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Abstract This study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output
to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and
shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is
anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in
the lower midlatitude region (LML; ∼28∘S–∼48∘S), although no such reduction is seen in observations.
These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent. Notably, models
with excessively equatorward climatological HC extents have weaker climatological LML subsidence and
exhibit larger increases in LML subsidence with poleward HC edge expansion. This behavior, based on
control climate interannual variability, has important implications for the CO2-forced model response.
In 4×CO2-forced runs, models with excessively equatorward climatological HC extents produce stronger
SW cloud radiative warming in the LML region and tend to have larger climate sensitivity values than
models with more realistic climatological HC extents.

1. Introduction

Clouds and their radiative effects covary with large-scale atmospheric dynamics, and all are projected to
coevolve with increasing CO2. There is strong evidence that increasing atmospheric greenhouse gas concen-
trations will contribute to poleward circulation shifts [Kushner et al., 2001; Yin, 2005; Lu et al., 2007; Hu and
Fu, 2007; Barnes and Polvani, 2013], but future cloud and cloud radiative effect (CRE) changes remain unclear
and account for most of the uncertainty in climate change projections [Andrews et al., 2012; Vial et al., 2013;
Webb et al., 2013; Qu et al., 2014]. A dominant source of that uncertainty is tropical and subtropical low clouds
and their shortwave cloud radiative effects (SWCRE) [e.g., Bony, 2005], but extratropical cloud and SW radia-
tion biases have also been implicated [Trenberth and Fasullo, 2010; Grise et al., 2015]. Quantifying the effects
of poleward circulation shifts on extratropical clouds and SWCRE may therefore help constrain the SWCRE
response and ultimately climate sensitivity.

Despite emphasis on poleward eddy-driven jet shifts, for which results vary greatly by season, ocean basin,
and model [Bender et al., 2011; Grise et al., 2013; Kay et al., 2014; Li et al., 2014; Grise and Polvani, 2014a; Tselioudis
et al., 2016; Grise and Medeiros, 2016], observations actually show that variability in midlatitude clouds and CRE
correlates more consistently and more robustly with poleward Hadley cell (HC) expansion than with jet shifts
[Tselioudis et al., 2016]. The jet may shift the core of the extratropical storm clouds, but the subsiding branch
of the HC limits their equatorward extent [Bender et al., 2011]. Poleward HC expansion, therefore, more effec-
tively inhibits high clouds in the greatly insolated lower midlatitudes (∼28∘S–∼48∘S) of the present climate
[Tselioudis et al., 2016] and may also relate better to future climate changes [Grise and Polvani, 2014b].

In this study we examine the relationship between Southern Hemisphere (SH) lower midlatitude SWCRE and
the HC edge latitude in Coupled Model Intercomparison Project phase 5 (CMIP5) models. Since the HC edge is
projected to shift poleward with increasing greenhouse gases [e.g., Lu et al., 2007], model biases in the inter-
annual covariability of the HC edge and SWCRE may have implications for the forced model response and
ultimately the equilibrium climate sensitivity (ECS) [e.g., Zhou et al., 2015]. The paper is organized as follows.
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Section 2 details the data and methods used. Section 3 relates the SW cloud radiative response to the inter-
model spread in HC-SWCRE covariability and the climatological position of the HC edge. Section 4 concludes
with a discussion of the results.

2. Data and Methods
2.1. Data
The observational radiative flux data used in this study are monthly-mean top-of-atmosphere radiative fluxes
derived from the International Satellite Cloud Climatology Project (ISCCP-FD) [Zhang, 2004]. We present
results using the data set corrected for satellite zenith angle and drift biases by Norris and Evan [2015], but use
of the uncorrected data set did not show significant differences in the derived relationships. Data cover the
period July 1983 to December 2009, but only years with the entire December-January-February (DJF) season
available are analyzed. Over this period, monthly-mean meridional wind data from the European Centre for
Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) [Dee et al., 2011] are used to calculate the
mass stream function.

Model radiative fluxes and dynamical variables are obtained from monthly-mean output from 22 CMIP5 mod-
els [Taylor et al., 2012], as listed in Table 1. We use two sets of model output: (1) the preindustrial (PI) control
runs and (2) the abrupt 4×CO2 runs. The preindustrial control run variability is used because it is unforced,
the cloud changes from varying global temperature are minimal, and the length of integration (between 300
and 1156 years) yields a robust statistical analysis; results are similar when the historical runs of the mod-
els are analyzed. To avoid biasing the results with one model, only the first ensemble member (“r1i1p1”)
from each model is used. The equilibrium climate sensitivity (ECS) of each model is taken from Forster et al.
[2013] (see Table 1, sixth column). The 4×CO2 SWCRE response is defined as the difference in SWCRE between
the atmosphere-equilibrated (first 50 years removed) abrupt 4×CO2 run and the preindustrial control run
climatology.

2.2. Methods
We compute the Hadley cell (HC) edge latitude by identifying the first two grid points from the equator
where the midtropospheric (500 hPa) mass stream function changes sign and then linearly interpolating
between them at 0.01∘ resolution to find the latitude of the first zero crossing. The shortwave cloud radiative
effect (SWCRE) is defined as top-of-atmosphere upwelling clear-sky SW radiation (i.e., rsutcs) minus top-of-
atmosphere upwelling all-sky SW radiation (i.e., rsut).

To remove intraseasonal variability, deseasonalized monthly-mean data are averaged over the DJF season. To
examine interannual covariability, the detrended SWCRE time series are linearly regressed onto the detrended
HC edge latitude time series. We refer to the SWCRE response to a 1∘ poleward shift of the HC edge latitude
as HC-SWCRE. Positive HC-SWCRE values indicate anomalous SW warming with poleward HC edge shifts.
Regionally averaged quantities are computed by first regridding to a common grid and then averaging over
the point-by-point values. Statistical significance and confidence intervals are determined primarily using
two-tailed Student’s t tests and validated with bootstrapping.

In this paper, we focus on results for the SH, and in particular the DJF season when solar insolation and hence
the SWCRE is maximized at SH midlatitudes (Figure S1). Observations show that cloud-dynamics coupling is
relatively consistent across season and region in the SH [Tselioudis et al., 2016], especially when compared
to the Northern Hemisphere [Grise and Medeiros, 2016]. However, analysis for all seasons and for the annual
mean was performed, and those results are also discussed.

3. Results

We first examine the CMIP5 model SWCRE response to increasing CO2 in order to identify regions of strong
model SWCRE response. The 4×CO2-forced SWCRE response in DJF is displayed in Figure 1 (top). The major
consistent response is what appears to be a dipole pattern in the SH midlatitudes: at high latitudes, defined as
where the multimodel mean SWCRE response is negative (∼48∘S–90∘S), there is an anomalous cloud-induced
SW radiative cooling; at lower midlatitudes (LML, thick-dashed vertical lines in Figure 1, top), defined as
where the multimodel mean SWCRE response is positive (∼28∘S–∼48∘S), there is anomalous cloud-induced
SW radiative warming. Note that this dipole behavior is also present, but of smaller magnitude, in the
annual-mean 4×CO2-forced SWCRE response (Figure S2 (top) in the supporting information).
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Table 1. Listing and Characteristics of the CMIP5 Models Used in This Studya

4×CO2 HC HC Edge LML LML LML

Name Edge Shift Latitude HC-SWCRE mean 𝜔500 HC-𝜔500 ECS

Observations - −35.83 −0.69 −3.23 −0.48 -

+HC-SWCRE Models

a bcc-csm1-1 −1.49 −33.01 1.00 5.75 2.05 2.82

b bcc-csm1-1-m −2.34 −35.01 0.39 6.91 1.06 2.87

c CanESM2 −3.44 −33.25 0.67 6.33 2.08 3.69

d CNRM-CM5v −1.02 −33.55 0.34 6.30 2.52 3.25

e FGOALS-s2 −3.17 −30.74 0.96 4.25 3.74 4.17

f GISS-E2-R −1.41 −32.98 0.16 5.58 2.11 2.11

g inmcm4 −1.14 −35.31 0.21 5.63 0.62 2.08

h IPSL-CM5A-LR −3.91 −30.41 1.66 3.60 4.87 4.13

i IPSL-CM5B-LR −1.08 −30.73 0.67 3.16 3.50 2.61

j MIROC-ESM −0.52 −31.48 1.33 4.37 3.37 4.67

k MPI-ESM-LR −1.32 −33.80 0.31 7.53 3.05 3.63

l MPI-ESM-P −1.33 −33.76 0.39 7.54 3.01 3.45

m MRI-CGCM3 −1.01 −34.18 0.15 5.53 1.90 2.60

Mean −1.78 −32.94 0.63 5.58 2.61 3.24

Neutral Model

n MIROC5 −1.40 −34.68 0.00 6.23 2.03 2.72

−HC-SWCRE Models

o CCSM4 −1.38 −36.71 −0.54 7.05 0.23 2.89

p CSIRO-Mk3-6-0 −2.36 −34.26 −0.99 - - 4.08

q GFDL-CM3 −1.55 −34.09 −0.10 7.32 3.15 3.97

r GFDL-ESM2G −1.35 −35.53 −0.54 6.64 1.51 2.39

s GFDL-ESM2M −1.28 −34.77 −0.41 6.34 2.17 2.44

t HadGEM2-ES −3.23 −33.63 −0.22 6.27 1.51 4.59

u NorESM1-M −1.42 −36.23 −0.54 6.72 0.80 2.80

v NorESM1-ME - −36.16 −0.66 6.83 0.51 -

Mean −1.80 −35.17 −0.50 6.74 1.41 3.31

Multimodel Mean −1.79 −33.79 0.20 5.98 2.19 3.26
aValues in the first through fifth columns are calculated for DJF SH. The units of the first column

are degrees latitude, where negative values correspond to poleward shifts. The units of the second
column are degrees latitude, where negative values correspond to SH. The units of the third column are
W m−2 deg−1, of the fourth column are hPa d−1, and of the fifth column hPa d−1. Equilibrium climate
sensitivity values are reproduced from Table 1 of [Forster et al., 2013].

The relationship of the model SWCRE response in the two regions to model climate sensitivity is explored
in Figure 1 (bottom). The high-latitude response (Figure 1, bottom left) does not correlate significantly with
ECS, and any relationship would not be causal as higher ECS models have larger high-latitude SW cooling. In
the LML, however, the correlation is statistically significant (Figure 1, bottom right) and shows higher ECS for
models with higher SW warming (see also Figure 7 of Grise et al. [2015]). A similar correlation with ECS also
exists for the annual-mean SWCRE responses (Figure S2, bottom). The high-latitude response has been studied
extensively and is attributed to a negative cloud-phase feedback—with increasing CO2, the melting isotherm
intersecting the surface near 55∘S shifts poleward and melts ice cloud into more reflective liquid cloud
[e.g., Kay et al., 2014; Storelvmo et al., 2015; Ceppi et al., 2014; Ceppi and Hartmann, 2015]. We focus our analysis
on the LML, where a cloud feedback mechanism has not been established. A potential mechanism is the pole-
ward shift of the HC edge, since its subsiding branch terminates within the LML, near 34∘S in the multimodel
mean PI climatology (thin black line in Figure 1, top), and since the observational study of Tselioudis et al. [2016]
showed that the LML clouds and SWCRE are strongly correlated with latitudinal HC edge shifts on interannual
time scales. To date, no study has investigated whether the interannual variability of LML clouds and SWCRE
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Figure 1. (top) The change in zonal-mean SWCRE for each CMIP5 model from the preindustrial (PI) control climatology
to the atmosphere-equilibrated 4×CO2 climatology for DJF. Positive (negative) values correspond to anomalous
cloud-induced SW warming (cooling). (bottom) Least squares linear regressions of the intermodel spread in ECS on
the intermodel spread in the SWCRE change averaged over the (left) higher midlatitudes and over the (right) LML
(lower midlatitudes). The LML is confined between the two thick-dashed vertical lines. The multimodel mean
climatological HC edge latitude is depicted for the PI runs with a black thin-dashed line and for the 4×CO2 runs with
a red thin-dashed line. Each line and data point corresponds to one model (see Table 1 for model labels) Regressions
statistically significant at the 95% confidence level, assessed using the Student’s t test, are denoted by thicker
regression lines and bold coefficients.

is related to HC edge variability in models. If it is, this relationship could be predictive of the models’ SWCRE
response to increased greenhouse gases and ultimately the models’ ECS [e.g., Zhou et al., 2015].

We begin by examining in Figure 2 the spatial structure of the interannual HC-SWCRE covariability for (a) the
observations and (b) the multimodel mean. In observations [Tselioudis et al., 2016], the HC-SWCRE relationship
in the SH LML region is mostly negative and is dominated by SW cooling, except for a region of SW warming
east of South America and a tropical SW warming intrusion in the eastern South Pacific associated with a
southward and westward shift of the South Pacific Convergence Zone (SPCZ). In contrast to the observations,
the multimodel mean HC-SWCRE pattern, while showing a weak cooling in the central Pacific associated with
a SPCZ shift, is dominated by a pronounced and zonally symmetric LML SW warming belt. We compare this
with the multimodel mean spatial pattern of the 4×CO2-forced SWCRE response in Figure 2c. The colocation
and statistically significant spatial correlation (R=0.53) of the multimodel mean HC-related LML SW warming
region (red in Figure 2b) with the region of 4×CO2-forced LML SW warming (Figure 2c) suggests a dynamic
attribution of the LML warming to poleward HC edge expansion. The question, then, is to what extent is
the multimodel mean HC-SWCRE relationship representative of individual model behavior? To answer this
question, we next examine the intermodel spread in the HC-SWCRE relationship about the multimodel mean.

The magnitude of the LML-averaged HC-SWCRE regression coefficients for all 22 CMIP5 models used is
listed in Table 1, along with the values from the observational analysis. We average over the LML because
of the zonal structure exhibited by both the unforced HC-SWCRE covariability (Figure 2b) and 4×CO2-forced
SWCRE response (Figure 2c). Results are not sensitive to the exact choice of the LML latitude band, or whether
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Figure 2. DJF least squares linear regressions of the SH Hadley cell edge latitude on the SH SWCRE for (a) ISCCP-FD and
ERA-Interim, (b) the CMIP5 PI multimodel mean, (d) only the +HC-SWCRE models, and (e) only the −HC-SWCRE models.
Units in Figures 2a, 2b, 2d, and 2e indicate W m−2 per 1∘ poleward Hadley cell shift. Displayed in parentheses near
the panel label is the number of models used in the composite. The LML is confined between the two thick-dashed
horizontal lines, and the mean climatological HC edge latitude is depicted with thin-dashed horizontal lines, with mean
value to the right. (c) The multimodel change in SWCRE for CMIP5 from the preindustrial (PI) control climatology to the
atmosphere-equilibrated 4×CO2 climatology for DJF. Positive (negative) values correspond to anomalous cloud-induced
SW warming (cooling). The PI Hadley cell edge latitude is depicted with gray thin-dashed horizontal lines, and the
4×CO2 Hadley cell edge is depicted with black thin-dashed lines, with mean value to the right.
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Figure 3. Least squares linear regressions on the
intermodel spread in climatological DJF SH Hadley cell
edge latitude of the intermodel spread in DJF SH (top)
LML HC-SWCRE, (center) climatological mean pressure
vertical velocity at 500 hPa (𝜔500) averaged over
the LML, and (bottom) LML HC-𝜔500. Each data point
corresponds to one model (see Table 1 for model
labels). Regressions statistically significant at the 95%
confidence level, assessed using a t test, are denoted
by thick lines and bold coefficients (all are significant).
Gray lines represent observed values (derived from
ISCCP-FD and ERA-Interim), and gray shading
represents the 95% confidence interval thereof.

the region is centered on the HC edge latitude. There
is large intermodel spread in the PI HC-SWCRE (third
column), with the majority of models showing posi-
tive HC-SWCRE values indicating mean SW warming
with poleward HC edge expansion. We designate those
models “+HC-SWCRE” models in contrast with models
designated “−HC-SWCRE” models that produce mean SW
cooling with poleward HC edge expansion; this is similar
to the Type I/II classification of Grise and Polvani [2014a]
in both methodology and model categorization. Even
within each class of models, HC-SWCRE values vary by an
order of magnitude, from about +0.15 W m−2 deg−1 to
about +1.5 W m−2 deg−1 in +HC-SWCRE models, and
from about−0.10 W m−2 deg−1 to about−1.0 W m−2 deg−1

in −HC-SWCRE models. Beyond regression coefficients,
the correlation strength also varies across models—in
only one model (MIROC5) LML SWCRE seems indepen-
dent of HC edge shifts using the Student’s t test, whereas
in all other models the correlation is statistically signifi-
cant, with some correlation coefficients as high as 0.90
(not shown). Thus, in almost all models, as in observa-
tions, robust SWCRE changes are associated with HC edge
shifts; however, the sign of those LML-averaged changes
is highly variable by model.

To examine the spatial distribution of the SWCRE changes
in the two model classes, we plot the HC-SWCRE rela-
tionship separately for positive and negative HC-SWCRE
models (Figures 2d and 2e). Unlike the observations, both
model classes show a zone of consistent SW warming
on the southern side of the LML region. In each of the
−HC-SWCRE models (not shown) and in their multimodel
mean (Figure 2d) this warming zone is narrower than in
each of the +HC-SWCRE models (not shown) and their
multimodel mean (Figure 2e). The −HC-SWCRE models
show a more extensive SW cooling region on the equator-
ward side of the LML region, primarily due to a stronger
SPCZ shift in the central Pacific. Note here that we have
repeated the analyses performed in this study but exclud-
ing the Pacific signal, and despite its being of large ampli-
tude, it did not change our conclusions. We also analyzed
the regression of LML SWCRE onto shifts of the ITCZ
and SPCZ but found our HC edge metric to correlate
more strongly and more consistently. In both subsets of
models, the patches of cooling on the equatorward side
of the LML region extends approximately to the latitude
of the climatological HC edge (thin dashed lines), with
the−HC-SWCRE models having on average a more south-
ward HC edge (34.8∘S compared to 33.4∘S) and there-
fore a larger area of SW cooling. This suggests that the
HC-related SWCRE may be connected to the climatologi-
cal HC edge position in each model.

We therefore correlate the PI climatological HC edge lat-
itude in each model with its LML HC-SWCRE in Figure 3
(top). Although grouped into two subsets in Table 1 for
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Figure 4. Least squares linear regressions on the
intermodel spread in LML averaged 4×CO2-PI SWCRE of
the intermodel spread in (top) LML HC-SWCRE and (center)
intermodel spread in climatological DJF SH Hadley cell
edge latitude. (bottom) Least squares linear regression on
the intermodel spread in equilibrium climate sensitivity of
the intermodel spread in climatological DJF SH Hadley cell
edge latitude. Each data point corresponds to one model
(see Table 1 for model labels). Regressions statistically
significant at the 95% confidence level, assessed using a t
test, are denoted by thick lines and bold coefficients
(all are significant). Gray lines represent observed values
(derived from ISCCP-FD and ERA-Interim), and gray
shading represents the 95% confidence interval thereof.

convenience of explanation, the model behavior
is continuous—models with more equatorward
(poleward) climatological HC edges have more posi-
tive (negative) HC-SWCREs. The −HC-SWCRE models
agree better with both HC edge latitude and HC-
SWCRE observed values (gray lines and envelope);
in contrast, no +HC-SWCRE model lies within the
uncertainty of the observed HC-SWCRE relationship,
and most do not agree with the observed HC edge
latitude. This suggests that unforced model clouds’
covariability with HC edge latitude shifts may be tied
to the climatological HC edge position. We therefore
explore why cloud changes with poleward HC edge
expansion link so robustly to the climatological HC
edge position.

Since midlatitude cloud optical properties and ver-
tical structure relate to the midtropospheric vertical
velocity [Tselioudis and Jakob, 2002], we examine the
relationship between HC edge latitude and midtro-
pospheric vertical velocity in the LML region. The
climatological HC edge position correlates strongly
with the strength of the climatological mean LML ver-
tical velocity (Figure 3, center), and with the vertical
velocity anomalies associated with HC edge shifts,
as measured by the regression coefficient HC-𝜔500
(Figure 3, bottom). A more equatorward HC edge
is associated with weaker LML mean climatological
subsidence (𝜔 at 500 hPa or 𝜔500) and vice versa
(Figure 3, center).

With poleward HC edge expansion,𝜔500 increases in
the LML of all models (Table 1 and Figure 3, bottom).
The increases in 𝜔500 are larger in the models with
weaker LML mean climatological subsidence and
more equatorward HCs (Table 1 and Figure 3). Overall,
poleward HC edge expansion extends the subtropi-
cal subsidence influence into the LML region. In mod-
els with too narrow climatological HCs, this induces
strong subsidence in a region which typically has
weak subsidence, resulting in strong decreases in
SW cloud reflection. In models with wide clima-
tological HCs and already strong LML subsidence,
the SW warming effect is small. In the observations
[Tselioudis et al., 2016], there is no SW warming effect
because there are more abundant and more reflec-
tive clouds, particularly at low levels, with pole-
ward HC edge shifts. The reason for the −HC-SWCRE
models’ behavior must be further explored follow-
ing the analysis of Grise and Medeiros [2016], who
highlight the strong control of the estimated bound-
ary layer inversion strength on the low cloud field in
the LML.

The analysis of the CMIP5 PI control runs presented
so far shows that HC edge expansion is robustly asso-
ciated with anomalous cloud-induced SW warming
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on the southward side of LML on interannual time scales (Figure 2). We now examine whether this associa-
tion is also found in models’ response to 4×CO2 forcing. First we show the correlation between the strength of
the model HC-SWCRE relationships and their 4×CO2 LML SWCRE warming in Figure 4 (top). The plot indicates
that the extent to which models change their LML SWCRE with unforced HC edge shifts predicts to a large
extent the strength of the LML SWCRE warming upon quadrupling CO2 (as noted in Grise and Polvani [2014a,
Figure 11]). It was shown above (Figure 3, top) that the magnitude of HC-SWCRE relates strongly to the
climatological position of the HC edge. Therefore, we correlate the 4×CO2 LML SWCRE warming with the cli-
matological HC edge latitude across the models (Figure 4, middle). It is clear that the climatological HC edge
latitude is robustly correlated with the response of LML SWCRE to 4×CO2 forcing. Therefore, this relationship
represents a constraint that directly links the SW cloud radiative response to the climatological Hadley cell
extent via the well-defined influence of atmospheric dynamics on cloud radiative effects.

Finally, given the large correlation of the LML SW cloud radiative response with model climate sensitivity
(Figure 1b), we correlate model ECS with climatological HC edge latitude (Figure 4, bottom). We find that the
correlation with climatological HC edge latitude is weaker for ECS than for the SW cloud radiative response
but still statistically significant. Models with more poleward climatological HCs, which more closely resemble
the observations, have lower ECS than models with more equatorward HCs. This relationship between clima-
tological HC edge and ECS is mediated by model spread in cloud-dynamics coupling in both unforced and
CO2-forced runs (Figure 4). Models with more equatorward HC edges exhibit stronger increases in LML subsi-
dence and greater cloud-induced SW warming with unforced southward HC edge shifts and thus warm more
with CO2-forced southward HC edge shifts. This relationship constitutes a less robust but still statistically sig-
nificant and physically motivated emergent constraint that links ECS to the climatological Hadley cell extent,
although accurately assessing the statistical significance of emergent constraints is difficult [e.g., Caldwell
et al., 2014].

4. Discussion

We have documented a robust interannual relationship in Southern summer between lower midlatitude
SWCRE and poleward HC edge expansion. All models exhibit anomalous LML SW warming with poleward
HC edge shifts. In most models (+HC-SWCRE models) the anomalous SW warming dominates the LML, while
in a few models (−HC-SWCRE models) there are intrusions of tropical SW cooling. The intermodel spread in
cloud-dynamics coupling seems to arise from the intermodel spread in large-scale dynamics, particularly in
the climatological HC edge position. In models with more equatorward HCs, southward HC edge shifts transi-
tion the LML from a weak to a strong subsidence regime, resulting in decreased SW cloud reflection. In models
with more poleward HCs, southward HC edge shifts keep the LML in a strong subsidence regime, and the SW
warming effect is small (Figure 3). Note that the magnitude of the 4×CO2 SWCRE warming is not correlated
with the extent of the CO2-forced HC expansion but only with the HC starting latitude. The key finding here
therefore is that the LML SW cloud radiative response seems to be correlated with climatological biases in the
HC extent, in line with previous studies which find a strong link between SW cloud radiative feedbacks and
model climatological biases [Trenberth and Fasullo, 2010; Grise et al., 2015]. In particular, models with climato-
logical HC edge latitudes closer to the observations show a weaker positive SW cloud radiative response and
tend to have smaller ECS values.

Our analysis focuses on the cloud radiative effects of HC edge latitude shifts, and our results are consistent
with Grise and Polvani [2014a] and Grise and Polvani [2014b]. Changes in the strength and structure of the HC
branches can produce different cloud radiative responses that can have different effects on model climate
sensitivity [e.g., Su et al., 2014]. More broadly, we note that ECS results from the competing effects of many
feedback processes. Previous studies find that models with higher ECS more skillfully simulate certain cloud
microphysical or thermodynamical cloud feedback processes [e.g., Fasullo and Trenberth, 2012; Sherwood et al.,
2014; Tan et al., 2016]. Our analysis of a cloud-circulation feedback process suggests that models with generally
lower ECS more skillfully simulate the climatological HC extent and its interannual covariability with the LML
SWCRE. The challenge then is to devise ways to synthesize the evaluation of models with diverse skills in
simulating important climate feedback processes.

Our analysis of cloud-circulation interactions also brings forward two main issues: (1) how poleward circu-
lation shifts change the subsidence and (2) how changes in large-scale subsidence imprint on clouds and
their radiative effects. Regarding the latter, the same increase in subsidence may affect clouds differently
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depending on the model microphysics scheme [Kay et al., 2014; Storelvmo et al., 2015]. We have here exam-
ined the former with respect to the HC and have shown that biases in HC edge location affect the magnitude
of subsidence increase with HC edge shifts. The model behavior is a continuous function of climatological
location of the circulation. However, this may be intrinsically linked to the representation of clouds in the mod-
els, as the climatological CRE may help set the low-level baroclinicity that helps determine the location of the
large-scale atmospheric circulation [Ceppi et al., 2012, 2014]. More work is needed to disentangle the relative
contributions of biases in clouds and in dynamics to the biases in the coupling between them.

Our findings highlight that intermodel differences in the cloud-dynamics coupling may be due not only
to model biases in thermodynamics or the representation of clouds [Grise and Medeiros, 2016] but also to
intermodel differences in the climatological large-scale atmospheric circulation itself. Although the models’
representations of clouds and their radiative effects need to be improved and the biases in cloud microphysi-
cal schemes need to be addressed, advancing our understanding of cloud-dynamics coupling may come from
a more realistic representation of the large-scale atmospheric dynamics itself.
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