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ABSTRACT

This study quantifies cloud–radiative anomalies associated with interannual variability in the latitude of the

SouthernHemisphere (SH)midlatitude eddy-driven jet, in 20 global climatemodels fromphase 5 of theCoupled

Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class ofmodels (type I

models), total cloud fraction is reduced at SHmidlatitudes as the jet moves poleward, contributing to enhanced

shortwave radiative warming. In the second class of models (type II models), this dynamically induced cloud

radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their repre-

sentation of observed Southern Ocean clouds, but comparison with two independent satellite datasets indicates

that the cloud–dynamics behavior of type II models is more realistic.

Because the SH midlatitude jet shifts poleward in response to CO2 forcing, the cloud–dynamics biases un-

covered from interannual variability are directly relevant for climate change projections. In CMIP5 model ex-

periments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature ini-

tially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In

type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2

forcing in the SH,where a nearly instantaneous poleward shift of themidlatitude jet is accompanied by a reduction

in the reflection of solar radiation by clouds. In type II models, the SH jet also shifts rapidly poleward with CO2

quadrupling, but it is not accompanied by cloud radiative warming anomalies, resulting in a smaller initial global-

mean surface temperature warming.

1. Introduction

It is well known that one of the present challenges for

climate models is providing an accurate representation of

global cloud cover. Because essential cloud processes

occur on much smaller scales than typical model resolu-

tion, they need to be parameterized. As a consequence,

feedbacks involving clouds, particularly low clouds, are

responsible for most of the spread in climate sensitivity

across climate models (Soden and Held 2006;Webb et al.

2006; Dufresne and Bony 2008;Williams andWebb 2009;

Webb et al. 2013).

Numerous studies have identifiedmarine boundary layer

clouds as the dominant source of uncertainty in model

cloud feedbacks (Bony and Dufresne 2005; Medeiros et al.

2008; Williams and Webb 2009). Much attention has thus

been paid to the role of low clouds over tropical and sub-

tropical ocean basins, but the important role of low clouds

over the Southern Ocean has also recently been noted.

Trenberth and Fasullo (2010) demonstrated that many

global climate models substantially underestimate cloud

fraction and albedo over the Southern Ocean, and there-

fore have a large bias in absorbed shortwave radiation

there. Because the Southern Ocean is almost entirely

covered by clouds in the present-day climatology (e.g.,

Bromwich et al. 2012), any underestimate of this cloud

cover bymodels might lead to spurious feedbacks in future

climate scenarios (Trenberth and Fasullo 2010). Biases in

Southern Ocean cloud cover in models have also been
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linked to biases in the latitude of the SouthernHemisphere

(SH) midlatitude eddy-driven jet (Ceppi et al. 2012) and

the presence of a double intertropical convergence zone

(Hwang and Frierson 2013).

Southern Ocean cloud cover is intimately related to

extratropical weather systems, and thus to the position of

the SH storm track and the midlatitude eddy-driven jet.

Consequently, if the jet moves poleward (either as a result

of natural variability or anthropogenic forcing), one might

expect there to be a notable change in cloud radiative

processes. Indeed, using a single climate model, the Com-

munity AtmosphereModel version 3 (CAM3), Grise et al.

(2013, hereafterG13) found that a poleward shift in the SH

midlatitude jet resulted in a sizeable cloud-induced short-

wave radiative warming effect on the SH, as the bulk of the

clouds (and their attendant reflection of sunlight) shifted

poleward with the jet. Similar connections between a jet-

induced shortwave warming and clouds have also been

proposed using satellite data (Bender et al. 2012). How-

ever, using CAM5 (a newer version of the same model

used byG13), Kay et al. (2014, hereafter K14) found little

connection between jet variability and cloud radiative

processes over the Southern Ocean.

Thus, the relationship between SH jet variability and

cloud radiative processes appears to be model dependent,

and it is unclear how these different behaviors affect cli-

mate projections. The goal of this study is to clarify the

connections among jet variability, cloud radiative pro-

cesses, and model sensitivity. To do this, we examine 20

global climate models that participated in phase 5 of the

Coupled Model Intercomparison Project (CMIP5). We

find that there are two distinct categories of models: those

that have a strong cloud-induced shortwave warming ef-

fect associatedwith a poleward SH jet shift (as inG13) and

those that do not (as in K14). These distinct behaviors are

tied to biases in the mean-state cloud climatology of the

models and, as we showbelow, have direct implications for

the global-mean surface temperature warming projected

by the models in response to CO2 forcing.

Thepaper is organized as follows. Section 2 describes the

data and methods used in this study. Section 3 introduces

the two categories of CMIP5 models, and section 4 com-

pares the two classes of models to observations. Section 5

examines the implications of the varying model behavior

for climate projections. Section 6 concludes with a sum-

mary of our findings.

2. Data and methods

a. Data

The primary data used in this study are the monthly-

mean output from the global climate models that

participated in CMIP5 (Taylor et al. 2012), provided

courtesy of the Program for Climate Model Diagnosis

and Intercomparison at Lawrence Livermore National

Laboratory. Here, we use data from 20 of the 23 models

for which the values of equilibrium climate sensitivity

were computed by Forster et al. (2013) (see Table 1).We

have excluded one model [Flexible Global Ocean–

Atmosphere–Land System Model gridpoint, second

spectral version (FGOALS-s2)], for which the historical

scenario integrations were not available, and two other

models [Goddard Institute for Space Studies Model E2,

coupled respectively with the Hybrid Coordinate Ocean

Model (HYCOM) (GISS-E2-H) and the Russell ocean

model (GISS-E2-R)], which fail to produce the observed

large negative values of shortwave cloud radiative effect

over the Southern Ocean; all other models were retained.

For each of the models, we analyze three different forcing

scenarios: 1) preindustrial control (i.e., hundreds of years of

unforced variability), 2) historical (driven by 1850–2005

forcings), and 3) abrupt 43CO2 (in which atmospheric

carbon dioxide is instantaneously quadrupled at the be-

ginning of a 150-yr run). Additionally, for 11 available

models (those denoted by asterisks in Table 1), we analyze

the 30-yr-long sstClim and sstClim43CO2 scenarios, in

which sea surface temperatures (SSTs) and sea ice con-

centrations are held fixed to the preindustrial control cli-

matology for both preindustrial atmospheric CO2

concentrations (sstClim) and quadrupled atmospheric CO2

concentrations (sstClim43CO2). For all scenarios, we use

the first ensemble member (‘‘r1i1p1’’) from each model.

To compare the model output with observations, we

make use of three observational data sets: 1) monthly-

mean top-of-the-atmosphere radiative fluxes from the

Clouds and Earth’s Radiant Energy System (CERES)

experiment (Energy Balanced and Filled top-of-

atmosphere fluxes version 2.7; Loeb et al. 2012) obtained

from the National Aeronautics and Space Administration

(NASA) Langley Research Center; 2) monthly-mean

visible–infrared satellite-detected cloud fractions from

the International Satellite Cloud Climatology Project

(ISCCP; Rossow and Schiffer 1999) obtained from the

NASA Goddard Institute for Space Studies, and 3)

monthly-mean zonal wind data from theEuropeanCentre

for Medium-Range Weather Forecasts (ECMWF)

Interim Re-Analysis (ERA-Interim; Dee et al. 2011). The

CERES data cover the periodMarch 2000–June 2013, and

the ISCCP data cover the period July 1983–December

2009. The ERA-Interim data begin in 1979 and extend to

the present. For the ISCCP data, we use two derived data

products: 1) the top-of-the-atmosphere radiative fluxes

(ISCCP-FD; Zhang et al. 2004) and 2) the simulator-

oriented ISCCP cloud product produced for the Cloud

Feedback Model Intercomparison Project (CFMIP;
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http://climserv.ipsl.polytechnique.fr/cfmip-obs/; Pincus

et al. 2012; Zhang et al. 2012).

b. Methods

For each model, we construct a monthly time series of

jet position by computing the latitude of the 850-hPa

zonal-mean, zonal wind maximum in the SH. The zonal

wind maximum is found using a quadratic fit to the model

data at a resolution of 0.018 (see appendix for further

details). The 850-hPa level effectively captures the loca-

tion of the midlatitude eddy-driven jet, while avoiding

most topography and potential contamination from the

TABLE 1. Listing of the CMIP5 models used in this study. Models with output from the sstClim and sstClim43CO2 scenarios are denoted

with asterisks.

Model number Model name Modeling center

Type I models

1* BCC_CSM1.1 [Beijing Climate Center (BCC),

Climate System Model, version 1.1]

BCC, China Meteorological Administration

2 BCC_CSM1.1-m (BCC, Climate System Model,

version 1.1, moderate resolution)

BCC, China Meteorological Administration

3* CanESM2 (Second Generation Canadian

Earth System Model)

Canadian Centre for Climate Modelling and Analysis

4* CCSM4 (Community Climate System Model, version 4) National Center for Atmospheric Research

5 CNRM-CM5 [Centre National de Recherches

Météorologiques (CNRM) Coupled Global
Climate Model, version 5]

CNRM/Centre Européen de Recherche et
Formation Avancés en Calcul Scientifique

6* IPSL-CM5A-LR [L’Institut Pierre-Simon Laplace

(IPSL) Coupled Model, version 5A, low resolution]

IPSL

7 MIROC-ESM (Model for Interdisciplinary

Research on Climate, Earth System Model)

Japan Agency for Marine-Earth Science and

Technology, Atmosphere and Ocean Research

Institute (The University of Tokyo), and National

Institute for Environmental Studies

8* MPI-ESM-LR (Max Planck Institute Earth

System Model, low resolution)

Max Planck Institute for Meteorology

9* MPI-ESM-P (Max Planck Institute Earth System

Model, paleo)

Max Planck Institute for Meteorology

10 NorESM1-M (Norwegian Earth System Model,

version 1 (intermediate resolution)

Norwegian Climate Centre

Type II models

11 ACCESS1.0 (Australian Community Climate

and Earth-System Simulator, version 1.0)

Commonwealth Scientific and Industrial Research

Organization (CSIRO), and Bureau of Meteorology,

Australia

12* CSIRO-Mk3.6.0 CSIRO Mark, version 3.6.0) CSIRO in collaboration with the Queensland Climate

Change Centre of Excellence

13* GFDL CM3 [Geophysical Fluid Dynamics Laboratory

(GFDL) Climate Model, version 3]

National Oceanic and Atmospheric Administration

(NOAA)/GFDL

14 GFDL-ESM2G [GFDL Earth System Model

with Generalized Ocean Layer Dynamics

(GOLD) component]

NOAA/GFDL

15 GFDL-ESM2M [GFDL Earth System Model

with Modular Ocean Model 4 (MOM4) component]

NOAA/GFDL

16 HadGEM2-ES (Hadley Centre Global Environment

Model, version 2–Earth System)

Met Office Hadley Centre

17* INM-CM4 (Institute of Numerical Mathematics

Coupled Model, version 4.0)

Institute for Numerical Mathematics

18 IPSL-CM5B-LR (IPSL Coupled Model, version

5B, low resolution)

IPSL

19* MIROC5 (Model for Interdisciplinary Research

on Climate, version 5)

Atmosphere and Ocean Research Institute

(The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology

20* MRI-CGCM3 (Meteorological Research

Institute Coupled Atmosphere–Ocean General

Circulation Model, version 3)

Meteorological Research Institute
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upper-tropospheric (angular momentum conserving) jet

in the subtropics. Virtually identical jet variability can be

identified using the leading principal component time se-

ries of the 850-hPa geopotential height field poleward of

208S [i.e., the southern annular mode (SAM)]. However,

because each model’s SAM corresponds to a slightly dif-

ferent magnitude jet shift, we choose to perform our

analysis using the jet latitude time series, such that re-

gressions on this time series correspond to a 18 poleward
jet shift for each model.

We quantify the impact of clouds on Earth’s radiative

budget through the cloud radiative effect (CRE) ap-

proach. CRE, which is also commonly referred to as

cloud radiative forcing, is calculated as the difference in

outgoing radiation at the top of the atmosphere between

clear-sky and all-sky scenarios (e.g., Ramanathan et al.

1989; see also appendix). When examining the atmo-

spheric response to greenhouse gas forcing, CRE cal-

culations not only reflect changes in cloud radiative

processes, but can also be contaminated by changes in

temperature, water vapor, and surface albedo. For ex-

ample, in a region with constant cloud cover, melting sea

icewould decrease the clear-sky surface albedo, and hence

artificially produce a negative shortwave CRE anomaly.

In these situations, using a cloud radiative kernel approach

is more accurate for isolating cloud radiative processes

(Zelinka et al. 2012), but unfortunately only a small subset

of CMIP5 models provides the necessary output for the

kernel approach (see results in Zelinka et al. 2013). Con-

sequently, in this study, we define the relationship be-

tween SH jet variability and cloud radiative processes

using the preindustrial control scenario, where discrep-

ancies between the CRE and kernel approaches are

minimal.

3. Cloud radiative effects associated with SH jet
variability in CMIP5 models

In this section, we quantify the CRE anomalies associ-

ated with a 18 poleward shift in the SH midlatitude jet in

each of the CMIP5models listed in Table 1. To do this, we

use the preindustrial control run from each model (such

that the jet variability is purely unforced) and regress the

CRE anomalies (from the long-term mean) on the SH jet

latitude time series (see appendix for further details).

Here, we focus on theDecember–February (DJF) season,

when the incoming solar radiation is maximized in the SH;

virtually identical results (with weaker magnitude) are

found in the annual mean.

Figure 1 shows the patterns of shortwave CRE anom-

alies associated with a 18 poleward jet shift in the pre-

industrial control climate of each of the 20CMIP5models.

The patterns in Fig. 1 clearly demonstrate that the

shortwaveCRE response to a poleward jet shift (whichwe

refer to hereafter as shortwave jet–CRE) is not uniform

across CMIP5 models. One can easily identify two classes

ofmodels visually. One class (type Imodels) exhibits large

annular shortwave jet–CRE warming (as in G13), while

the other class (type II models) exhibits weaker, less co-

herent jet–CRE patterns of varying sign and little zonally

symmetric structure (as in K14).1 Qualitatively similar

patterns to those shown in Fig. 1 are found in the cloud

albedo forcing (as defined by Tsushima et al. 2006) and

total cloud fraction fields (not shown). Thus, the strong

shortwave jet–CRE warming in type I models largely re-

sults from a reduction in total cloud fraction (and the as-

sociated reflection of sunlight) at SH midlatitudes as the

jet moves poleward.

Figure 2 shows the corresponding patterns of longwave

jet–CRE. In contrast to the shortwave jet–CRE patterns

shown in Fig. 1, there is no noticeable distinction between

the longwave jet–CRE patterns in the two classes of

models. As in G13, the longwave jet–CRE is largely

positive at high latitudes and in the subtropics, and neg-

ative at midlatitudes. Because longwave CRE primarily

reflects the behavior of high clouds, the agreement among

the models in Fig. 2 implies that low clouds are likely

responsible for the differences in the shortwave jet–CRE

patterns shown in Fig. 1.Wewill discuss this point further

in section 4.

To summarize the results in Figs. 1 and 2, we show in

Fig. 3 the composite jet–CRE patterns for type I and

type II models. As noted above, the composite longwave

jet–CRE patterns for the two classes of models are vir-

tually identical (Fig. 3a). The key difference in the jet–

CRE patterns between the two classes of models arises

from the shortwave contribution at SH midlatitudes

(308–608S) (Fig. 3b). This is most readily apparent in the

zonal mean (Fig. 3c). The large shortwave jet–CRE

maximum at SH midlatitudes in type I models contrib-

utes to a small hemispherically integrated warming ef-

fect (reported in the box in Fig. 3c, left), whereas the

midlatitude jet–CRE features in type II models con-

tribute to a small hemispherically integrated cooling ef-

fect (Fig. 3c, right). Because the SHmidlatitude jet shifts

poleward in response to many anthropogenic forcings

(e.g., Kushner et al. 2001; Polvani et al. 2011), this result

may have important implications for climate model pre-

dictions (see section 5).

1 The model used in K14, the Community Earth System Model,

version 1, coupled with the Community Atmosphere Model, ver-

sion 5 (CESM-CAM5), exhibits the behavior of a type II model.

We do not include this model in our study because it did not pro-

vide an abrupt 43CO2 integration for the CMIP5 archive.
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Onemight question our categorization of type I and type

II models in this section using visual analysis alone, but

nearly identical results can be derived quantitatively. Av-

eraging the shortwave jet–CRE over the 308–608S latitude

band clearly distinguishes the two classes of models (see

also Fig. 3c), and these values (which we refer to hereafter

as the shortwave ‘‘jet–CRE index’’) are noted below each

panel in Fig. 1. All the type I models have a positive

(warming) value of the index, whereas all but one type II

model have a negative (cooling) value of the index. The

one outlier (model 18; see Table 1) visually appears to be

a type II model, but quantitatively fits with the type I

models. In the remaining figures, we will underline results

from this particular model, which exhibits hybrid behavior.

4. Comparison with observations

In this section, we compare the jet–CRE patterns from

CMIP5 models with those derived from recent observa-

tions, in order to determine which class of models has

more realistic behavior. The jet–CRE patterns derived

from the models’ historical runs are very similar to those

derived from their preindustrial control runs (as shown in

Figs. 1–3), and are not shown here for brevity.

Figure 4 shows the observed jet–CRE patterns derived

using radiative fluxes from the ISCCP-FD and CERES

datasets and zonal winds from the ERA-Interim re-

analysis. The observed longwave jet–CRE patterns from

both ISCCP-FD and CERES are very similar to those in

FIG. 1. Regressions of shortwave cloud radiative effect (CRE) anomalies (from the long-termmean) on the SH jet latitude time series from

each of the indicated CMIP5 models (see Table 1). These shortwave jet–CRE patterns are calculated for the December–February (DJF)

season, in the preindustrial control climate of eachmodel. The contour interval is 0.25Wm22. Units correspond to a 18 poleward jet shift. The
numbers below each panel display the values in that panel averaged over 308–608S, which we refer to as the shortwave jet–CRE index.
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both classes of CMIP5 models (cf. Figs. 4a and 3a), sug-

gesting that the longwave jet–CRE behavior in all of the

models is quite realistic. In contrast, the observed shortwave

jet–CRE patterns do not exhibit an annular warming at SH

midlatitudes, as the type I models do (cf. Figs. 4b and 3b,

left). Instead, the observed shortwave jet–CRE patterns at

SH midlatitudes appear more regional in nature, with

cooling over theAustralian–Pacific sector andwarming east

of South America. Although noisy, these regional patterns

qualitatively resemble those from many type II models (cf.

Figs. 4b and 3b, right). We caution, however, that the ob-

served patterns are based on limited periods of data and

have only weak statistical significance. Nevertheless, as

described below, we believe that it is not coincidental that

the shortwave jet–CREpatterns in type IImodels resemble

those from two independent observational datasets. Note

also that the values of the shortwave jet–CRE index for

the two observational datasets (20.50Wm22 for

ISCCP-FD and 20.34Wm22 for CERES) are compa-

rable to those calculated for type II models (see Fig. 1).

In a previous paper (G13), we examined the cloud

fraction anomalies associatedwith a poleward SH jet shift

in a single type I model (CAM3) and found a relatively

good correspondencewith ISCCPobservations (see Fig. 3

of G13). At first glance, these results seem to contradict

those inFig. 4. Interestingly enough, the high,middle, and

low cloud fraction anomalies associated with a poleward

SH jet shift (as examined in G13) are qualitatively very

similar in observations, type I models, and type II models

(not shown). However, cloud fraction anomalies can be

potentiallymisleading, as they do not directly indicate the

radiative properties of the clouds. Hence, it is only when

the jet–CREfield is directly examined, aswe do here, that

the biases in type Imodels becomemore readily apparent

(contrast Figs. 3b and 4b).

To explore the origin of the unrealistic shortwave jet–

CRE patterns in type I models, we next examine the

present-dayDJF shortwave CRE climatologies from the

CMIP5 models, and compare them to observations from

CERES in Figs. 5 and 6. In the zonal mean (Fig. 5a), all

FIG. 2. As in Fig. 1, but for the longwave jet–CRE patterns. The contour interval is 0.125Wm22.

1 AUGUST 2014 GR I SE AND POLVAN I 6079



models display a climatological minimum in shortwave

CRE (i.e., a maximum in cloud reflection of incident solar

radiation) over the Southern Ocean, but the values differ

drastically among models (see also Ceppi et al. 2012). In

fact, for the DJF season, the largest spread among the

models is not found in the tropics, but in the SH mid-

latitudes. There, the type II models cluster around a mini-

mum value of approximately 2110Wm22, whereas the

type I models cluster around a minimum value of approx-

imately 2140Wm22. The clustering of the models does

FIG. 3. (a),(b) Composites of the longwave and shortwave jet–CRE patterns shown in Figs. 1 and 2 for (left) type I

models and (right) type IImodels. Corresponding (c) zonal average of the longwave (LW), shortwave (SW), and total

jet–CRE patterns. The shaded error bounds denote themultimodel spread. Values averaged over the SH are listed in

the legend.
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not appear to be by chance. As shown in Fig. 5b, for these

models, the shortwave jet–CRE index is significantly cor-

related (r 5 20.75) with the climatological minimum in

shortwave CRE at SH midlatitudes.2 Thus, models with

greater climatological reflection of incident shortwave ra-

diation bySouthernOcean clouds also generally havemore

positive shortwave jet–CRE values at SH midlatitudes.

An apparent paradox arises from the results in Figs. 4

and 5: The zonal-mean shortwave CRE climatology

of type I models appears to be a better match for the

CERES observations (cf. green and red lines in Fig. 5a),

even though these same models were shown to have

unrealistically positive shortwave jet–CRE values at SH

midlatitudes (cf. Figs. 3b and 4b). To help resolve this

paradox, Fig. 6 shows maps of the present-day DJF

shortwave CRE climatologies from CERES and the two

classes of CMIP5 models. In type I models, the magni-

tude of the shortwave CRE over the Southern Ocean

appears similar to observations (see also Fig. 5a), but the

structure of the cloud reflection appears much too

widespread and zonally symmetric (cf. Figs. 6a and 6b).

In type II models, the magnitude of the shortwave CRE

over the Southern Ocean is underestimated, but the

spatial structure of the cloud reflection is less zonally

symmetric and compares better with observations (cf.

Figs. 6a and 6c). For example, both the CERES obser-

vations (Fig. 6a) and type II models (Fig. 6c) possess

FIG. 4. As in Figs. 1 and 2, but for the observed jet–CRE patterns calculated using the monthly-mean DJF (left)

ISCCP-FD (December 1983–December 2004) and (right) CERES (December 2000–February 2013) datasets, and

the time series of the jet latitude derived from the ERA-Interim reanalysis. The stippling indicates regions that are

95% significant using Student’s t test.

2 The climatological minima in shortwave CRE are nearly

identical in the historical (Fig. 5a) and preindustrial control (Fig.

5b) climates of each CMIP5 model.
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distinct climatological minima in the southern Atlantic

and Indian Oceans (458–608S, 608W–608E) and in the

southwestern Pacific Ocean (508–658S, 1808–1208W).

Interestingly, the composite of type II models is also

closer to observations in the SH subtropical ocean

basins, where the model representation of stratocumu-

lus and cumulus-to-stratocumulus transition regimes has

traditionally been problematic (e.g.,Williams andWebb

2009; Klein et al. 2013).

To support our conclusion that the cloud structures in

type II models are more realistic, we present the climato-

logical optical depth distribution of Southern Ocean (408–
608S) clouds from ISCCP observations and the two classes

of CMIP5 models (Fig. 7). The results in this figure are

based upon a limited number of models, as the ISCCP

simulator output necessary to produce this figure is only

available from two type I models and three type II models

(see Zelinka et al. 2013). The optical depth distributions of

high-level and midlevel clouds appear to be similar in the

available type I and II models (Figs. 7a,b), although both

classes of models underestimate the observed amount of

midlevel clouds. The differences between type I and II

models appear to arise from anoverabundance of optically

thick, low-level clouds in type I models (Fig. 7c). This is

a longstanding problem among climate models, which has

been somewhat mitigated in many of the newest model

versions (Kay et al. 2012; Klein et al. 2013).

To summarize: the key result of our analysis is that

type II models have a more realistic representation of

observed jet–CRE patterns over the Southern Ocean

(cf. Figs. 3 and 4). The more realistic jet–CRE patterns in

type II models appear to result from the models’ ability

to capture the observed spatial (Fig. 6) and optical depth

(Fig. 7) distributions of low clouds over the Southern

Ocean. Other factors might also contribute to the im-

proved jet–CRE behavior in type II models. Because

type I models have a more pronounced climatological

minimum in shortwave CRE over the Southern Ocean

(Fig. 5), one might expect them to also have a more

equatorward-biased climatological jet latitude in the SH,

as suggested by Ceppi et al. (2012). However, we find no

significant difference in the jet latitudes between the two

classes of models used here (as quantified in Table 2,

fourth and fifth columns). This is not entirely surprising:

the correlation between the Southern Ocean shortwave

CRE climatology and the SH climatological jet latitude

reported by Ceppi et al. (2012) is relatively weak, as it

relies almost exclusively on the behavior of only a few

outlying CMIP5 models (see Fig. 2 of Ceppi et al. 2012).

Based upon the results of this section, it would be

tempting to naively argue that type II models have

‘‘better’’ clouds than type I models. While type II models

accurately represent cloud processes directly tied to SH

jet variability, they also misrepresent other key cloud

processes, leading to an underestimate of the observed

magnitude of shortwave CRE over the Southern Ocean

(Fig. 5a)—and thus likely to an improper SH energy

budget (see Trenberth and Fasullo 2010). Consequently,

FIG. 5. (a) Present-day DJF zonal-mean shortwave CRE climatology for CERES observations (green) and individual type I (red) and

type II (blue) CMIP5 models. The CERES climatology is derived from the 13 yr of available satellite observations (December 2000–

February 2013), and the model climatologies are derived from the last 13 yr of the CMIP5 historical scenario (1993–2005). (b) Scatterplot

between (abscissa) the shortwave jet–CRE index for each CMIP5 model and (ordinate) the climatological minimum in shortwave CRE

over the Southern Ocean for each model [as shown in (a) for the present-day climatology]. Numbers on the scatterplot correspond to the

models identified in Fig. 1. Calculations in (b) are for the DJF season, in the preindustrial control climate of each model.
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both type I and type II models have strengths and

weaknesses in their representation of observed cloud

processes, and it is challenging to interpret why a trade-

off exists between themodels’ representation of jet–CRE

processes and their climatological magnitude of short-

wave CRE. Further analyses of these model biases are

left to a future study. For the remainder of this paper, we

focus on the implications of the varying jet–CRE be-

havior in CMIP5 models.

5. Implications for climate projections

In this section, we discuss how the jet–CRE behavior in

CMIP5 models may have important implications for the

models’ climate projections. It is well known that the SH

midlatitude jet shifts robustly poleward in climate models

in response to both stratospheric ozone depletion (Gillett

and Thompson 2003; Son et al. 2008; Polvani et al. 2011)

and enhanced greenhouse gas forcing (Kushner et al. 2001;

Yin 2005; Barnes and Polvani 2013). Since the jet–CRE

patterns in type I models contribute to a hemispherically

integrated warming effect (see Fig. 3c), one might expect

the global warming in thosemodels to exceed thewarming

in type IImodels when greenhouse gases are increased. To

test this hypothesis, we examine the abrupt 43CO2 in-

tegrations from the CMIP5 archive. We focus on these

integrations because they provide a large, simple, impor-

tant, and unambiguous forcing of the climate system, and

thus provide a much cleaner testbed for our hypothesis

than the historical or representative concentration path-

way (RCP) integrations. Recall that, in the historical and

RCP integrations, many different forcings are applied, not

all of which are identical across all models or are mono-

tonically increasing over time (e.g., aerosols are increased

then decreased in several scenarios).

Figure 8a shows the time series of the global-mean

surface temperature response to the abrupt 43CO2

forcing in both classes of models. Note that the tem-

perature response is plotted using a logarithmic time

scale to emphasize the early years of the integrations.

During the first 20 years of the runs, the type I models

are indeed warming faster than the type II models (as

FIG. 6. Present-day DJF shortwave CRE climatology for (a) CERES observations, (b) type I

models, and (c) type II models. The CERES climatology is derived from the 13 yr of available

satellite observations (December 2000–February 2013), and the model climatologies are de-

rived from the last 13 yr of the CMIP5 historical scenario (1993–2005). Themodel climatologies

are a composite over all type I in (b) and type II in (c) models. The contour interval is 6Wm22.
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quantified in Fig. 8b).3 It is important to appreciate that

the larger initial warming in the type I models is unlikely

to occur by chance: randomly grouping the models into

two subsets of 10 yields the separation seen in Fig. 8b

only ;1% of the time (based on Monte Carlo tests of

1000 random model groupings).

Because type I models have a better representation of

the observed climatological magnitude of shortwave

CRE in the SH (Fig. 5), one might expect them to be

warming more because, based on the CMIP3 findings of

Trenberth and Fasullo (2010), they might have larger

values of equilibrium climate sensitivity. However, after

the initial period of larger warming in type I models, the

global-mean surface temperature time series from the

two classes of models begin to converge (albeit very

slowly) (Fig. 8a), such that there is no significant differ-

ence between the equilibrium climate sensitivities of type

I and II models (Fig. 8c; see also Table 2, third column).4

Instead, any significant difference in warming between

type I and II models occurs in the very rapid, transient

response of the models to increased greenhouse gas

forcing. This is in agreement with other studies, which

have identified cloud-induced shortwave warming as be-

ing largely responsible for the rapid (nonequilibrium)

adjustment of the climate system to increased CO2 levels

(Andrews and Forster 2008; Colman and McAvaney

2011; Andrews et al. 2012a; Zelinka et al. 2013).

One might argue that the difference in the transient

warming between the two classes of models (Fig. 8a)

might have little to do with the jet–CRE biases, and be

due to other differences among the models. To show

that the SH jet–CRE biases are indeed key to the dif-

ference in warming between the two classes of models,

in Fig. 9 we show maps of the difference in the surface

temperature and shortwave CRE responses between the

type I and type II models. For the first 20 years of the

abrupt 43CO2 scenario, the bulk of the enhanced

warming in the type Imodels arises from three regions in

the SH (Fig. 9a). First, in the SH subtropics, the type I

models have anomalous warming in regions where they

poorly represent the observed shortwaveCRE climatology

(see Fig. 6). Second, at SH midlatitudes, the type I models

have excess warming in regions where the shortwave jet–

CREbiases occur (Fig. 1).Andfinally, at SHhigh latitudes,

FIG. 7. The 1983–2005 DJF climatological distribution of cloud

optical depth over the Southern Ocean (408–608S): (a) high cloud

fraction (cloud top pressure , 440hPa), (b) middle cloud fraction

(440hPa, cloud top pressure, 680hPa), and (c) low cloud fraction

(cloud top pressure . 680hPa). The observed climatology (green) is

derived from the simulator-oriented ISCCP cloud product. Model

climatologies are derived from the historical scenario of models that

have ISCCP simulator output available: two type Imodels (CanESM2

and MPI-ESM-LR; red) and three type II models (HadGEM2-ES,

MIROC5, andMRI-CGCM3; blue). Shading denotes the multimodel

spread.

3 The results in Fig. 8b are not sensitive to the choice of the first

20 years. Similar results are found using the first 5, 10, and 30 yr.
4 Calculations of equilibrium climate sensitivity are based on

a linear regression fit [see plots in Gregory et al. (2004) and

Andrews et al. (2012b)]. Thus, the disparity among type I and II

models at the end of the abrupt 43CO2 scenario (year 150) in Fig.

8a is not necessarily comparable to the spread in the equilibrium

climate sensitivities of the models.
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the type I models are warming more near the Antarctic

coastline.

The enhanced warming in type I models primarily

occurs in regions where their shortwave CRE response

to the abrupt 43CO2 forcing is significantly more posi-

tive (Fig. 9b). In the SH subtropics and midlatitudes,

similar discrepancies between the shortwave CRE re-

sponses of type I and II models also occur in analogous

experiments with fixed SSTs (Fig. 9c). Hence, in these

regions, rapid cloud adjustments due to CO2 forcing

alone (in the absence of SST changes) contribute to

enhanced warming in type I models. However, near the

Antarctic coastline, the shortwave CRE response is bi-

ased negative in regions where cloud cover is positioned

above melting sea ice (Fig. 9b; see also section 2b). In

this region, sea ice and SST changes appear central to

the enhanced warming in type I models, as differences in

the shortwave CRE responses between the two classes

of models largely vanish when SSTs and sea ice con-

centrations are held fixed (Fig. 9c).

With the differences in the SH subtropics and high lat-

itudes duly noted, we now focus on the SH midlatitudes,

where the jet–CRE biases appear to play a key role in the

surface temperature response to CO2 forcing (Fig. 9). To

confirm the role of the jet–CRE biases, we plot, in the left

column of Fig. 10, time series of the response of the SH

midlatitude jet, shortwave CRE, and surface temperature

to the abrupt 43CO2 forcing, for both type I and type II

models. In both types of models, the jet shifts rapidly

poleward in the first few years after the CO2 forcing is

imposed, and largely reaches its equilibrium position

within a couple of decades, as seen in Fig. 10a.

Ceppi et al. (2014) have recently suggested that

a strong relationship exists in the CMIP5 models be-

tween the magnitude of the poleward jet shift and the

shortwave CRE response to climate change (via SST

changes), but our results appear inconsistent with their

findings. While the multimodel mean jet shift for the

type I models is consistently more poleward than that of

the type II models (cf. red and blue lines in Fig. 10a), we

find that the difference in the poleward jet shifts be-

tween the two subsets of models considered here is not

statistically significant. The difference in the poleward

jet shifts between the two classes of models is neither

significant at the beginning of the abrupt 43CO2 in-

tegrations (i.e., the first 20 yr, as quantified in the sixth

TABLE 2. Characteristics of the indicated CMIP5 models. The equilibrium climate sensitivity (ECS) values in the third column are

reproduced from Table 1 of Forster et al. (2013). The midlatitude jet characteristics in the fourth through seventh columns are calculated

for the 850-hPa SH midlatitude jet [Negative values in the fourth and fifth columns denote degrees latitude for SH and in the sixth and

seventh columns denote a southerly (poleward) shift in degrees latitude].

Model number Model name ECS (K)

DJF-mean

jet lat (8)
(control)

Annual-mean

jet lat (8)
(control)

DJF-mean jet

shift (8)
(43CO2)

(years 1–20)

Annual-mean

jet shift (8)
(43CO2)

(years 1–20)

Type I models

1 BCC_CSM1.1 2.82 246.77 247.93 22.48 21.86

2 BCC_CSM1.1-m 2.87 248.82 249.73 22.78 22.36

3 CanESM2 3.69 247.30 248.05 23.78 22.71

4 CCSM4 2.89 250.90 251.75 21.02 21.45

5 CNRM-CM5 3.25 247.00 248.50 22.07 21.76

6 IPSL-CM5A-LR 4.13 241.75 241.94 24.45 24.70

7 MIROC-ESM 4.67 243.75 244.04 21.90 22.70

8 MPI-ESM-LR 3.63 247.41 247.34 23.04 23.25

9 MPI-ESM-P 3.45 247.39 247.35 22.47 22.97

10 NorESM1-M 2.80 249.34 250.95 21.96 22.01

Mean 6 1s 3.42 6 0.63 247.04 6 2.64 247.76 6 2.96 22.59 6 0.98 22.58 6 0.94

Type II models

11 ACCESS1.0 3.83 248.17 250.27 22.68 21.62

12 CSIRO-Mk3.6.0 4.08 248.34 247.36 22.49 22.02

13 GFDL CM3 3.97 247.57 248.45 22.85 22.77

14 GFDL-ESM2G 2.39 248.55 249.75 22.57 22.10

15 GFDL-ESM2M 2.44 247.78 249.05 22.17 21.99

16 HadGEM2-ES 4.59 249.00 250.16 23.24 21.91

17 INM-CM4 2.08 249.44 249.19 21.87 21.67

18 IPSL-CM5B-LR 2.61 242.95 243.40 21.05 21.54

19 MIROC5 2.72 247.55 246.78 22.28 23.46

20 MRI-CGCM3 2.60 247.80 250.18 21.58 20.74

Mean 6 1s 3.13 6 0.89 247.71 6 1.79 248.46 6 2.14 22.28 6 0.64 21.98 6 0.73

1 AUGUST 2014 GR I SE AND POLVAN I 6085



and seventh columns of Table 2) nor significant at the

end of the abrupt 43CO2 integrations (i.e., the last 50 yr;

not shown).

To clarify the role of SSTs in the jet shifts, in the right

column of Fig. 10a, we show the responses of the SH

midlatitude jet to 43CO2 forcing (as in Fig. 10a, left),

but with SSTs held fixed. The results reveal that CO2

forcing alone (in the absence of SST changes) can

induce a modest jet shift (see also Staten et al. 2012),

demonstrating that SST-mediated feedbacks cannot be

the sole cause of the jet shifts. Although global-mean

surface temperatures remain largely unchanged with the

abrupt quadrupling of atmospheric CO2 concentrations

(Fig. 10c, right), the SH midlatitude jet shifts poleward

in all but one of the available models.

Interestingly, in the fixed SST runs, we find a signifi-

cant difference between the jet shifts in the two classes

of models. However, if differences in the models’

shortwave CRE responses were partially forcing the jet

shifts through SST changes [as Ceppi et al. (2014) argue],

one might expect a more significant difference between

the jet shifts of type I and type II models in the fully

coupled runs (Fig. 10a, left; Table 2, sixth and seventh

columns), rather than in the fixed SST runs (Fig. 10a,

right). This is not the case here, and therefore we find no

evidence in our results to support the mechanism pro-

posed by Ceppi et al. (2014).

Unlike the small differences in jet shifts between type I

and type II models, we find a large, significant difference

between the responses of the models’ shortwave CRE at

SH midlatitudes (358–508S, see boxed region in Fig. 9b),

in both the fully coupled (Fig. 10b, left) and fixed SST

(Fig. 10b, right) experiments. As one can see in Fig. 10b

(left), an initial shortwave CRE response of;3.5Wm22

occurs within the first two years after CO2 quadrupling in

type I models, whereas the initial shortwave CRE re-

sponse is approximately zero in type II models. This

confirms our hypothesis: while the jet shifts rapidly

poleward in both types of models, only those models that

produce a shortwave cloud radiative warming effect in

association with unforced poleward jet shifts (i.e., type I

models) also produce a rapid shortwave cloud radiative

warming effect in response to CO2 forcing. In fact, the

magnitude of the initial (first 5 yr) shortwave CRE re-

sponse in each model (Fig. 10b, left) is significantly cor-

related (r 5 0.90) with its shortwave jet–CRE index

derived from preindustrial control variability, as seen in

the scatterplot in Fig. 11. Consequently, the same pro-

cesses that are relevant for the interannual jet–CRE

variability in the models are also relevant for the nearly

instantaneous, transient response of the models to CO2

forcing. Again, note that this occurs irrespective of

whether the SSTs are fixed or not.

Finally, we address the issue of time scales. Although

the initial response of the models’ shortwave CRE is

strongly linked to the jet–CRE biases, it is interesting to

note that the time series of the SH midlatitude short-

wave CRE response in Fig. 10b (left) also show a slow

increase over the duration of the abrupt 43CO2 scenario

for both type I and type II models. That slowly increasing

FIG. 8. Global-mean surface temperature response to abrupt quadrupling of CO2 in CMIP5 models. (a) Composite annual-mean time

series for type I (red) and type II (blue) models. Results are derived as the difference between the abrupt 43CO2 scenario for each model

and its preindustrial control climatology. Shading denotes 90% confidence intervals. (b) Scatter of individual model responses averaged

over the first 20 yr of the abrupt 43CO2 scenario. For each type of model, the circle denotes the multimodel mean, the bar denotes the

range of the 25th–75th percentiles, and each diagonal cross denotes outliers about the 25th–75th percentiles. (c) As in (b), but for twice the

individual model values of equilibrium climate sensitivity (from Forster et al. 2013). The equilibrium climate sensitivity values are

doubled, so that all panels in the figure correspond to a 43CO2 climate.
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FIG. 9. Differences in the composite annual-mean responses to 43CO2 forcing between type I

and type II models (i.e., type I response 2 type II response). For each model, the responses are

derived as the difference between (a),(b) the abrupt 43CO2 scenario (averaged over the first

20 yr) and the corresponding preindustrial control climatology and (c) the 43CO2 and control

scenarios with fixed sea surface temperatures (sstClim43CO2 and sstClim), which are available

only from 11models (see Table 1). The contour interval is 0.125K in (a) and 0.5Wm22 in (b),(c).

Stippling indicates regions where the model composites are different at the 95% statistically

significant level. The horizontal lines denote the 358–508S latitude band.
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FIG. 10. Response to abrupt quadrupling of CO2 in CMIP5 models. (a) On the left is the composite annual-mean

time series of the SHmidlatitude jet latitude for (red) type I models and (blue) type II models. Results are derived as

the difference between the abrupt 43CO2 scenario for eachmodel and its preindustrial control climatology. Shading

denotes 90% confidence intervals. On the right is the scatter of SH midlatitude jet latitude responses to 43CO2

forcing with fixed SSTs (i.e., the difference between the climatologies of the sstClim43CO2 and sstClim scenarios).

For each type of model, the circle denotes the multimodel mean. (b) As in (a), but for the shortwave CRE averaged

over 358–508S. (c) As in (a), but for the surface temperature averaged over 358–508S.
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shortwave CRE response does not closely follow the

midlatitude jet response (Fig. 10a, left), but instead that of

the steadily increasing global-mean surface temperature

(Fig. 8a). Thus, as argued by K14, thermodynamic in-

fluences are also a key factor in explaining the shortwave

CRE response at SH midlatitudes, particularly as the

equilibrium climate is approached.

In summary, we have found a direct link between the

model jet–CRE biases and the rapid response of the

models to abrupt 43CO2 forcing. In response to CO2

forcing, the SHmidlatitude jet shifts rapidly poleward in

all models (Fig. 10a), but only the type I models exhibit

a rapid shortwaveCRE response at SHmidlatitudes (Figs.

9b, 10b, and 11). And while the initial shortwave CRE

response is very rapid, it has a direct impact on the surface

temperatures at SH midlatitudes that lasts over a century

(Figs. 9a and 10c), and is a key contributor to the differ-

ence in global-mean surface temperature warming be-

tween the two types of models (Fig. 8a). Note that the

widely used equilibrium climate sensitivity, which is con-

cerned with asymptotic stages of the response to CO2

quadrupling, masks the jet–CRE biases, which manifest

themselves at the very early stages of the response.

6. Summary and conclusions

In this study, we examined the linkages between vari-

ability in the SH midlatitude jet and cloud radiative

processes in CMIP5 models. Previous studies have often

concluded that, as the jet moves poleward, the bulk of the

clouds will move poleward with the jet, contributing to

increased solar warming at SH midlatitudes (e.g., Bender

et al. 2012;G13).Wefind that this behavior indeed exists in

roughly half of the CMIP5 models (type I models) exam-

ined here. However, other CMIP5 models do not exhibit

this behavior. Instead, as for the model examined by K14,

the shortwave jet–CRE patterns in this second class of

models (type II models) are weaker and less zonally

symmetric in structure (Fig. 3b). Contrary to our expec-

tations, it is this second class of models that compares

better with observed jet–CRE patterns (Fig. 4), even

though these samemodels substantially underestimate the

observed climatological magnitude of shortwave cloud

reflection at SH midlatitudes (Fig. 5a). The more realistic

jet–CRE patterns in type II models appear to arise from

themodels’ ability to capture the zonally asymmetric cloud

structures observed over the Southern Ocean (Fig. 6), and

tomore accurately simulate the optical depth of low clouds

in this region (Fig. 7).

The jet–CRE biases in the CMIP5 models are not

simply a peculiar feature of the models’ internal vari-

ability: these biases have direct relevance for most cli-

mate change scenarios, in which the position of the SH

midlatitude jet shifts polewardwith increased greenhouse

gases. We find that the nearly instantaneous response of

the global-mean surface temperature to abrupt CO2

forcing is significantly larger in type I models (Fig. 8),

and this excess warming arises largely from regions of

reduced shortwave cloud reflection in the SH subtropics

and midlatitudes (Fig. 9). We find strong evidence that

the same processes that contribute to the jet–CRE biases

in type I models also contribute to their larger initial

warming response to CO2 forcing (Figs. 10 and 11).

Since type II models have a more realistic representa-

tion of the observed jet–CRE patterns, it is reasonable to

argue that they might also be more accurate in repre-

senting the response to CO2 forcing. As a consequence,

because at least half of the CMIP5 models are of type I,

the transient global-mean surface temperature warming

might be overestimated in the CMIP5 multimodel mean.

Indeed, others have recently noted that the transient

warming rates might be too high in some CMIP5 models

(Stott et al. 2013; Otto et al. 2013; Fyfe et al. 2013).

However, the type II models also have deficiencies, in-

cluding the underestimate of the observed shortwave

cloud reflection over the Southern Ocean (Fig. 5a), and

an underestimate of Southern Ocean cloud cover has

been linked to an underestimate of the equilibrium cli-

mate sensitivity and thus to an underestimate of the

global warming response (cf. Fig. 13 of Trenberth and

Fasullo 2010).

FIG. 11. As in Fig. 5b, but for the scatterplot between (abscissa) the

shortwave jet–CRE index for each CMIP5 model and (ordinate) the

initial (first 5 yr) response of shortwave CRE (358–508S) to abrupt

43CO2 forcing. The response is derived as the difference between

the abrupt 43CO2 scenario for each model and its preindustrial

control climatology (see Fig. 10b). A virtually identical scatterplot

can be produced using the response of shortwave CRE averaged

over the 308–608S latitude band on the ordinate (r 5 0.85).
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So, are type I models warming too much in response

to CO2 forcing (as the jet–CRE analysis in this study

seems to imply)? Or are type II models warming too

little [as could be hypothesized from the CMIP3 results

of Trenberth and Fasullo (2010)]? At least for the

CMIP5 models examined here, we find no evidence

that the equilibrium climate sensitivity is significantly

different between the two classes of models (Fig. 8c;

Table 2, third column). Instead, we find that the sig-

nificant difference between the two classes of models

arises from the rapid response to abrupt CO2 forcing,

exactly when the type I models exhibit an additional

shortwave cloud radiative warming effect at SH mid-

latitudes that is strongly correlated with their jet–CRE

biases (Figs. 10 and 11). However, as the models

equilibrate to the CO2 forcing, the warming in the two

classes of models converges, so the equilibrium climate

sensitivity remains similar (Fig. 8). Future work is thus

needed to address to what degree the processes iso-

lated here are of consequence in the more realistic,

transient climate model simulations of the twentieth

and twenty-first centuries.
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APPENDIX

Method to Calculate Jet–CRE

In this appendix, we explicitly outline the methodology

used to produce the jet–CRE patterns shown in Figs. 1 and

2, in order to ensure future reproducibility of our results.

We derive CRE (RCRE) as the difference between the

top-of-the-atmosphere outgoing clear-sky radiationRclear

(CMIP5 variables rsutcs for shortwave and rlutcs for

longwave) and the top-of-the-atmosphere outgoing radiation

R (CMIP5 variables rsut for shortwave and rlut for long-

wave):

RCRE5Rclear2R . (A1)

The total CRE is defined as the sum of the shortwave

CRE and longwave CRE.

As in Barnes and Polvani (2013), we derive the lati-

tude of the SHmidlatitude jetfu850 as follows: 1) we find

the grid point i with the maximum 850-hPa zonal-mean,

zonal wind in the SH; 2) a quadratic is fit to the 850-hPa

zonal-mean, zonal wind profile at grid points i2 1, i, and

i 1 1; and 3) fu850 is defined as the latitude of the

maximum of the quadratic fit (at a resolution of 0.018
latitude).

To find the jet–CRE patterns, we remove the time

mean from the fu850 time series to yield the f0
u850 time

series, and we remove the time mean from the RCRE

time series at each latitude-longitude grid point (i, j) to

yield the R0
CREi,j

time series. (The time mean is removed

as a function of month for monthly-mean data.) Then,

the jet–CRE value at each latitude–longitude grid point

(Rjet–CREi,j ) is defined as the linear regression coefficient

between f0
u850 and R0

CREi,j
, where the overbar denotes

the time mean, that is,

Rjet–CRE
i,j
5

R0
CRE

i,j
f0
u850

f02
u850

. (A2)

This is the quantity plotted in Figs. 1 and 2 for the

shortwave and longwave, respectively. Finally, the

jet–CRE index is defined as Rjet–CREi,j averaged over

308–608S.
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