett et al. 2019). Greater tem-
poral stability is expected in ERA5 compared to ERA-Interim, and ERA5 assimilates more data, 
generally. However, uncertainties remain, especially for hydrological cycle variables. These 
uncertainties arise from errors remaining in the assimilated data, changing data streams over 
time, and the fact that ERA5 does not impose balance on its water or energy budget (Gelaro et al. 
2017; Hersbach et al. 2020). 
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2) Total column water vapor—C. Mears, S. P. Ho, Olivier Bock, Xinjia Zhou, and Julien P. Nicolas
In 2019, total column water vapor (TCWV) anomalies were below the record levels observed in 2016, 

but remained above the 1981–2010 climatological average in most locations (Plate 2.1i; Fig. A2.14). 
TCWV estimates are available from satellite-borne microwave radiometers over ocean (Mears et al. 
2018); from COSMIC; Metop-A,-B, and -C; and COSMIC2 GPS-RO (Global Positioning System–Radio 
Occultation) over land and ocean (Ho et al. 2010a,b, 2020; Teng et al. 2013; Huang et al. 2013; Ho 
et al. 2020, submitted to Remote Sens.); and from ground-based Global Navigation Satellite System 
(GNSS) stations (Bock and Parracho 2019; Bock 2019). In addition, TCWV data from three global 
atmospheric reanalysis products are also used here: ERA5 (Hersbach et al. 2020), MERRA-2 (Gelaro 
et al. 2017), and JRA-55 (Kobayashi et al. 2015). Note that all three reanalyses assimilate satellite 
microwave radiometer and GPS-RO data and are therefore not independent from these two datasets.

The most prominent feature in Plate 2.1i for 2019 was the strong east–west dipole in the equatorial 
Indian Ocean, associated with the positive phase of the IOD mode observed in late 2019 (see section 
4h). A similar dipole feature was also observed in precipitation (section 2d4). A positive IOD phase 
has been linked to reduced precipitation over Australia (Ashok et al. 2003), as depicted in Plate 2.1i. 
There were also moderate wet anomalies in the western tropical Pacific and in sub-Saharan Africa. 
Other regions showed a mix of smaller wet and dry anomalies, with more regions slightly wetter than 
the 1981–2010 normal. The patterns in TCWV from ERA5 (Plate 2.1i) over the ocean are confirmed 
by microwave radiometers (Fig. A2.14), COSMIC ocean measurements, and by output from the three 
additional reanalyses. Over land, the patterns from COSMIC and other RO missions (satellite RO) are 
generally similar to the reanalysis 
output except over northern Africa, 
where RO shows a pronounced dry 
anomaly not present in reanalysis. 
The ground-based GNSS results 
are also in good agreement with 
reanalysis.

Over the ocean, the TCWV anom-
aly time series (Figs. 2.16a,b) from 
reanalyses and microwave radi-
ometers show maxima in 1983/84, 
1987/88, 1997/98, 2009/10, and 
2015/16 associated with El Niño 
events, with 2019 approaching 
the 2015/16 record levels. The ra-
diometer data show an increasing 
trend of 0.43 mm decade−1 over 
their period of record (1988–2019). 
The different reanalysis products, 
on the other hand, show a wide 
range of long-term trends over the 
entire period, but agree well with 
the radiometer data after the mid-
1990s. The satellite RO data are 
in relative agreement with both 
the radiometer and reanalysis 
data after COSMIC began in 2006. 
Note that the uncertainty in these 
large-scale averages is larger at 
the beginning and end of the time 

Fig. 2.16. Global mean TCWV annual anomalies (mm) for (a) ocean 
observations, (b) ocean reanalysis, (c) land observations, and (d) land 
reanalysis averaged over 60°N–60°S. The shorter time observational 
series have been adjusted so that there is zero mean difference relative 
to the ERA5 results during their respective periods of record.
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series due to reduced sampling. TCWV is 
strongly driven by ENSO conditions and to a 
lesser extent by stratospheric aerosols from 
volcanic eruptions. After the 2015/16 El Niño 
peak, all datasets show a return to drier 
conditions due to generally neutral/weak 
La Niña conditions in 2017/18, followed by 
wetter conditions linked to the weak El Niño 
in winter–spring 2018/19.

Over land, the three reanalyses, satellite 
RO missions, and GNSS are in good agree-
ment (Figs. 2.16c,d). The small differences 
in GNSS anomalies are due to asymmetry 
in the spatial sampling (more stations are 
located in the Northern Hemisphere [NH]), 
but the general trend and inter-annual vari-
ability are well observed. A latitude–time 
Hövmuller plot of TCWV anomalies over 
land and ocean derived from ERA5 (Fig. 2.17) 
indicates that the long-term increase in TCWV is occurring at all latitudes, with less variability 
outside the tropics. Following the most recent El Niño in 2015/16, elevated moisture has persisted 
in the tropics, particularly north of the equator.

3) Upper tropospheric humidity—V. O. John, L. Shi, E.-S. Chung, R. P. Allan, S. A. Buehler, and B. J. Soden
The 2019 global-average upper tropospheric (relative) humidity (UTH) continued to stay close to 

the 2001–10 average (+0.016 %RH for the microwave dataset; Fig. 2.18). This implies a continued 
moistening of the upper troposphere with warming. A near-zero decadal trend in the UTH indicates 
an increase in absolute (specific) humidity in line with the warming mid- and upper troposphere 
(about 0.2 K decade−1 as shown for example in Santer et al. [2017]; section 2b4), and hence is consistent 
with a positive (amplifying) water vapor feedback (Chung et al. 2016). The water vapor feedback is 
determined mainly by the mid- to upper-troposphere (Allan et al. 1999; Held and Soden 2000), be-
cause the radiative effect of water vapor is 
proportional to relative changes in water 
vapor (John and Soden 2007) and not to 
the absolute amount. 

During the first half of 2019, the 
anomalies were slightly below average  
(−0.071 %RH compared to 0.103 %RH in 
the second half for the microwave data-
set), indicating weak El Niño-like condi-
tions, in which an intensified Hadley cir-
culation leads to enhanced subsidence in 
dry zones (e.g., Tivig et al. 2020). During 
the second half of the year, the anomalies 
were generally above average, associated 
with ENSO-neutral conditions. 

There is broad agreement among the 
three available datasets (HIRS infrared 
satellite [Shi and Bates, 2011]; microwave 
satellite data [Chung et al. 2013]; ERA5 

Fig. 2.17. Hövmuller plot of TCWV anomalies (mm; base period 
1981–2010) including both land and ocean anomalies derived 
from the ERA5 reanalysis.

Fig. 2.18. Global (60°N–60°S) average time series of UTH anomalies 
(%RH) using HIRS (black), microwave (blue), and ERA5 (purple) 
datasets. Anomalies are computed with respect to the 2001–10 
average, and the time series are smoothed to remove variability 
on time scales shorter than three months.
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reanalysis [Hersbach et al. 2020]) in the interannual variability despite their structural differences. 
During their common period, there is a correlation of 0.6 between the two satellite datasets and 0.5 
between ERA5 and either of the satellite datasets. The inter-satellite calibrated and bias-corrected 
infrared and microwave satellite measurements sample a broad upper tropospheric region (roughly 
between 500 and 200 hPa, but this layer varies slightly depending upon the atmospheric humid-
ity profile) two times per day, and infrared observations only sample clear-sky scenes (John et 
al. 2011). The ERA5 reanalysis is based on model runs constrained with in situ and satellite data 
including the HIRS and microwave radiances. ERA5 samples all regions every hour, but here only 
displayed at 400 hPa. During the common period (1999–2019), the mean and standard deviation 
of the anomaly time series are −0.39 ± 0.48, 0.08 ± 0.61, and 0.00 ± 0.34 %RH for the ERA5, HIRS, 
and microwave datasets, respectively. Compared to its previous version (ERA-Interim), the ERA5 
time series shows improved consistency with the satellite datasets but displays anomalies more 
negative than HIRS or the microwave data.

Annual anomalies of UTH for 2019 are shown in Plate 2.1j and Fig. A2.15 for the microwave and 
HIRS datasets, respectively. Positive anomalies in central and eastern Africa reflect above-average 
precipitation and flooding events in those areas. Negative anomalies over southern Africa indicate 
the drought conditions there (see section 2d12). The strong positive phase of IOD can also clearly 
be seen in the anomalies. During the positive phase of IOD, sea surface temperatures (SSTs) in the 
Indian Ocean near Africa’s east coast are higher than usual, while SSTs in the waters northwest 
of Australia are comparatively lower. These conditions led to below-average precipitation across 
Australia, which is also reflected in the negative UTH anomalies over most of Australia. The close 
connection of UTH to convection makes it suitable for monitoring large-scale dynamics of the 
troposphere. 

4) Precipitation—R. S. Vose, R. Adler, 
A. Becker, and X. Yin
Precipitation over global land 

areas in 2019, as estimated from 
three different monitoring prod-
ucts, was below the 1981–2000 
long-term average (Fig. 2.19a). The 
observational datasets with the 
most complete global coverage, 
that is, the gauge-based product 
from the Global Precipitation Cli-
matology Centre (GPCC; Becker et 
al. 2013) and the blended gauge–
satellite product from the Global 
Precipitation Climatology Project 
(GPCP; Adler et al. 2018), had 
almost identical anomalies for 
2019 (−16.57 mm and −18.32 mm, 
respectively). The gauge-based 
Global Historical Climatology 
Network (GHCN; Peterson and 
Vose 1996) dataset was closer 
to the long-term average, with 
an anomaly of −4.80 mm. All 
three products indicate that 2019 
was marginally drier than 2018. 

Fig. 2.19. Globally averaged precipitation anomalies (mm yr−1) relative 
to the 1981–2000 base period over (a) land, (b) ocean, and (c) globe. 
Land and ocean time series were created using a proportional land/
sea mask at the 1° × 1° scale.
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According to the GPCP dataset, the precipitation anomaly over the global ocean (Fig. 2.19b) was 
+5.9 mm and the global combined land and ocean anomaly (Fig. 2.19c) was −0.68 mm, both of 
which were slight increases from the previous year. 

As is always the case, there was substantial variability across the planet in 2019. Much of 
Africa, Eurasia, North America, and the Amazon basin were wetter than normal, as were the 
equatorial western Pacific Ocean and the western Indian Ocean (Plate 2.1k). The wet anomaly in 
the Indian Ocean extended into east Africa, where floods were prevalent during 2019, including 
floods in March 2019 associated with Cyclone Idai, which killed over 1200 people in Mozambique, 
Zimbabwe, Malawi, and Madagascar (see Sidebar 7.3 for details). The eastern Indian Ocean, the 
Maritime Continent, and Australia all experienced much-below-normal precipitation; likewise, 
Australia had its driest year on record and a very active wildfire season. Parts of the western 
Atlantic and central Pacific Oceans were also much drier than normal. Large-scale anomaly pat-
terns for 2019 were generally comparable to those of 2018, with notable exceptions; for instance, 
departures from normal in 2018 were less extreme in the Indian Ocean, the Maritime Continent, 
and Australia, and the region of drier-than-normal conditions in the equatorial Pacific was deeper 
and extended farther to the west.

The most striking feature in 2019 was the large rainfall deficit from the eastern Indian Ocean to 
the South Pacific Ocean east of Australia. With weak El Niño or neutral ENSO conditions during 
the year, the strong features in this area were driven by conditions in the Indian Ocean; notably, 
the IOD was strongly positive during the last few months of the year, indicating higher-than-
normal SSTs in the western Indian Ocean and lower-than-normal SSTs closer to Australia. The 
IOD index decreased to near neutral by the end of December, but the rainfall patterns persisted 
(see section 4h for details).

5) Land surface precipitation extremes—S. Blenkinsop, M. R. Tye, M. G. Bosilovich, M. G. Donat, I. Durre, 
A. J. Simmons, and M. Ziese
Precipitation extremes in 2019 were typically mixed, with strong regional signals of both 

above- and below-average anomalies of frequency (R10mm, R20mm) and intensity (Rx1day,  
Rx5day; Table 2.5). In many regions, above-average anomalies of either, or both, components led 
to flooding events. Overall, these extremes’ anomalies contributed to a global mean precipitation 
anomaly below the climatological mean (see section 2d4). 

The data used include gauge (GHCNd; Menne et al. 2012) and gridded (GPCC-First Guess Daily; 
Schamm et al. 2013) observations, GHCNd-derived gridded extremes (GHCNDEX; Donat et al. 2013), 
and reanalysis products (ERA5; Hersbach et al. 2020; MERRA-2; Gelaro et al. 2017). 

Observational and reanalysis estimates of 2019 R10mm (Plate 2.1l; Fig. 2.20a) and R20mm (not 
shown) frequency anomalies revealed fewer-than-average heavy (and very heavy) precipitation 
days over Australia, Japan, most of Europe, and interior Russia, with above-average frequencies 
over much of the United States and northeast Russia. There is broad agreement between the global 
datasets and the more limited coverage of GHCNDEX (not shown) over these areas, but disagree-
ment on the sign of anomalies over Scandinavia and southeast Asia. The above-average heavy 
precipitation days in the United States were consistent with extensive flooding in the Midwest 

Table 2.5. WMO Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang 
et al. 2011) precipitation indices used in this section and their definitions.

Index Name Definition

Rx1day Max 1-day precipitation amount Highest 1-day precipitation amount (mm)

Rx5day Max 5-day precipitation amount Highest 5-day precipitation amount (mm)

R10mm Heavy precipitation days Heavy precipitation days > 10 mm (days)

R20mm Very heavy precipitation days Very heavy precipitation days > 20 mm (days)
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throughout spring and summer, notably the Mississippi and Missouri basins. The globally com-
plete datasets indicated above-average frequencies over Peru, western Brazil, and eastern Africa, 
all areas affected by flooding in 2019. High frequencies over northern India were associated with 
late monsoon rainfall and resulted in extensive flooding. There were additional localized areas 
of high frequency over Afghanistan and Iran, also resulting in flash floods throughout the spring 
(Floodlist 2019).

Maximum intensity anomalies of Rx1day (Figs. 2.20b,c) and Rx5day (not shown) were noisier 
than the frequency indices, but largely consistent. GHCNDEX (Fig. 2.20b) shows below-average 
intensities for most of Australia and western Europe and areas of above-average intensity across 
the United States. The values of Rx1day for 2019 shown in Fig. 2.20d provide a reference point for 
these anomalies in absolute terms to enable an estimation of proportional anomalies. The GPCC 
dataset and the ERA5 (Fig. 2.20c) and MERRA-2 reanalysis products broadly agree and, in par-
ticular, confirm a consistent signal over Australia. This reflects the record dry conditions there 
described in section 7h4 and suggests that severe drought conditions were at least partly related 
to an absence of heavy precipitation events (see also R10mm). Only over northern Queensland is 
there a positive anomaly of Rx1day across all data products due to a notable extreme event (e.g.,  
562 mm at Mossman at the end of January, see section 7h4), contrasting with a closer-to-average 
signal for R10mm over this part of the state. The more extensive coverage provided by the re-
analyses also suggests maxima of below-average intensity over India (contrasting with higher 
frequency extreme precipitation), parts of China, and central and southern Brazil (see section 
2d4); GPCC-First Guess Daily (not shown) also indicates more extensive areas of below-average 
intensity in tropical and equatorial regions compared with other datasets, which may reflect 
its coarser resolution and highlighting some of the uncertainty in estimates of precipitation ex-
tremes, particularly where gauge data are sparse. Above-average Rx1day intensities were also 

Fig. 2.20. Anomalies of 2019 indices for (a) R10mm derived from MERRA-2 relative to a 1981–2010 
baseline and Rx1day derived from (b) GHCNDEX relative to 1961–90 and (c) ERA5 relative to 1981–2010. 
(d) 2019 absolute Rx1day values from GHCNDEX.
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clearly identifiable in the reanalysis and 
GPCC products over Mozambique, producing 
a stronger signal there than R10mm. This was 
associated with the destructive tropical cy-
clones Idai and Kenneth, in March and April, 
respectively (see section 4f6 and Sidebar 7.3 
for more details).

The spatial and temporal variability of 
precipitation extremes and relatively short 
records makes detection of long-term change 
difficult; historical context for 2019 is only 
provided for available long series of indices 
(≥50 years) over Europe, Australia, and the 
United States. Ranking 2019 extreme precipi-
tation indices over Europe from the European 
Climate Assessment and Dataset blended 
time series (Klein Tank et al. 2002) revealed 
76 (1.3% of gauges) new Rx1day and 16 (0.3%) 
new Rx5day records, although some were 
likely from the same event (for example, the Rx1day total includes new records at five gauges in 
Murcia, Spain, in September; see section 7f4 for details). In total, 10.6% (5.1%) of Rx1day (Rx5day) 
values ranked in the top decile for an individual gauge in 2019 compared with 15.4% (16.8%) in 
2017; 2018 was anomalously dry (Vose et al. 2019) and saw only 7.9% (4.4%) of gauges in the top 
decile. The R10mm and R20mm frequency indices also confirmed fewer heavy precipitation days 
in 2019, with only 3.9% of gauges recording frequencies in the top decile compared with 14.7% in 
2017. This is consistent with Plate 2.1l in suggesting that 2019 saw relatively few heavy precipita-
tion days across much of Europe but with localized high annual maxima.

Australian GHCNd observations also included few new records for Rx1day (3 from 1359 gauges) 
and Rx5day (10), as ENSO moved from a weak El Niño to a neutral state and due to the influence 
of a strong positive IOD in late 2019. Only 3% (2.5%) of locations experienced Rx1day (Rx5day) 
in their top decile compared with 13.7% (11.2%) in 2017. The new records were set in northern 
Australia where, for example, in early February, Yabulu, Queensland, received 948 mm over a 
5-day period. 

An updated assessment of the U.S. NOAA Climate Extremes Index (Gleason et al. 2008) indi-
cated that annually, component 4 of the index (area of the United States that experienced 1-day 
precipitation totals exceeding the 90th percentile) ranked 20th in the 110-year record (CEI4 = 
13.6%) compared to the 2018 ranking of eighth (17.7%). However, the spring CEI4 of 18.5% was the 
highest spring value on record for the contiguous United States, with 6 of the 10 highest spring 
totals occurring in the 2010s (Fig. 2.21). The season also saw record highs in the South (30.6%) 
and Southwest (38.0%) climate regions.

6) Lake water levels—B. M. Kraemer
Near real-time variation in lake water levels can serve as an integrative indicator of current 

global hydrological change. Based on nearly three decades of water level variation analysis for 
198 of Earth’s largest lakes with publicly available satellite altimetry data (U.S. Department of 
Agriculture G-REALM project), the annual average water level across these lakes for 2019, giving 
equal weight to each lake, was 1.70 m higher than the mean water level for each lake from 1992 to 
2002 (minimum level: −23.55 m; first quartile: −0.13 m; median: +0.26 m; third quartile: +1.05 m; 
maximum: +114.04 m). Water levels were above average in 68% of the lakes analyzed here (134 out 
of the 198). However, the average volumetric anomaly across lakes (calculated as an approximate 

Fig. 2.21. Percentage (%) of the contiguous United States 
with a much-greater-than-normal proportion of precipitation 
derived from extreme (highest 10th percentile) 1-day pre-
cipitation events in MAM for the period 1910–2019. Red line 
denotes smoothed Gaussian filter and the black horizontal 
line denotes the series mean.
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Fig. 2.22. Time series of lake water level (m) for the lakes with the largest volumetric anomalies (2019 water level anomaly 
× average lake surface area). The top four panels in (d) show lakes with the four largest positive anomalies The bottom 
four panels in (d) show the lakes with the largest negative anomalies. “Large” Aral Sea is meant to distinguish the lake 
water level data shown here from water level data for the two other basins formed as the Aral Sea desiccated. Lake 
Michigan is excluded from the time series because it is hydrologically connected to Lake Huron and its water level varia-
tion is nearly equivalent.
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estimate by multiplying the water level anomalies for each lake by their average surface area) 
was −0.46 km3, and the cumulative volumetric change was −91.2 km3. The contrast between the 
2019 positive mean water level anomaly and negative mean volumetric anomaly arises from the 
large volumetric decrease in the Caspian Sea, which offsets the numerically more increases in 
less voluminous lakes.

The water level anomaly estimates presented here differ widely across lakes and across regions, 
reflecting the heterogeneity of underlying changes in regional hydrological fluxes. As shown in 
Fig. 2.22, the lakes with the largest positive volumetric anomalies occurred in Huron-Michigan 
(North America), Superior (North America), Balkash (central Asia), and Tanganyika (eastern Africa) 
while the largest negative volumetric anomalies occurred in the Caspian Sea (central Asia), Large 
Aral Sea (central Asia), Urmia (western Asia), and Rukwa (eastern Africa). Some regions showed 
coherent changes across lakes in their water level anomalies. Lakes in central Brazil, the south-
western United States, Ukraine, and eastern China had consistent negative water level anomalies 
while equatorial Africa, eastern Kazakhstan, the northeastern United States, and central Canada 
had consistent positive water level anomalies (Plate 2.1m). Conversely, lake water level anoma-
lies varied substantially within other regions. For example, Tanganyika and Rukwa, the lakes 
with the fourth-largest positive volumetric anomaly and the fourth-largest negative volumetric 
anomaly, respectively, are within only 85 km of each other. The Tibetan plateau, the Middle East, 
and southern Africa all included lakes with both strong positive water level anomalies and strong 
negative anomalies often in close proximity, highlighting the strong lake-to-lake variation within 
regions. Variation in water level anomalies across lakes is also partially attributable to upstream 
land use and land cover change as well as anthropogenic water extractions and diversions. 

Water level data were acquired from the NASA/CNES Topex/Poseidon and Jason-1 satellite 
missions via the Global Reservoir and Lake Monitoring (G-REALM) project version 2.3 (Crétaux 
et al. 2016). Although these altimeters were developed to map ocean surface height, they have 
also been used to detect water level changes in lakes (Crétaux et al. 2016). Only a small subset of 
the world’s lakes is monitored in this way because the space-borne sensors must pass directly 
over the lake with sufficient regularity to produce accurate and complete time series. The lakes 
in this study comprise the 198 lakes with the longest (>28 years) and highest temporal resolution 
time series. Comparing satellite altimeter measurements derived from the NASA/CNES Topex/
Poseidon and Jason-1 satellite missions to in situ measurements, the root mean-squared error of 
elevation variations is ~5 cm for large lakes. Water levels are typically measured every 10 days, 
but the exact dates on which water levels are measured vary from lake to lake. To make water level 
data temporally consistent, each lake’s time series was linearly interpolated to the daily scale so 
that all lakes had time series of the same interval. Seventy-two of the 198 water level time series 
had substantial data gaps from 2003 through the middle of 2008, so a period prior to these gaps 
(1992–2002) was used as the baseline for calculating 2019 water level anomalies. 

7) Global cloudiness—M. J. Foster, L. Di Girolamo, R. A. Frey, A. K. Heidinger, C. Phillips, W. P. Menzel, and G. Zhao
Global cloudiness in 2019 decreased relative to 2018 (−0.3 ± 0.3%), based on several satellite 

cloud records including PATMOS-x/AVHRR (Pathfinder Atmospheres Extended/Advanced Very 
High Resolution Radiometer), Aqua MODIS C6 (Moderate Resolution Imaging Spectroradiometer 
Collection 6), MISR (Multi-angle Imaging SpectroRadiometer), HIRS High Cloud (High Resolution 
Infrared Sounder), and PATMOS-x/Aqua MODIS (this last record applies the PATMOS-x algorithms 
to Aqua MODIS measurements and was created for this report). Figure 2.23 shows global cloudi-
ness from 1979 to 2019, with additional long-term records that do not currently extend through 
2019: CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), CERES 
(Clouds and the Earth’s Radiant Energy System), CLOUD_CCI (Cloud Climate Change Initiative 
AVHRR-PM v3.0), CLARA-A2 (cloud, albedo and radiation dataset), and SatCORPS (satellite cloud 
and radiative property retrieval system). 

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/8/S9/4988923/bam

sd200104.pdf by guest on 28 Septem
ber 2020



S522 . G L O BA L  C L I M AT EAU G U S T  2 0 2 0  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 1 9

A decrease in global annual cloudi-
ness from 2018 to 2019 of 0.3% seems like 
a small change; however, mean annual 
cloudiness tends to be very stable. Sever-
al of the cloud records shown in Fig. 2.23 
are derived from sensors on satellites 
flown as part of NASA’s Earth Observing 
System (EOS) project. The EOS satellites 
represented here include Terra, Aqua, 
and CALIPSO and the records begin as 
early as 2000. The standard deviations 
of mean annual cloudiness for these 
records range from 0.2% to 0.3%. These 
records show that 2019 was the least 
cloudy year in over a decade. Cloud re-
cords that rely on the NOAA Polar Opera-
tional Environmental Satellites (POES) 
begin as far back as 1979, and these 
standard deviations range from 0.7% 
to 1.5%. These records have more vari-
ability due to less stability in the 1980s 
and 1990s. Large-scale events, such as 
the volcanic eruptions of El Chichón and 
Pinatubo, and strong El Niños, may contribute to some of this variability. Instrumental factors 
such as fewer measurements (from fewer available satellites), increased orbital drift (satellites 
drift from their original orbit resulting in an aliasing effect), fewer available spectral channels 
(e.g., 5-channel AVHRR versus the 36-channel MODIS), and the lack of on-board visible calibra-
tion systems may also contribute to increased variability (Stubenrauch et al. 2012). It should be 
noted that the convergence of the records seen in Fig. 2.23 beginning after 2000 is partly due to 
the use of a common period (2003–15) when creating the cloudiness anomalies. 

Although globally-averaged cloudi-
ness does not tend to change much 
year-to-year, the global distribution of 
clouds can vary significantly. The distri-
bution of clouds over the Pacific Ocean 
is affected by the phase of ENSO. The 
gradients of SST and low-level wind be-
tween the central equatorial Pacific and 
Indonesia serve to enhance or suppress 
convection, which drives the formation 
of clouds. During years where there is 
a strongly positive or negative phase 
of ENSO, this can result in statistically 
significant cloudiness anomalies over 
the Pacific. This can be seen in Fig. 2.24, 
where positive and negative cloudiness 
anomalies are consistent with phases of 
ENSO in the PATMOS-x/AVHRR record. 
In 2019, the ENSO index was weakly 
positive or neutral throughout the year 

Fig. 2.23. Annual global cloudiness anomalies (%) for 1980–2019, 
defined as the annual value minus the mean, derived between 
2003 and 2015, a period common to the satellite records excluding 
CALIPSO, where the entire record was used instead. (b) Annual 
actual global cloudiness (%).

Fig. 2.24. Annual global cloudiness anomalies (%, relative to 
the 1981–2010 base period) from the PATMOS-x /AVHRR record 
calculated using the same method as Plate 2.1n but zonally for 
each degree latitude. 
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(MEI.v2; T. Zhang et al. 
2019), and no cloudi-
ness anomalies greater 
than two standard de-
viations from the mean 
were detected over the 
Pacific. However, oth-
er areas of the world 
experienced similar 
large-scale weather 
patterns that had more 
significant impacts on 
the global distribution 
of cloudiness. The IOD 
is similar to ENSO in 
that it involves the SST 
temperature gradient 
between opposite ends 
of the Indian Ocean. 
When the eastern part 
of the Indian Ocean 
experiences below-av-

erage temperatures relative to the western part, the IOD is considered to be in a positive phase. In 
this event, eastern Africa frequently experiences positive cloudiness anomalies while southeast 
Asia and Australia experiences negative cloudiness anomalies. In 2019, the IOD index became 
positive in the boreal summer and continued to increase, peaking in October in a strong positive 
phase (BoM 2020; see section 4h). In terms of cloudiness, the positive phase IOD coincided with a 
significant negative cloudiness anomaly in the eastern Indian Ocean that had the largest spatial 
extent of any anomaly observed in 2019 (Fig. 2.25). Cloudiness in this area was reduced by 10% 
to 20% for the year. This extended into Australia, which experienced dry conditions and severe 
wildfires (see section 7h4 and Sidebar 7.6). There were also significant negative anomalies in 
the Atlantic Ocean, ranging from 5% to 10%, the largest being located in the tropics north of the 
equator and extending into the northern subtropics. Minimum cloudiness in this region occurred 
in the boreal winter, but much of the year saw reduced cloudiness. Combined, these anomalies 
and the lack of positive anomalies, contributed to the overall decrease in global cloudiness.

8) River discharge and runoff—H. Kim
Runoff is a key component in the water cycle: it balances precipitation with evapotranspira-

tion and storage changes through the energy and water balance at Earth’s surface. In numeri-
cal models, it is defined as water draining out from a soil column when infiltration capacity is 
exceeded. A river is an integrated transport of runoff to the ocean. It has important roles, not 
only the lateral distribution of water (Kim et al. 2009) but also energy (Tokuda et al. 2019) and 
biogeochemical constituents (Beusen et al. 2016). In this section, we focus on mass transportation 
(i.e., freshwater discharge) which is more directly related with both climate variability and society 
(e.g., Hirabayashi et al. 2013; Dankers et al. 2014; Schewe et al. 2014; Madakumbura et al. 2019).

Global distributions of discharge (Plate 2.1o) and run off (Plate 2.1p) anomalies for 2019 (compared 
to the 1961–90 reference period) indicate many regions where anomalies are opposite to those in 
2018. In 2019, large areas of eastern North America and southern China became anomalously wet-
ter (under strong dry conditions in 2018; Kim 2019), while areas including the Indochina peninsula, 
the western Maritime Continent, northern India, and eastern Siberia became anomalously drier. 

Fig. 2.25. Global seasonal cloudiness anomalies (% relative to 1981–2010) for 2019 
from the 30-year PATMOS-x /AVHRR cloud climatology. 
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Northern North America, 
western Siberia, and north-
ern South America (wet), 
and eastern South Ameri-
ca, central Africa, Europe, 
eastern Siberia, and the 
Korean Peninsula (dry) 
saw greater intensification 
of their hydrologic states 
compared to 2018. 

Global total freshwater 
discharge is strongly cor-
related with ENSO and the 
Pacific Decadal Oscillation 
(PDO; Zhang et al. 1997; 
e.g., Kim 2017, 2018, 2019). 
Figure 2.26 shows the long-
term variability of the total 
runoff, with the ONI and 
PDO indices indicating that 
in the global average, dry 
and wet states tend to be 
in accord with positive and 
negative phases of ENSO 
and PDO, respectively. Ac-
cording to multivariate 
regression analysis, the 
variance contribution of 
the Oceanic Niño Index 
(ONI) and PDO together 
comprises ~49% of the total 
variance of global runoff. 
In 2019, the average global 
runoff remained at a level 
similar to the previous year 
after a bounce-back from 
the anomalous dry state in 
2016 that was associated 

with the strong El Niño. The ONI and PDO indices also remained in a slightly warm phase, similar 
to 2018, and the global runoff anomaly increased from 1032 km3 yr−1 to 1758 km3 yr−1.

The state of wetness in 2019 was analyzed for 30 major global basins with consideration of 
geographical distributions and quality of the estimations, as suggested by Kim et al. (2009; Fig. 
2.27). In general, the wet deviations were stronger, but the discharge increases were typically less 
than 50% when compared to their climatological means for the given reference period. In 2019, 
the wet state of the rivers in South America (i.e., Amazon and Orinoco) was due to the wetter-
than-average wet season. In contrast, the African rivers (i.e., Niger, Zambezi, and Chari) were 
relatively dry, and seasonal discharge was persistently below average throughout the year, except 
during the wet seasons (September–December) for the Niger and Chari. In the United States, the 
Mississippi River was irregularly wet throughout the year (see section 7b2), while the Columbia 
River was dry due to the Pacific Northwest drought in 2018–19 and 2019–20. The Mackenzie and 

Fig. 2.26. Interannual variability of ONI (lower), PDO (upper), and global runoff 
(middle; mm; thick line is 12-month moving average). ONI and PDO are shaded 
red (positive phase) or blue (negative phase). Shading above and below the 
zero-line of global runoff is proportional to PDO and ONI, respectively.

Fig. 2.27. Monthly anomaly for the long-term seasonality (lower, mm month−1) 
and relative annual anomaly (upper, %; open [uncolored] and closed [colored] 
circles indicate 2018 and 2019, respectively) of 30 major global rivers’ discharge. 
The basin mask used in the analysis is referred to here: http: //hydro.iis.u-tokyo 
.ac.jp/~hjkim/soc /30basins.png.
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Yukon Rivers in northern North America had above-average discharge, with an anomalous wet 
season contributing to the Yukon’s high discharge. The major Arctic basins, including the Ob, 
Yenisei, and Lena, were in slightly wet states during 2018 and 2019, and the rivers in eastern Sibe-
ria (Kolyma, Indigirka, and Yana) shifted to weak dry states in 2019. Rivers affected by the Asian 
summer monsoon system (i.e., Amur, Brahmaputra, and Changjiang) experienced opposing states 
during the boreal summer of 2019. The Amur and Changjiang during the East Asian Monsoon 
were wetter than their mean states, while the Brahmaputra was in a drier state during the South 
Asian Monsoon. The Mekong was in a dry but near-normal state in 2019; it is speculated that the 
severe drought in 2019 in this region was heavily affected by human impacts (e.g., dam operation).

The 62-year (1958–2019) record is based on off-line land surface simulations of the Ensemble 
Land State Estimator (ELSE; Kim et al. 2009) over 1° grids globally. To produce the atmospheric 
boundary conditions, the Japanese global atmospheric reanalysis (JRA-55; Kobayashi et al. 2015) 
and the GPCC Monitoring Product version 6 (Schneider et al. 2018) were combined. The con-
figurations of the modeling system remain the same as previously (e.g., Kim 2018), and human 
interventions are not considered.

9) Groundwater and terrestrial water storage—M. Rodell, B. Li, and D. Wiese
Groundwater, soil moisture, surface water, snow, and ice are the components of terrestrial 

water storage (TWS). On multi-annual timescales, groundwater typically controls TWS variabil-
ity, except in permanently frozen regions (Li et al. 2015). Even on an annual basis, TWS changes 
are a reasonable proxy for groundwater storage changes, the latter being insufficiently observed 
in most of the world. From 2002 to 2017, the Gravity Recovery and Climate Experiment (GRACE; 
Tapley et al. 2004) and since 2018 the GRACE Follow On (GRACE-FO) satellite missions have 
enabled estimation of TWS anomalies (departures from the long-term mean) based on precise 
observations of variations in Earth’s gravity field. To bridge the 11-month gap between GRACE 
and GRACE-FO, we make use of output from a land surface model that assimilates data from both 
missions (Li et al. 2019). 

Plate 2.1q maps the changes in annual mean TWS between 2018 and 2019, as equivalent heights 
of water in centimeters, based on the data assimilation results. TWS changes reflect integrated 
hydrometeorological variations, includ-
ing precipitation, solar radiation, air 
temperature, and other model forcings. 

Australia had its warmest and driest 
year on record (dating to 1910 and 1900, 
respectively), with TWS losses almost 
everywhere save for the northeast of 
the country, contributing to notorious 
wildfire damage (see Sidebar 7.6). Cen-
tral Africa saw TWS gains following two 
dry years, while Angola and Zambia in 
southern Africa dried considerably. Con-
ditions were mixed in South America, 
with drought accompanying heat across 
southeastern Brazil, leading to TWS 
losses in that region, and TWS gains in 
many other parts of the continent. The 
effects of heavy precipitation and subse-
quent record spring and summer flood-
ing in the midwestern United States can 
be seen in Plate 2.1q, as well as a return 

Fig. 2.28. Zonal mean terrestrial water storage anomalies (cm 
equivalent height of water), based on observations from GRACE 
(through Jun 2017) and GRACE-FO (beginning Jun 2018), exclud-
ing the previously identified ice-covered regions. Anomalies are 
relative to a 2005–10 base period.
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to normal conditions after a particularly wet 
2018 in the East. Near-record heat drove TWS 
losses across most of Europe despite near-
normal precipitation. In Siberia and parts 
of southeastern Asia, drought caused water 
storage declines. TWS in Iraq and western 
Iran, on the other hand, was replenished by 
increased rainfall.

TWS changes in ice-covered regions have 
been dominated by ice sheet and glacier 
losses during the past two decades, to the 
point that annual hydroclimates there must 
be interpreted from the GRACE and GRACE-
FO observations with caution. Hence, TWS 
changes in Greenland, Antarctica, the Gulf 
Coast of Alaska, parts of Patagonia, and 
most polar islands are omitted here. Despite 
those omissions, ice losses continue to contribute to the high latitude trends (Fig. 2.28) and to the 
global mean, deseasonalized, monthly TWS anomaly time series (Fig. 2.29). Drying across three 
continents centered near 15°S, as seen in Plate 2.1q, is evident in Fig. 2.28, as is wetting just north 
of that. Most of the NH resumed a long-term drying trend, and, overall, 2019 was near the lower 
end of the range of global mean TWS since 2002, with monthly anomalies that ranged from −2.10 
to −0.77 cm equivalent height of water.

10) Soil moisture—W. Preimesberger, A. Pasik, R. van der Schalie, T. Scanlon, R. Kidd, R. A. M. de Jeu,  
and W. A. Dorigo
Global soil moisture in 2019 was characterized by significant differences between the two hemi-

spheres: this discrepancy was the largest yet recorded. The strongest negative anomalies were 
recorded throughout Australia, southern 
Africa, and Argentinian Patagonia in 
the Southern Hemisphere (SH), while 
parts of North America, East Africa, 
and Asia in the Northern Hemisphere 
(NH) experienced above-average soil 
moisture conditions due to an increase 
in precipitation (section 2d4; Plate 2.1k). 
A continuation of drier-than-usual con-
ditions observed in 2018 across the SH 
(Scanlon et al. 2019) is evident, with 
anomalies in 2019 being even stronger 
and more widespread. Meanwhile, the 
2019 global average soil moisture condi-
tions were close to the 1991–2010 mean 
despite the evident difference between 
the hemispheres (Fig. 2.30).

Australia experienced both its driest 
and warmest year since records began 
(section 7h4), resulting in strong nega-
tive soil moisture anomalies throughout 
the continent and priming the land for 

Fig. 2.29. Global average terrestrial water storage anomalies 
from GRACE (gray lines) and GRACE-FO (black lines), excluding 
the previously identified ice-covered regions, in cm equivalent 
height of water relative to a 2005–10 mean base period.

Fig. 2.30. Time series of average NH, SH, and global surface soil 
moisture anomalies for 1991–2019 (upper, m3 m−3; 1991–2010 base 
period) and the percentage of land points with valid observations 
(lower, %). Data were masked as missing where retrievals were 
either not possible or of low quality due to dense forests, frozen 
soil, snow, ice, etc. (Source: ESA CCI Soil Moisture.)
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catastrophic wildfires in the latter part of the 
year. One of the climatic drivers responsible 
for this situation was a strong positive phase 
of the IOD, an index of SST difference between 
the eastern and western Indian Ocean influ-
encing rainfall patterns in Australia and the 
Indian Ocean basin. 

While contributing to a reduction in pre-
cipitation over Australia, the positive IOD 
also contributed to excess rainfall to the 
Greater Horn of Africa from August through 
December. This resulted in widespread flood-
ing across East Africa (see section 7e4 for 
details and impacts). The influence of IOD 
on soil moisture in India and East Africa is 
manifested as a strong positive anomaly in 
the latitudes between the equator and 30°N 
visible in Fig. 2.31.

Heavy rains led to severe floods in parts of 
India, especially during August and Septem-

ber (Figs. A2.16h,i). Soil moisture measurements show extremely wet conditions from September 
through December (Figs. A2.16i–l), largely due to rainfall driven by the positive IOD. Soil moisture 
conditions for the year as a whole were also above average (Plate 2.1r).

Very dry soil moisture conditions continued in southern Africa for the fifth consecutive year 
(Dorigo et al. 2017b, 2018). The resulting prolonged and increasingly severe drought was especially 
apparent in Namibia. Zambia was also among the most affected countries in the region after the 
2018/19 rainfall season was among the driest since 1981; the consequent soil moisture deficit is 
visible in the annual anomalies (Plate 2.1r).

In 2019, the United States received above-average rainfall, with many precipitation records 
set, especially in the north and the Midwest (see section 7b2). This excess precipitation resulted 
in above-average soil moisture conditions across large parts of the country throughout the year. 

In March, large parts of Iran recorded above-average precipitation, leading to nationwide floods 
following this period (Fig. A2.16c). Soil moisture conditions were exceptionally high between 
February and May, declining to around average in November (Figs. A2.16b,e,k, respectively).

Soil moisture observations for this analysis were obtained from the COMBINED product of ESA’s 
Climate Change Initiative for Soil Moisture (ESA CCI SM) v04.7. The product merges measurements 
from passive and active microwave remote sensing instruments into a single long-term data 
product based on the quality of available observations (Dorigo et al. 2017a; Gruber et al. 2019). 
ESA CCI SM therefore achieves higher spatial and temporal (more than 40 years) data coverage 
than the single-satellite sensor products and is validated against in situ soil moisture measure-
ments and multiple reanalysis products (Dorigo et al. 2017a). Satellite soil moisture observations 
are representative of the surface layer only (~5 cm) and are masked in cases of snow coverage 
or frozen soil conditions and for areas covered by dense vegetation or with high topographic 
complexity (mountains).

11) Land evaporation—D. G. Miralles, B. Martens, H. E. Beck, and M. F. McCabe
At the planetary scale, terrestrial evaporation comprises about two-thirds of terrestrial pre-

cipitation. This “loss of water” from the land surface to the atmosphere plays a key role in water 
management (Teuling et al. 2013) and agricultural planning (Liu et al. 2015), and it is also central 
in modulating the strength and behavior of the water cycle (Huntington 2006) and associated 

Fig. 2.31. Time–latitude diagram of surface soil moisture 
anomalies (m3 m−3; 1991–2010 base period). Data were 
masked as missing where retrievals are either not possible 
or of low quality due to dense forests, frozen soil, snow, ice, 
etc. (Source: ESA CCI Soil Moisture.)

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/8/S9/4988923/bam

sd200104.pdf by guest on 28 Septem
ber 2020



S582 . G L O BA L  C L I M AT EAU G U S T  2 0 2 0  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 1 9

extreme events (Miralles et al. 2019). Cur-
rently, in the same way that evaporation is in-
visible to our eyes, it remains invisible to our 
satellite sensors, making it one of the most 
uncertain components of Earth’s energy and 
water balance (Dolman et al. 2014). However, 
models that combine satellite-observed land-
scape attributes with meteorological drivers 
of terrestrial evaporation (e.g., vegetation 
cover, solar radiation, temperature) are often 
applied to yield global climatological records 
of the flux (McCabe et al. 2016; Miralles et al. 
2016). Based on simulations from one of the 
few regularly updated and long-term global 
records, namely the Global Land Evaporation 
Amsterdam Model (GLEAM; Miralles et al. 
2011), Plate 2.1s illustrates the geographical 
patterns of land evaporation anomalies for 2019.

During the year, several regions in the tropics and the SH subtropics experienced anoma-
lously low values of evaporation (Plate 2.1s), in particular, southern Africa (mainly Namibia and 
Botswana), Australia, and parts of South America (including northern Amazonia). All of these 
regions suffered from intense drought conditions during 2019. In Australia, the extraordinary 
drought (see sections 2d12 and 7h4) led to a decline in terrestrial evaporation, which itself was 
mostly attributed to anomalies in plant transpiration (Fig. A2.17). In accordance with these global 
patterns (Plate 2.1s), the latitudinal distribution in Fig. 2.32 highlights unusually low values around 
30°S, which were exacerbated at the beginning of the austral summer due to water stress. At the 
other end of the distribution, unusually high values of land evaporation can be observed in Plate 
2.1s, concentrated over the Horn of Africa, the east Sudanian Savanna, and central Asia, among 
other less extensive regions. The spatially extensive positive anomaly in central Asia was one of 
the most pronounced in 2019. Initiated during the first half of the year, as shown in Fig. 2.32 (see 
anomaly around 30°N), it was associated with a combination of positive temperature and precipita-
tion anomalies. In Europe and North America, mild positive anomalies were widespread, except 
for a few regions such as Canada and the Iberian Peninsula (see Plate 2.1s), which were drier.

The 40-year (1980–2019) evolution of evaporation shown in Fig. 2.33 illustrates the statistically 
significant long-term tendency 
toward higher annual values 
that has been reported exten-
sively in the literature (Y. Zhang 
et al. 2016; Miralles et al. 2014; 
Brutsaert 2017; Anabalón and 
Sharma 2017). The average ter-
restrial evaporation in 2019 was 
77 × 103 km3, slightly below this 
long-term global trend, yet still 
higher than the long-term mean 
(Fig. 2.33). The positive trend 
is more pronounced in the NH 
and mostly related to increasing 
temperatures and global green-
ing (Cheng et al. 2017; Zhang 

Fig. 2.32. Zonal mean terrestrial evaporation anomalies (mm 
month−1; relative to 1981–2010 base period). (Source: GLEAM.)

Fig. 2.33. Land evaporation anomaly (mm yr−1; 1981–2010 base period) 
for the NH, SH, and the entire globe (blue, red, and black solid lines, re-
spectively). Linear trends in evaporation (dashed lines) and the SOI from 
CRU (right axis, shaded area) are also shown. (Source: GLEAM.)
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et al. 2016; Miralles et al. 2014). Indeed, for the NH, 2019 represented the third-largest positive 
anomaly on record after 2018 and 2016. On the other hand, the year-to-year variability in the SH 
has previously been reported to be dictated largely by ENSO, due to the drought conditions it 
triggers in regions such as South Africa and Australia (Martens et al. 2018; Miralles et al. 2014). 
In agreement with that thesis, prevailing marginal El Niño conditions in 2019 appear once again 
to be influencing the below-average mean values in the SH. In fact, the geographical patterns 
of evaporation anomalies shown in Plate 2.1s closely mimic those characteristic of El Niño years 
(Miralles et al. 2014), and thus may relate to the weak El Niño that developed in 2019 (see SOI 
[Southern Oscillation Index] in Fig. 2.33).

The results shown here are based on recent simulations of GLEAM v3.4a (Martens et al. 2017). Its 
accuracy has been reported to be on the order of 0.7 mm day−1 (unbiased root mean square error), 
with correlations against in situ eddy covariance measurements of around 0.8 on average (Martens 
et al. 2017). Notwithstanding the steady progress in remote-sensing and modeling communities 
to improve the product accuracy and spatial resolution of land evaporation estimates (McCabe et 
al. 2019; Fisher et al. 2017; McCabe et al. 2017), trends and patterns in satellite-based evaporation 
should be interpreted with care, and a weighting based on multiple retrieval approaches is usu-
ally recommended (Jiménez et al. 2018). Still, as of today, the algorithms dedicated to estimating 
evaporation using satellite observations at global scales are mostly intended for research appli-
cations and are not regularly updated (Fisher et al. 2017), which constrains the undertaking of a 
comprehensive analysis that would ensure a more thorough uncertainty appraisal. 

12) Monitoring global drought using the self-calibrating Palmer Drought Severity Index— 
J. Barichivich, T. J. Osborn, I. Harris, G. van der Schrier, and P. D. Jones
Hydrological drought results from a period of abnormally low precipitation, sometimes exac-

erbated by additional evapotranspiration (ET), and its occurrence can be apparent in reduced 
river discharge, soil moisture, and/or groundwater storage, depending on the season and dura-
tion of the event. Here, an estimate of drought called the self-calibrating Palmer Drought Sever-
ity Index (scPDSI; Wells et al. 2004; van der Schrier et al. 2013) is presented, using precipitation 
and Penman-Monteith Potential ET from an early update of the CRU TS 4.04 dataset (Harris et 
al. 2020). Moisture categories are calibrated over the complete 1901–2019 period to ensure that 
“extreme” droughts and pluvials (wet periods) relate to events that do not occur more frequently 
than in approximately 2% of the months. This affects direct comparison with other hydrological 
cycle variables in Plate 2.1 that use a different baseline period.

Drought area according to the scPDSI 
decreased slightly across the globe in 2018 
(Barichivich et al. 2019) and continued de-
creasing through early 2019, but then rose 
sharply after May (Fig. 2.34). The global land 
area undergoing extreme drought condi-
tions increased from a minimum of 1.7% in 
May to 4.7% in December, surpassing the 
most recent previous peak of 4.3% in Octo-
ber 2017, but not as extensive as some earlier 
periods of extreme drought. Also from May 
to December 2019, the area including severe 
and extreme drought conditions increased 
from 7.2% to 12% of the global land area, 
while moderate or worse drought condi-
tions increased from a minimum of 19.2% 
to 24.6% of the global land area. 

Fig. 2.34. Percentage of global land area (excluding ice sheets 
and deserts) with scPDSI indicating moderate (< −2), severe  
(< −3), and extreme (< −4) drought for each month of 1950–
2019. Inset: Each month of 2019.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/8/S9/4988923/bam

sd200104.pdf by guest on 28 Septem
ber 2020



S602 . G L O BA L  C L I M AT EAU G U S T  2 0 2 0  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 1 9

Similar to 2018, moderate to severe drought 
conditions during 2019 were extensive in 
South America, the western United States, 
and the Middle East. Previous moderate 
to severe drought conditions over Europe, 
southern Africa, and Australia intensified to 
extreme drought (Plate 2.1t). The east–west 
moisture contrast observed across the United 
States since 2017 further strengthened in 
2019, with extensive wetter conditions ex-
tending over the whole eastern half and drier 
in the west. Protracted drought over most of 
the semiarid northeastern region of Brazil 
(Jimenez-Muñoz et al. 2016) and central Chile 
(Garreaud et al. 2017) intensified again in 
2019 (Fig. 2.35). 

A large part of South Africa experienced 
extreme drought during 2019 (Plate 2.1t), 
continuing or intensifying (Fig. 2.35) dry 

conditions from previous years. In the Cape region, this is consistent with a long-term drying 
associated with human-caused climate change (Seager et al. 2019), which increases the risk of 
such rare events (Otto et al. 2018). Previous moderate to severe drought along parts of the west 
coast of Africa appear to have eased, while wetter conditions in most of central and eastern Africa 
persisted in 2019 (Fig. 2.35). However, these changes should be interpreted with caution as station 
data are sparse in these regions. See section 7e for more detailed precipitation analyses for Africa.

Extreme drought conditions that affected Afghanistan in 2018 eased through 2019, and the area 
under drought was reduced and concentrated mostly over the south of the country. Drought sever-
ity also decreased in parts of the Arabian Peninsula that have seen dry conditions since 2017 (Fig. 
2.35). Most of Australia saw an increase in drought intensity to severe and extreme conditions due 
to the continuation of the rainfall deficit combined with record high temperatures. These extreme 
conditions contributed to the most devastating fire season on record. Fire spread through the 
southeastern states causing unprecedented devastation. Extreme drought in the Murray–Darling 
Basin has been characterized as the worst on record. See section 7h4 and Sidebar 7.6 for details.

Antecedent dry conditions, below-average spring precipitation, and extreme summer heat 
waves pushed most of Europe into drought during 2019 (Plate 2.1t). The most intense drought in 
the annual average occurred across northern Germany and Poland, where there was already a 
strong soil moisture deficit in 2018 (Fig. 2.35). The sustained low precipitation in spring and sum-
mer in combination with exceptionally high temperatures in late winter-early spring—especially 
February—and the record-breaking temperatures in June and July further intensified the drought 
conditions in much of midlatitude Europe.

e. Atmospheric circulation
1) Mean sea level pressure and related modes of variability—R. Allan

Mean sea level pressure (MSLP) data can be used to derive indices of many regional modes 
of variability that drive significant weather and climate events (Kaplan 2011) such as El Niño–
Southern Oscillation (ENSO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), 
and the Antarctic Oscillation (AAO; Fig. 2.36). ENSO, which is measured in the atmosphere by 
the sea level pressure derived Southern Oscillation Index (SOI; Allan et al. 1996; Kaplan 2011), 
arguably has the most global impact. 

Fig. 2.35. Change in drought from 2018 to 2019 (mean scPDSI 
for 2019 minus mean scPDSI for 2018). Increases in drought 
severity are indicated by negative values (brown), decreases 
by positive values (green). No calculation is made where a 
drought index is meaningless (gray areas: ice sheets or deserts 
with approximately zero mean precipitation).
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ENSO describes a variety of events and episodes that, individually, can exhibit wide-ranging 
characteristics across the Indo-Pacific region and have teleconnections to higher latitudes in 
both hemispheres (Capotondi et al. 2015; L’Heureux et al. 2017; Wang et al. 2017; Timmermann 
et al. 2018; Santoso et al. 2019). These different “flavors” of ENSO include protracted El Niño and 
La Niña episodes (Allan and D’Arrigo 1999; Allan et al. 2019), which are manifest by persistent 
sea surface temperature (SST) anomalies in the Niño 4 region in the western equatorial Pacific. 

Some international ENSO forecasts and outlooks have deemed 2019 conditions as starting with 
a weak El Niño and changing to ENSO-neutral in July. However, since March–April 2018, monthly 
Niño 4 SST anomalies have remained positive and, if they continue to be so for 24 months or more 
(March–April 2020), they will pass one criterion for this period being indicative of a protracted 
El Niño episode (Allan et al. 2019). The second criterion, for the SOI to have acted similarly by 
being consistently negative (allowing for only any two months to have gone positive), has held 
since June 2018 (https://iridl.ldeo.columbia.edu/maproom/ENSO/Time_Series/SOI.html), and 
this is reflected in Plate 2.1u. This period of continuously warm Niño 4 SST anomalies has led to 
enhanced atmospheric convection over that region and the generation of a teleconnection that 
caused large-scale subsidence and suppressed rainfall across eastern Australia in the early-2018 
to early-2020 period (see section 7h4 and Sidebar 7.6 for more details). The Niño 4 SST response 
during the 2018–20 “protracted” El Niño episode may also have been possibly enhanced by an-
thropogenic forcing, as suggested by Newman et al. (2018).

In the Northern Hemisphere (NH), the last several boreal winters have displayed a variety 
of AAO and NAO conditions (Figs. 2.36, 2.37). Over the 2017/18 boreal winter (Figs. 2.37a,d), 
the NAO was mainly positive except in late February (Fig. 2.37d), with temperatures in Europe 
mostly mild to warm, and the region experienced its fifth-warmest year on record. In particular, 

Fig. 2.36. Time series for modes of variability described using sea level pressure for 
the (left) complete period of record and (right) 2006–19. (a),(b) SOI (provided by 
the Australian Bureau of Meteorology); (c),(d) AO (NOAA NCEP Climate Prediction 
Center); (e),(f) AAO (NOAA NCEP Climate Prediction Center); (g),(h) winter (Dec–Feb) 
NAO average (NCAR; presented for winter at the beginning of each year so winter 
2019/20 is not shown).
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France, Germany, Switzerland, the Netherlands, and Denmark experienced record or near-record 
warm conditions in 2018. 

During the 2018/19 boreal winter (Figs. 2.37b,e), the NAO swung from moderate positive values 
in early-to-mid-December to moderate negative values from late December to mid-January 2019, 
fluctuating between positive and negative values thereafter (Fig. 2.37e). The anticyclonic circula-
tion was dominated by southerly flow over Europe, which led to exceptionally high temperatures 
in February 2019. 

The 2019/20 boreal winter (Figs. 2.37c,f) was characterized by a persistent, mainly positive NAO, 
which led to warm and mild conditions across the entire European region, with heavy rainfall 
leading to flooding, and a series of deep Atlantic cyclones. The winter was dominated by a strong 
stratospheric polar vortex extending down through the troposphere, associated with one of the 
coldest Arctic winters in the last 10 years.

In the Southern Hemisphere (SH) during the latter half of 2019, the AAO transitioned from 
being predominantly in its positive phase since 2015/16 (Figs. 2.36f) to negative. This favored a 

Fig. 2.37. Boreal winter sea level pressure anomalies (hPa; 1981–2010 
base period) around the NH (hPa; 1981–2010 base period) averaged 
over Dec–Feb for (a) 2017/18, (b) 2018/19, and (c) 2019/20. NAO daily 
time series (hPa) for boreal winter (d) 2017/18, (e) 2018/19, and (f) 
2019/20. The 5-day running mean is shown by the solid black line. 
(Source: HadSLP2r [Allan and Ansell 2006].)
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lack of rainfall-bearing systems across eastern 
Australia and a reinforcement of the drought 
conditions prevailing in 2019 (see also Sudden 
Stratospheric Warming discussion in section 
2b5).

2) Land and ocean surface winds— 
C. Azorin-Molina, R. J. H. Dunn, L. Ricciardulli,  
C . A. Mears, T. R. McVicar, J. P. Nicolas, G. P. Compo, 
and C. A. Smith
Global average near-surface wind speed 

over land (i.e., ~10 m above the ground) has 
continued the reversal described in previ-
ous reports (e.g., Azorin-Molina et al. 2019), 
which started around 2010 (Zeng et al. 2019; 
Fig. 2.38a). The 30–50 years leading up to 
2010 were dominated by a gradual reduction 
in surface winds over land, termed global 
terrestrial stilling (Roderick et al. 2007). In 
2019, the global (excluding Australia) aver-
age wind speed anomaly was +0.033 m s−1 
with respect to the 1981–2010 climatology 
(Table 2.6), the third-largest positive wind 
speed anomaly since 2010. Regionally, Europe 
showed the largest rebound as the negative 
anomaly in 2018 became positive in 2019. In 
contrast, the positive anomalies in central 
Asia and east Asia were smaller than in 2018. 
Lastly, North America still showed a nega-
tive anomaly yet smaller than the lowest one 
recorded in 2012 (Iacono and Azorin-Molina 

Table 2.6. Global and regional statistics for land surface wind speed (m s−1) using the 
observational HadISD3 dataset for the period 1979–2019.

Region
Mean 

1981–2010 
(m s−1)

Anomaly 2019 
(m s−1)

Trend 1979–2019  
(m s−1 decade−1)  
and 5th–95th  

percentile confidence range

Number of 
stations

Globe (excluding 
Australia)

3.326 +0.033
−0.058  

(−0.067  −0.046)
2536

North America 3.705 −0.112
−0.081  

(−0.091  −0.072) 
569

Europe 3.689 +0.028
−0.046  

(−0.058  −0.036) 
759

Central Asia 2.897 +0.134
−0.100  

(−0.127  −0.076) 
257

East Asia 2.719 +0.104
−0.031  

(−0.040  −0.019) 
458

Fig. 2.38. Global (excluding Australia in panels [a], [c], and [d]) and regional annual time series of land surface wind 
speed anomaly (m s−1; relative to 1981–2010) using (a) HadISD3 (1973–2019), and (b) ERA5 (1979–2019), MERRA-2  
(1980–2019), and 20CRv3 (1836–2015, only 1970–2015 shown here). HadISD3 occurrence frequencies (in %) for wind speeds  
(c) >3 m s−1 and (d) >10 m s−1.
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2014). The recovery observed since 2010 
was discussed in regional (e.g., Kim and 
Paik 2015; Azorin-Molina et al. 2018a; R. 
Zhang et al. 2019) and global (Zeng et al. 
2019) studies. As in previous years, this 
recovery comes from an increase in the 
frequency of moderate winds around 2013  
(>3 m s−1; e.g., see central and east Asia in  
Fig. 2.38c), whereas strong winds (>10 m s−1; 
Fig. 2.38d) are still declining (Azorin-Molina 
et al. 2016). 

The multi-decadal variability and trends 
of surface winds over land during the 1979–
2019 period have been assessed here using 
station-based observations and gridded re-
analysis products. The observations consist 
of global quality-controlled anemometer 
observations from 2536 stations from the 
HadISD3 dataset (1973–2019, Dunn et al. 
2016; Dunn 2019). The reanalysis data are 
based on three products: the full-input ERA5 
(1979–2019, Hersbach et al. 2020), MERRA-2 
(1980–2019, Gelaro et al. 2017), and the 
surface-input 20CRv3 (1836–2015, Slivinski 
et al. 2019, the latter of which is included 
to reinforce the other products in common 
years). The reanalyses provide complete spa-
tial and temporal coverage; however, their 
inability to reproduce the observed long-term 
changes in wind anomalies (Fig. 2.38b) is a 
limitation (Torralba et al. 2017; Ramon et al. 
2019; Wohland et al. 2019). 

One of the key effects of the recent reversal 
and stabilization of land surface wind speeds 

is a lower magnitude of the negative trends. Globally, terrestrial surface winds declined at a rate 
of −0.058 m s−1 decade−1 during 1979–2019 (Table 2.6), which is close to half of the lowest trend 
recorded for 1981–2012 (−0.111 m s−1 decade−1; see Table 2.4 in McVicar et al. 2013). Regionally, the 
magnitude of negative trends is slightly weaker than in previous years, being most negative in 
central Asia, followed by North America and Europe, and least negative in East Asia. The 5th to 
95th percentile confidence ranges also shifted toward less negative trend values. In order to com-
pare with Remote Sensing Systems (RSS), Fig. 2.39 shows HadISD and MERRA-2 trends over the 
1988–2019 period. Negative trends (59.0% of stations) dominated northern midlatitude regions, 
with MERRA-2 also showing declining values for regions with scarce observations, e.g., South 
America, Africa, and Australia. 

Over ocean, the three above-mentioned reanalyses and satellite-based products were used to 
assess surface winds for the period 1987–2019: the Special Sensor Microwave/Imager (SSM/I), 
the Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Microwave Scanning Radi-
ometer (AMSRE and AMSR2), Tropical Rainfall Measuring Mission Microwave Imager (TMI), and 
WindSat (Wentz 1997, 2015; Wentz et al. 2007). The 2019 mean global mean wind speed anomaly 
over the ocean (Fig. 2.40) shows negative values for satellite radiometers and MERRA-2, but only 

Fig. 2.39. Wind speed trends (m s−1 decade−1) for the obser-
vational HadISD3 dataset (circles) over land, and MERRA-2 
reanalysis output over land/ice and Remote Sensing Systems 
(RSS) satellite radiometers (SSM/I, SSMIS, TMI, GMI, AMSR2, 
ASMR-E, and WindSat) over ocean for 1988–2019 (shaded 
areas).

Fig. 2.40. Annual anomalies of global mean wind speed  
(m s−1; 1981–2010 base period) over the ocean from satellite 
radiometers and reanalysis outputs.
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a weak negative anomaly for ERA5. According to the satellite measurements, 2019 marked the 
second-lowest wind speed anomaly over ocean in the twenty-first century. The global spatial 
anomalies (Plate 2.1v) show a dominance of negative anomalies, in particular over the western 
Pacific and over the Indian Ocean (< −1 m s−1), due to an intense positive phase of the Indian 
Ocean dipole (IOD), and in the central Pacific and South Atlantic Ocean; in contrast, positive 
anomalies (> +1 m s−1) occurred over the Southern Ocean, North Atlantic Ocean, and the Bering, 
Mediterranean, and Coral Seas. As in 2018, ocean wind speed trends for 1988–2019 (Fig. 2.39) were 
mostly dominated by weak negative values along with a clear tendency toward a strengthening 
of winds in the Southern Ocean, the trade winds in the Pacific and Atlantic Oceans, and some 
isolated regions (Young and Ribal 2019).

The potential causes underlying global terrestrial stilling and its reversal over the last decade 
are varied (Azorin-Molina et al. 2018b) and likely not all presently known. Recently, Zeng et al. 
(2018) rejected the attribution of the slowdown of winds to the increase of terrestrial surface rough-
ness due to vegetation/urbanization growth (Vautard et al. 2010), and Zeng et al. (2019) proposed 
that the major driving force of wind speed changes (i.e., both the stilling and the recent rebound 
of winds) is associated with decadal ocean–atmosphere oscillations and changes in large-scale 
atmospheric circulation patterns. Moreover, Zeng et al. (2019) concluded that the relationship of 
ocean–atmosphere oscillations to anthropogenic warming and the impact on surface wind speed 
variability remains unclear, representing a large scientific challenge.

3) Upper air winds—L. Haimberger, M. Mayer, and V. Schenzinger
As in past years, we examine the 200-hPa velocity potential to evaluate the imprint of tropical 

climate anomalies on upper air divergent winds. A strong positive IOD event developed in the 
course of 2019, peaking in boreal autumn (see section 4h). Figure 2.41 displays anomalous 200-hPa 
velocity potential and divergent winds for August–December 2019 and shows a clear imprint of the 
IOD event. The positive IOD event occurred in the absence of classical El Niño conditions, which is 
relatively rare but linked to the protracted El Niño (section 2e1). Consequently, the strongest velocity 
potential anomalies were found over the Indian Ocean. There is a prominent dipole in the velocity 
potential, with positive anomalies over the Indo-Pacific Warm Pool and negative anomalies over the 
western Indian Ocean, which leads to a westerly divergent wind anomaly over the Indian Ocean. The 
positive anomalies and associated wind convergence over the Warm Pool are indicative of reduced 

Fig. 2.41. Anomalous 200-hPa velocity potential (× 106 m2 s−1) and divergent winds (m s−1) averaged over Aug–Dec 2019 
(1981–2010 base period) based on ERA5 data.
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convection in this region, consis-
tent with negative SST anomalies 
in the eastern Indian Ocean. 

The positive velocity potential 
anomalies extend well over Aus-
tralia, with a secondary maxi-
mum over the south of the con-
tinent. The associated upper air 
wind convergence and sinking 
motion is consistent with the 
persistent dry conditions over the 
Australian continent (see section 
7h4 for more details).

Plate 2.1w shows the 850-hPa 
eastward wind patterns in au-
tumn 2019. The most obvious 
feature is the anticyclonic struc-
ture over Australia and the Indian 

Ocean, with strong easterly anomalies over the equator south of India and over northern Australia 
together with strong westerly anomalies over the southern Indian Ocean and south of Australia, 
which is perhaps enhanced by the negative Antarctic Oscillation in 2019. This indicates a strong 
anomalous anticyclonic circulation over the Australian continent, which is consistent with the 
drought conditions observed there (Ummenhofer et al. 2009). Together with the patterns shown 
in Fig. 2.41, the easterly 850-hPa wind anomaly over the equatorial Indian Ocean completes the 
picture of the perturbed Walker circulation in this region, with anomalous upward motion in the 
western Indian Ocean and anomalous sinking motion over the Maritime Continent.

The 2019 global mean wind speed at 850 hPa was lower than in 2018 and slightly below the 
1981–2010 average (Fig. 2.42). The positive trend over the past 40 years still remains in all four 
reanalyses presented here. 

The 2019 behavior of the Quasi-Biennial Oscillation (QBO) can be described as being fairly regu-
lar (see Fig. A2.18). The westerly phase had a maximum amplitude of 17 m s−1, which is comparably 
high (mean 14.8 ± 1.8 m s−1), but not at record levels. It descended with about 1 km yr−1 on average, 
well within the long-term range of descent rates (1.2 ± 0.6 km yr−1) and lasted for 25.8 months in 
total, which is about 2.5 months shorter than on average. At 10 hPa, the easterly phase started in 
April, which is a common month for a phase transition at this height. Its descent progressed with 
0.8 km yr−1 so that it reached the 30 hPa level by the end of the year. However, one noteworthy 
behavior was the onset of the easterly phase at 45 hPa at the end of October, which means that it 
developed within a zone of westerly winds, similar to the anomaly in the 2015/16 boreal winter.

f. Earth radiation budget
1) Earth radiation budget at top of atmosphere—T. Wong, P. W. Stackhouse, Jr., D. P. Kratz,  

P. Sawaengphokhai, A. C. Wilber, S. K. Gupta, and N. G. Loeb
The energetic state of the Earth–atmosphere system is defined by the balance of the incoming 

total solar irradiance (TSI) and the reflected shortwave (RSW) and outgoing longwave radiation 
(OLR) from Earth. This balance defines Earth’s radiation budget (ERB) at the top of the atmosphere 
(TOA), and its regional distribution drives atmosphere and ocean circulations.

An analysis of all CERES ERB measurements (Table 2.7) shows that 2019 global annual mean 
OLR increased by ~0.60 W m−2 and RSW decreased by ~0.55 W m−2 relative to their correspond-
ing values in 2018 (rounded to nearest 0.05 W m−2). Over the same timeframe, the global annual 
mean TSI remained nearly unchanged. The sum of these components amounts to a near zero 

F ig .  2 . 4 2 .  Annual  anomal ies  of  g lobal  mean wind speed  
(m s−1; 1981–2010 base period) at 850 hPa from four reanalyses (ERA5, 
ERA-Interim, MERRA-2, JRA-55). The numbers in parentheses are linear 
trends in m s−1 decade−1 for the period 1980–2019.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/8/S9/4988923/bam

sd200104.pdf by guest on 28 Septem
ber 2020



S672 . G L O BA L  C L I M AT EAU G U S T  2 0 2 0  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 1 9

change (decrease of ~0.05 W m−2) 
in the global annual mean total net 
radiation into Earth’s climate system 
for 2019 compared with 2018. Figure 
2.43 shows the annual mean regional 
difference maps in the OLR and RSW 
between 2019 and 2018. Peak OLR flux 
changes are largely compensated by 
RSW changes, but OLR increases are 
spread over broader areas including 
the Indian Ocean, continental Asia, 
Australia, and South America. Large 
reductions in OLR and increases in 
RSW are observed over large areas 
of the Pacific that stretch from east of 
New Guinea to the eastern equatorial 
Pacific and from east of New Guinea 
to the southern Pacific. These regional 
changes are associated with the tropi-
cal climate oscillation between minor 
La Niña conditions in early 2018, weak 
El Niño conditions during the first half 
of 2019, and near-neutral conditions 
by the end of 2019. Relative to the mul-
tiyear data average from 2001 to 2018, 
the 2019 global annual mean flux 
anomalies (Table 2.7) are +0.55, −0.1, 
−1.20, and +0.55 W m−2 for OLR, TSI, 
RSW, and total net flux, respectively. 
With the exception of RSW, these 
global annual averaged anomalies 
are within the corresponding 2-sigma 
interannual variability (Table 2.7) for 
this period. The 2-sigma anomaly in 
the RSW relative to climatology indi-
cates significant variability that could 

Table 2.7. Global annual mean top of the atmosphere (TOA) radiative flux changes 
between 2018 and 2019, the 2019 global annual mean radiative flux anomalies 
relative to their corresponding 2001–18 mean climatological values, and the 
2-sigma interannual variabilities of the 2001–18 global annual mean fluxes (all 
units in W m−2) for the outgoing longwave radiation (OLR), total solar irradiance 
(TSI), reflected shortwave (RSW), and total net fluxes. All flux values are rounded 
to the nearest 0.05 W m−2 and only balance to that level of significance.

One-year change 
(2019 minus 2018) 

(W m−2)

2019 Anomaly  
(relative to climatology) 

(W m−2)

Interannual variability 
(2001–18)  

(W m−2)

OLR 0.60 +0.55 ±0.60

TSI 0.00 −0.10 ±0.15

RSW −0.55 −1.20 ±0.95

Net −0.05 +0.55 ±0.80

Fig. 2.43. Annual average TOA flux differences between 2019 and 
2018 for the (a) OLR (top panel) and (b) TOA RSW (bottom panel). The 
pattern of differences shows several significant features including 
changes over the tropical Pacific, Indian, and North Atlantic Oceans. 
The tropical Pacific pattern is dominated by an atmospheric shift from 
La Niña conditions during the first half of 2018, to weak El Niño in 
the first half of 2019, to near-neutral condition by the end of 2019. 
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be indicative of cloud and/or snow/ice changes. More analysis is needed to attribute the source of 
the variability.

The global monthly mean anomaly time series of TOA fluxes (Fig. 2.44) reveal that the global month-
ly mean OLR anomaly remained mostly positive throughout 2019. The OLR anomalies in 2019 began 
with a value of +0.10 W m−2, reached +0.77 W m−2 in March, dropped to −0.10 W m−2 in June, then mostly 
increased each month for the rest of the year. It ended the year with a very large positive OLR anomaly  
(~ +1.62 W m−2). This large December OLR anomaly is consistent with the values obtained from the 
NOAA HIRS OLR (Lee and NOAA CDR Program 2011) and NASA AIRS OLR (Susskind et al. 2012) 
dataset. The global monthly mean absorbed shortwave (TSI − RSW) anomaly remained entirely 
positive during 2019, and the magnitudes of this anomaly were larger than the corresponding OLR 
anomaly. The absorbed shortwave anomaly began with a value of +0.58 W m−2, oscillated around 
the value of +1.0 W m−2 throughout the year, reached its maximum value of +1.71 W m−2 in Octo-
ber, ending the year with a value of +1.40 W m−2. For the year as a whole, the 2019 global annual 
mean absorbed shortwave anomaly was +1.1 W m−2. The global monthly mean total net anomaly, 
which is calculated from the absorbed shortwave anomaly minus the OLR anomaly, began 2019 
with a value of +0.48 W m−2, remained positive throughout the year, reached a maximum value of  
+1.51 W m−2 in October, and ended the year with a value of −0.22 W m−2. The positive absorbed 
shortwave anomalies in 2019 dominated the negative effect of the OLR anomaly and resulted in the 
positive 2019 global annual mean total net anomaly of +0.55 W m−2. This was the sixth consecu-
tive year that the TOA global annual mean total net anomaly was positive relative to climatology. 
Long-term trend analyses that include the last two months of the merged dataset are discour-

aged because of the natural 
fluctuation in ERB compo-
nents, uncertainty from the 
data merging process, and 
potential for drift in the 
FLASHFlux product. 

The TSI data used in this 
study are provided by the 
Total Irradiance Monitor 
aboard the Solar Radiation 
and Climate Experiment 
(SORCE) mission (Kopp and 
Lean 2011) and the Royal 
Meteorological Institute of 
Belgium composite dataset 
(Dewitte et al. 2004), both 
renormalized to the SORCE 
Version 15. The RSW and 
OLR data were obtained 
from the CERES mission 
(Wielicki et al. 1996, 1998) 
aboard Terra and Aqua 
spacecraft.

The time series (Fig. 
2.44) were constructed 
from the CERES EBAF (En-
ergy Balanced And Filled) 
Ed4.1 product (Loeb et al. 
2009, 2012, 2018) for March 

Fig. 2.44. Time series of global monthly mean deseasonalized anomalies (W m−2) 
of TOA Earth radiation budget for OLR (upper), absorbed shortwave (TSI−RSW; 
middle), and total net (TSI−RSW−OLR; lower) from Mar 2000 to Dec 2019. Anoma-
lies are relative to their calendar month climatology (2001–18). Time series shows 
the CERES EBAF Ed4.1 1° data (Mar 2000–Oct 2019) in red and the CERES FLASH-
Flux version 3C data (Nov–Dec 2019) in blue; see text for merging procedure.  
(Sources: https: //ceres-tool.larc.nasa.gov/ord-tool / jsp/EBAF41Selection.jsp and 
https: //ceres-tool.larc.nasa.gov/ord-tool / jsp/FLASH_TISASelection.jsp.)
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2000–October 2019 and from the CERES Fast Longwave and Shortwave Radiative Fluxes (FLASH-
Flux) version 3C product (Kratz et al. 2014) for November–December 2019. The normalization of the 
FLASHFlux data (Stackhouse et al. 2016) results in 2-sigma monthly uncertainties of ±0.42, ±0.08, 
±0.22, and ±0.52 W m−2 for the OLR, TSI, RSW, and total net radiation, respectively. Global annual 
averaged maps were normalized on a region-by-region basis for November and December 2019. 

2) Mauna Loa clear-sky “apparent” solar transmission—J. A. Augustine, K. O. Lantz, J.-P. Vernier, and 
H. Telg
Apparent solar transmission has been measured at the Mauna Loa Observatory in Hawaii by 

NOAA’s Global Monitoring Division and its predecessors since the International Geophysical 
Year in 1958. It is the longest record of its kind. Because the observatory is in a pristine environ-
ment, elevated far above the marine boundary layer, the Mauna Loa apparent transmission is 
an effective proxy for stratospheric aerosol loading, although it is affected each spring by peren-
nial tropospheric Asian dust events (Bodhaine et al. 1981). It has been used primarily to track 
background stratospheric aerosols and the decay of volcanic plumes that had been injected into 
the stratosphere. Other studies have examined the influence of water vapor, ozone, and the 
Quasi-Biennial Oscillation (QBO) on the transmission at Mauna Loa (Dutton et al. 1985; Dutton 
and Bodhaine 2001; Dutton 1992). 

Figure 2.45 presents monthly averages of the apparent transmission through December 2019 
in time series along with a locally weighted scatterplot smoothing (LOWESS) fit smoothed with 
six-month filter. The high frequency variability of the fit reveals the springtime minimum each 
year as dust from Asia passes over. The cleanest extended period of the record is its first five years 
prior to the Agung eruption (Indonesia, 1963–64). After the recovery from Agung, that level of 
“background” stratospheric cleanliness, delineated by the horizontal dotted line in Fig. 2.45, has 
only been achieved for brief periods. The largest anomalies are from the eruptions of El Chichón 
(Mexico, 1982) and Mt. Pinatubo (Philippines, 1991), for which minimum transmissions of 0.80 
and 0.82, respectively, were realized. Recoveries from those events lasted five to six years. About 
five years after the stratosphere recovered from the effects of Pinatubo, a series of medium-scale 
volcanic events, some of which were at high latitudes (Vernier et al. 2011; Andersson et al. 2015), 
impacted the stratosphere over 
Mauna Loa. Their combined 
effect was a small downward 
trend in transmission of −0.001 
decade−1 from 2002 through 
2012 (large shaded area in Fig. 
2.45) that is consistent with 
a reported increase in strato-
spheric aerosols of 4%–7% per 
year during the first half of the 
period (Hofmann et al. 2009). 
The anchor of that small trend 
is the effect from the plume of 
the Nabro eruption (Eritrea, 
June 2011) that lasted through 
2012. The largest anomaly after 
Pinatubo was when transmis-
sion values of 0.90 and 0.91 
in March and April of 2009 
matched the maximum ef-
fect from Agung. Mt. Redoubt 

Fig. 2.45. Time series of the clear-sky apparent transmission at MLO, Hawaii, 
for 1958–2019. Red circles represent monthly means. The gray curve is a 
six-month smoothed LOWESS fit to the time series. The horizontal dotted 
line represents the mean pre-Agung “background” transmission from 1958 
to 1962 (0.934). Major events that impacted the transmission record are 
labeled, and shaded areas are relevant to the discussion.
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(Alaska) erupted in March 2009 and did reach the stratosphere, but trajectories show that its 
plume did not escape the high latitudes. Because this short-term anomaly was not seen by the 
Mauna Loa stratospheric lidar, tropospheric events may be responsible for the observed reduc-
tion in transmission. Kilauea (~32 km east of Mauna Loa) was highly active during that period, 
and effluent from its lava flowing into the sea ~40 km southeast of Mauna Loa and strong Asian 
dust events are both evident in satellite imagery (https://worldview.earthdata.nasa.gov) during 
those two months.

After the effect from Nabro subsided in 2012, the transmission over Mauna Loa was relatively 
high through 2016. However, since 2017 the transmission has been generally decreasing (small 
shaded area in Fig. 2.45). The initial decrease in 2017 may be from Asian dust, but the decrease in 
the latter half of that year is likely due an active wildfire season and associated pyro-thunderstorm 
activity in British Columbia and the northwestern United States. Those events lofted smoke into 
the stratosphere that was observed by CALIPSO, SAGE III, and surface-based lidars in France 
into 2018 (Khaykin et al. 2018). The minimum transmission in September 2019 is very likely as-
sociated with the Raikoke eruption on the Kuril Islands on 22 June 2019, which was larger than 
Sarychev (Kuril Islands, 2009) and Nabro. Balloon measurements in Virginia on 4 October 2019, 
three months after the eruption, show the Raikoke plume residing in the lower stratosphere be-
tween 15 and 25 km above ground level. A combination of the CALIPSO space-borne lidar and a 
trajectory model (Vernier et al. 2013) shows the plume over Hawaii on that day, and as of January 
2020 it was still significantly impacting the composition of the stratosphere (see Fig. SB2.5). 

The observatory is located near the top of the Mauna Loa volcano on the island of Hawaii at 
3400 m above mean sea level. “Apparent transmission” is calculated from the ratio of solar beam 
measurements at two fixed solar elevations (Ellis and Pueschel 1971), which is mathematically 
equivalent to a traditional vertical column transmission calculation. For this application, repre-
sentative daily transmissions are computed as the mean of three such ratios from pyrheliometer 
measurements at solar pathlengths of 2, 3, 4, and 5 atmospheres. To avoid contamination from 
afternoon upslope winds, only morning measurements are used. This method minimizes error 
because neither the calibration of the pyrheliometer nor the solar intensity at TOA are needed, 
resulting in a precise time series back to 1958. The monthly product reported is the average of all 
acceptable clear-sky morning transmissions of a particular month. 

g. Atmospheric composition
1) Long-lived greenhouse gases—X. Lan, B. D. Hall, G. Dutton, J. Mühle, and J. W. Elkins

Increases in atmospheric greenhouse gas burdens, especially the long-lived greenhouse gases 
(LLGHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are mainly the result 
of human activity since the industrial revolution and largely responsible for increasing global 
temperature (IPCC 2013).

The atmospheric pre-industrial abundance of CO2 is estimated to be ~278 ppm (parts per mil-
lion by moles in dry air), based on air extracted from ice in Greenland and Antarctica (Etheridge 
et al. 1996). Systematic measurements of atmospheric CO2 began at Mauna Loa, Hawaii (MLO), in 
1958, when the atmospheric CO2 abundance was about 315 ppm. In 2019, annually averaged CO2 
at MLO reached 411.4 ± 0.1 ppm (all uncertainties are 68% confidence intervals), while globally 
averaged CO2 at Earth’s surface was 409.8 ± 0.1 ppm (Fig. 2.46a).

Annual growth in global mean CO2 has risen steadily from 0.6 ± 0.1 ppm yr−1 in the early 1960s 
to an average of 2.3 ppm yr−1 during 2009–18, with large interannual variability (Fig. 2.46a). The 
increase in global mean CO2 from 2018 to 2019 was 2.5 ± 0.1 ppm (Table 2.8). 

Variations in the atmospheric CO2 show the changing imbalance between its emissions and 
sinks. From 1850 to 2018, 440 ± 20 Pg C (1 Pg C = 1015 g C) were emitted as CO2 from fossil fuel 
burning (Friedlingstein et al. 2019). For 2018 alone, global fossil fuel emissions reached 10 ± 0.5  
Pg C yr−1 for the first time in history (Friedlingstein et al. 2019). About half of the CO2 emitted 
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Fig. 2.46. Global monthly mean dry-air surface mole fractions (black) of (a) CO2, (b) CH4, and (c) N2O derived from the 
NOAA air-sampling network. Instantaneous growth rates (red), calculated as time-derivatives of deseasonalized trend 
curves (see Dlugokencky et al. 1994b for methods), are shown on the right axis (insufficient and noisy N2O data prior to 
1995 hinder calculation of a growth rate). 

Table 2.8. Summary table of long-lived greenhouse gases for 2019 (CO2 mixing ratios are in ppm, N2O and CH4 in ppb, 
and all others in ppt). 

Industrial  
designation or  
common name

Chemical 
 formula

Radiative efficiency 
(W m−2 ppb−1)a

Radiative forcing
 (W m-2)

Mean surface mole  
fraction, 2019  

(change from prior year)b

Lifetime
(years)

Carbon Dioxide CO2 1.37 × 10−5 2.08 409.8 (2.5) —

Methane CH4 3.63 × 10−4 0.52 1866.6 (9.2) 9.1

Nitrous Oxide N2O 3.00 × 10−3 0.20 331.9 (1.0)c 123

Chlorofluorocarbons

CFC-11 CCl3F 0.26 0.059 226.5 (−1.6)c 52

CFC-12 CCl2F2 0.32 0.161 501.5 (−4.2)c 102

CFC-113 CCl2FCClF2 0.30 0.021 69.7 (−0.6)c 93

Hydrochlorofluorocarbons

HCFC-22 CHClF2 0.21 0.052 246.8 (2.7) 11.9

HCFC-141b CH3CCl2F 0.16 0.004 24.4 (0.0) 9.4

HCFC-142b CH3CClF2 0.19 0.004 22.0 (0.0) 18
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since 1850 remains in the atmosphere. The rest of it has partially dissolved in the world’s oceans 
where it has made seawater ~30% more acidic (as indicated by [H+], Tans 2009), with potential 
impacts on marine life. While the terrestrial biosphere is currently also a sink for fossil fuel CO2, 
the cumulative emissions of CO2 from land use changes such as deforestation cancel terrestrial 
uptake over the 1850–2018 period (Friedlingstein et al. 2019). While emissions of CO2 from fossil 
fuel combustion drive its increasing atmospheric burden, the large interannual variability in CO2 
growth rate is mostly driven by terrestrial exchange of CO2 influenced by changing meteorology; for 
example, the strong El Niño that peaked in late 2015 contributed to a strong global CO2 increase of  
3.0 ppm yr−1 (Betts et al. 2016). The connection between meteorology and terrestrial CO2 exchange is 
under investigation, as an important step to understand climate feedbacks. For example, regionally, 
enhanced carbon uptake by North American ecosystems during the 2015 El Niño was suggested to 
be due to increased water availability and favorable temperature conditions (Hu et al. 2019). 

Table 2.8. Summary table of long-lived greenhouse gases for 2019 (CO2 mixing ratios are in ppm, N2O and CH4 in ppb, 
and all others in ppt). 

Industrial  
designation or  
common name

Chemical 
 formula

Radiative efficiency 
(W m−2 ppb−1)a

Radiative forcing
 (W m-2)

Mean surface mole  
fraction, 2019  

(change from prior year)b

Lifetime
(years)

Hydrofluorocarbons

HFC-134a CH2FCF3 0.16 0.017 107.8 (5.8) 14

HFC-152a CH3CHF2 0.10 <0.001 6.9 (0.0) 1.6

HFC-143a CH3CF3 0.16 0.004 23.8 (1.6) 51

HFC-125 CHF2CF3 0.23 0.007 29.1 (3.1) 30

HFC-32 CH2F2 0.11 0.002 19.2 (2.8) 5.4

HFC-23 CHF3 0.18 0.006 32.5 (1.3) 228

HFC-365mfc CH3CF2CH2CF3 0.22 < 0.001 1.01 (0.04) 8.9

HFC-227ea CF3CHFCF3 0.26 < 0.001 1.56 (0.14) 36

Chlorocarbons

Methyl Chloroform CH3CCl3 0.07 < 0.001 1.6 (−0.3) 5.0

Carbon Tetrachloride CCl4 0.17 0.013 78.4 (−0.8)c 32

Methyl Chloride CH3Cl 0.01 < 0.001 546.5 (1.4) 0.9

Bromocarbons

Methyl Bromide CH3Br 0.004 < 0.001 6.56 (−0.06) 0.8

Halon 1211 CBrClF2 0.29 0.001 3.25 (−0.10) 16

Halon 1301 CBrF3 0.30 0.001 3.28 (0.01) 72

Halon 2402 CBrF2CBrF2 0.31 < 0.001 0.40 (−0.01) 28

Fully fluorinated species

Sulfur Hexafluoride SF6 0.57 0.006 9.96 (0.35) > 600

PFC-14 CF4 0.09 0.005 85.5 (0.9) ~ 50 000

PFC-116 C2F6 0.25 0.001 4.85 (0.09) ~ 10 000

PFC-218 C3F8 0.28 < 0.001 0.69 (0.03) ~ 2600

PFC-318 c-C4F8 0.32 < 0.001 1.76 (0.07) ~ 3200
aRadiative efficiencies and lifetimes were taken from Appendix A in WMO (2018), except for SF6 lifetime from Ray et al. (2017), CH4 lifetime 
from Prather et al. (2012). For CO2, numerous removal processes complicate the derivation of a global lifetime. AGGI = Annual Greenhouse 
Gas Index. For radiative forcing, see https://www.esrl.noaa.gov/gmd/aggi/aggi.html

bMole fractions are global, annual surface means for the indicated calendar year determined from the NOAA cooperative global air sampling 
network (Hofmann et al. 2006), except for PFC-14, PFC-116, PFC-218, PFC-318, and HFC-23, which were measured by AGAGE (Mühle et al., 
2010; Miller et al., 2010). Changes indicated in brackets are the differences between the 2019 and 2018 means. All values are preliminary and 
subject to minor updates.

cGlobal mean estimates derived from multiple NOAA measurement programs (“Combined Dataset”). 

(cont.) Table 2.8. Summary table of long-lived greenhouse gases for 2019 (CO2 mixing ratios are in ppm, N2O and  
CH4 in ppb, and all others in ppt). 
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The global mean CH4 abundance at Earth’s surface increased from 722 ± 15 ppb (parts per bil-
lion) in 1750 to 1866.6 ± 0.9 ppb in 2019 (Fig. 2.46b). The growth rate of CH4 varies decadally and 
interannually. A stabilization in CH4 burden was observed during 1999–2006 after a large rise 
in the 1980s and 1990s, followed by a period of rapid increase since 2007. The increase in global 
mean CH4 from 2018 to 2019 was 9.2 ± 0.9 ppb, which is among the three largest annual increases 
(with 2014 and 2015) since 2007. The drivers behind the changing CH4 growth rates are still being 
debated, mainly due to the complexity and uncertainty in the atmospheric CH4 budget. Although 
total global emissions of CH4 are well-constrained by the current network of atmospheric mea-
surements and an estimate of its lifetime (Dlugokencky et al. 2011), the magnitude and trend in 
emissions from individual sources and trends in CH4 atmospheric lifetime are still uncertain. The 
sources of atmospheric CH4 are from anthropogenic (50%–65%) and natural origins (Saunois et al. 
2016). The CH4 loss process is atmospheric oxidation, mainly through reaction with the short-lived 
(~1 second lifetime) hydroxyl radical (OH), which is poorly constrained by observations. Other pro-
cesses are destruction by bacteria in soils and reaction with chlorine radicals in the atmosphere, 
both of which are highly uncertain. The large variability in the CH4 growth rate results predomi-
nantly from changes in emissions from wetlands and biomass burning driven by meteorology, but 
it has also been affected by volcanic eruptions (Banda et al. 2013; Dlugokencky et al. 1994) and 
fossil fuel emissions (Dlugokencky et al. 1998). Measurements of CH4 abundance and its isotopic 
composition suggest the drivers behind the post-2006 rise are mainly increased emissions from 
biogenic sources and from natural and/or anthropogenic origins (Nisbet et al. 2019; Schaefer et 
al. 2016; Schwietzke et al. 2016), while a decrease in biomass burning and a small increase in 
fossil fuel emissions (Worden et al. 2017) can also play a minor role. Some studies have proposed 
a significant role of increased 
shale gas emissions from the 
United States (Franco et al. 
2016; Hausmann et al. 2016; 
Helmig et al. 2016) in the past 
decade, but Lan et al. (2019) ar-
gue that this assertion is incon-
sistent with CH4 measurements 
from aircraft and tall towers 
from NOAA’s North American 
Network. 

Nitrous oxide (N2O) is an 
ozone-depleting LLGHG (Rav-
ishankara et al. 2009) mainly 
produced from natural and ag-
riculture soils, animal manure 
(Davidson 2009), and from the 
oceans. The observed increase 
in atmospheric N2O over its 
preindustrial level (at 270 ppb) 
is mostly caused by nitrogen-
containing fertilizers and ma-
nure used for agriculture (Da-
vidson 2009). Atmospheric N2O 
has been increasing steadily 
throughout the industrial era 
except for a brief period in the 

2.47. (a) Direct radiative forcing (W m−2) due to five major LLGHG and 15 
minor gases (left axis) and the associated values of the NOAA AGGI (right 
axis). The five major LLGHG include CO2, CH4, N2O, CFC-11, and CFC-12. The 
15 minor gases consist of halogenated gases (CFC-113, CCl4, CH3CCl3, HCFCs 
22, 141b and 142b, HFCs 134a, 152a, 23, 143a, and 125, SF6, and halons 1211, 
1301 and 2402). (b) Annual increase in direct radiative forcing referenced 
to 1990 (solid black line).
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1940s (MacFarling Meure et al. 2006; Thompson et al. 2019). The mean global atmospheric N2O 
abundance in 2019 was 331.9 ± 0.1 ppb, an increase of 1.0 ± 0.2 ppb from 2018 (Fig. 2.46c). This 
1.0 ppb increase in the annual mean is similar to the average annual increase over 2009–18  
(1.0 ± 0.2 ppb) but larger than the average annual increase over 1995–2008 (0.8 ± 0.2 ppb).

The impacts of these LLGHGs on global climate is estimated by their abilities to change the 
global radiative energy. Compared with preindustrial times, increasing atmospheric CO2 has 
increased radiative forcing by > 2.0 W m−2. The increase in CH4 has contributed to a 0.51 W m−2 
increase in direct radiative forcing while the CH4-related production of tropospheric ozone (O3) 
and stratospheric water (H2O) also contributes to ~ 0.30 W m−2 indirect radiative forcing (Myhre 
et al. 2014). NOAA’s Annual Greenhouse Gas Index (AGGI; Fig. 2.47) summarizes trends in the 
combined direct radiative forcing by CO2, CH4, N2O, CFC-11, CFC-12, and 15 minor gases (Table 2.8; 
Hofman et al. 2006). This index represents the annual cumulative radiative forcing of these gases 
relative to the Kyoto Protocol baseline year of 1990. The 2019 AGGI was 1.45, suggesting a 45% 
increase in radiative forcing since 1990 (combined radiative forcing in 2019 was 3.14 W m−2). While 
the atmospheric burdens of some greenhouse gases such as chlorofluorocarbons have declined 
in recent decades (Fig. 2.48), the combined radiative forcing of LLGHGs has increased each year 
(Fig. 2.47). Year-to-year variations in the AGGI increment correspond roughly with variability in 
CO2, since CO2 is responsible for about 65% of radiative forcing by LLGHGs and its rate of increase 
during 2014–19 accounts for 82% of total increase in radiative forcing (Fig. 2.46).

Fig. 2.48. Global mean mole fractions at Earth’s surface (ppt; dry air) 
for several LLGHG, many of which also deplete stratospheric ozone. 
See Table 2.8 for the 2019 global mean mole fractions of these and 
other gases.
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2) Ozone-depleting substances—B. D. Hall, S. A. Montzka, G. Dutton, B. R. Miller, and J. W. Elkins 
Halogenated gases, such as CFCs and HCFCs, influence climate directly through radiative forc-

ing and indirectly by contributing to stratospheric ozone depletion (Karpechko et al. 2018). The 
emissions and atmospheric abundances of most ozone depleting substances (ODS) are declining 
as expected due to controls implemented in the Montreal Protocol (Engel et al. 2018). By mid-2019, 
tropospheric CFC-11 and CFC-12 declined 15% and 7.5% from their maximum abundances in the 
mid-1990s and early 2000s, respectively (see Fig. 2.48). However, CFC-11 has not been declining as 
fast after 2012, likely indicating a resumption of production, in violation of the Montreal Protocol 
(Montzka et al. 2018a; Rigby et al. 2019), which banned production for emissive use starting in 2010. 
Global CFC-11 emissions, derived from atmospheric data, were 13%–25% higher during 2014–16 
compared to 2008–12 (Montzka et al. 2018a). The globally averaged decline in CFC-11 from 2018 
to 2019 (1.6 ppt; Table 2.8) is slightly larger than in previous years (Hall et al. 2019), although the 
significance of this difference and the influence of potential emission changes and atmospheric 
processes (Ray et al. 2020) on these recent observations have not yet been determined.

Atmospheric abundances of HCFCs, which are replacements for CFCs, increased as CFC produc-
tion was phased out. In recent years the rates of increase of HCFC-22, HCFC-141b, and HCFC-142b 
have slowed (Fig. 2.48). In fact, globally averaged abundances of HCFC-141b and HCFC-142b did 
not change between 2018 and 2019 (Table 2.8). Substitutes for HCFCs, known as HFCs, do not 
deplete ozone, but do contribute to radiative forcing. Abundances of many HFCs are increasing 
at rates of several percent per year, although as a group their contribution to current forcing is 
still small relative to that from ozone-depleting gases (~11%; Montzka et al. 2018b). Of the HFCs, 
HFC-134a contributes most to radiative forcing (17 mW m−2 in 2019). Its abundance increased by 
5.8 ppt from 2018 to 2019, which is similar to the average increase (5.6 ppt yr−1) since 2010.

Equivalent effective stratospheric chlorine (EESC) is a measure of the ozone-depleting potential 
of the stratospheric halogen loading at a given time and place. EESC is calculated from global 
average surface mole fractions of long-lived ozone-depleting gases and weighting factors that 
include surface-to-stratosphere transport times, mixing during transit, photolytic reactivity, 
and ozone-destruction efficiency (Montzka et al. 1996; Newman et al. 2007). EESC is typically 
calculated for two regions that differ in total available reactive halogen: the Antarctic and the 
midlatitude stratosphere (Fig. 2.49). EESC is larger in the Antarctic compared to the midlatitudes 
because a larger fraction of ODSs are converted into reactive halogen as they are transported to the 
Antarctic. Even though the abundances of CFCs are decreasing, their contribution to EESC is still 
substantial because of their long atmospheric lifetimes (Table 2.8). In contrast, the contribution 

Fig. 2.49. EESC for the midlatitude and Antarctic stratosphere derived from NOAA surface measurements of long-lived 
ODSs, supplemented with data from the WMO A1 scenario (Carpenter et al. 2018). EESC values correspond to Jan of each 
year. In this context, Antarctic and midlatitude represent regions of the stratosphere having a mean age-of-air equal to 
5.5 and 3 years, respectively.
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of methyl chloroform (CH3CCl3) to EESC is now very small because emissions have decreased to 
near zero and its lifetime is relatively short (five years). 

By the beginning of 2019, EESC decreased to 3710 ppt and 1575 ppt in Antarctic and midlatitude 
regions, respectively. These represent 22% and 47% reductions from the peak values in EESC 
over Antarctica and the midlatitudes, respectively, toward the 1980 benchmark values (see also  
www.esrl.noaa.gov/gmd/odgi/). EESC is expected to return to 1980 benchmark levels around 2050 
in the midlatitudes and around 2075 in the Antarctic (Carpenter et al. 2018).

3) Aerosols—S. Rémy, N. Bellouin, Z. Kipling, M. Ades, A. Benedetti, and O. Boucher
Atmospheric aerosols play 

an important role in the cli-
mate system by scattering and 
absorbing radiation, and by 
affecting the life cycle, optical 
properties, and precipitation 
activity of clouds. Aerosols 
also represent a serious public 
health issue in many countries, 
and hence are subject to moni-
toring and forecasting as part 
of air quality policies.

The Copernicus Atmosphere 
Monitoring Service (CAMS) 
runs a near-real time global 
analysis of aerosols and trace 
gases. The CAMS project also 
produced a reanalysis of glob-
al aerosols and trace gases 
that covers the years 2003–19, 
named the CAMS reanalysis (CAMSRA; Inness et al. 2019) by combining state-of-the-art numerical 
modeling and aerosol remote-sensing retrievals from MODIS (Levy et al. 2013) and the Advanced 
Along Track Scanning Radiometer (AATSR; Popp et al. 2016). Other reanalysis products, such as 
MERRAero (Buchard et al. 2016), are also available. Verification of aerosol optical depth (AOD) 
at 550 nm against independent AERONET observations shows that the CAMS reanalysis has a 
smaller bias and error than its predecessors, the CAMS interim reanalysis (Flemming et al. 2017) 
and the Monitoring Atmospheric Composition and Climate (MACC) reanalysis (Inness et al. 2013). 
This section uses data exclusively from the CAMS reanalysis. 

The time series of monthly and yearly globally averaged total AOD during 2003–19 (Fig. 2.50) 
shows strong seasonality, driven mainly by dust episodes between March and July in the Sahara, 
Middle East, and Taklimakan/Gobi and seasonal biomass burning in Africa, South America, 
Indonesia, and other regions. There is no significant trend over the period, but extreme events 
such as the September–October 2015 fires over Indonesia associated with El Niño are prominent. 
The summer maximum was very pronounced in 2019 mainly because of the large fires in July 
and August, particularly over Alaska, Siberia, and in the Amazon basin.

The AOD climatology between 2003 and 2019 (Fig. 2.51a) is marked by high values over the 
highly populated regions of India and China, mainly caused by anthropogenic emissions. High 
AOD over the Sahara and Middle East is primarily from dust, while the maxima over central Af-
rica, Indonesia, the Amazon basin, and parts of Siberia are caused by fire emissions. The high 
values over Hawaii and close to Mexico City are a known artefact of the CAMS reanalysis related 
to volcanic outgassing. 

Fig. 2.50. Globally averaged total AOD at 550 nm over monthly (red) and 
annual (blue) periods for 2003–19. 
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As compared to the 2003–18 
average from the CAMS reanalysis, 
2019 saw negative anomalies of 
total AOD over most of the United 
States, Europe, and Africa, as well 
as China, Korea, Japan, and parts 
of the Amazon basin (Plate 2.1x), 
although AOD in the last was sig-
nificantly higher than in 2018. The 
negative anomalies over Brazil, the 
United States, Europe, and China 
are part of a longer trend over these 
regions, as shown in Fig. 2.51b. Fig-
ure 2.51c indicates that the trend is 
much more negative over China for 
2012–19 than for 2003–19, which is 
consistent with the observed de-
crease in industrial sulfur dioxide 
(SO2) emissions driven by tighter 
emission standards (Karplus et al. 
2018). The 2012–19 trends are not 
significant over much of the Ama-
zon basin, showing that most of the 
decrease in AOD occurred before 
2012. The negative anomaly over 
the Sahel and Sahara (Plate 2.1x) 
was caused by reduced dust pro-
duction in 2019, while the negative 
anomaly over most of west Africa is 
explained by a less active biomass 
burning season than usual there. 

Positive anomalies of total AOD 
in 2019 (Plate 2.1x) are found in the 
southern part of the Arabian Pen-
insula, Iran, Pakistan, northern 
India, and parts of Iran, caused 
by more active dust production 
over these regions. The positive 
anomaly over the Indian subcon-
tinent corresponds to a long-term 
trend of increasing anthropogenic 
emissions (Satheesh et al. 2017), 
as shown in Figs. 2.51b,c. Positive 
anomalies (Plate 2.1x) were also 
caused by extreme fires, such as 
over Alaska, northern Canada, and 
large parts of Siberia during boreal 

summer, and over Australia and Indonesia from October to December. Some of these events even 
led to the injection of aerosol in the stratosphere (see Sidebar 2.2). The drought that provoked 
the increased occurrence of fires over southeastern Australia and Indonesia was caused in part 

Fig. 2.51. (a) Total AOD at 550 nm averaged over the period 2003–19. 
Note the regional differences, with much greater total AOD values over 
parts of northern Africa, the Arabian Peninsula, southern Asia, and east-
ern China. Linear trends of total AOD (AOD yr−1) for (b) 2003–19 and (c) 
2012–19. Only trends that are statistically significant (95% confidence) 
are shown. Color scales have been constructed to highlight trends.
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by a strong anomaly of the Indian Ocean dipole (IOD), the main cause of extreme droughts over 
Australia (Ummenhofer et al. 2009). The exceptional severity of the Australian fires is highlighted 
in Plate 2.1y, which shows the number of days with daily AOD at 550 nm above 99.9% of the daily 
record between 2003 and 2018. Sidebar 7.6 discusses these fires in more detail.

Radiative forcing resulting from aerosol–radiation (RFari) and aerosol–cloud interactions 
(RFaci) for the period 2003–19 is shown in Fig. 2.52, as estimated using the methods described in 
Bellouin et al. (2020). The year 2019 was close to the long-term average in terms of both RFari and 
RFaci. Time series indicate no statistically significant trends in aerosol radiative forcing because 
the radiative impact of decreasing trends over Europe, North America, and China is offset by in-
creasing trends over India. Evaluating trends remains statistically challenging because of large 
uncertainties in the estimates, which are mostly due to lack of knowledge of the anthropogenic 
fraction of the aerosol and its radiative forcing efficiency.

4) Stratospheric ozone—M. Weber, W. Steinbrecht, C. Arosio, R. van der A, S. M. Frith, J. Anderson,  
M. Coldewey-Egbers, S. Davis, D. Degenstein, V. E. Fioletov, L. Froidevaux, D. Hubert, C. S. Long, D. Loyola,  
A. Rozanov, C. Roth, V. Sofieva, K. Tourpali, R. Wang, and J. D. Wild
The ozone layer that protects the biosphere from the harmful effects of ultraviolet radiation 

(UV) resides in the stratosphere. The total ozone column, with its main contributions from lower 
stratospheric ozone, determines how much UV reaches the surface. Over recent decades, changes 
in the upper stratospheric ozone have shown the clearest signs of ozone recovery due to the phas-
ing out of ODSs since the late 1980s, following the Montreal Protocol (section 2g2). The total ozone 

Fig. 2.52. Radiative forcing in the shortwave spectrum of (a), (b) aerosol-radiation (RFari) and (c), (d) aerosol-cloud interac-
tions (RFaci) for 2003–19. The left column shows the average distribution. The right column shows time series of global 
averages, with the uncertainties of these estimates shown in gray. 
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column annual mean anomaly distribution for 2019 in Plate 2.1z shows opposite behavior in the 
two hemispheres. While the Southern Hemisphere (SH) shows positive anomalies with respect 
to the long-term mean, steadily increasing towards the South Pole and over Australia, negative 
anomalies cover most of the Northern Hemisphere (NH) with some positive values, mostly at high 

Fig. 2.53. Time series of annual mean total ozone (DU) 
in (a)–(d) four zonal bands, and (e) polar (60°–90°) to-
tal ozone in Mar (NH) and Oct (SH), the months when 
polar ozone losses usually are largest. Data are taken 
from WOUDC (World Ozone and Ultraviolet Radiation 
Data Centre) ground-based measurements combining 
Brewer, Dobson, SAOZ (Système D'Analyse par Ob-
servations Zénithales), and filter spectrometer data 
(red; Fioletov et al. 2002; 2008); the BUV/SBUV/SBUV2 
V8.6/OMPS merged products from NASA (MOD V8.6, 
dark blue; Frith et al. 2014, 2017) and NOAA (light 
blue; Wild and Long, pers. comm., 2019); the GOME/
SCIAMACHY/GOME-2 products GSG from University 
of Bremen (dark green; Weber et al. 2018) and GTO 
from ESA /DLR (light green, Coldewey-Egbers et al. 
2015; Garane et al. 2018). MSR-2 (purple) assimilates 
nearly all ozone datasets after corrections with re-
spect to the ground data (van der A et al. 2015). All 
six datasets have been bias corrected by subtract-
ing averages for the reference period 1998–2008 
and adding back the mean of these averages. The 
dotted gray lines in each panel show the average 
ozone level for 1964–80 calculated from the WOUDC 
data. The thick orange lines shows the average from 
chemistry-climate (CCMI) model runs (Eyring et al. 
2013; Morgenstern et al. 2017; WMO 2018; SPARC /
IO3C /GAW 2019). All observational data for 2019 are 
preliminary.
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northern latitudes. Total ozone levels vary from year to year, depending on the dynamical state 
of the global atmosphere mainly determined by El Niño–Southern Oscillation (ENSO) and the 
Quasi-Biennial Oscillation (QBO). Both ENSO and the QBO are tropical phenomena that have a 
strong influence on the Brewer-Dobson circulation (BDC) determining the global stratospheric 
ozone distribution (e.g., Diallo et al. 2018; Olsen et al. 2019). Throughout 2019, the QBO was in its 
west phase, which generally leads to higher total ozone in the inner tropics and lower ozone in 
the subtropics and beyond (Plate 2.1z). The extended regions of below-average total ozone at low 
to middle NH latitudes are possibly linked to the weak ENSO condition in 2019 (Olsen et al. 2019). 
A major feature of 2019 is the very weak stratospheric SH winter polar vortex, a very small ozone 
hole (see Sidebar 6.1), and above-average total ozone at high southern latitudes during austral 
winter/spring as well as in the annual mean (Plate 2.1z). During the 2019 Antarctic winter/spring 
season, a stratospheric warming event, which is rare in the SH but frequent in the NH, strongly 
perturbed the polar vortex. A persistent weak polar vortex in winter/spring, as in 2019, is associ-
ated with a stronger hemispheric BDC, occurring usually during west QBO phases, that leads to 
more ozone being transported into middle to high latitudes throughout much of the SH. In addi-
tion, higher polar winter stratospheric temperatures also reduce polar chemical ozone loss (e.g., 
Weber et al. 2011). As a consequence, annual mean total ozone in 2019 was fairly high, by up to 
65 DU above the long-term average,  at high southern latitudes (Plate 2.1z). 

Figure 2.53 displays the annual mean total column ozone time series from various merged 
datasets for the near-global (60°N–60°S) average, tropics, extratropics, and selected months in 
the polar regions. In October 2019, the SH polar cap total ozone (Fig. 2.53e) was as high as in 2002 
and 1988, both years characterized by high dynamical activity and perturbed winter vortices 
(Schoeberl et al. 1989; Sinnhuber et al. 2003) and about 100 DU above the value in October 2015, 
a year with substantial polar ozone loss (Solomon et al. 2016). On the global scale (Fig. 2.53a), 
total ozone mean values in 2019 were lower than the previous year but within the variability 
observed during the last two decades. The same is true for the NH midlatitudes and the tropics 
(Figs. 2.53b,c) while midlatitude SH values were above the post-1990 average (Fig. 2.53d). In Fig. 
2.53a, the median of 17 climate-chemistry model CCMI runs are also shown (Eyring et al. 2013; 
Morgenstern et al. 2017; WMO 2018; SPARC/IO3C/GAW 2019). The agreement of the observations 
with models that account for changes in ODS and greenhouse gases gives strong evidence that 
total ozone is on its slow path of recovery. However, in 2019 and previous years, the global ozone 
means from observations, as well from the CMI models, are still about 3% below the average from 
the period 1964–1980, when ODS levels were low.

Figure 2.54 shows ozone changes at two different altitudes, in the upper stratosphere (panels 
a–c, 42 km altitude) and in the lower stratosphere (panels d–f, 22 km). Ozone in the upper strato-
sphere shows the larger decline due to ODS increases until the late 1990s (WMO 2018). This large 
decline was stopped as a result of measures mandated in the international Montreal Protocol 
to phase-out ODS. Since about 2000, we have been in a phase of slow ozone recovery. In 2019, 
ozone values in the upper stratosphere were above the 1998–2008 average. In the lower strato-
sphere, long-term ozone variations are dominated by meteorological variations and transport 
(e.g., Chipperfield et al. 2018). Figures 2.54d–f show no clear sign of ozone increases in the lower 
stratosphere over the last 20 or so years. In 2019, the lower stratospheric values were at the lower 
end of expectations (gray shaded area of model predictions) in the NH and tropical bands (Figs. 
2.54d,e). The continuing tropical decline (20°N–20°S) has been linked to climate change-related 
acceleration of the meridional BDC (Ball et al. 2018; Chipperfield et al. 2018; WMO 2018). Large 
interannual variations, as well as uncertainties in the observational data records (spread between 
different datasets), make reliable detection of the expected small underlying trends rather dif-
ficult, especially in the lower stratosphere.
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5) Stratospheric water vapor—S. M. Davis, K. H. Rosenlof, D. F. Hurst, H. Vömel, and H. B. Selkirk
Stratospheric water vapor (SWV) is a radiatively and chemically important trace gas with 

its variability strongly affected by the absolute humidity of air entering the stratosphere in the 
tropics, which is in turn largely determined by the temperature of the tropical cold point tropo-
pause. Following 2018, a year in which lower stratospheric water vapor in the tropics dropped to 
a near-record low for the Aura Microwave Limb Sounder (MLS) satellite record (2004–19), water 
vapor abundance in the tropical lower stratosphere increased slightly during 2019 (Fig. 2.55). In 
January 2019, the Aura MLS monthly mean tropical (15°N–15°S) lowermost SWV anomaly (at 82 
hPa, or ~17 km) was −0.6 ppm (parts per million, equivalent to a mole fraction of μmol mol−1), 
about 20% below the 2004–19 January average. The tropical lower SWV anomaly transitioned to 
positive in April and remained between +0.3 and +0.4 ppm (within 10% of the average value for 
each month) for the remainder of the year (Fig. 2.55). 

In general, the qualitative behavior of lowermost SWV observed by Aura MLS is consistent with 
balloon-borne frost-point hygrometer soundings at five locations (Fig. 2.56), although a small drift 
in MLS relative to the balloon measurements noted in earlier work persists (Hurst et al. 2016). The 

Fig. 2.54. Annual mean anomalies of ozone 
in the upper stratosphere (a)–(c) near 42 km 
altitude or 2 hPa pressure and in the lower 
stratosphere (d)–(f) near 22 km or 50 hPa, 
for three zonal bands: 35°–60°N, 20°N–20°S 
(tropics), 35°–60°S, respectively. Anomalies 
are referenced to the 1998–2008 baseline. 
Colored lines are for long-term records ob-
tained by merging different limb (GOZCARDS, 
SWOOSH, SAGE+OSIRIS, SAGE+CCI+OMPS-L, 
SAGE+SCIAMACHY+OMPS-L) or nadir viewing 
(SBUV, OMPS-N) satellite instruments. Black 
line is from merging ground-based ozone 
records at seven NDACC stations employing 
differential absorption lidars and microwave 
radiometers. See Steinbrecht et al. (2017), WMO 
(2018), and Arosio et al. (2018) for details on 
the various datasets. Gray-shaded area shows 
the range of chemistry-climate model from 
CCMI (WMO 2018; SPARC / IO3C /GAW 2019; 
Dhomse et al. 2018). Ozone data for 2019 are 
not yet complete for all instruments and are 
still preliminary.
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dry anomaly at San José, Costa Rica 
(10°N), at the start of 2019 propa-
gates northward to progressively 
reach Hilo, Hawaii (20°N), Boulder, 
Colorado (40°N), and then Linden-
berg, Germany (52°N), by mid-2019 
(Figs. 2.55b, 2.56). In contrast, the 
dry anomaly was barely observed 
in the southern midlatitude records 
from MLS (Fig. 2.55b, Fig. 2.56e) and 
frost point hygrometers launched 
at Lauder, New Zealand (45°S, Fig. 
2.56e). Similarly, the subsequent 
wet anomaly at San José starting in 
April 2019 propagates poleward and 
can be seen at Boulder by the end of 
the year.

At the tropical sites Hilo and San 
José, the seasonal and interannual 
variability of SWV is well correlated 
with variations in the cold-point 
temperature (CPT), as expected 
(Fig. 2.56d). Monthly mean tropical 
CPT anomalies increased from very 
cold at the beginning of 2019 (−1 K) 
to moderately warm at the end of 
the year (+0.5 K), congruent with 
the dry-to-wet transition in tropical 
lower SWV.

In general, interannual varia-
tions in CPTs are correlated with 
those observed in several modes of 
large-scale climate variability such 
as tropical lower stratospheric up-
welling rates, an important part of 
the BDC, ENSO, and QBO in tropical 

stratospheric winds (Dessler et al. 2014). After January 2019, the QBO was in its westerly (warm) 
phase at 50 hPa. ENSO was in a weak El Niño phase for the first half of the year, followed by 
six months in its neutral phase. Reduced tropical upwelling due to the QBO westerly phase may 
have produced warming tropical tropopause temperatures and, therefore, the positive tropical 
lower SWV anomalies during the latter half of the year. Additionally, it is worth noting that the 
IOD was in its positive phase from May 2019 through the end of the year, including record-setting 
positive indices in October and November (see section 4h for details). It is unknown whether the 
IOD impacts SWV, but there is some indication of correlation between SWV and Indian Ocean 
sea surface temperatures (SSTs; Garfinkel et al. 2018).

Fig. 2.55. (a) Time series of vertical profiles of tropical (15°N–15°S) SWV 
anomalies and (b) latitudinal distributions of SWV anomalies at 82 hPa. 
Both are based on Aura MLS data. Anomalies are differences from the 
mean 2004–19 water vapor mixing ratios (ppm) for each month. Panel 
(b) shows the propagation of tropical lower SWV anomalies to higher 
latitudes in both hemispheres as well as the influences of dehydrated 
air masses from the Antarctic polar vortex as they are transported 
toward the SH midlatitudes at the end of each year. 
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6) Tropospheric ozone—J. R. Ziemke and O. R. Cooper
The Intergovernmental Panel on Climate Change identifies tropospheric ozone as the third most 

influential greenhouse gas, following carbon dioxide and methane (IPCC 2013). Tropospheric 
ozone contributes to net warming of the atmosphere, with average global radiative forcing of  
0.4 ± 0.2 W m−2. While tropospheric ozone is a surface pollutant detrimental to human health and 
vegetation (Fleming et al. 2018; Mills et al. 2018), it is also the dominant producer of the hydroxyl 
radical (OH), the primary oxidant of pollutants in the troposphere. Sources for tropospheric ozone 
include ozone from the stratosphere and photochemical production from precursors in the tropo-
sphere including methane, volatile organic compounds, biogenic hydrocarbons, lightning NOx, 
and emissions generated from combustion of fossil fuels and biomass burning (Neu et al. 2014; 

Fig. 2.56. Lower SWV anomalies over five balloon-borne frost-point (FP) hygrometer stations. Each panel shows the 
lower stratospheric anomalies of individual FP soundings (black) and of monthly zonal averages of MLS retrievals at  
82 hPa in the 5° latitude band containing the FP station (red). High-resolution FP vertical profile data were averaged be-
tween 70 and 100 hPa to emulate the MLS-averaging kernel for 82 hPa. Each MLS monthly zonal mean was determined 
from 2000–3000 profiles. Anomalies for MLS and FP data are calculated relative to the 2004–19 period for sites except 
for Lindenberg (2009–19) and Hilo (2011–19). Tropical CPT anomalies based on the MERRA-2 reanalysis (d; blue curve), 
which are generally well correlated with the tropical lower SWV anomalies, are the driving force behind the variations 
in tropical SWV during 2019.
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Young et al. 2013, 2018; Monks et al. 
2015). The main drivers of planetary-
scale variability of tropospheric 
ozone include dynamical forcing 
from ENSO and the Walker circula-
tion in the tropics, and baroclinic 
waves in midlatitudes (Chandra 
et al. 1998, 2009; Sun et al. 2014; 
Ziemke et al. 2015). Main drivers of 
small-scale patterns are largely de-
pendent on local emissions of ozone 
precursors, both anthropogenic and 
natural, such as fossil fuel combus-
tion and biomass burning. The high 
temporal and spatial variability of 
tropospheric ozone makes it difficult 
to determine decadal trends on re-
gional or global scales based solely 
on in situ observations (Cooper  
et al. 2014; Lin et al. 2014; Barnes  
et al. 2016; Strode et al. 2019; Gaudel 
et al. 2018; Tarasick et al. 2019).

All State of the Climate reports 
since 2012 have provided updates 
on global tropospheric ozone based 
on independent measurements 
from ground- and satellite-based 
instruments (Ziemke and Cooper 
2018). Due to limited spatial cover-
age and annual updates of ground-
based observations, these reports 
have relied primarily on combined 
Aura Ozone Monitoring Instrument 
(OMI) and MLS satellite ozone 
measurements (Ziemke et al. 2019). 
OMI/MLS data show broad regions 
of positive 2019 tropospheric ozone 
column anomalies (relative to the 
2005–18 average) of ~1.3 DU (4%) in 
the NH midlatitudes, with smaller 
anomalies of ~1 DU or less else-
where (Plate 2.1aa). Hemispheric 
and global average tropospheric 
ozone burdens and their 95% confi-
dence levels for 2019 were 162 ± 7 Tg 
(0°–60°N), 151 ± 8 Tg (0°–60°S), and 
313 ± 8 Tg (60°N–60°S) (Fig. 2.57). 

Trends in hemispheric and global burdens from October 2004 through December 2019 indicate 
clear increases of ~0.6% yr−1. Spatially, trends are overwhelmingly positive, the strongest of which 
are ~ +3.3 DU decade−1 (~ +1% yr−1) above India and east/southeast Asia, extending eastward over 

Fig. 2.57. Monthly averages of OMI/MLS tropospheric ozone burdens 
(Tg) from Oct 2004 through Dec 2019. The top curve (black) shows 
60°N–60°S monthly averages (solid line) with 12-month running 
mean (dashed line). The bottom two curves show monthly averages 
(solid lines) and running means (dashed lines) for the NH (red) and SH 
(blue). Slopes of linear fits to the data are presented with their 95% 
confidence-level uncertainties. All three trends are deemed statisti-
cally significant at the 95% confidence level.

Fig. 2.58. Linear trends in OMI/MLS tropospheric column ozone (DU 
decade−1) on a 5° × 5° grid from Oct 2004 through Dec 2019. Circles 
denote trends with p-values less than 0.05. Trends were calculated us-
ing a multivariate linear regression model (e.g., Randel and Cobb 1994, 
and references therein) that includes a seasonal cycle fit and the Niño 
3.4 index as an ENSO proxy; trend uncertainties include autoregressive 
adjustment via Weatherhead et al. (1998).
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the North Pacific Ocean (Fig. 2.58). These trends are consistent with model estimates based on 
strengthening emissions of ozone precursors from southeast, east, and south Asia, primarily 
due to fossil fuel combustion (Zhang et al. 2016; Lin et al. 2017). The models indicate that ozone 
produced in these areas is transported eastward in the free troposphere over the North Pacific 
Ocean, supported by the trends in Fig. 2.58. Positive trends in the SH extra-tropics have been 
linked to a broadening of the Hadley circulation (Lu et al. 2018a).

Three long-term baseline monitoring sites, with quality-assured data, are available for updating 
surface ozone trends through 2019: 1) Mauna Loa Observatory (MLO), Hawaii (19.5°N, 155.6°W, 3397 
m a.s.l.); 2) South Pole Observatory (SPO), Antarctica (90°S, 59°E, 2840 m a.s.l.); and 3) Barrow 
Atmospheric Baseline Observatory, Utqiaġvik, Alaska (71.3°N, 156.6°W, 11 m a.s.l.). Continuous 
measurements began at MLO in September 1973, at SPO in January 1975, and at Barrow in March 
1973, with additional observations available at SPO for the years 1961–63 and at MLO for the years 
1957–59 (Tarasick et al. 2019). 

The limited data at MLO and SPO from the 1950s/1960s indicate that ozone at these remote high-
elevation sites was similar in the mid-twentieth century despite being located in different hemi-
spheres. Ozone at SPO has changed little since the exploratory measurements of the early 1960s, 
with only a slight increase of ~2 ppbv during the period of continuous measurements (1975–2019; 
Fig. 2.59). In contrast, ozone at MLO increased at the rate of 0.14 ± 0.05 ppbv yr−1, resulting in a 17% 
(6.4 ppbv) increase since 1973. MLO experiences high inter-annual ozone variability due to its loca-
tion in the transition region between tropical and extratropical air masses. The ozone trend in the 
extratropical air masses can be isolated by focusing on the dry air masses, which tend to originate 
at higher altitudes and latitudes to the west and northwest of MLO (Gaudel et al. 2018). The trend 
in the dry air masses (23%, or 9.9 ppbv, total increase since 1974) is 50% greater compared to the 
trend using all air masses, which implies that the site is influenced by ozone increases in upwind 
regions to the west and northwest, most likely Asia where surface and free tropospheric ozone has 
generally increased over the past two decades (Cohen et al. 2018; Lu et al. 2018b; Gaudel et al. 2018).

Fig. 2.59. Monthly median ozone at Utqiaġvik (Barrow), Alaska (Mar 1973–Dec 2019, green) and South Pole (Jan 1975–Dec 
2019, black) using data from all hours of the day. Additional data from South Pole are shown for the early 1960s. Also 
shown are nighttime monthly median ozone values at MLO calculated with all available data for months with at least 50% 
data availability, Oct 1973–Dec 2019 (blue), with early observations from the late 1950s. MLO data are limited to nighttime 
observations to focus on free tropospheric air masses. In addition, the monthly median values associated with dry air 
masses (orange) at MLO are included (dewpoint < the climatological monthly 40th percentile, and a sample size of at least 
24 individual hourly nighttime observations). Trends (solid straight lines) are based on least-squares linear regression fit 
through the monthly values (1970s–2019), and reported with 95% confidence intervals and p-values. The MLO and South 
Pole trend lines are extrapolated back in time to the late 1950s (dashed lines). 
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7) Carbon monoxide—J. Flemming, A. Inness, A. Crotwell, and G. Pétron
Carbon monoxide (CO) is a short-lived air pollutant with indirect impacts on climate forcing. CO 

is emitted by incomplete combustion sources and produced during the oxidation of methane and 
nonmethane hydrocarbons (Hartmann et al. 2013). In the troposphere CO has a lifetime of one to 
three months. It is destroyed mostly by hydroxyl radicals, OH, which are also the main sink for 
CH4. Due to its short lifetime, atmospheric levels of CO reflect the distribution and seasonality of 
its sources and the OH sink. 

Unusually strong wildfire activity in 2019, especially over Indonesia, eastern Siberia, Alaska, 
Amazonia, and Australia led to regional CO anomalies at the seasonal time scale, as shown in 
Plate 2.1ab, which is based on CAMS reanalysis. On the other hand, tropical and southern Africa, 
an area that generally has one of the largest contributions from fires to the global CO burden, did 
not have increased emission in 2019.

The most pronounced CO anomaly in 2019 appeared over Maritime Southeast Asia in autumn 
because of intense wildfires in the region, which were the third strongest since 2003. The fire-
driven CO anomalies occurred against a background of a continually decreasing CO burden in 
the NH. 

Figure 2.60a shows a time series of the monthly mean global burden of CO from the CAMS 
reanalysis for the period 2003–19 (Inness et al. 2019). Approximated with a linear trend over the 
whole period, the total global CO burden has declined by −1.7 Tg yr−1, and as piecewise trends 
following Flemming and Inness (2018) for the periods 2003–07, 2008, and 2009–19 by −3.1, −14.0, 
and +0.1Tg yr−1, respectively. The global CO burden in 2019 was similar to most years in the last 
decade, with the exception of 2015 when wildfires in Indonesia led to exceptionally large burdens. 
Clean marine boundary layer observations of CO are shown in Fig. 2.61. Background CO declined 
at an average rate of −1 ppb yr−1 in the NH temperate latitudes and −1.5 ppb yr−1 for latitudes north 
of 53°N (Novelli et al. 2003; Pétron et al. 2019). Based on measurements of Greenland firn air (old 
air trapped in perennial snowpack), this negative trend in the NH started in the 1970s or 1980s 
and is likely explained by decreasing anthropogenic CO emissions (Petrenko et al. 2013). 

The spatial distribution of the 2019 CO anomalies with respect to the period 2003–19 is shown 
in Plate 2.1ab. Small negative anomalies of up to −5% were seen for most of the NH. 2019 was 
a year of increased fire activity in areas experiencing positive temperature anomalies and dry 
conditions. Intensive fire activity in Indonesia during September–November increased the CO 
burden in this region by up to 20 Tg, which was the third highest since 2003 after the two El Niño 
years 2006 and 2015 (Fig. 2.60b). Furthermore, unusually strong fires in Alaska, Siberia, and 

Fig. 2.60. Time series of monthly CO burdens (Tg) for (a) the whole globe and (b) over Maritime Southeast Asia from the 
CAMS reanalysis for 2003–19 (2019 is shown in red) and a piecewise linear trend (dotted line) for the periods 2003–07, 
2008, and 2009–19.
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western South America in northern sum-
mer and in southwest (January 2019) and 
southeast (December 2019) Australia led to 
localized positive anomalies of up to 10% 
on the annual time scale and of more than 
30% on the seasonal time scale, but which 
had insignificant impact on the global or 
hemispheric CO burdens.  

The global CO burden since the early 
2000s has been recorded by reanalyses of 
atmospheric composition, which assimilate 
CO satellite retrievals in chemistry transport 
modeling systems (Miyazaki et al. 2015; 
Flemming at al. 2017; Gaubert et al. 2017; 
Inness et al. 2019). The CAMS reanalysis 
assimilated TIR version 6 total column CO 
retrievals of the Measurement of Pollution 
in the Troposphere (MOPITT) instrument 

(Deeter et al. 2014) globally, only excluding observations poleward of 65°N/S using the ECWMF 
4D-VAR data assimilation system. The CAMS reanalysis can be compared with independent CO 
column retrievals, xCO, at the ground-based Total Carbon Column Observing Network (TCCON) 
site, Park Falls, Wisconsin, for the 2003–19 period. At Parks Falls retrieved xCO decreased with 
a rate of −0.56 ppb yr−1, and the CAMS reanalysis at a rate of −0.48 ppb yr−1 (Fig. 2.62). Park Falls 
was chosen to illustrate the quality of the CAMS reanalysis because it has the longest record, 
dating to 2004. More comprehensive validation of the CAMS reanalysis against TCCON data can 
be found in Inness et al. (2019).

Surface CO dry air mole fractions are measured using in situ sensors and discrete air analysis 
using flask samples. NOAA and its cooperative air-sampling partners have been monitoring CO 
levels since 1991 through a global network of remote surface sites (Novelli et al. 2003; Pétron et al. 
2019). The long-term calibrated CO measurements are available through the WMO Global Atmo-
spheric Watch Programme World Data Center for Greenhouse Gases (https://gaw.kishou.go.jp/). 

Fig. 2.61. Time series of surface CO (ppb) measured at 31 
NOAA in situ flask observations sites and averaged over the 
clean marine boundary layer for the NH (0°–90°N, black) and 
SH (0°–90°S, red) for the period 1991–2019.

Fig. 2.62. Column-averaged CO (xCO, in ppb) at the Park Falls TCCON station. Monthly mean observations are shown by 
the black dots, and corresponding monthly mean xCO columns calculated using the TCCON-averaging kernels are shown 
by the blue triangles. The continuous blue line is the monthly xCO from the CAMS reanalysis.
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The role of stratospheric aerosols in Earth’s radiative budget 
and chemistry has long been recognized (Mitchell 1971; Robock 
2000; Hofmann and Solomon 1989; Aquila et al. 2013). Their 
presence in the stratosphere is mainly driven by the injection 
from below of tropospheric aerosols and sulphur-containing 
compounds (e.g., sulfur dioxide [SO²] and carbonyl sulfide [OCS]) 
that act as precursors for the formation of sulfuric acid droplets 
in the stratosphere. Explosive volcanic eruptions are the major 
source of stratospheric sulfur, but in volcanic quiescent peri-
ods, OCS and other non-sulfate compounds such as ash, black 
carbon, organic aerosols, and smoke particles from biomass 
burning contribute to the background stratospheric aerosol 
burden. The last major volcanic eruption that critically affected 
stratospheric aerosol loading was Mt. Pinatubo in 1991, which 
resulted in an estimated total mass injection of nearly 20 Tg, 
i.e., 30–60 times the estimated background content (Guo et al. 
2004). As a result of the Pinatubo eruption, the global surface 
temperature was estimated to have decreased by 0.4°C after 
two years (Thompson et al. 2009). Stratospheric aerosol loading 
did not return to background levels until 1997, when nearly a 
decade of volcanic quiescence started. After this period, several 
eruptions moderately impacted the midlatitudes of both hemi-
spheres between 2005 and 2012, and the Southern Hemisphere 
(SH) between 2012 and 2017. The past 2–3 years, however, have 

Sidebar 2.2. 2019: A 25-year high in global stratospheric aerosol loading—T. LEBLANC, 
F. CHOUZA, G. TAHA, S. KHAYKIN, J. BARNES, J.-P. VERNIER, AND L. RIEGER

shown a break from the previous years, with several volcanic 
and biomass burning events that loaded the stratosphere with 
aerosol levels unprecedented since the Mt. Pinatubo era. Results 
from ground-based lidar and satellite measurements provide a 
fresh, near-real-time view of these recent events.

Ground-based data come from two lidars located at Mauna 
Loa (MLO; 19.5°N, 155.6°W), namely the Jet Propulsion Labo-
ratory’s (JPL) Mauna Loa Stratospheric Ozone Lidar (MLSOL; 
McDermid et al. 1995), and the NOAA Aerosol Lidar (Barnes and 
Hofmann 1997), which have monitored stratospheric aerosols 
for several decades for the global Network for the Detection of 
Atmospheric Composition Change (NDACC). The satellite data 
come from 1) GloSSAC v1.1, a merged dataset combining the 
measurements of SAGE and SAGE-II between 1979 and mid-
2005, and OSIRIS and CALIPSO since 2005 (Thomasson et al. 
2018), and 2) OMPS/LP (2012–present; Chen et al. 2018).

Figure SB2.4a shows a time–altitude cross-section of 
monthly-mean aerosol extinction at MLO derived from MLSOL. 
MLO is located in a region of stratospheric aerosol minimum, 
on the edge of the tropical reservoir and away from the main 
entry pathways (Tropical Tropopause Layer [TTL], Asian Sum-
mer Monsoon Anticyclone [ASMA], volcanoes, and wildfires), 
thus facilitating detection of background levels. The injection of 
aerosols from below is clearly characterized by transient plumes  

Fig. SB2.4. (a) Time–altitude cross-section of the monthly mean aerosol extinction profiles at MLO derived from the MLSOL 
lidar. (b) Time series of stratospheric aerosol optical depth (sAOD; 17–33 km) from the MLSOL lidar, NOAA lidar, GloSSAC 
at 17.5°N, and OMPS/LP near MLO (see text for coincidence criterion). Significant volcanic eruptions are denoted by red 
arrows and letters in (a). White lines represent gaps in the data.
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Fig. SB2.5. Time–latitude 2-D contour of the monthly mean sAOD derived from (a) GloSSAC and 
(b) OMPS/LP. Significant volcanic and biomass burning events are annotated by white letters.

main plume transited gradually from 55°N to 19°N and circled 
Earth three times. A strong extinction signature is noticeable 
at 27 km on the MLSOL extinction time series (Fig. SB2.4a).

Figure SB2.5a shows the sAOD derived from GloSSAC as a 
function of time and latitude since the post-Pinatubo era. Fig. 
SB2.5b shows the sAOD derived from OMPS/LP. The signatures 
of Kelut and Calbuco eruptions are visible in the southern tropics 
and midlatitudes in 2014 and 2015, respectively. The signature 
of the 2017 Pacific Northwest wildfires is visible at high and 
midlatitudes of the NH. The signature of the Aoba eruption 
extends in the SH in late 2018. But the most prominent feature 
is the very large signature of the Raikoke eruption, which yields 
an sAOD larger than 0.025 for at least four to five months. The 
second most prominent feature is the large signature of the 
Australian fires in late 2019 (see Sidebar 7.6), with values of 
sAOD exceeding 0.025 for several weeks. The Ulawun eruption 
also caused high sAOD values in the tropics starting in mid-2019. 
Altogether, these major events have caused sAOD to exceed 
0.012 for several months in 2019 at almost all latitudes between 
60°S and 90°N, simultaneously, a level of global aerosol loading 
unseen since 1994.

Although the occurrence and frequency of large volcanic 
eruptions remain random, there is a concern that favorable 
conditions (e.g., increase of surface temperature or drought) 
may lead to an increase in the occurrence and strength of pyro-
cumulonimbus events and its associated stratospheric aerosol 
injection (Peterson et al. 2018). Early estimates of the 2019/20 
Australian wildfires total mass injected in the stratosphere 

point to the equivalent 
of a mid-size, possibly 
larger, volcanic erup-
tion (see Sidebar 7.6). 
Although the compo-
sition of fire-type and 
volcanic-type aerosols is 
different, an increase in 
the strength and/or fre-
quency of aerosol injec-
tion into the stratosphere 
may have an impact on 
climate and ozone that is 
yet to be quantified and 
understood. The continu-
ation of key stratospheric 
aerosol measurements 
such as those described 
here is undoubtedly of 
crucial importance.

spreading upwards with time, mostly visible below 23 km. 
The upward propagation speed depends on the timing of the 
injection (Vernier et al. 2011b; Trepte and Hitchman 1992) and 
roughly ranges between 3 and 6 km per year, consistent with 
Quasi-Biennial Oscillation- (QBO) modulated Brewer-Dobson 
circulation (BDC) ascent rates inferred from water vapor and CO 
measurements in the tropical lower stratosphere (Minschwaner 
et al. 2016).

The stratospheric aerosol optical depth (sAOD) time series 
(1999–present) derived from MLSOL, the NOAA lidar, Global 
Space-based Stratospheric Aerosol Climatology (GloSSAC; 
zonal mean at 17.5°N ± 2.5°), and Ozone Mapping and Profiler 
Suite/Limb Profiler (OMPS/LP; ±1° latitude, ±12.5° longitude), 
is shown in Fig. SB2.4b. With the exception of a few points, all 
datasets remain within 10% of each other, well within mea-
surement uncertainties. The time series is characterized by a 
quiescent period before 2005, a period of moderate volcanic 
activity between 2005 and 2013, and another period of low 
aerosol loading between 2013 and 2017 (Chouza et al. 2020), 
also observed at other Northern Hemisphere (NH) sites (Khaykin 
et al. 2017). The background level during that time is noticeably 
higher than that in the pre-2005 quiescent period. But most 
importantly, the time series is strongly disturbed in the summer 
of 2019 by the Raikoke eruption, with sAOD reaching 0.015, 
a level not reached at this latitude since 1995, i.e., the post-
Pinatubo area. Chouza et al. (2020) showed that the Raikoke 
plume ascended rapidly into the mid-stratosphere, reaching an 
altitude of 27 km within two months. During that period, the 
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h. Land surface properties
1) Land surface albedo dynamics—G. Duveiller, N. Gobron, and B. Pinty

Albedo is the fraction of shortwave radiation reflected by the surface and depends on a number 
of surface attributes such as snow cover, vegetation cover, and soil moisture among others. The 
year 2019 exhibited large regional contrasts in terms of land surface albedo in the visible part 
of the spectrum (see Plate 2.1ac), with the Northern Hemisphere (NH) overall darker (i.e., less 
reflective) and the Southern Hemisphere (SH) brighter that the baseline period 2003–10. Strong 
negative anomalies in visible albedo (on the order of −30%) were especially noticeable in central 
and eastern Europe. Similarly, high negative values were observed in the Caucasus and the Middle 
East; in eastern Asia (western China and Mongolia, Korea, and Japan); northwestern America 
(Alaska, Yukon, and Northwest Territories); eastern United States; and parts of Argentina and 
Chile. Milder negative anomalies (−10%) were found in Canada’s Baffin Island, Mexico, much of 
northern South America, central Africa, and India. Large positive anomalies (up to +30%) were 
found in North America, in the Himalayas and eastern China, in eastern Australia, southern 
Africa, and sporadically in South America. The near-infrared anomalies follow the same general 

patterns as for the visible albedo 
but with moderate amplitudes (see 
Plate 2.1ad) and a relative tendency 
toward brightening. 

The large albedo anomalies in 
northern latitudes largely follow 
those of snow cover. With the excep-
tion of January, Europe experienced 
much less snow cover than usual in 
both the early and late months of 
2019 (see section 2c2 for an overall 
hemispheric and continental sum-
mary), resulting in an overall darker 
surface than the baseline. North-
eastern China, Korea, and Mongolia 
similarly saw much reduced snow 
cover during the beginning of the 
year with respect to the 2003–10 
baseline, which was not compen-
sated by above-average snow cover 
in October–December. On the con-
trary, large areas of North America 
were more extensively covered with 
snow than usual in early and late 
2019, which translated to brighter 
surfaces over these areas (section 
2c2). The same is true for the Tibetan 
Plateau and neighboring areas. The 
fact that the northernmost latitudes 
were less extensively covered with 
snow than usual from May to June 
probably explains the darker sur-
faces in various areas nearer to the 
North Pole (Alaska, Baffin Island, 
and the northern tip of Siberia).

Fig. 2.63. Zonally averaged surface albedo anomalies (%; 2003–10 base 
period) in (a) visible and (b) near-infrared broadband. 
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For regions not affected by snow cover, the main driver affecting land albedo is the relative 
vigor and health of vegetation, which itself largely depends on water availability. The drought 
that led to the disastrous fire season in Australia during late 2019 and early 2020 (see Sidebar 
7.6) is responsible for brightening the surface, while the potential darkening effect of the fires is 
not significant enough to be observed in the yearly averaged data. Southern Africa has also seen 
clear reductions in soil moisture (section 2d10) and vegetation photosynthesis activity (section 
2h2) during 2019, resulting in a relative brightening of the surfaces. India and China have seen 
significant trends in greening over the recent years due to intensified agriculture, translating to 
a reduction of surface visible albedo (Chen et al. 2019). In Europe, the strong summer drought 
(section 2d11) may have brightened the surface, partly by accelerating the end of the season (see 
Fig. 2.69d), but this was insufficient to counter the strong overall darkening effect generated by 
the reduction of snow cover in the cold months.

The separate contribution of snow occurrence and vegetation cover to albedo anomalies can 
be represented in a multiannual perspective using latitudinal averages for the entire record (Fig. 
2.63). The effect of snow cover in the NH follows a clear seasonal cycle that is in phase between 
the visible and the near-infrared parts of the spectrum, and for which there is no clear trend. 
Aside from that, the rest of the world shows a slight overall negative trend in visible albedo and a 
lightly rising trend in near-infrared, which is consistent with the enhanced greening observed in 
the fraction of absorbed photosynthetically active radiation (FAPAR) estimates (section 2h2). The 
year 2019 does stand out by showing a contrasting pattern between North and South, respectively 
darker and brighter than the baseline (which is again consistent with the FAPAR anomalies in 
2019). The global average shows a higher albedo in the SH for both the visible and near-infrared 
albedo, while the NH is slightly 
brighter in the near-infrared and 
darker in the visible (Fig. 2.64). 

The albedo anomalies are cal-
culated based on the NASA Collec-
tion 6 MCD43C3 products derived 
from satellite observations of the 
Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument 
on-board of the Terra and Aqua 
platforms (Schaaf et al. 2002; Schaaf 
and Wang 2015). The retrieval algo-
rithm delivers visible albedo (0.3–
0.7 nm) and near-infrared albedo 
(0.7–5.0 nm) values, in addition to 
both black-sky albedo and white-
sky albedo values, the latter esti-
mates of which are used in this re-
port. The anomalies are calculated 
at a 10-daily frequency, based on 
the 2003–10 reference period.

Fig. 2.64. Global and bi-hemispherical averaged surface albedo  
(%; 2003–10 base period) in (a) visible and (b) near-infrared broadband. 
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2) Terrestrial vegetation dynamics—N. Gobron
Fraction of absorbed photosynthetically active radiation (FAPAR) anomalies exhibited signifi-

cant regional variations in vegetation conditions worldwide in 2019 (Plate 2.1ae). The greatest 
negative anomalies (brown: not favorable for vegetation) were observed in Australia, southern 
Africa, Kostanay (northern Kazakhstan), and eastern Russia (from Krasnoyarsk eastward around 
60°N). Local negative anomalies affected northern China, Iowa and Wisconsin (United States), 
Bahia State (Brazil), Bolivia, La Pampa (Argentina), and Kenya. The greatest positive anomaly 
(green) was again observed in eastern China (as during the last four years) as well as northern 
India (Rajasthan, Uttar Pradesh, and Punjab), Bangladesh, Syria, and northern Iraq. To a lesser 
magnitude, the entire central region of the African continent and the region surrounding the 
Black Hills (South Dakota, United States) also had positive deviations. 

The strongest negative annual anomaly, with a maximum absolute value of 0.15, occurred 
in Australia, possibly due to the strongly positive Indian Ocean dipole (IOD; section 4h) that 
influenced severe extreme weather events. This year was the warmest and driest year on record 
there, which implied drought, heat waves, and devastating bushfires. Over Botswana, Namibia, 
Zambia, and southern Mozambique, the negative anomalies were due to very dry conditions 
(section 2d12). Dry conditions and high temperatures from January to June over Kenya resulted 
in negative annual anomalies.

In the northern part of Kazakhstan and eastern Russia, the hot and dry climatic conditions 
hindered vegetation during the growing season (spring), which strongly affected the annual 
anomaly. Bad weather conditions with heavy spring rains in Wisconsin in the United States, and 
some adjoining regions delayed planting and affected crops. High temperatures associated with 
SH winter rainfall deficits had significant negative regional impacts on vegetated conditions such 
as over Bahia State (Brazil), Bolivia, and Argentina. 

Terrestrial photosynthesis was again enhanced over eastern China with vegetation growth in 
2019, similar to 2017 and 2018 (Gobron 2018, 2019) due to important changes in the overall land 
use (Chen et al. 2019). In addition, northern Turkey got an increase of vegetation activity for the 
last two years. Late in the year, the central region of the African continent had high positive 
anomalies, due to high temperatures and heavy rainfall that impacted the annual results. 

Figure 2.65 displays the zonal average anomalies from 1998 to 2019 compared to the 1998–2010 
base period. Strong seasonal de-
viations include mainly positive 
anomalies north of 20°N after 2014. 
Negative anomalies from 2002 to 
2014 affected the SH, except in 
2010–12. In contrast to the positive 
anomalies around 30°S from 2014 
to 2017, anomalies turned negative 
again in 2018, with strongest values 
in 2019. 

Figure 2.66 shows the global and 
bi-hemispheric anomalies, reveal-
ing more oscillations between the 
seasons in the SH with its smaller 
land area than in the NH. The NH 
had fewer negative events than the 
SH, and its plant activity increased 
from 2010 to 2017 and, after a short 
decline in late 2017/early 2018, in-
creased again afterward. Analysis 

Fig. 2.65. Zonally averaged FAPAR anomalies for 1998–2019 (1998–2010 
base period).
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of SH data reveals two positive 
extreme peaks in 2000 and 2017, 
while extreme minimum events 
occurred in 2008–09. Following 
the decline from positive anoma-
lies with negative values between 
2002 and 2009, there has been an 
increase in positive values since 
2011. Since 2017 the global anoma-
lies have decreased but are still 
positive with 2019 equal to those 
in 2018; however, SH anomalies 
have decreased sharply since 2017.

Space-based measurements are 
essential for monitoring the activ-
ity of terrestrial plants worldwide. 
These observations are used to 
recover FAPAR, an essential cli-
mate variable (as defined by GCOS 
[2016]). The 2019 analysis merged 
22 years of global FAPAR products 

based on three optical sensors from 1998 to 2019 (Gobron et al. 2010; Pinty et al. 2011; Gobron and 
Robustelli 2013; the base period is 1998–2010). Comparisons between each dataset and with mul-
tiple surrogates using ground measurements provide an estimate of the uncertainties and biases. 
Given the biases between the various sensor products, this long-term global dataset presents an 
estimated average uncertainty close to 5%–10%.

3) Biomass burning—J. W. Kaiser, G. R. van der Werf, and I. Hüser
During 2019, anomalously high vegetation fire emissions in several forested regions of Indone-

sia, Russia, Australia, Brazil, and Bolivia (Plate 2.1af) compensated the long-term global downward 
trend in emissions from savanna regions. The global annual emission of 1836 TgC was 9% lower 
than the average for the reference period 2003–10 (Table 2.9). The emission in 2019 was, however, 
substantially increased compared to 2018 and 2017 with 1600 TgC and 1680 TgC, respectively. 
Despite the declining trend in savanna regions, upward trends related to climate change with 
more extreme fire weather and longer fire seasons are emerging in several regions. Biomass burn-
ing displays large interannual variability driven by fire weather and human behavior. Its global 
distribution in 2019 is shown in Fig. 2.67.

Indonesia experienced a relatively long dry spell in September, which led to above-average 
emissions (Fig. 2.68). Usually, such dry spells are associated with El Niño years, which was not 
the case in 2019. Rather, it was related to the strong positive IOD (see section 4h). Annual emis-
sions in the larger tropical Asian region were dominated by fires in eastern Sumatra and southern 
Borneo, which elevated the emissions by 62% to the third-largest value (191 TgC) since at least 
2003, with larger values of 425 TgC and 228 TgC in 2015 and 2006, respectively.

Strong fire activity in Siberia led to a 62% increase in emissions from the northern Asia region. 
Many fires during June–August burnt farther north than usual, which led to a new record of  
27 TgC for fire emissions from the Arctic. The emissions have increased in every year since 2015 
and were more than twice as high in 2019 than in any preceding year (Fig. 2.68).

In December 2019, the Australian states of New South Wales and Victoria experienced their 
highest monthly fire activity since at least 2003 (Fig. 2.68, Sidebar 7.6). Their annual emission of 
29 TgC more than doubled the previous record of 13 TgC set in 2003 and made up almost all of the 

Fig. 2.66. Global (black lines), NH (blue), and SH (red) FAPAR anomalies 
for 1998–2019 (1998–2010 base period). Dotted lines denote each month-
ly period; solid lines indicate the six-month running averaged mean.
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Table 2.9. Annual continental-scale biomass burning budgets in terms 
of carbon emission (Tg C yr−1) from GFASv1.4.

Time period 2003–10 2019

Quantity in  
Tg C yr−1

Latitude/
longitude

Mean value 
(range)

Value
Anomaly 
(percent)

Global
2010  

(1828–2272)
1836 −174 (−9%)

North America
30°–75°N 

190°–330°E
79  

(63–109)
70 −9 (−12%)

Central America
0°–30°N 

190°–330°E
88  

(71–122)
106 +18 (+20%)

S. Hem. America
0°–60°S 

190°–330°E
381  

(214–473)
274 −107 (−28%)

Europe and  
Mediterranean

30°–75°N 
330°–60°E

37  
(29–62)

36 −1 (−2%)

N. Hem. Africa
0°–30°N 

330°–60°E
419  

(353–453)
296 −123 (−29%)

S. Hem. Africa
0°–35°S 

330°–60°E
484  

(444–528)
428 −56 (−12%)

Northern Asia
30°–75°N 
60°–190°E

176  
(99–418)

214 +38 (+21%)

South-East Asia
10°–30°N 
60°–190°E

128  
(107–150)

87 −41 (−32%)

Tropical Asia
10°N–10°S 
60°–190°E

118  
(38–228)

191 +73 (+62%)

Australia
10°–50°S 
60°–190°E

99  
(47–137)

133 +34 (+35%)

35% anomaly in fire emissions from all of Australia. The fires started in September, i.e., relatively 
early, were strongest in December, and continued into 2020. The extreme fire weather was linked 
to the strong positive IOD anomaly and record temperatures in Australia.

Substantial media attention was also given to fires burning in the Amazon. Significant positive 
anomalies occurred in Bolivia and the Brazilian states of Amazonas and Roraima (see Plate 2.1af), 

although south of the equator there 
was an overall strong negative 
anomaly of −28% compared to the 
2003–10 reference period. This 
period was characterized by high 
deforestation and drought years 
in Brazil. After 2010, emissions 
dropped significantly (Fig. 2.68), 
and emissions in 2019 were still 
in the typical range of its decade, 
albeit at the upper limit. An in-
crease of deforestation in 2019 was 
reported by the PRODES program 
of the Brazilian space agency INPE 
(http://terrabrasilis.dpi.inpe.br 
/app/dashboard/deforestation 
/ b i o m e s / l e g a l _ a m a z o n /
rates). Whether 2019 marked a 

Fig. 2.67. Global map of fire activity (g C m−2 yr−1) in 2019 in terms of 
carbon consumption. (Source: GFASv1.4.) 
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corresponding reversal of the de-
creasing long-term trend remains to 
be seen.

The established long-term down-
ward trend related to changes in land 
use in frequently burning savannas 
(Andela et al. 2017), in combination 
with a delay in the start of the fire 
season in sub-Saharan Africa, led 
to a 29% decrease (123 TgC) in fire 
emissions from NH Africa. Fires here 
normally burn in December and Janu-
ary but started weeks later related to 
wet conditions that were associated 
with the strong positive anomaly of 
the IOD.

The fire emission estimates have 
been derived from the Global Fire 
Assimilation System (GFAS; Kaiser 
et al. 2012, 2017), which uses satellite 
data of active fire detections and its 
intensity and is calibrated against the 
Global Fire Emissions Database (van 
der Werf et al. 2017). Here, vegeta-
tion fire activity is reported in terms 
of carbon emissions. Most biomass 
is released as CO2, but substantial 
amounts of other gases and aerosols 
are emitted as well. Most of the carbon 
released into the atmosphere is taken 
up again by vegetation regrowth. 
However, tropical rain forests and 
peat lost to fires regrow on time scales 

longer than a few hundred years or not at all. Their emissions are, therefore, practically irrevers-
ible. Given the large spatio-temporal variability in fire activity and the difficulty to constrain 
those with ground measurements, emission estimates are notoriously uncertain. The presented 
estimates of relative anomalies in entire regions are more reliable because they are derived from 
consistent observations by NASA’s two satellite-based MODIS instruments. The launch dates of 
the satellites carrying these instruments restrict the GFAS dataset to the period starting in 2003.

4) Phenology of primary producers—D. L. Hemming, J. Garforth, T. Park, A. D. Richardson, T. Rutishäuser, 
T. H. Sparks, S. J. Thackeray, and R. Myneni
Climate and nature are mutually dependent. This is visible from global to organism scales by 

phenological indicators—events in nature (Demarée and Rutishäuser 2011). Here, the timing of 
NH spring and autumn events of primary producers (terrestrial vegetation and lake plankton) 
is compared, utilizing records that reach across spatial scales from satellite remote sensing to 
site-level monitoring. 

For 2019, the satellite-derived (MODIS) normalized difference vegetation index (NDVI; Park  
et al. 2016) revealed the earliest average start of season since the beginning of the record in 2000 
(SOSM, 4.3 days) and a later-than-average end of season (EOSM , 2.4 days) across the NH (>30°N), 

Fig. 2.68. Time series of monthly open biomass burning in (a) tropi-
cal Asia, (b) the Arctic, (c) New South Wales and Victoria, Australia, 
and (d) Southern hemispheric America. The Arctic is bounded by 
the Arctic Circle (66.5°N); the definitions of the other regions are 
provided in Table 2.9. (Source: GFASv1.4.)
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relative to the 2000–09 baseline (SOS = day of year [DOY] 137, 17 May; and EOS = DOY 283, 10 
October; Figs. 2.69a,b). This resulted in an 8-day longer growing season, relative to the baseline 
(161 days, estimated for all NH pixels and averaged over the baseline). Overall, about 65% and 
56% of the NH region showed earlier SOSM and later EOSM in 2019, respectively (Figs. 2.69c,d). 
Regionally, earlier SOSM occurred across northwestern North America (NA) and most of Eurasia, 
and later SOSM occurred over central and eastern NA. A contrasting pattern of earlier and later 
EOSM was observed in eastern and western Eurasia, whereas EOSM in NA was spatially heteroge-
neous. Interannual variations in SOSM and EOSM correlate with changes in spring and autumn 
temperatures from MERRA-2 reanalysis (Gelaro et al. 2017). For 2019, SOSM and EOSM are broadly 
consistent with spatial temperature patterns noted in section 2b of this report.

Two case studies for ground-based phenology observations are compared with the satellite 
data. PhenoCam data across NA (Richardson et al. 2018a) show similar spatial and temporal pat-
terns to satellite-derived phenology data (Zhang et al. 2018; Richardson et al. 2018b), although 
the agreement tends to be better in spring than autumn (Melaas et al. 2016; Moon et al. 2019). 
Here, we compare site PhenoCam estimates for start of season (SOSPC) and end of season (EOSPC) 

Fig. 2.69. (a) Time series of area mean anomalies (days relative to 2000–09 baseline) in MODIS NDVI-based vegetation 
growing season onset (SOS; purple) and MERRA-2 spring (Mar–May, green) temperature for NH (> 30°N). (b) Same as (a) 
but for end of growing season (EOS) and autumn (Sep–Nov) temperature. Note temperature scale reversal in panel (b). 
Spatial pattern of (c) SOS and (d) EOS anomaly in 2019 with respect to the baseline. Note the color bar reversal in (d) to 
highlight the longer growing season as green. Colored circles and box in (c) identify the location of sites shown in Figs. 
2.70 and 2.71: Harvard Forest PhenoCam site (pink circle), UK phenology network (yellow box), lake phytoplankton NH 
monitoring sites (green circles).
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at Harvard Forest, a deciduous forest in Massachusetts (United States) with the same indicators 
derived from MODIS (Figs. 2.70a,b). SOSPC and SOSM are strongly correlated (r = 0.83, n = 12), 
although SOSPC is later by 11 ± 3 days, relative to SOSM (Fig. 2.70a). The correlation between 
EOSPC and EOSM is weaker (r = 0.46), and EOSPC is 48 ± 12 days earlier on average relative to EOSM 
(Fig. 2.70b). In 2019, SOSPC for Harvard Forest (DOY 131, 11 May, ± 2 days) was four days later 
relative to 2018 (DOY 127, 7 May, ± 2 days), and EOSPC (DOY 291, 18 October, ± 1 days) was 13 days 
earlier relative to 2018 (DOY 304, 31 October, ± 2 days). The MODIS changes for this site were more 
extreme: SOSM was 11 days later and EOSM 20 days earlier in 2019 relative to 2018 (Figs. 2.70a,b). 
PhenoCam-derived total growing season length in 2019 was more than two weeks shorter than 
2018, mostly because of the earlier EOS. This is the shortest growing season observed at Harvard 
Forest in the 12-year PhenoCam record.

Across the United Kingdom (UK), mean dates of oak (Quercus robur) “first leaf” and “bare tree” 
(indicators of start and end of season) recorded by citizen scientists have been collated by the 
Woodland Trust since 1999. Over the 2000–09 baseline, the mean first leaf and bare tree dates 
were 26 April (DOY 116) and 30 November (DOY 334), respectively, giving a 218-day season length 
(Figs. 2.70b). Both events are strongly influenced by prevailing temperature; first leaf advances by 
about six days for every 1°C increase in mean February–April temperature, and bare tree dates are 
delayed by about three days for every 1°C increase in October temperature. In 2019, the very warm 
spring resulted in mean first leaf nearly 11 days earlier than the baseline. In contrast, October 
temperature was similar to recent years and bare dates were delayed by about one day compared 
to the baseline. The net result was an “oak season” 12 days longer than the 10-year mean. These 
results are qualitatively comparable with UK mean MODIS NDVI SOS and EOS anomalies.

Fig. 2.70. Day of year (DOY) of spring and autumn vegetation phenology indicators and associated 2019 images for (a) 
Harvard Forest, Massachusetts, United States, SOS (green, bottom) and EOS (orange, top) days derived from PhenoCam 
and MODIS remote sensing (black), and (b) UK mean oak (Quercus robur) “first leaf” (bottom, green), “bare tree” (top, 
orange), and MODIS (black).
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Long-term (fortnightly-monthly) monitoring data on lake water concentrations of the photo-
synthetic pigment chlorophyll-a can be used to derive the seasonality of phytoplankton growth 
and the timing of the spring phytoplankton peak in lake ecosystems (Winder and Cloern 2010; 
Thackeray et al. 2013). We present such data from 11 lake basins (Fig. 2.71): Lakes Annecy and 
Bourget (France), Chascomus (Argentina), Geneva (France-Switzerland), Kinneret (Israel), 
Kasumigaura (Japan), Loch Leven (UK), Müggelsee (Germany), Taupo (New Zealand), and the 
north and south basins of Windermere (UK). During the 2000–10 baseline, the mean day of year 
of the spring bloom in the nine NH basins ranged from 76 (17 March, Loch Leven) to 122 (2 May, 
Windermere North Basin). In lakes Chascomus and Taupo, in the SH, the corresponding means 
were 274 (1 October) and 222 (10 August), respectively. In 2019, the day of year of the spring peak 
was later than the base period in eight lake basins (by 1 to 82 days), but earlier for Müggelsee, 
Loch Leven, and Windermere North Basin (by 37, 35, and 9 days, respectively). This site-based 
variability suggests the agency of additional factors, such as nutrient availability (Thackeray  
et al. 2008), that interact with climate to influence seasonal ecosystem behavior.

Fig. 2.71. Box-whisker plot showing the DOY of mean (green line), 
50th (box), 90th (whiskers), and 99th (black open circles) percentiles 
of spring phytoplankton peak for 2000–10, and the 2019 mean day 
(red circles) for nine global lake basins: Annecy and Bourget (France), 
Chascomus (Argentina), Geneva (France-Switzerland), Kinneret (Is-
rael), Kasumigaura (Japan), Loch Leven (UK), Muggelsee (Germany), 
Taupo (New Zealand), and Windermere north and south basins (UK).
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Appendix 1: Acronyms

20CRv3   20th Greenhouse Gas Index
ALT    active layer thickness
AMSRE and AMSRE2 Advanced Microwave Scanning Radiometer
AO    Arctic Oscillation
AOD   aerosol optical depth
ASMA   Asian summer monsoon anticyclone
ATSR   Along Track Scanning Radiometer
AVHRR   Advanced Very High Resolution Radiometers
BDC    Brewer-Dobson circulation
CALIPSO    Cloud-Aerosol Lidar and Infrared Pathfinder Satellite  

    Observation
CAMS   Copernicus Atmosphere Monitoring Service
CAMSRA   CAMS reanalysis
CCMI   Chemistry-Climate Model Initiative
CERES    Clouds and the Earth’s Radiant Energy System
CH3CCl3   methyl chloroform
CH4    methane
CLARA-A2    cloud, albedo and surface radiation dataset
CLOUD_CCI   Cloud Climate Change Initiative
CO    carbon monoxide
CO2    carbon dioxide
CPT    cold-point temperature
EBAF   Energy Balanced And Filled
ECMWF   European Centre for Medium-Range Weather Forecasts
EESC    equivalent effective stratospheric chlorine 
ELSE    Ensemble Land State Estimator
ENSO   El Niño–Southern Oscillation
EOS    Earth Observing System 
EOS    end of season
ERA5   European Centre for Medium-Range Forecasts Reanalysis 

     version 5
ERB    Earth’s radiation budget
ESA CCI SM   European Space Agency Climate Change Initiative for  

    Soil Moisture
ET    evapotranspiration
ETCCDI   Expert Team on Climate Change Detection and Indices
FAPAR   Fraction of absorbed photosynthetically active radiation
FLASHFlux   Fast Longwave and Shortwave Radiative Fluxes
GFAS   Global Fire Assimilation System
GHCN   Global Historical Climatology Network
GISS    Goddard Institute for Space Studies
GLEAM   Global Land Evaporation Amsterdam Model
GLoSSAC   Global Space-based Stratospheric Aerosol Climatology
GNSS   Global Navigation Satellite System
GPCC   Global Precipitation Climatology Centre
GPCP   Global Precipitation Climatology Project 
GPS-RO   Global Positioning System–Radio Occultation
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GRACE   Gravity Recovery and Climate Experiment
GRACE-FO   GRACE Follow On
G-REALM    Global Reservoir and Lake Monitoring 
GrIS    Greenland ice sheet
GTN-P   Global Terrestrial Network for Permafrost
H2O    water
HIRS    High Resolution Infrared Sounder
IFS    Integrated Forecasting System
IOD    Indian Ocean dipole
JAS    July, August, September
JJA    June, July, August
JPL    Jet Propulsion Laboratory
JRA-55   Japanese global atmospheric reanalysis
LLGHGs   long-lived greenhouse gases 
LST    lower stratospheric temperature
LSWT   lake surface water temperature
LTT    lower tropospheric temperature
MACC   Monitoring Atmospheric Composition and Climate
MHW   marine heat wave
MISR   Multi-angle Imaging SpectroRadiometer
MLO   Mauna Loa (Hawaii)
MLS    Microwave Limb Sounder
MLSOL   Mauna Loa Stratospheric Ozone Lidar
MODIS C6    Moderate Resolution Imaging Spectroradiometer  

    Collection 6 
MOPITT   Measurement of Pollution in the Troposphere
MSLP   mean sea level pressure 
N2O    nitrous oxide
NA    North America
NAO   North Atlantic Oscillation
NDACC   Network for the Detection of Atmospheric  

    Composition Change
NDVI   normalized difference vegetation index
NH     Northern Hemisphere
O3    ozone
OCS    carbonyl sulfide
ODS    ozone depleting substance
OH    hydroxyl 
OLR    outgoing longwave radiation
OMI    Ozone Monitoring Instrument
OMPS/LP   Ozone Mapping and Profiler Suite/Limb Profiler
ONI    Oceanic Niño Index
PATMOS-x/AVHRR   Pathfinder Atmospheres Extended/Advanced Very High  

    Resolution Radiometer 
PDO    Pacific Decadal Oscillation
POES   Polar Operational Environmental Satellites 
ppb    parts per billion
ppm    parts per million
QBO    Quasi-Biennial Oscillation
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QTP    Qinghai-Tibetan Plateau
RFaci   radiative forcing resulting from aerosol–cloud interactions
RFari   radiative forcing resulting from aerosol–radiation
RSS    Remote Sensing Systems
RSW    reflected shortwave
sAOD   stratospheric aerosol optical depth
SatCORPS    satellite cloud and radiative property retrieval system
SCE    snow cover extent
scPDSI   self-calibrating Palmer Drought Severity Index
SH    Southern Hemisphere
SO2    sulfur dioxide
SOI    Southern Oscillation Index
SORCE   Solar Radiation and Climate Experiment
SOS     start of season
SPO    South Pole Observatory
SSM/I   Special Sensor Microwave/Imager
SSMIS   Special Sensor Microwave Imager/Sounder
SST    sea surface temperature
SSU    Stratospheric Sounding Unit
SSW    sudden stratospheric warming
SWV   stratospheric water vapor
TCCON   Total Carbon Column Observing Network
TCWV   total column water vapor
TMI    Tropical Rainfall Measuring Mission Microwave Imager
TOA    top of the atmosphere
TSI    total solar irradiance
TTL    tropical tropopause layer
TTT    tropical trophospheric temperature
TWS    terrestrial water storage
UTH    upper troposphere (relative) humidity
UV    ultraviolet
WGMS   World Glacier Monitoring Service
WMO   World Meteorological Organization
ZAA    zero annual amplitude
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Fig. A2.1. Global land and ocean surface annual temperature anomalies for 2019 
(°C; 1981–2010 base period). (Source: HadCRUT4.)

Fig. A2.2. Global land and ocean surface annual temperature anomalies for 2019 
(°C; 1981–2010 base period). (Source: NASA GISTEMP.)

2b1 Surface air temperature
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Fig. A2.3. Global land and ocean surface annual temperature anomalies for 2019 
(°C; 1981–2010 base period). (Source: ERA5.)

Fig. A2.4. Global land and ocean surface annual temperature anomalies for 2019 
(°C; 1981–2010 base period). (Source: JRA-55.)
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2b3 Surface temperature extremes

Fig. A2.5. (a) warm day threshold exceedance (TX90p), (b) cool night threshold ex-
ceedance (TN10p) in 2019. (Source: ERA5.)
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Fig. A2.6. Average area of highest (red) (blue) and lowest temperatures by month for the 41 years of observations in ERA5, 
RSS, and UAH datasets. This is an update of the figure from SotC 2018 (Christy et. al. 2019).

2b4 Tropospheric temperature

Fig. A2.7. (Top) Time series of annual anomalies of global lower tropospheric temperature (°C)from radiosonde datasets 
only. (Middle) Differences of individual radiosonde datasets (at −1.0°C axis) versus the radiosonde average. (Bottom) Dif-
ferences relative to the radiosonde average (top) for satellite and reanalyses (at −1.5°C axis). As noted in the text, those 
datasets that are not exclusively radiosondes (bottom) show decreasing values after 2009 possibly related to spurious 
warming in the radiosondes as a consequence of a change in the software processing system at many of the stations.
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Fig. A2.8. Update of tropical temperature (TTT) trend comparisons (1979–2019) from SotC 2016 (Christy 2017) between 
observational datasets and the Climate Model Intercomparison Project version 6 (CMIP-6). The trend values for each 
pressure level are shown from 1000 to 100 hPa with central values represented by the green (mean radiosondes) and red 
(median model) lines. The upper box provides the trends for the average of the bulk atmospheric layer TTT as described 
in the text. The model time series are constructed with historical forcings from 1850 to 2014 and after 2014 with forcing 
scenario ssp245. The 30 CMIP-6 models used are ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CanESM5 
(warmest), CanESM5-OE, CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2, EC-EARTH3, EC-EARTH3-VEG, FGOALS, FIO, 
GFDL-CM4, GFDL-ESM, GISS-E2-1-G, HadGEM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MCM-UA, MIROC6, MIROC6-2L 
MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0 (coolest), NESM, NorESM2-LM, and UKESM1-0-LL.

Fig. A2.9. Paired intercomparisons of the datasets utilized here for the tropical TTT metric, calculating the extent to which 
the identified paired datasets agree in terms of common variance (r2).
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Table A2.1. Comparison of decadal trend values (°C decade−1) between 
observations and CMIP-6 climate model simulations. (See Fig. A2.8)

Area Global Global Tropical Tropical

Layer LTT LTT TTT TTT

Start year 1958 1979 1958 1979

Median Observations +0.18 +0.18 +0.16 +0.16

Median
CMIP6  

(30 models)
+0.20 +0.29 +0.22 +0.32
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Fig. A2.10. Surface specific humidity anomalies for 2019. (Source: ERA5.)

Fig. A2.11. Surface specific humidity anomalies for 2019. (Source: MERRA-2.)

2d1 Surface humidity
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Fig. A2.13. Surface relative humidity anomalies for 2019. (Source: MERRA-2.)

Fig. A2.12. Surface relative humidity anomalies for 2019. (Source: ERA5.)
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Fig. A2.15. Annual average upper tropospheric humidity anomalies anomaly map 
for 2019 relative to the 2001–10 climatology based on the HIRS dataset.

2d3 Upper tropospheric humidity

Fig. A2.14. Total column water vapor anomalies for 2019 relative to a 1981–2010 
base period. Over the oceans, the data are from COSMIC, GPS RO, and satellite 
radiometers, and from COSMIC and GPS RO over land.  

2d2 Total column water vapor
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Fig. A2.16. Monthly soil moisture anomalies for 2019 (base period: 1991–2010). Data were masked as missing where retriev-
als are either not possible or of very low quality (dense forests, frozen soil, snow, ice, etc.). (Source: ESA CCI Soil Moisture.)

2d10 Soil moisture
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Fig A2.17. Plant transpiration anomalies (mm yr−1). (Source: GLEAM.)

2d11 Land evaporation
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Fig. A2.18. Stratospheric monthly mean zonal winds over Singapore in 2019. Purple 
depicts westerly, brown easterly wind.

2e3 Upper air winds
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