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ABSTRACT
We present an initial-value problem for testing numerical models of the global shallow-water equations. This new test
case is designed to address some of the difficulties that have recently been uncovered in the canonical test case suite
of Williamson et al. The new test case is simple to set up, yet able to generate a complex and realistic flow. The initial
condition consists of an analytically specified, balanced, barotropically unstable, mid-latitude jet, to which a simple
perturbation is added to initiate the instability. The evolution is comprised of an early adjustment phase dominated by
fast, gravity wave dynamics, and a later development characterized by the slow, nearly balanced roll-up of the vorticity
field associated with the initial jet.

We compute solutions to this problem with a spectral transform model to numerical convergence, in the sense that we
refine the spatial and temporal resolution until no changes can be visually detected in global contour plots of the solution
fields. We also quantify the convergence with standard norms. We validate these solutions by recomputing them with
a different model, and show that the solutions thus obtained converge to those of the original model. This new test is
intended to serve as a complement to the Williamson et al. suite, and should be of particular interest in that it involves
the formation of complicated dynamical features similar to those that arise in numerical weather prediction and climate
models.

1. Introduction

The shallow-water equations are important for the study of the
dynamics of large-scale atmospheric flows, as well as for
the development of new numerical schemes that are applied to
more complex models. In order to evaluate numerical schemes
for the solution of the shallow-water equations, Williamson et al.
(1992, hereafter W92), proposed a suite of standard tests, and
offered reference solutions to those tests obtained with a pseudo-
spectral scheme (Jakob-Chien et al., 1995, hereafter J95).

While the W92 tests have proved to be a useful reference
point in recent years, their widespread use has revealed a num-
ber of serious problems that severely limit their practical utility.
Test cases 1–4 have simple analytical solutions and are useful
for debugging and establishing some key characteristics of the
numerical scheme being tested. However, the flows associated
with these tests are completely idealized and thus largely unrep-
resentative of typical atmospheric conditions. Test cases 5–7, in
contrast, do attempt to capture a variety of different atmospheric
flows. Recent findings, however, have revealed some unexpected
subtleties which render them less useful than originally thought.
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Specifically, test case 5 involves flow over an isolated moun-
tain, but the mountain topography as defined in W92 is not a
differentiable function: this is obviously problematic. Spectral
models, for instance, are likely to exhibit ringing phenomena
as the resolution is increased, as reported in J95. Moreover, the
mountain is added impulsively on to a initially balanced flow;
needless to say, this generates a solution that is very difficult
to capture numerically, as it necessitates extremely small time-
steps during the early stages of evolution during which the flow
adjusts to the presence of the mountain by generating gravity
waves (Todd Ringler, private communication).

Test case 6, an initial wavenumber-4 Rossby–Haurwitz wave,
has also turned out to be much more subtle than originally sus-
pected. As Thuburn and Li (2000) have recently shown, this
initial condition generates complex small-scale features in the
vorticity field as a consequence of a triad instability of the initial
flow (Baines, 1976). Surprisingly enough, truncation errors are
sufficient to instigate the instability. Furthermore, the details of
the small features are highly dependent on the diffusive nature of
the scheme used to compute the solution, and are thus very dif-
ficult to reproduce. Again, these difficulties were not mentioned
in the reference solutions offered by J95.

Finally, test case 7 has proven to be rather unpopular, as it
requires the downloading of the initial fields, and involves some
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cumbersome steps (e.g. interpolations) that make it somewhat
impractical. Similarly, comparison with reference solutions is
unnecessarily cumbersome.

We here propose a new test case that specifically addresses
the difficulties we have just discussed. The new test case uses
simple, analytical functions for the initial condition, and is thus
easily implemented. In addition, from these simple initial con-
ditions, the new test case is able to generate complex dynamics
that are representative of atmospheric flows. The new test case
is nothing but a barotropically unstable zonal flow, to which a
simple perturbation is added to induce the instability.

One benefit of the new initial condition is that it naturally
captures both of the intrinsically different physical motions ex-
hibited by fluids that obey the shallow-water equations: the fast,
divergent gravity wave motion, and the slow, nearly balanced
vorticity dynamics. As a consequence of the initial perturba-
tion, gravity waves are generated by an adjustment process and
propagate around the globe within a few hours, while complex
vortical dynamics, including the roll-up of the initial flow into
vortices and formation of tight vorticity gradients, develop over
a few days. The distinction of these two time-scales is important,
and none of the W92 test cases appears to have addressed this
issue.

The paper proceeds as follows. We first present the expressions
that define the initial conditions for the new test case. We next
compute numerical solutions with a pseudo-spectral scheme, for
both the early-time unbalanced adjustment process and the later-
time vorticity-dominated barotropic instability. The numerical
solutions are computed at progressively higher spatial and tem-
poral resolution until global contour plots of all prognostic fields
(at specific times) cease to change with further refinement. While
this may not appear to be a highly sophisticated procedure, we
suggest that is an important, simple and practical first step that
ought to be performed prior to computation of any derived quan-
tity. We submit that some of the problems with the W92 test
suite could have been avoided if this had been done consistently.
We then compute a variety of norms, along the lines of those
proposed in W92, to provide more quantitative insight into our
numerical solutions. Finally, we validate our solutions by recom-
puting them with a different numerical model. We conclude with
a brief summary of the suggested steps for the new test case.

2. Initial condition

In vector form, the viscous shallow-water equations can be writ-
ten as

dV
dt

= − f k × V − g∇h + ν∇2V

dh

dt
= −h∇ ·V +ν∇2h

(1)

where d/dt designates material derivative, the prognostic vari-
ables are V = iu + jv, the velocity vector tangent to the spherical

surface (where i and j are the unit vectors in the eastward and
northward directions and u and v are the corresponding velocity
components), and h is the thickness of the fluid layer. The other
notation is standard: f ≡ 2� sin φ is the Coriolis parameter (φ
denotes latitude), � is the angular velocity of the Earth, g is the
acceleration due to gravity, and ν is the diffusion coefficient. The
numerical values for the constants we have adopted for this test
case are � = 7.292 × 10−5 s−1 and g = 9.80616 m s−1.

Ideally, one might want to use inviscid equations for a test
case. As we will demonstrate, for realistic flows this is not a
viable option due to the extremely fast generation of small-scale
features in geophysical flows. As the diffusion greatly controls
the evolution of the flow, it is necessary to explicitly specify what
diffusion is being used in order to generate reproducible results.
For maximum simplicity, we have opted for a standard diffusion
operator.

The initial condition for the new test case consists of a basic
zonal flow, representing a typical mid-latitude tropospheric jet,
with a correspondingly balanced height field, plus a small un-
balanced perturbation to the height field; the perturbation is used
to induce the development of barotropic instability. Both the ba-
sic flow and the initial perturbation are analytically specified,
allowing the complete initial condition to be easily reproduced.

For the basic flow, the zonal velocity component u is a function
of latitude

u(φ) =




0 for φ ≤ φ0

umax

en
exp

[
1

(φ − φ0)(φ − φ1)

]
for φ0 < φ < φ1

0 for θ ≥ φ1

(2)

where umax is the maximum zonal velocity, φ1 is the latitude of
the northern boundary of the jet in radians, φ0 is the latitude
of the southern boundary of the jet in radians, and en is a non-
dimensional parameter that normalizes the magnitude of the jet
to a value of umax at the jet’s mid-point. The constants are chosen
as follows: umax = 80 m s−1, φ0 = π/7, φ1 = π/2 − φ0, en =
exp[−4/(φ1 − φ0)2], for which the jet’s mid-point is located at
φ = π/4.

This function has several useful features that make it particu-
larly suitable for use in this test case. The function is explicitly
defined to be zero outside the region of interest, ensuring that
there are no discontinuities at the poles (which is required to en-
sure finite vorticity at the poles). The function is also infinitely
differentiable, a characteristic that is desirable for many numer-
ical schemes. Commonly used functions, such as a hyperbolic
secant, a truncated cosine or a Gaussian function, either do not
go to zero at the poles or are not infinitely differentiable.

With the initial basic zonal flow given by eq. (2), the height h
is obtained by numerically integrating the balance equation

gh(φ) = gh0 −
∫ φ

au(φ′)
[

f + tan(φ′)
a

u(φ′)
]

dφ′, (3)
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where a is the radius of the Earth (we use a = 6.37122 × 106

m for this test case) and the constant h0 is chosen so that the
global mean layer depth is equal to 10 km. While the choice of
the numerical scheme for the evaluation of the integral above is
left to the reader, we note that h can be computed to machine
precision using standard Gaussian quadratures with something
of the order of a hundred points, pole-to-pole.

In order to initiate the barotropic instability, the basic flow
just described is perturbed by adding a localized bump to the
balanced height field, of the form

h′(λ, φ) = ĥ cos(φ)e−(λ/α)2
e−[(φ2−φ)/β]2

for − π < λ < π, (4)

where λ is longitude (in radians), φ2 = π/4, α = 1/3, β =
1/15 and ĥ = 120 m. Note that the Gaussian functions here are
multiplied by the cosine of the latitude in order to force the
perturbation to be zero at the poles. Figure 1 shows latitudinal
profiles of the initial zonal flow and the corresponding balanced
height field, together with a contour map of the perturbation
height field.
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Fig 1. The initial conditions for the new test case. (a) The zonal wind, as defined in eq. (2); (b) the corresponding, balanced height field, calculated
using eq. (3); (c) the height field perturbation, as defined in eq. (4), with a contour interval of 10 m; the outermost contour is at 10 m.

Before presenting our results, we present a note about error
analysis. We broadly follow the global error measures proposed
in W92, which we reproduce here for convenience. For a field
ξ , we define I(ξ ) to be the discrete approximation to the global
integral of ξ

I (ξ ) = 1

4π

∫ 2π

0

∫ π/2

−π/2
ξ (λ, φ) cos φ dφ dλ, (5)

which we calculate using Gaussian quadrature. Next, the l2 norm
of a field ξ is defined by

|ξ |2 =
√

I (ξ 2). (6)

Finally, the normalized l2 relative error for ξ is defined by

l2(ξ ) ≡
{

I
[
(ξ (λ, θ ) − ξref(λ, θ ))2

]}1/2

{
I
[
ξref(λ, θ )2

]}1/2 , (7)

where ξ ref is a reference field. Ideally, the reference field would
come from the known analytical solution; when an analytical
solution is unavailable, as in the case presented here, a high-
resolution numerical solution is used instead.
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3. Numerical results

Having discussed how to set up the initial conditions for the
new test case, we now present numerical solutions computed
with the Geophysical Fluid Dynamics Laboratory (GFDL) FMS
Shallow-Water Model (FMS-SWM; using the ‘Havana’ release
version). This model solves the shallow-water equations using a
spectral-transform method with a Robert–Asselin-filtered semi-
implicit leapfrog scheme for time integration. The value of the
Robert–Asselin filter for all runs presented here is 0.001. The
results are calculated at four triangular spectral truncations of
increasing resolution, T42, T85, T170 and T341, each using a
time-step of 30 s, unless otherwise noted. The l2 relative errors for
the T42, T85 and T170 resolutions are calculated using the T341
resolution as the reference solution. We begin by considering the
inviscid equations; hence ν = 0 in eq. (1) unless stated otherwise.

As a preliminary step, we integrate the shallow-water equa-
tions for 120 h with the zonal jet and the unperturbed, balanced
height field as initial conditions. This step is useful to ensure
that the unperturbed zonal flow is properly balanced. In our
FMS-SWM solutions, all fields remained identical to the initial
ones to machine precision for the entire 120 h.

Beyond checking the balance of the initial unperturbed state,
this step is in some sense trivial for a spectral model because the
spectral method has no means of generating non-zonal compo-
nents from an initially zonal flow. In general, however, this step
is important because it tests the ability of a numerical scheme to
maintain a steady zonal jet with a steep vorticity gradient. The
maintenance of a zonal jet is potentially problematic for some
numerical schemes, such as low-order methods on non-isotropic
grids. We present no further specific details of this step here,
because several of the W92 test cases are specifically designed
to address this issue.

3.1. Adjustment problem

As already mentioned, when the perturbation is added to the
balanced height field, the dynamics evolve on two distinct time-
scales: a fast one associated with the rapidly developing gravity
waves, and a slower one associated with the vortical dynamics.
We first examine early-time results related to the gravity wave
dynamics.

In Fig. 2, we show snapshots of the height and divergence
fields from the FMS-SWM solution at T341 at 2, 4 and 6 h.
Notice how the waves radiate from the center of the initial per-
turbation (marked by an asterisk in Fig. 2), as expected in a
classic Rossby adjustment problem. To avoid imposing unnec-
essary map projections on future users of this test, the results
are plotted on a simple longitude–latitude rectangle. Also, the
initial balanced height field is subtracted from the instantaneous
height field before plotting, to bring out the location of the wave
front.

It is important to note that the solution presented in Fig. 2
is numerically converged, in the sense that the figure will not
change if the temporal or spatial resolution is further refined.
In fact, the contour plots for the T170 solution (not shown) are
identical to those in Fig. 2; this is not surprising given the scale
of the features generated at these early times. Similarly, the time-
step was progressively halved to obtain convergence; we found
that a time-step of 30 s was sufficient at T341 resolution. In
addition, we have produced identical results using explicit time-
stepping, as should be expected given the small time-step used
here (Hoskins and Simmons, 1975). Again, these are not shown
as the contours are completely superposed.

For completeness, we illustrate the convergence with spatial
resolution by examining the time evolution of l2 relative errors
of the FMS-SWM solutions in Fig. 3, with the T341 solution
used as the reference. In general, the l2 relative errors in the
divergence field are two orders of magnitude greater than those
in the height field, and the T170 solutions are about one order of
magnitude more accurate than the T42 solutions.

3.2. Barotropic instability

We now turn to the vortical dynamics, which develop on a
longer time-scale than the gravity wave results just described.
Figure 4 shows the inviscid evolution of the vorticity field (ζ )
over 6 d, computed with FMS-SWM at T341 resolution, illus-
trating the development of the barotropic instability. There are
several points to be made about this figure. First, note how the
initially unstable vorticity field rolls up into a number of vor-
tices, with the rolled-up region progressively moving eastward
(typical of convective instabilities), in a manner characteristic of
atmospheric flows.

The second important point is that, as the instability ma-
tures, the vorticity develops extremely tight gradients, which
are clearly visible in the later frames. It is well known that the
formation of these tight gradients is a generic feature of nearly
two-dimensional flows. The small-scale noise apparent in Fig. 4
is due to the fact that, in the inviscid case, our spectral model is
unable to capture the very small scales (with the accompanying
tight gradients) that are being generated by the instability, even
at this relatively high resolution.

As a consequence, the solution in Fig. 4 is not numerically
converged, in the sense that plots of the solutions at lower reso-
lutions (T42, T85 and T170) look very different from the ones
presented there. In fact, they look much noisier, and we have
not reproduced them here because that noise is an artifact of the
spectral method, and is thus of no general interest and is not
reproducible with other numerical schemes.

The accompanying l2 relative errors are shown in Fig. 5 for the
zonal wind, the vorticity and vorticity gradient, computed for the
T42, T85 and T170 solutions relative to the T341 solution. Note
first that l2(u) is essentially flat for the T85 and T170 solutions.
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Fig 2. The numerically converged height and divergence fields during the adjustment process, computed with the FMS-SWM at T341 with a 30-s
time-step. The height displayed here is the instantaneous h minus the balanced, unperturbed, initial height calculated in eq. (3); the contour interval
is 4 m. For the divergence field, the contour interval is 4 × 10−7 s−1. Negative contours are dashed. The asterisk in each plot indicates the center of
the original perturbation.

From this, one is incapable of detecting the presence of the large
numerical artifacts immediately apparent in Fig. 4. Similarly,
l2(ζ ) and l 2(∇ζ ), although growing after day 4, obscure how
much noise is actually present in the vorticity field. The reason
for the discrepancy rests in the fact that the global integral in the
computation of l2 is a smoothing operation. In view of this, we
believe that it is important to produce global contour plots of the
actual prognostic fields, prior to calculating derived quantities
(e.g. norms).

In Fig. 5d, we plot the time evolution of the maximum value
of the vorticity gradient for the four solutions (T42, T85, T170
and T341). This plot suggests no evidence of convergence, and
opens the possibility that even larger values would result at higher
resolutions. Because shocks can develop in the rotating shallow-
water system (Kuo and Polvani, 1997), we have no guarantee that
a finite-time singularity, for instance, would not spontaneously

appear from our initial conditions. However, it should be quite
clear that the kind of singularity that might form here is not a
traditional shock, in the sense of the height becoming double
valued; the initial perturbation in the height field is only of the
order of 1% of the mean height and, in addition, waves in rotating
shallow water are dispersive.

It may be possible to establish the existence of well-behaved
inviscid solutions by computing at extremely high resolutions.
In fact, we have attempted to do this in two ways. First, we have
computed solutions with our initial condition for 10 d using the
contour-advective semi-Lagrangian (CASL) scheme (Dritschel
et al., 1999) without any contour surgery, and the integration
(not shown) is able to proceed without problems. As the CASL
scheme is highly non-diffusive, this computation suggests that
a smooth inviscid solution exists. Secondly, we have computed
spectral solutions with progressively smaller hyperdiffusion up
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Fig 3. Semilog plots of l2 relative errors for
the (a) height and (b) divergence fields
during the first 10 h of integration.

to T684 (not shown) and have seen no evidence of singularity.
This suggests that, if one could increase the resolution suffi-
ciently, one might be able to compute smooth solutions with no
hyperdiffusion at all. However, the resolution needed to com-
pute smooth, converged, inviscid solutions at day 6 is likely to
be extremely high, and this would make for a highly impractical
test case.

So, what is one to do? One possibility would be to stop the
integrations well before the formation of tight vorticity gradients,
say around day 3 in our case. At that stage, however, the flow
is only starting to become unstable (cf. day 4 in Fig. 4) and
is thus not representative of the kind of complexity of realistic
atmospheric flows.

The other possibility, of course, is to control the complexity of
the flow by introducing an explicit diffusion. This is what is done
in practice in the majority of climate models, and is therefore the
way we now proceed. For simplicity and easy reproducibility,
we have chosen to use ordinary ν∇2 diffusion, as in eq. (1).

A variety of other diffusion operators could have been cho-
sen, e.g. a ν ∇4 hyperdiffusion operator as in the National Center
for Atmospheric Research (NCAR) Community Climate Model
(Kiehl et al., 1996), and a range of values for ν could be applied
in each case. With spectral models, it is customary to choose the
value of ν to be as small as possible for a given resolution, and to

progressively decrease that value as the resolution is increased. In
the present context, however, we are interested in the numerical
solution to a specific set of partial differential equations (PDEs),
calculated at different resolutions. If the value of ν were changed
as the resolution was increased, we would effectively be chang-
ing the PDEs themselves, and hence would not be able to attain
numerical convergence, in the sense described above, and thus
to compare model results. For this reason, all of the solutions
presented in this section are computed using ν = 1.0 × 105 m2

s−1, irrespective of resolution. This value was chosen to ensure
that the numerical solutions converge at a resolution close to T85
at day 6 for the initial conditions of our test case.

Figure 6 shows the evolution of the vorticity field for the case
with explicit diffusion, computed at T341 resolution. Note that
the presence of diffusion controls the development of tight vortic-
ity gradients, and generally produces a much smoother solution
than in the inviscid case. At 144 h, the inviscid case (Fig. 4) has
developed extremely tight vorticity gradients, while the gradients
in the diffusive case (Fig. 6) are much weaker.

The key point of this figure, however, is that it is numer-
ically converged, in the sense that this figure is identical to
the one at T170 (not shown), and even nearly identical to the
one at T85. Hence no further refinement of the spatial dis-
cretization is needed for convergence. Similarly, we tested that
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Fig 4. The time evolution of the vorticity field for the inviscid initial-value problem, computed with the FMS-SWM at a resolution of T341 with a
30-s time-step. The contour interval is 2 × 10−5 s−1. Negative contours are dashed. The zero contour is not shown.

time-steps shorter than 30 s make no difference in the contour
plots.

For completeness, the l2 relative errors for the diffusive case
are shown in Figs. 7a–c. The impact of diffusion is particularly
evident in the plots of maximum vorticity gradient (Fig. 7d). Note
how the initial vorticity gradient is eroded by the diffusion even
before significant growth of the barotropic instability. Because
of this, both the T170 and T85 models are able to maintain the
same maximum vorticity gradient as the T341 model.

Finally, we mention that the solutions to the diffusive problem
remain smooth even for relatively long times (10 d or longer),
with none of the spectral ringing seen in the inviscid case.

4. Computational validation

Having demonstrated that the solution of the shallow-water
equations from our simple initial condition produces realisti-
cally complex features on two distinct time-scales, and that one
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Fig 5. Semilog plots of the l2 relative errors for (a) the zonal wind u, (b) the vorticity ζ , and (c) the magnitude of the vorticity gradient ∇ζ , for the
inviscid test case, calculated relative to the T341 solution. (d) The maximum vorticity gradient as a function of time for T42, T85, T170 and T341
models.

numerical model (the FMS-SWM) is able to compute converged
solutions in the sense that global contour maps of the prognostic
fields become insensitive to resolution once a sufficiently fine
grid is used to capture all the scales produced within a finite
time interval, we now address the question of whether the con-
verged solutions we have presented above are reproducible by
other models.

To the best of our understanding, because we are explicitly
controlling (through a diffusion term) the smallest scales that
are generated by the instability over a finite (and relatively short)
time interval, the solutions of the shallow-water equations have
no means to develop singularities and are thus well behaved, as
the solutions of the previous section suggest. Because of this,

we see no reason why the solutions presented above should not
be reproducible by other numerical models. In fact, even for
the primitive equations, it has been shown that two different
numerical schemes can converge to an identical solution, in a
similar test case (Polvani et al., 2004), provided that an explicit
diffusion scheme is specified.

It is conceivable, however, that the FMS-SWM code we have
used above may not be entirely free from programming errors.
To eliminate this possibility, we have recomputed the solutions
with another spectral transform model, the NCAR BOB Shallow-
Water Model (Rivier et al., 2002; Scott et al., 2004). This code
was developed completely independently from the FMS-SWM,
uses different transform routines, and was compiled and executed
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Fig 6. As in Fig. 4, but for the solutions with explicit diffusion. The diffusion coefficient ν = 1.0 × 105 m2 s−1.

on a different platform. We recognize that it would have been
superior to use a different numerical scheme as well, but for the
purposes of checking for programming errors any model should
suffice.

In Fig. 8, illustrating the vorticity field at 144 h, we show how
the BOB-SWM solutions (solid lines) converge (in the sense
mentioned above) to the FMS-SWM T341 solution (dashed line)
as the resolution is increased. Past T85, it is nearly impossible
to distinguish the two sets of curves. We have produced a simi-
lar convergence plot of the height and divergence fields for the

adjustment problem (at 4 h) but, because the contours are super-
posed, we do not include it here.

Of course, one can be quantitative and demonstrate conver-
gence by computing relative error norms. For the sake of com-
pleteness, in Fig. 9 we plot the l2 relative error for both the
divergence field (δ) during the adjustment stage (4 h) and the
vorticity field (ζ ) during the roll-up (144 h). The l2 relative error
is here computed, as a function of the BOB-SWM resolution,
using the FMS-SWM solution at T341 as the reference solution.
Confirming the visual impression of convergence illustrated in
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Fig 7. As in Fig. 5, but for the solutions with explicit diffusion.

Fig. 8, the l2 relative error demonstrates that the BOB-SWM so-
lutions are in fact converging to the FMS-SWM solutions. This
gives us confidence that the solutions presented in this paper
should be reproducible by any numerical scheme.

5. Conclusion

We have constructed easily implemented initial conditions for
the shallow-water equations that generate a complex and realis-
tic flow within a short integration period. We have computed nu-
merically converged solutions using a spectral transform model,
and we have validated them by reproducing them with a different
numerical model. We offer this test case as a useful complement
to the W92 test suite.

For testing numerical models, we suggest that the new test
case be performed as described below. We emphasize that, at
each stage, the spatial and temporal resolution should be re-
fined until global contour plots of the solutions fields do not
change with further refinement. We consider this to be an im-
portant and very practical, if only qualitative, first step. We see
little point in calculating more sophisticated diagnostics if the
truncation errors are large enough to be seen in simple contour
plots.

First, initialize the model with the zonal wind as given in
eq. (2) and the corresponding balanced height field (eq. 3),
but with no explicit perturbation, and integrate for at least sev-
eral days with no diffusion (ν = 0). Note that the initial flow,
while steady, is dynamically unstable. At very coarse resolutions,
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Fig 8. The vorticity field at 144 h for the
BOB-SWM solutions at T42, T85, T170 and
T341 (solid lines). In each panel, an identical
set of dashed lines show the FMS-SWM
solution at T341.

the truncation errors associated with some numerical schemes
might be sufficiently large to initiate the instability. In order
to proceed to the next step, the resolution must be sufficiently
refined so that truncation errors do not initiate the barotropic
instability.

Secondly, add the perturbation to the height field as given in
eq. (4), and integrate for 6 h to numerical convergence, again
with no diffusion. The height and divergence fields at 2, 4 and
6 h should closely match those in Fig. 2. Furthermore, we offer
in Table 1 a short list of quantities that we believe should be
reproducible with any numerical model. The values in Table 1
were obtained with the FMS-SWM, and validated with the BOB-
SWM. For each quantity, we report only those digits that were
found to be identical in both models.

Thirdly, add the explicit diffusion terms as shown in eq. (1),
with the value ν = 1.0 × 105 m2 s−1, and integrate to 144 h
(6 d). Compare the numerically converged vorticity field with
that shown in Fig. 6. We believe that even the smaller features
in this figure can be reproduced, as the diffusion controls the
smallest scales. This can be confirmed by direct comparison of
the contour plots. In Table 1, we offer a few quantities relating to
the vorticity field at 144 h. Again, these values were computed
with two different models and should be easily reproducible.

In conclusion, the test case presented in this paper is only a
small step. Its main value is that the solutions computed here are
easily reproducible, and that the associated flows are representa-
tive of the complexity of the Earth’s atmosphere. The next step
toward an objective comparison of different numerical schemes
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Fig 9. Log–log plot of relative error norms for the BOB-SWM
solutions relative to the FMS-SWM solutions at T341, as a function of
the number of degrees of freedom of the BOB-SWM solutions. Circles
represent l2(δ) at 4 h, and triangles l2(ζ ) at 144 h. The three pairs of
points correspond, from left to right, to the T42, T85 and T170
BOB-SWM solutions, respectively.

Table 1. Some reference values of the computed fields for the
solutions of the new test case, at the initial adjustment stage (t = 4 h),
and at the later vorticity roll-up stage (t = 144 h)

Value

At t = 4 h
l2(δ) 4.0 × 10−7 s−1

max(δ) 3.7 × 10−6 s−1

min(δ) −2.0 × 10−6 s−1

l2(h) 9778 m
max(h) 10 182 m
min(h) 9052 m

At t = 144 h
l2(ζ ) 2.1 × 10−5 s−1

max(ζ ) 9.3 × 10−5 s−1

min(ζ ) −7.3 × 10−5 s−1

would involve designing a set of diagnostics for quantitatively
assessing accuracy, speed, ease of implementation, and other is-
sues. All of these are, of course, well beyond the scope of the
present paper.
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