
Nonuniform Contribution of Internal Variability to Recent Arctic Sea Ice Loss

MARK ENGLAND

Applied Physics and Applied Mathematics Department, Columbia University, New York, New York

ALEXANDRA JAHN

Department of Atmospheric and Oceanic Sciences, and Institute of Arctic and Alpine Research, University of

Colorado Boulder, Boulder, Colorado

LORENZO POLVANI

Applied Physics and Applied Mathematics Department, and Department of Earth and Environmental Science,

Lamont Doherty Earth Observatory, Columbia University, New York, New York

(Manuscript received 15 December 2018, in final form 14 April 2019)

ABSTRACT

Over the last half century, theArctic sea ice cover has declined dramatically. Current estimates suggest that,

for the Arctic as a whole, nearly one-half of the observed loss of summer sea ice cover is not due to an-

thropogenic forcing but rather is due to internal variability. Using the 40 members of the Community Earth

SystemModel Large Ensemble (CESM-LE), our analysis provides the first regional assessment of the role of

internal variability on the observed sea ice loss. The CESM-LE is one of the best available models for such an

analysis, because it performs better than other CMIP5 models for many metrics of importance. Our study

reveals that the local contribution of internal variability has a large range and strongly depends on the month

and region in question. We find that the pattern of internal variability is highly nonuniform over the Arctic,

with internal variability accounting for less than 10% of late summer (August–September) East Siberian Sea

sea ice loss but more than 60% of the Kara Sea sea ice loss. In contrast, spring (April–May) sea ice loss,

notably in the Barents Sea, has so far been dominated by internal variability.

1. Introduction

The rapid loss of Arctic sea ice over the last 50 years

has been one of the most alarming signals of a changing

climate. September sea ice extent has decreased by

roughly 50% since 1979 (Comiso et al. 2017; Stroeve and

Notz 2018). Current model projections show that a

summer ice-free Arctic before 2100 is very likely unless

future warming is limited to 1.58C or less (Jahn 2018;

Niederdrenk and Notz 2018; Sigmond et al. 2018) and is

likely to occur by the middle of this century if anthro-

pogenic emissions continue on the current trajectory

(Overland and Wang 2013; Liu et al. 2013; Jahn et al.

2016; Jahn 2018; Sigmond et al. 2018). Furthermore,

over recent decades the Arctic melt season has length-

ened (Stroeve et al. 2014a) and sea ice cover has un-

dergone considerable thinning (Kwok and Rothrock

2009; Stroeve et al. 2014b; Lindsay and Schweiger 2015;

Kwok 2018).

These changes in sea ice are both strongly regionally

and seasonally dependent. For example, sea ice loss in the

Beaufort, Chutchi, Laptev, and East Siberian Seas has

been concentrated in the late summer, whereas sea ice

loss in the Barents, Okhotsk, and Baffin Seas has pri-

marily occurred in the winter and springtime (Onarheim

et al. 2018). Sea ice concentration changes have been

occurring primarily at the icemargins where ice is thinner.

Understanding the changes of Arctic sea ice, especially

on a regional scale, is becoming increasingly critical

for many sectors of business and society (Lahn and

Emmerson 2012; Barnhart et al. 2016). To improve our

ability to anticipate future Arctic sea ice change, it is

important to estimate howmuch of the observed change

in sea ice in different Arctic basins is attributable to
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increased anthropogenic emissions, and how much is

due to internal variability of the climate system.

Internal variability represents the random fluctuations

inherent in the climate system, related to naturally occur-

ring changes in the large-scale atmospheric and ocean

circulation, which can strengthen or mitigate the trends

associated with human induced climate change over time

scales from years to severaldecades. Recent estimates

suggest that internal variability has contributed up to 50%

of the observed trend in September pan-Arctic sea ice

extent decline in recentdecades [44% (Kay et al. 2011),

43%–53% (Stroeve et al. 2007), 33%–48% (Stroeve et al.

2012), 49% (Zhang 2015), 30%–50% (Ding et al. 2017),

33% (Ding et al. 2019)]. Furthermore, internal variability

has been used to project a slowdown inAtlantic Ocean sea

ice loss in the comingdecade (Yeager et al. 2015). Al-

though there is broad agreement on the importance of

internal variability for recentArctic-wide aggregate sea ice

changes, much less is known about its role in different

Arctic basins and at different times of the year. Hence the

key question we address here: Is the contribution of in-

ternal variability to the observed sea ice loss uniform in

time and space across theArctic, or is it confined to specific

regions or specific times of the year?

In this paper we answer this question using the 40

members of the Community Earth Systems Model

Large Ensemble (CESM-LE) (Kay et al. 2015), com-

plemented bymodel results from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) archive. Sev-

eral studies have used the CESM-LE to investigate the

effect of internal variability on pan-Arctic sea ice extent

(Swart et al. 2015; Jahn et al. 2016; Jahn 2018) but ours is

the first attempt to examine the regional and temporal

features of internal variability for sea ice concentration.

We first show that the CESM-LE is able to faithfully

capture the regional structure of year-to-year sea ice

concentration variability (section 2d), especially when

compared with ensembles of other CMIP5 models that

exhibit large biases. We then assess the contribution of

internal variability to observed trends in two seasons;

the spring and summer (section 3). We will show that, in

summer, the role of internal variability is nonuniform;

internal variability accounts for a quarter to a half of the

sea ice loss in most regions, but in some specific hotspots

internal variability is the dominant factor. In spring, our

results show that internal variability accounts for the

vast majority of observed sea ice loss to date.

2. Data and methods

a. Observational data

The observational dataset used for Arctic sea ice con-

centrations in this study is theMetOfficeHadleyCentre Sea

Ice and Sea Surface Temperature dataset, version 2.1

(HadISST2.1.0.0) (Titchner and Rayner 2014). Passive mi-

crowave data from satellites are combined with historical

sources such as sea ice charts to estimate Arctic sea ice

concentrations back to 1850 on a regular 18 by 18 grid. The
period of interest for this study starts at 1958 so as to cover a

50-yr range with decadal averages. There is a higher degree

of confidence in the variability of Arctic sea ice after 1953;

prior to this, mostly climatological values are used (Titchner

and Rayner 2014).

b. Model simulations

The 40 members of the CESM-LE (Kay et al. 2015)

are ideally suited to answer questions regarding the role

of internal variability. All the members of this ensemble

are forced with identical historical forcing for 1920–2005

(Lamarque et al. 2010) and future emissions under the

RCP8.5 scenario for the years 2006–2100 (Meinshausen

et al. 2011). The difference between the 40 members

solely arise from random fluctuations generated by

roundoff-level perturbations in the initial conditions of

the air temperature field. As such, each member repre-

sents an independent realization of the climate system,

and the spread represents uncertainty arising from in-

ternal variability alone. We also utilize the 1800 years of

the preindustrial 1850 control run (Kay et al. 2015) with

the same version of CESM1-CAM5 (Hurrell et al. 2013)

to estimate the magnitude of internal variability without

the presence of anthropogenic emissions.

We compare results from theCESM-LEwith simulations

fromCMIP5 (Taylor et al. 2012) in section 2d. To assess the

interannual variability of sea ice concentration we select the

sevenmodels that have at least fourmembers (viz., CCSM4,

CNRM-CM5, CSIRO Mk3.6.0, EC-EARTH, HadGEM2-

ES, IPSL-CM5A-LR, and MIROC5; expansions of model

names and institutions can be found at https://www.ametsoc.

org/PubsAcronymList). To sample as much of the internal

variability as possible, we also utilize the 50 members of the

CanESM2 large ensemble instead of the 5 members of

CanESM2 from theCMIP5 ensemble. To investigate sea ice

extent trends and changes in the multimodel mean (section

3a), we use the first member from each of the 32 CMIP5

models for which we had access to the necessary data. We

only use one ensemble member to avoid biasing the multi-

modelmean toward any onemodel.We note that averaging

across CMIP5 models conflates internal variability with

structural uncertainty so caution should be used when di-

rectly comparing the CMIP5 multimodel mean with the

mean of a single model large ensemble.

c. Change in decadal averages

In this study we will focus on 50-yr differences in

decadally averagedArctic sea ice concentration in order
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to examine the contribution of internal variability to

long-term, multidecadal changes in Arctic sea ice. In

particular, we are interested in the decade 1958–67,

which occurs before significant amounts of Arctic sea ice

loss, and themost recent decade 2008–17, which has seen

large amounts of sea ice loss. These twodecades are one-

half of a century apart. Using linear regression, as done

by most previous studies (e.g., Kay et al. 2011; Stroeve

et al. 2012), is usually amore powerful approach (Barnes

and Barnes 2015). However, we here examine epoch

differences so as not to assume that changes have been

linear in time. In fact, as will be shown below, the rate of

sea ice loss has accelerated since 1990. Hence, the as-

sumption of linearity since the middle of the twentieth

century may not be valid.

d. Evaluation of internal variability

To study the contribution of internal variability to

recent changes in Arctic sea ice, we need a model that

realistically simulates both the present Arctic sea ice

conditions and its internal variability. The CESM-LE

has been shown to realistically simulate present-day

Arctic sea ice thicknesses and matches the observed

seasonal cycle of Arctic sea ice extent very well [see

Figs. S1 and S2 of Jahn et al. (2016) as well as Labe et al.

(2018)]. As the observations are only one realization, it

is not possible to assess the realism of the simulated

multidecadal internal variability from the observational

record. However, previous studies have shown that in-

terannual variability is a suitable proxy for investigating

internal variability on longer time scales (Thompson

et al. 2015). This technique is only suitable if the vari-

ability is stationary in time.We caution against using this

technique for studying future sea ice loss because the

variability is projected to substantially change [see

Fig. S5 of Jahn (2018)]. Here, under the assumption of

stationarity, we assess interannual variability in the

CESM-LE to assess the accuracy of the simulated in-

ternal variability.

The interannual variability is here calculated as the

standard deviation s of the linearly detrended sea ice

concentration time series, covering the 60 years from

1958 to 2017, which we shall hereinafter refer to as the

‘‘historical period,’’ in each grid box. When more than

one realization exists (i.e., when not analyzing the ob-

servational record), we linearly detrend each member,

take the standard deviation of the time series, and then

average across the ensemble members. To mitigate is-

sues associated with comparing one time series and the

average of an ensemble of time series, we utilize the

approach of McKinnon et al. (2017) and McKinnon and

Deser (2018) and use a false discovery rate of 10%with a

two-tailed Student’s t distribution.

The overall spatial structure of the interannual vari-

ability of the CESM-LEover the historical period is very

similar to the observations (cf. top and middle row of

Fig. 1), but the magnitude of the variability is under-

estimated by the model, in particular in the northern-

most regionswhere themodel variability is nearly one-half

of that observed in August–September (Fig. 1f). How-

ever, when compared with all other CMIP5 model,

which have at least four ensemble members (Fig. 2), the

CESM-LE produces the most realistic spatial structure

and magnitude of interannual sea ice variability. In

particular, in August–September most other models ei-

ther simulate too much variability over the Arctic

Ocean, or cannot capture the correct magnitude of

variability near to the coastline. The pattern correlation

coefficients with the observations are shown in red, with

the CESM-LE being the most similar (0.94). We note

that, however, pattern correlation is not a perfect metric

because it only takes into account the spatial pattern and

not the magnitude. Therefore CCSM4 and EC-EARTH

have high correlation coefficents even if the magnitude

of sea ice variability is too high. In April–May, the

CMIP5 models are able to better capture the observed

structure of internal variability than in August–

September, but even for April–May the CESM-LE

still performs well relative to the other models (Fig. 3).

The CESM-LE has the joint highest pattern correlation

score with the observations (0.8), along with EC-

EARTH, which has too much variability in the

Barents Sea. From this analysis we conclude that, al-

though it is only one model, the CESM-LE is one of the

best available models with enough ensemble members

to study the contribution of internal variability to recent

changes in sea ice on a regional scale.

e. Separating forced versus internal variability

To quantify the contribution of internal variability to

recent Arctic sea ice changes on a regional scale, we

separately calculate the forced contribution Dforced and

the contribution of internal variability Div to the sea ice

loss, for each grid box in the CESM-LE. The histograms

in Fig. 4 illustrate this calculation for one grid box in the

East Siberian Sea. The forced contribution, Dforced, is

defined as the ensemble mean change (either from the

40 members of the CESM-LE or the CMIP5multimodel

ensemble). The ensemble mean change from a single

model is shown to be a good estimate of the forced signal

(Frankcombe et al. 2018). We have checked that the

ensemble of a bootstrapped distribution of 50-yr

changes from the 1800-yr-long preindustrial control

run is centered on zero to ensure that there is no model

drift. The contribution of internal variability, Div, is the

remainder of the observed change after Dforced is

1 JULY 2019 ENGLAND ET AL . 4041



FIG. 1. Standard deviation of linearly detrended (left) April–May and (right) August–

September sea ice fraction values over 1958–2017 from (a),(b) the HadISST observa-

tional dataset and (c),(d) the 40members of the CESM-LE. (e),(f) The ratio of the two is

shown for regions, and the stippling indicates differences that are significant using a false

detection rate of 10%. Blue and red indicate that the CESM-LE under- and over-

estimates, respectively, the observed standard deviation.

4042 JOURNAL OF CL IMATE VOLUME 32



subtracted out. Internal variability can also be expressed

as a percentage contribution of the observed sea ice loss:

100 3 [jDivj/(Div 1 Dforced)].

3. Results

a. Pan-Arctic sea ice trends and internal variability

We first examine the aggregate Arctic-wide changes

in the CESM-LE to allow for comparison with previous

studies. In this study we focus our analysis on two

2-month periods: April–May and August–September.

We select these months to highlight the contrasting role

of internal variability in different seasons, and the late

summer is of particular interest because that is the sea-

son of the most rapid sea ice loss. The months were

paired into two-month groupings because results from

the individual months were qualitatively similar.

In April–May, the observed long-term trend (.30 yr)

in sea ice extent from 1958 lies outside the trends

FIG. 2. Standard deviation of linearly detrended August–September sea ice concentration values 1958–2017 from (a) the HadISST

observational dataset, (b) the 40 members of the CESM-LE, and (c)–(j) 8 CMIP5 models (CanESM2, CCSM4, CNRM-CM5, CSIRO

Mk3.6.0, EC-EARTH, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5). These are the CMIP5 models that have four or more ensemble

members for the historical period, with the number of members displayed in parentheses after the model name. The pattern correlation

score with observations is shown in red for each model.

1 JULY 2019 ENGLAND ET AL . 4043



simulated by the CESM-LE (Fig. 5) but the shorter 20-yr

trends compare well with observations (Fig. 6). In

August–September, the observed long-term trend in sea

ice extent is within the range of trends simulated by the

CESM-LE (Fig. 5) and the shorter 20-yr trends are also

within the spread, except for the trends ending after

2010 (Fig. 6). (Results for each pair of months for the

whole year are shown in Figs. S2 and S3 in the online

supplemental material.) We note that June and July are

the months where the CESM-LE is not able to capture

the shorter or longer term trends in observed sea ice

extent when the sea ice loss over the last decade is in-

cluded (Figs. S2 and S3). These results demonstrate that

whether the observed trend is found to lie within the

CESM-LE or CMIP5 ensemble spread is dependent on

the season, trend length, and chosen end year.

For the pan-Arctic sea ice loss since 1979 in Septem-

ber, the CESM-LE shows a contribution from internal

variability to the observed trend of 33% (Ding et al.

2019) [the ensemble mean trend is 20.60 3 106 km2

(10yr)21 as comparedwith the observed trend of20.913
106 km2 (10 yr)21]. To account for atmospheric condi-

tions that are found to precede September sea ice

loss, Ding et al. (2019) use a pattern scaling technique

with the CESM-LE to suggest that internal variability

is in fact responsible for 47%–57% of the observed

FIG. 3. As in Fig. 2, but for April–May.
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sea ice loss over this period. This is likely an upper

bound on the contribution because previous studies

found values between roughly one-third and one-half

[(44% (Kay et al. 2011), 43%–53% (Stroeve et al. 2007),

33%–48% (Stroeve et al. 2012), and 30%–50% (Ding

et al. 2017)]. Over the longer period 1958–2017 consid-

ered here, the contribution of internal variability is

lower in the CESM-LE [24%; the ensemble mean trend

is 20.38 3 106 km2 (10 yr)21 as compared with the ob-

served trend of 20.50 3 106 km2 (10 yr)21]. This is

consistent with the expectation that longer trends would

show a smaller contribution from internal variability

(Hawkins and Sutton 2011; Kay et al. 2011). In addition,

the larger contribution of internal variability for 1979–

2017 than 1958–2017 likely also reflects the increasing

internal variability with decreasingmean ice extents [see

Fig. S5 of both Swart et al. (2015) and Jahn (2018)]. We

note that the same relationship does not necessarily hold

for sea ice thickness or volume (Massonnet et al. 2018;

Mioduszewski et al. 2019).

b. Regional sea ice trends and internal variability

To address the main question of this study regarding

sea ice loss on a regional scale, we now move away from

pan-Arctic metrics to examine spatial fields. The spatial

structure of the sea ice concentration change over the

historical period found in the CESM-LE simulations

matches the pattern found in observations very well, and

the observed change is within the range of 50-yr changes

that, according to the CESM-LE, could possibly have

occurred (Fig. 7). The CESM-LE ensemble mean

change, understood to be an estimate of the forced re-

sponse, shows significantly smaller levels of sea ice loss

in all regions of the Arctic than the observations, in

agreement with previous pan-Arctic studies (Kay et al.

2011; Stroeve et al. 2012). The observed 50-yr change in

August–September sea ice fraction lies somewhere

between 22s and 21s from the ensemble mean, and

the observed 50-yr change in April–May sea ice fraction

lies just outside22s from the ensemble mean. The wide

range of changes simulated by CESM-LE highlights the

large role of internal variability for regional sea ice cover

changes, even for changes over half a century. If the

effects of internal variability are distributed normally,

which seems a relatively good assumption (Dai and

Bloecker 2019), one would expect the change to fall

within 2 standard deviations of the ensemble mean

change roughly 95% of the time. For observed changes

that lie outside the 2s envelope, as is the case in April–

May, this could indicate 1) that the forced response is

not strong enough in the model, 2) that it is a very un-

likely event we are seeing, and roughly 5% of changes

should fall outside the envelope, 3) that the model

could be getting the variability wrong, 4) observational

FIG. 4. The histograms are the distributions of 50-yr changes in

decadal means from the 1800-yr CESM control run and the 40

members of the CESM-LE historical simulations for one gridbox

(718N, 1908E). The contribution of internal variability in each grid

box is calculated as 100 3 [jDivj/(Div 1 Dforced)].

FIG. 5. Linear trends of Arctic sea ice extent that start from 1958

for the 40 members of the CESM-LE (black open circles), the

CESM-LE ensemblemean (cyan line), and the observed value (red

circles and line). The trends are of increasing lengths, with end

years ranging from 1968 to 2017, reflecting trends of 10–50 yr. The

dark-gray shading indicates values within 1 standard deviation of

the ensemble mean, and the light-gray shading indicates within 2

standard deviations of the CESM ensemble mean. The green

shading shows the 2s envelope of trends found in the CMIP5

model ensemble. The blue dashed line shows the zero line. We

divide the data into 2-month averages, with our focus in the study

being April–May and August–September. Trends for every pair of

months in a year are shown in online supplemental Fig. S1.
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uncertainties (Niederdrenk and Notz 2018), or 5) some

combination of the preceding four.

Here it seems likely that option 1 is a likely candidate

because the long-term trend for April–May is outside

the range simulated by CESM-LE (Fig. 5). Although we

have demonstrated that the CESM-LE outperforms

CMIP5 models when examining the interannual vari-

ability of sea ice concentration (section 2d), the same is

not necessarily true for the forced response (for which

the ‘‘true’’ magnitude is challenging to assess). To assess

the impact of the estimate of the forced response on the

results shown in Fig. 7, we repeat the analysis replacing

the CESM-LE ensemble mean with the CMIP5 multi-

model mean, which provides another estimate of the

forced response (Knutti 2010). We find, in agreement

with Ding et al. (2019), that the CESM-LE ensemble

mean has a faster rate of Arctic sea ice loss in the his-

torical period than the CMIP5 ensemble mean and that

the observed sea ice loss in April–May and August–

September is outside the 2s envelope if the CMIP5

mean is used (supplemental Fig. S3). We note that

Rosenblum and Eisenman (2017) found that the CESM-

LE ensemble mean has a lower rate of sea ice loss than

the CMIP5 multimodel ensemble mean over a similar

period. The difference is likely to arise from their study

using every member from each CMIP5 model, giving a

few models a much heavier weight. In this study we only

use onemember from eachCMIP5model, which follows

the ‘‘one model, one vote’’ approach used in the IPCC’s

model democracy (Knutti 2010).

The key finding of this paper is that for August–

September the role of internal variability (section 2e) is

nonuniform across the Arctic, both when the CESM-LE

mean change is used to estimate the forced response

(Fig. 8f) and when the CMIP5 multimodel mean change

is used (Fig. 9f). In the CESM-LE, internal variability

accounts for roughly 20%–50% of the observed sea ice

loss across much of the Arctic, but in some hotspots it

plays a greater role than anthropogenic forcing. These

hotspots include the Laptev Sea, the East Beaufort Sea,

and the Kara Sea and are mostly located leeward of is-

lands such as Wrangel Island, the New Siberian Islands,

and Svernaya Zemlya. The variability in the East

Beaufort Sea and Laptev Sea is likely related to wind

blowing the ice toward open waters causing a ‘‘loiter-

ing’’ of the sea ice edge (Steele and Ermold 2015). On

the other hand, other regions, including the East Sibe-

rian Sea, the forced response accounts for nearly all of

the observed change and internal variability plays a

minimal role. Noting that the CMIP5 forced response in

August–September is weaker than the CESM-LE re-

sponse (cf. Figs. 8d and 9d), we deduce that the overall

role for internal variability in driving the observed

changes might be larger than the CESM-LE suggests.

The contribution of internal variability (section 2e)

when using the CMIP5 forced response is again found to

be high in the Laptev Sea and Kara Sea. Generally, in-

ternal variability is shown to play an important role

along the continental coastlines, whereas the forced re-

sponse dominates closer to the pole. This is consistent

with the fact that the climate change signal to noise ratio

in August–September is order of magnitudes larger than

in April–May, especially in the Arctic Ocean (Fig. S4 in

the online supplemental material). We have repeated

the analysis with a shorter time period (1979–88 to 2004–

13) and a different observational dataset (Walsh et al.

2016) and the results were very similar (not shown).

In contrast with the results for the late summer, we

find that in April–May internal variability is responsible

for the vast majority (.75%) of recent observed sea ice

changes (Figs. 8e, 9e). This result is not dependent on

whether the forced response is estimated using the

CESM-LE or the CMIP5 multimodel ensemble. Pre-

vious studies have highlighted the high levels of internal

variability in the Barents Sea region (Smedsrud et al.

2013; Onarheim et al. 2015; Onarheim and Arthun

2017). Given that sea ice concentrations in the spring are

highly correlated with sea ice conditions in the late

winter in this region, our findings are consistent with

previous studies that show the strong contribution of

internal variability on decadal time scales, driven by

FIG. 6. Similar to Fig. 5, but for the 20-yr linear trends. The end

year for these 20-yr trends ranges from 1978 to 2017. Trends for

every pair of months in a year are shown in online supplemental

Fig. S2.
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ocean heat transport, to winter sea ice loss (Smedsrud

et al. 2013; Yeager et al. 2015). Because of the important

role of internal variability, the signal-to-noise ratio of

the climate change signal is orders of magnitude lower in

April–May than in August–September in CESM-LE

(supplemental Fig. S4). Therefore, the anthropogeni-

cally forced sea ice loss signal should be much easier to

detect in August–September than in the late spring.

Last, we find that the spatial pattern of internal vari-

ability that we have just described is well explained by

the leading spatial modes of variability simulated by the

CESM-LE. Figure 10 shows the two leading EOFs of

50-yr changes in the two seasons of interest, both for the

control simulation and the historical period. Using the

latitudinally weighted 50-yr change in decadal mean

Arctic sea ice fraction, we calculate the EOFs across the

40 members of the CESM-LE (historical period) as well

as overlapping 50-yr changes sampled across the 1800-yr

control simulation (control period). These EOFs are the

largest modes of variability to explain the spread in sea

FIG. 7. Fifty-year changes in decadal means of Arctic sea ice fraction averaged over (left) April–May and (right)

August–September from the HadISST datset (‘‘Obs.’’) and ensemble mean (‘‘Ens. Mean’’) of the 40-member

CESM-LE. The decades of interest are 1958–67 and 2008–17.Multiples of the standard deviation (22s,21s,11s,

and12s) are calculated from the 40members and then added to the ensemblemean to demonstrate the 95% range

of expected changes.
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FIG. 8. For the 40 members of the CESM-LE, the contribution of (a),(b) internal var-

iability and (c),(d) the forced response in (left) April–May and (right) August–September

to the observed sea ice loss from 1958–67 to 2008–17 [shown in Fig. 7 (‘‘Obs.’’), which is the

sum of the top row and the middle row of this figure]. (e),(f) The percentage contribution

of internal variability to the observed sea ice loss in each grid box, calculated as 100 3
[jDivj/(Div 1 Dforced)]. An example of the calculation for one grid box is given in Fig. 4.
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FIG. 9. As in Fig. 8, but based upon the CMIP5 ensemble mean change (averaged from 32

CMIP5 models).
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ice changes across the CESM-LE members. The first

two EOFs in all seasons explain roughly one-half of the

variance, and are well separated from each other. In

April–May, the first and second EOFs are regionally

focused on the Barents Sea; these describe the pattern of

internal variability that is responsible for much of the

observed sea ice loss in this region, although the first

EOF is likely more important because of the lack of

sea ice loss observed in the Bering Sea. In August–

September the first two EOFs contribute roughly

equally to the observed patterns of sea ice loss. Note that

the difference in the second EOF in August–September

between the preindustrial control to the historical pe-

riod is the only EOF notably affected by the historical

forcings. This is caused by the fact that in the historical

period there is more sea ice variability farther poleward

than in the preindustrial era, resulting from thicker and

more extensive preindustrial sea ice cover.

4. Summary and discussion

Using the CESM-LE, we have demonstrated that in-

ternal variability has had a significant but spatially com-

plex impact on recent historical Arctic sea ice loss. In fact,

our results indicate that the forced signal and large levels

of internal variability could have combined to produce a

wide range of trends, including a much reduced loss of

Arctic sea ice concentration over the last half century

(12s event rather than a 22s event). Focusing on the

spatial pattern of internal variability, we demonstrated

that the contribution of internal variability to changes in

sea ice in late summer is highly nonuniform, accounting

for less than 10% of the sea ice loss in the East Siberian

Sea but more than 60% in the Kara Sea. Results for the

spring are more uniform for the regions that have lost sea

ice concentration, with a consistently large contribution of

internal variability (.75%). This suggests that the ob-

served recent sea ice loss in the Barents Sea is unlikely to

have been caused by anthropogenic forcing; in fact, this

region experiences the largest levels of internal variabil-

ity, complicating and delaying the detection of a forced

signal. Although it is in a different season, this raises the

question of how much the proposed connection between

winter Barents–Kara Sea sea ice loss and themidlatitudes

(Kim et al. 2014; Zhang et al. 2018) is a forced response or

driven by internal variability.

We have also shown that the nonuniform spatial

patterns of internal variability are largely consistent

FIG. 10. The first two leading EOFs (normalized) of 50-yr changes in decadal means of Arctic sea ice fraction from (top) the CESM

preindustrial control run and (bottom) from 1958–67 to 2008–17 from the CESM-LE. The control run provides 1741 overlapping 50-yr

changes, and there are 40 independent 50-yr changes from the CESM-LE. We analyze the months (a),(b),(e),(f) April–May and

(c),(d),(g),(h) August–September. The percentage of the total variance explained by the EOF is displayed, with the first two EOFs

comprising one-half of the total variance. The remaining EOFs that are shown each account for less than 8% of the variance.
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over time, based on EOF analysis of the CESM-LE

historical period and the preindustral control run. The

one exception to this is the second mode of variability in

the late summer, when the changing sea ice state allows

sea ice variability to encroach farther poleward into

regions previously covered by year-round sea ice. The

fact that the mode, which explains the most variance

among sea ice trends, remains unchanged between the

preindustrial and historical period, showing no imprint

of climate change, highlights the important role of in-

ternal variability for the spatial pattern of Arctic sea

ice change.

When considering the robustness of our results, it is

important to keep in mind that the CESM-LE is only

onemodel and our conclusions are only as reliable as the

internal variability and forced response generated by the

model. Among the currently available CMIP5-class

models, the CESM-LE performs best for the metrics

used in this study: the spatial structure and magnitude of

recent changes and interannual variability. In particular,

we showed that the spatial structure of interannual

variability simulated by the CESM-LE is closer to ob-

servations than other CMIP5 models. We also showed

that the observed trend in spring and summer sea ice

extent mostly lies within the range of trends simulated

by the CESM-LE for both shorter (20 yr) and longer

(.30 yr) trends, with better performance in summer

than spring. Furthermore, we showed that the results are

similar whether we use the CESM-LE or CMIP5 forced

trends. Therefore, as long as the change in ensemble

mean is a good estimate of the forced response to recent

climate change, the results are robust. However, it has

been suggested that the annual-mean sea ice sensitivity

in the CESM-LE and CMIP5 models, and hence the

simulation of the forced response, might be too low

(Notz and Stroeve 2016; Rosenblum and Eisenman

2017). If that is the case, the role on internal variability

might be overestimated. However, Ding et al. (2019)

offer evidence that models do not underestimate sea ice

sensitivity, but instead are not able to represent realistic

polar–tropical linkages, which affect the global tem-

peratures. Furthermore, observational estimates of the

sensitivity of Arctic sea ice to emissions and global

temperature are associated with large uncertainties

(Niederdrenk and Notz 2018). For September, it has

been shown that the CESM-LE sea ice sensitivity is

consistent with some observational data, but too weak

when other data is used (Jahn 2018). Hence, as far as we

can assess the models at present, our results are the best

estimate of the contribution of internal variability to

Arctic sea ice loss. Nonetheless, the CESM-LE still

shows some biases that might affect the results and that

limit themonths of the year that we can studywith it. For

example, it has been suggested that the CESM-LE un-

derestimates variability in the North Atlantic (Kim et al.

2018), which is likely connected to the Atlantic inflow

and sea ice concentration in the Barents Sea (Li et al.

2017). Even small biases in the atmospheric circulation

can contribute to uncertainty in this region (Park et al.

2015; DeRepentigny et al. 2016).

To conclude, our analysis provides the first spatial

assessment of the role of internal variability on the ob-

served sea ice loss. It shows that the imprint of internal

variability is highly nonuniform, both in time and in

space. While several previous studies (Kay et al. 2011;

Stroeve et al. 2007, 2012; Zhang 2015; Ding et al. 2017,

2019) have shown a large contribution of internal vari-

ability to the observed pan-Arctic sea ice loss, our study

demonstrates that regionally the contribution of internal

variability can be as little as 10% and as much as 75%,

depending on the month and region in question. In this

study we have examined sea ice concentration, but re-

sults may be different for sea ice thickness and

multiyear sea ice (Kwok 2018; Massonnet et al. 2018;

Mioduszewski et al. 2019). These results are important

for stakeholders to interpret spatial sea ice predictions

and projections, as regions and times of the year that

show high internal variability in the sea ice cover are less

predictable than regions with small internal variability.
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