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Abstract
Tropospheric and stratospheric tropical temperature trends in recent decades have been
notoriously hard to simulate using climate models, particularly in the upper troposphere. Aside
from the warming trend itself, this has broader implications, e.g. atmospheric circulation trends
depend on latitudinal temperature gradients. In this study, tropical temperature trends in the
CMIP6 models are examined, from 1979 to 2014, and contrasted with trends from the
RICH/RAOBCORE radiosondes, and the ERA5/5.1 reanalysis. As in earlier studies, we find
considerable warming biases in the CMIP6 modeled trends, and we show that these biases are
linked to biases in surface temperature. We also uncover previously undocumented biases in the
lower-middle stratosphere: the CMIP6 models appear unable to capture the time evolution of
stratospheric cooling, which is non-monotonic owing to the Montreal Protocol. Finally, using
models with large ensembles, we show that their standard deviation in tropospheric temperature
trends, which is due to internal variability alone, explains ~ 50% (± 20%) of that from the CMIP6
models.

1. Introduction

Since the pioneering work of Manabe and Wether-
ald (1975) climate models have consistently shown
greater warming in the tropical upper troposphere
than near the surface in response to increased CO2

concentrations. This robust differential warming is
understood to result from convection which, at low
latitudes, tends to adjust the temperature profile to a
moist adiabat (Manabe and Stouffer 1980, Santer et al
2005). In this context, the first paper to analyze atmo-
spheric temperature trends inferred from satellite-
based microwave sounders (Spencer and Christy
1990) came as a great surprise, as it reported a lack
of warming in the free troposphere over the dec-
ade 1979-1988, questioning the reliability of climate
models and radiosonde observations. That study gen-
erated a great deal of controversy, giving rise to dozens
of papers, and two expert panel reports. The reader is
referred to Thorne et al (2011) for the latest exhaust-
ive, if not completely updated, review.

In brief, soon after that controversial paper it
became clear that both satellite and radiosonde
derived temperature trends suffered from consider-
able biases see, e.g. Karl et al (2006). A large effort,
therefore, has gone into producing ‘homogenized’
data sets, from which instrumental artifacts are care-
fully and methodically removed. Nonetheless, much
uncertainty remains as to the vertical structure of the
observed temperature trends in the free-atmosphere
since 1979, notably in the tropics. A more complete
discussion can be found in the relevant section of the
Fourth and Fifth Assessment Reports of the Inter-
governmental Panel on Climate Change (IPCC, see
Hegerl et al 2007, Hartmann et al 2013, respectively).

In tandem with the effort to put the observed
trends on more solid grounds, climate models have
greatly evolved since the early IPCC assessment
reports. In the last two decades, most state-of-the-
art climate models discretize the atmosphere with
dozens of vertical levels, have an accurate represent-
ation of the stratosphere, and are coupled to dynamic
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ocean, sea ice, and other components. In spite of
these improvements, however, substantial discrep-
ancies remain—between models and observations—
in the vertical structure of atmospheric temperat-
ure trends in the tropics. For models participat-
ing in Phases 3 and 5 of the Coupled Model Inter-
comparison Project (CMIP3 and CMIP5), these dis-
crepancies have been reported in numerous papers
(see, e.g. Fu et al 2011, Po-Chedley and Fu 2012,
Santer et al 2013, Santer et al 2017).

In particular, it is worth recalling the findings
of Mitchell et al (2013), hereafter referred to as
M13. While reporting a considerable discrepancy
between radiosonde and modeled trends over the
period 1979–2008, that study highlighted the fact
that an important source of the discrepancy rested in
the modeled surface warming, which was larger than
the observed one. M13 showed that the discrepancy
between models and observations is greatly reduced
in the atmosphere-only CMIP5 model simulations,
in which surface temperatures are prescribed from
observations.

Building on M13, the goal of this paper is
to analyze the recently completed simulations per-
formed under Phase 6 of the Coupled Model Inter-
comparison Project (CMIP6, Eyring et al 2016), and
to explore whether the tropical temperature trends in
these models are closer to observations than those of
the CMIP5 models. We also address two novel aspects
of the problem. First, mindful that the trends in atmo-
spheric concentrations of many ozone depleting sub-
stances has peaked shortly before the turn of the cen-
tury (as a consequence of the Montreal Protocol), we
separately compute trends before and after the year
1998, seeking to document the role of ozone depletion
on atmospheric temperature trends. Second, in the
spirit of Hawkins and Sutton (2009), we take advant-
age of large ensembles of individual CMIP6 model
simulations (as opposed to a single run from each
model), and seek to document what fraction of the
large spread across the CMIP6 models can be attrib-
uted to internal atmospheric variability, as opposed
to inter-model differences.

2. Methods

To report the observed atmospheric temperature
trends, we make use of three different data sets: two
radiosonde data sets, the Radiosonde Innovation
Composite Homogenization (RICH, v1.7) and the
RAdiosone OBservation COrrection using REana-
lyses (RAOBCORE, v1.7) products (Haimberger
2007, Haimberger et al 2012), and one reanalysis
data set, ERA5 (Hersbach et al 2020). Note that ERA5
assimilates the radiosonde data used here, as well as
many other data sources. For simplicity, throughout
this manuscript we will refer to these three data sets,
collectively, as ‘the observations’, even though we are

well aware that ERA5 is a reanalysis, with observations
assimilated into an underlying model.

The difference between the two radiosonde data
sets resides in the procedures used for the homogen-
ization; these are fully detailed in Haimberger et al
(2012). Both radiosonde data sets have been updated
to cover the period 1979-2019, at a resolution of 10◦×
10◦ in horizontal directions, and 13 levels extending
from 850 hPa to 10 hPa in the vertical direction. While
temperature data are available at monthly resolution,
we here construct annual averages, with the proviso
that if more than 3 months of data are missing at a
grid point in a given year, we count the entire year
as missing. We note that both radiosonde data sets
have the same resolution, and the same missing data.
Figure S1 (stacks.iop.org/ERL/15/1040b4/mmedia)
shows the coverage of available data at three
of the pressure levels that we focus on in this
study.

The ERA5 data set is a high resolution reanalysis
produced by the European Centre for Medium-Range
Weather Forecasts (Hersbach et al 2020). Its hori-
zontal resolution is 0.28◦ (in both latitude and longit-
ude), with data available on 137 pressure levels from
the surface to 0.01 hPa. Since ERA5 is at higher spatial
resolution than the radiosonde data, we regrid it to
the same resolution as the radiosondes using bilinear
interpolation, and apply the same missing data mask
used for the radiosondes. ERA5 data is available over
the period 1979-2018; however, in this study, we sub-
stitute the years 2000-2006 with an updated product,
ERA5.1. This is necessary as an error was identified in
the original ERA5 lower stratospheric temperatures,
due to an incorrect specification of the error covari-
ance matrix in the assimilation scheme (Simmons et
al 2020).

The primary model data used in this study con-
sists of the historical simulations performed under
CMIP6, which extend from 1979–2014. As this period
is common amongst all the data sources, we use it for

the bulk of our analysis. CMIP6 represents the cur-
rent state-of-the-art in climate modeling, so most of
the participating modeling groups have provided out-
put from fully comprehensive earth-system models.
It is important to stress that the historical simula-
tions analyzed here were performed under identical
greenhouse gas (GHG), aerosol, and natural forcings
(Eyring et al 2016). As for ozone, some models use

prescribed concentrations (Checa-Garcia et al 2018),
while others include interactive chemistry schemes.
As in the case of the ERA5 data, we have regridded
the model output to the lower resolution grid of the
radiosonde data sets, and applied the same missing
data mask. A few CMIP6 models have missing data
in the lower atmosphere as they do not interpolate
below the ground level which, in some mountainous
regions, is higher than the lower atmospheric pressure
levels.
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Table 1. The CMIP6 models analyzed in this study. C indicates models with a fully-coupled dynamic ocean; P indicates atmosphere only
models with prescribed SST; C/P models for which both simulations are available. For the single forcing simulations, GHG refers to
greenhouse gas only forcings; AER refers to aerosol only forcings, and NAT refers to natural only forcings (see Gillett et al 2016, for
details).

Large
Ensemble

Model Ocean Type Single Forcings Size

ACCESS-CM2 C
ACCESS-ESM1-5 C/P
AWI-CM-1-1-MR C
BCC-CSM2-MR C/P GHG, AER, NAT
BCC-ESM1 C/P
CAMS-CSM1-0 C/P
CanESM5 C GHG, AER, NAT 50
CESM2 C/P
CESM2-FV2 C
CESM2-WACCM C/P
CESM2-WACCM-FV2 C
CIESM C
CNRM-CM6-1 C/P GHG, AER, NAT 29
CNRM-CM6-1-HR C/P
CNRM-ESM2-1 C/P
E3SM-1-0 C
E3SM-1-1 C
EC-Earth3 C/P
EC-Earth3-Veg C/P
FGOALS-f3-L C/P
FGOALS-g3 C
FIO-ESM-2-0 C/P
GFDL-CM4 C/P
GFDL-ESM4 C/P
GISS-E2-1-G C GHG, AER, NAT 27
GISS-E2-1-G-CC C
GISS-E2-1-H C 20
HadGEM3-GC31-LL C/P GHG, AER, NAT
HadGEM3-GC31-MM C/P
INM-CM4-8 C/P
INM-CM5-0 C/P
IPSL-CM6A-LR C/P GHG, AER, NAT 32
KACE-1-0-G C
MIROC6 C/P
MIROC-ES2L C
MPI-ESM-1-2-HAM C
MPI-ESM1-2-HR C/P
MPI-ESM1-2-LR C
MRI-ESM2-0 C/P GHG, AER, NAT
NESM3 C/P
NorCPM1 C/P 30
NorESM2-LM C/P
NorESM2-MM C
SAM0-UNICON C/P
TaiESM1 C
UKESM1-0-LL C/P

At the time of this writing, output from 46 mod-
els is available for the CMIP6 historical simulations,
as listed in table 1 (with ocean type ‘C’). Unless other-
wise specified, we take only the first ensemble mem-
ber of each model as we use individual members as
opposed to ensemble means for a like-with-like com-
parison with observations, and want to ensure equal
weighting across the set of models. In addition to the
atmosphere-ocean coupled simulations, we also make

use of the atmosphere-only version of the historical
CMIP6 simulations (see table 1), which are forced
with observed sea surface temperatures (SSTs). To put
the CMIP6 models in the context of earlier intercom-
parisons, we also show results for the CMIP5 models.

To quantify the relative importance of the major
forcings, we also make use of the model output
produced by the Detection and Attribution Model
Inter-comparison Project (DAMIP, Gillett et al 2016).
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At this time a total of 7 models (listed in table 1)
have made available the single-forcing simulations
that we analyze here. Specifically, these are the histor-
ical ‘GHG-only’ simulations, forced only with well-
mixed greenhouse gases, the ‘aerosol-only’ simula-
tions, forced only with aerosols (BC, OC, SO2, SO4,
NOx, NH3, CO, NMVOC), and the ‘natural-only’
simulations, forced only with solar irradiance changes
and volcanic aerosols.

Finally, in order to quantify the contribution of
internal variability to the spread across the CMIP6
models, we also analyse several ‘large ensembles’ that
were performed as part of the CMIP6 historical exper-
iments. We define a large ensemble as having 20 or
more members: this allows us to analyze six differ-
ent large ensembles (see table 1), ranging in size from
20 (GISS-E2-1-H) to 50 members (CanESM5). Large
ensembles are also available for models other than
those analyzed here (Deser et al 2020), but we have
chosen to focus on the models that participated in
CMIP6 to ensure all models forcings are the same in
this study.

3. Analysis

In light of the most recent advances in Earth-system
modeling and of the improved observational data sets
available, we begin by updating the result of M13,
and present the vertical profile of zonal mean, annual
mean temperature trend from 1979 to 2014. As shown
in figure 1(a), the overall trends consist of a cool-
ing of the stratosphere and a warming of the tropo-
sphere, in both models and observations. This pat-
tern is the well-known vertical ‘fingerprint’ of anthro-
pogenic forcings, originally reported by Tett et al
(1996) and Santer et al (1996). In the stratosphere,
the coupled CMIP6 models (red bars) show cooling
trends comparable to the observed ones (black lines).
In the troposphere, however, the models show con-
siderably larger warming than in the observations.

The warm trends bias in the models is seen
throughout the entire troposphere, but is greatest in
the upper troposphere (peaking around 200 hPa),
where the modeled trends are—on average – 4 to 5
times greater than the observations. We draw atten-
tion to the CanESM5 model: it simulates the greatest
warming in the troposphere, roughly 7 times lar-
ger than the observed trends. We note this model
is known to have a high climate sensitivity com-
pared to others (Swart et al 2019, Forster et al 2019).
Throughout the depth of the troposphere, not a
single model realization overlaps all the observational
estimates. However, there is some overlap between
the RICH observations and the lowermost modelled
trend, which corresponds to the NorCPM1 model.

In M13, this considerable bias was attributed to
the inability of the models to capture the observed
sea surface temperature trends. The same applies to

the CMIP6 models, as demonstrated by fact that when
the models are forced with prescribed SSTs (blue bars
in figure 1(a)) their trends are much closer to the
observed values. Nonetheless, one can still see a sys-
tematic bias at most tropospheric levels. Between 200
and 100 hPa the differences between the CMIP and
AMIP simulations are even more visible. It is import-
ant to note that ERA5/5.1 is warmer than the radio-
sondes in that region; this is likely due to the assim-
ilation of radio occultation data, which shows more
warming in the upper troposphere than the radio-
sondes. As such, the discrepancy in this region may
be smaller than reported in previous studies, and very
possibly due to observational uncertainty, rather than
model biases. A comparison with trends that extend
to 2019 is given in figure S2, with no change in these
conclusions.

Now, turning our attention to lower strato-
spheric trends (100-20 hPa), one may be tempted
to conclude—from figure 1(a)—that modeled and
observed trends are in good agreement. The story,
however, is more complex, and requires a more
nuanced analysis.

Recall that, unlike carbon dioxide which has been
monotonically increasing since the pre-industrial era,
ozone depleting substances, an important and often
neglected anthropogenic forcing, exhibit a highly-
non-linear evolution from 1979 to 2014: the useful-
ness of a single linear trend covering the entire period,
therefore, is questionable. The non-linearity is due
to the signing of the Montreal Protocol in 1989: as
a consequence of that treaty, the atmospheric con-
centrations of many ozone depleting substances are
no longer increasing. In fact, the trend in ‘effect-
ive equivalent stratospheric chlorine’ (EESC, a com-
monly used metric for the combined concentration of
ozone depleting substances) has changed from posit-
ive to negative around the very end of the 20th cen-
tury.

In view of this, following the latest Scientific
Assessment of Ozone Depletion (WMO 2018), we
split the 1979-2014 period into two parts: the ozone
depletion period 1979-1997 (during which EESC was
increasing) and the ozone recovery period 1998-2014
(during which EESC was in decline). Separate tem-
perature trends for these two periods are shown in fig-
ures 1(b) and (c), respectively. It must be emphasized
that these two periods are relatively short (less than
two decades): hence much caution is called for in any
analysis and interpretation.

Let us start by considering the observations. It
is clear that the stratospheric cooling trends in the
ozone-depletion period are greatly reduced in the
ozone-recovery period. The RICH radiosonde data,
in fact, indicates that stratospheric cooling trends
have disappeared after 1998, although RAOBCORE
and ERA5/5.1 still show a modest cooling. Results
over this period are in agreement with the satellite
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Figure 1. Vertical profiles of tropical (20S-20 N) temperature trends for the period 1979-2014. The black lines show the RICH1.7
and RAOBCORE1.7 radiosondes, and ERA5/5.1 reanalysis. The red box-and-whisker bars show trends for ocean-atmosphere
coupled CMIP6 models (48 in total); the blue bars shows trends for CMIP6 models with prescribed sea surface temperature (28 in
total); the red bars are plotted at the correct altitude, but the blue bars are slightly offset downwards to aid comparison; each box
shows the lower-to-upper quartile of the modeled trends, and the whiskers show the full range of data up to 1.5 times the
inter-quartile range away from the mean, in which case the points beyond are represented by coloured crosses. The model data
and ERA5/5.1 data are masked with the same observational mask from RICH, including the variation in time and pressure of the
mask. Monthly data are averaged to annual data; if more than 3 months of data are missing in any grid box in a given year, all
months for that year are set to missing. Panel a.), b.) and c.) show trends from 1979-2014, 1979-1997 (ozone depletion era), and
1998-2014 (ozone recovery era), respectively. The reanalysis line (solid black line) is constructed using ERA5 from 1979-2000,
ERA5.1 from 2000-2006, and ERA5 from 2006-2014.

Figure 2. Upper tropospheric biases (at 200 hPa) vs. near surface biases (at 850 hPa) in the historical simulations of the coupled
CMIP6 (red) and CMIP5 (blue) models. The discrepancy (or bias) is defined as the 1979-2014 trend difference between each
model and the RICH v1.7 radiosonde value as the same level. The larger circles show the CMIP5 and CMIP6 multi-model mean.
CMIP5 data have had RCP4.5 simulations added on to bring the end date to 2014.
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observations, which show a completely flat temper-
ature time series after 1996 in the lower stratospheric
channel (the so-called MSU Channel 4), as reported
in Mitchell (2016), Seidel et al (2016). It has been pro-
posed that the near disappearance of cooling trends in
the lower stratosphere is a simple consequence of the
fact that ozone depletion is no longer occurring (see,
e.g. figure 3.21 of WMO 2018). Some studies have also
pointed to a role for SSTs in recent tropical lower stra-
tospheric temperature trends (Shangguan et al 2019),
e.g, although modelling results indicate that this effect
is small (Polvani and Solomon 2012).

Turning now to the modeled trends, figures 1(b)
and (c) reveal a considerable discrepancy with the
observations. In the stratosphere, the majority of
CMIP6 models cool too little in the ozone deple-
tion period when compared with RICH and ERA5,
although there is good agreement with RAOBCORE.
For the ozone recovery period the models all cool
too much, with the inter-quartile range not encom-
passing any observational product, and the total
range not encompassing RICH at all. We suspect
that these temperature biases might be due to a
poor representation of stratospheric ozone forcing
in the CMIP6 models. To this date, the methodo-
logy used to construct the ozone forcing for CMIP6
remains undocumented in the peer-reviewed literat-
ure, although Checa-Garcia et al (2018) have shown
considerable uncertainty in the radiative forcing asso-
ciated with ozone in the CMIP6 models. We have
also not explored whether biases in stratospheric tem-
perature trends are smaller for CMIP6 models with
interactive ozone chemistry. It is also possible that
the CMIP6 biases in stratospheric temperature trends
stem from other sources, e.g. circulation changes that
are inaccurately simulated in models, e.g. Garfinkel et
al (2013). We note, however, that models with a real-
istic simulation of stratospheric ozone, and a good
vertical resolution in the stratosphere, are perfectly
capable of reproducing the observed stratospheric
trends between 100 and 20 hPa over both periods sep-
arately (see, e.g. figure A3 of Randel et al 2017).

It is also instructive to contrast the tropospheric
temperature trends in the ozone-depletion and ozone
recovery period. Forster et al (2007) – on the basis of
a purely radiative calculation with a fixed dynamical
heating assumption—suggested that ozone depletion
in the tropical stratosphere may lead to cooling in
the tropical upper troposphere, due to a reduction
in downwelling longwave radiation from the ozone
above. However, using an atmospheric general circu-
lation model with prescribed ozone concentrations,
Polvani and Solomon (2012) showed that effects of
stratospheric ozone depletion on tropical temper-
ature trends do not extend much below the 100
hPa level. Given the observational uncertainties, it is
difficult to discern a significant difference between
figures 1(b) and (c) in the observed tropospheric
trends.

As for the modeled tropospheric trends, however,
the discrepancy with observations is much larger after
1998. We suspect that one cause of this discrepancy is
related to the fact that the 1998-2014 period corres-
ponds to the occurrence of the so called ‘global warm-
ing hiatus’ (see Fyfe et al 2016, for a recent update
of this debate). If the hiatus is indeed related to an
increased heat uptake by the oceans, as suggested by
some studies (Meehl et al 2011, Meehl et al 2014),
it cannot be considered an externally forced process:
therefore, one would not expect it to be captured
in the models over the same time period. Another
contributing factor is that 1997/1998 had one of the
largest El Niño events on record, which, given the
short period the trend is calculated over, becomes
important. Indeed, if the analysis is repeated for the
1999-2014 period (i.e. missing the large El Niño year),
the tropospheric observational trends are higher, and
in better agreement with the coupled model estim-
ates (figure S3). Be that as it may, we note here for
the record that from 1998 to 2014, the CMIP5 models
warm, on average 4 to 5 times faster than the observa-
tions, and in one model the warming is 10 times larger
than the observations.

To better quantify the relationship between the
near surface and the upper tropospheric biases,
which was already noted in M13, we illustrate their
correlation in figure 2. For the CMIP6 models (red
dots) the upper tropospheric (200 hPa) bias is very
highly correlated with the near surface (850 hPa) bias,
over 1979-2014: the Spearman correlation coefficient
is r = 0.95. A similar number, r = 0.91, is calculated
for the older CMIP5 models (blue), and the multi-
model means are very close too. This indicates that
there has not been any substantial improvement, in
terms of tropical tropospheric temperature trends,
between CMIP5 and CMIP6.

Next, we examine the source of the large spread in
tropical temperature trends across the CMIP6 mod-
els. In particular, we examine separately the forced
response and the internal variability. Starting with
the former, the impacts of the different forcings on
tropical atmospheric temperature trends is studied
by analyzing the single-forced experiments that have
been carried out under the Detection and Attribution
Model Inter-comparison Project (DAMIP, Gillett
et al 2016). Specifically, we make use of three separate
experiments: the GHG-only simulations, the aerosol-
only simulations, and the natural-only simulations
(for more details, see section 2 of this paper, or Gillett
et al 2016).

In figure 3 we illustrate how single forcings con-
tribute to the total modeled trends, in both the stra-
tosphere (30 hPa, top panel) and upper troposphere
(200 hPa, bottom panel). By definition, the total trend
(gray bars) is equal to 100%. Recall that, owing to
data availability, only a subset of the CMIP6 models
in figure 1 are used for this analysis (see table 1). The
stratospheric cooling trend is dominated by the GHG
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Figure 3. Percentage contribution of individual forcings to the total trend for the (top) mid-lower stratosphere identified as the 30
hPa level, and (bottom) upper troposphere identified as the 200 hPa level. Only a subset of CMIP6 models which include the
single forcing simulations are used (see table 1). The bars represent the multi-model mean contribution to the trend, normalized
by the total trend in the historical (All forcing) simulations; the grey bars are equal to 100%, by definition. The horizontal black
lines show the individual model spread of the ensemble means, again, normalized by the gray bar. Positive/negative values
represent warming/cooling.

forcings, but also with a sizable component coming
from natural forcings, most likely a cooling trend
from volcanic emissions. Stratospheric ozone is pre-
scribed to a pre-industrial climatology in these single
forcing simulations, so cooling from ozone depletion
is only present in the all-forcing (i.e. historical) sim-
ulations, and cannot be separately estimated using
these specific DAMIP simulations.

In the upper troposphere (figure 3, bottom panel)
GHGs are the overwhelming driver of temperature
trends, with negligible contributions from aerosols
and natural forcings. For the aerosol forcing, we note
that only one model (MRI-ESM2-0) shows warming,
and this warming trend skews the results consider-
ably, providing a large positive error bar. Without that
one model, the aerosol cooling is more substantial at
this height. Needless to say, the ensemble size (7) is

relatively small, and we hope more models will soon
become available. Also, we note that these single-
forcing simulations are not expected to sum to 100%,
i.e. the sum of the green, yellow and blue bars to equal
the gray bar, because 1) other forcings may be import-
ant, e.g. tropospheric and stratospheric ozone, 2)
there may exist some non-linear interactions between
different forcings, and 3) one cannot precisely estim-
ate the forced signal with these DAMIP runs since a
large ensemble of single-forcings simulations for each
model is not available (the ensemble means would be
estimates of the forced signal in each model). So, the
results in figure 3 are contaminated by internal vari-
ability.

However, internal variability can be estimated by
exploiting the fact that six CMIP6 models have made
available large ensembles of historical integrations
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Figure 4. Regression between tropical (20S-20 N) temperature trends (1979-2014) at 200 hPa and 850 hPa for the first historical
simulation of each CMIP6 model (red dots) and each of the 6 models with large ensembles of historical simulations (blue circles),
as well as 3 observationally-derived trends (black symbols). Crosses show ensemble means. Linear least-squares regression lines
are also shown for both sets, with the corresponding R2 given in the legend. The black dashed and dot-dashed lines show the
relationships given by the moist and dry adiabatic lapse rates, respectively.

(see table 1). In each panel in figure 4 we plot the
upper tropospheric vs. the near the surface temper-
ature trends for two sets of runs: one set consists of
the the first simulations of each of the 48 different
CMIP6 model (red dots), and the other set consists
of all members of each of the 6 models with histor-
ical large ensembles (blue circles). The crosses of the
corresponding colour indicate mean of each set, and
the accompanying dashed lines show the accompa-
nying linear regression. The observations are shown
with black symbols.

Two theoretical lines are also plotted in each panel
in figure 4: the dry and moist adiabatic lapse rates
(DALR and MALR, respectively), plotted as black
lines. The MALR is computed using the following
approximation (taken from Bakhshaii and Stull 2013)

dT

dp
=

(
1

p

)
RdT+ Lvrs

cpd +
L2

v rsϵ
RdT2

(1)

where cpd is the specific heat capacity for dry air at
constant pressure, Rd is the gas constant for dry air, Lv

is the latent heat of vaporisation, rs is the saturation
mixing ratio, and ϵ= Rd/Rv is the ratio of ideal gas
constants for dry air and water vapor. The MALR pro-
files are calculated by integrating this equation ver-
tically, starting at 850 hPa, and using T(850 hPa) =
291 K, which we take from the ERA5 reanalysis. The
DALR is obtained from the same formula, setting

rs = 0, which then reduces to more common dT/dz =
g/cpd.

Several interesting points should be noted in fig-
ure 4. First, there is a very strong correlation between
the near surface and upper tropospheric trends, in
all seven of the sets of models/ensembles: this con-
firms that the spread in upper tropospheric warming
trends, in all cases, can be traced back to the spread
in surface temperature. Second, the regression curves
are close but not coincident with the theoretical
moist adiabatic line: this indicates that the popular
idea that tropical temperature profiles follow moist
adiabats may not be quantitatively correct at these
levels, at least not for the temporal- spatial-averaged
sea surface temperature response considered here. For
instance, Flannaghan et al (2014) show that tropical
temperature trends only follow a moist adiabat once
you appropriately weight the near surface temperat-
ure trends toward regions of deep convection, since it
is the deep convecting regions that ultimately influ-
ence the upper troposphere. Third, contrasting the
red dots and blue circles one gets the distinct impres-
sion that the spread across each large ensembles is
comparable to the spread across the entire CMIP6 set.
This is especially clear for CanESM5, which provided
50 distinct runs of the same model (panel a), and sug-
gests that a large fraction of the CMIP6 spread may
actually come from internal variability. Finally, we
note that the means of the large ensembles (blue plus
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Figure 5. A comparison of the spread in tropical temperature trends for the CMIP6 models (red) and individual large ensembles
(blue) at two different pressure levels, 850 hPa and 200 hPa. Each shade of blue represents a different large ensemble. From
light-blue to dark-blue they are: CanESM5, CNRM-CM6-1, GISS-E2-1-G, GISS-E2-1-H, IPSL-CM6A-LR and NorCPM1 (see
table 1). The large ensembles have been scaled so as to be centered on the CMIP6 ensemble profile, see text for details. The
observations at these two levels are marked by a black cross (RICH), plus (RAOBCORE) and circle (ERA5/5.1). Note that at 850
hPa RICH and RAOBCORE overlap. The box-and-whiskers display the same statistics as in figure 1.

symbols), which represent the forced trends in each
model, can be found at both ends of the CMIP6 range
(red dots): contrast, for instance, panels a and f. This
indicates that the spread in forced trends across the
models can be almost as large as the range spanned
by the CMIP6 models.

In order to more clearly illustrate this point,
i.e. to quantitatively compare the spread of the
entire vertical profile of temperature trends across
both the CMIP6 ensemble and the large ensembles,
some thought is required. As seen in figure 4,
the large ensembles have an average surface warm-
ing which is often different from the CMIP6 set.
This implies that the lapse rates are higher for
the large ensembles with higher surface warming
than CMIP6, notably CanESM5, and lower for the
large ensembles with lower surface warming (e.g.
NorCPM1). Thus, some rescaling is needed for a

meaningful comparison. Exploiting the tropospheric
lapse rates across the large ensembles (the blue
dashed lines in figure 4 panels a-f), we construct the
relationship

Tt(n,p) = α(p)Tt(n,850 hPa)+ c(p), (2)

where Tt(n, p) is the temperature trend at level p for
large ensemble member n, and the values of α(p)
and c(p) are derived from linear regression across
ensemble members at each level p. Above 200 hPa the
regression is not strong, so we do not apply this trend
scaling beyond that level. Now, to quantitatively com-
pare the spread in trends across the large ensembles
and across the CMIP6 ensemble, we scale the indi-
vidual large ensemble members so that their ensemble
mean, at 850 hPa, is the same as the CMIP6 ensemble.

9
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The scaled trends T′
t(n,p) are defined by the expres-

sion:

T′
t(n,p) = α(p)(Tt(n,850 hPa−O)+ c(z), (3)

where O = ⟨Tt(n,850)⟩Large−ensemble −⟨Tt(n,850)⟩CMIP6

is the difference between the ensemble means at 850
hPa.

Figure 5 shows the scaled spread, as per equa-
tion (3), in the CMIP6 models (red) and each of
the large ensembles (blue) for two different pres-
sure surfaces. To be clear: the red boxes here are
identical to those in figure 1(a) at 850 and 200 hPa.
The mean trend for each large ensemble at 850 hPa
is, by construction, identical to the mean of the
CMIP6 ensemble. The standard deviation of the
scaled CanESM5 ensemble (lightest blue) encom-
passes ~ 70% of the CMIP6 range, whereas for
CNRM-CM6-1 (second lightest blue) it only encom-
passes ~ 30%. All the other large ensembles are found
somewhere between these extremes and, on aver-
age, the large ensembles explain ~ 50% of the total
CMIP6 variability. Note that the number of models
(or ensemble members) in each spread is different.
To test if this matters we repeat our analysis with only
20 samples for each of the datasets (the lowest com-
mon denominator), but our results remain similar,
and so we conclude there is little sensitivity to sample
sizes greater than 20. Given this result, the clear indic-
ation here is that internal variability may be respons-
ible for around 50% of the CMIP6 standard deviation,
at least for trends over intervals spanning 3–4 decades
(in our case, the trends are 35 years long). Finally, we
note that while the large ensemble spreads are approx-
imately Gaussian, the spread in CMIP6 models has a
heavy upper tail, in line with the skewed range of cli-
mate sensitivities within this ensemble (Forster et al
2019).

4. Conclusions

We have compared the modeled and observed trop-
ical temperature trends, over the period 1979-2014,
from 850 hPa to the mid-stratosphere. Focusing on
the CMIP6 models, we have confirmed the original
findings of Mitchell et al (2013): first, the modeled
tropospheric trends are biased warm throughout the
troposphere (and notably in the upper troposphere,
around 200 hPa) and, second, that these biases can be
linked to biases in surface warming. As such, we see
no improvement between the CMIP5 and the CMIP6
models.

In addition, we have here uncovered substantial
model biases in tropical stratospheric trends. From
100 to 20 hPa (the lower to middle stratosphere), the
CMIP6 models do not simulate the observed cooling
during the ozone depletion period (1979–1997) com-
pared with 2 of the 3 observational products used, and
then simulate too much cooling in the ozone recovery

period (1998–2014) compared with all observational
products. Unfortunately, these biases cancel when
one computes a single trend over the entire 1979-
2014 period, giving the impression that the CMIP6
simulations of stratospheric temperature are accur-
ate. We stress the importance of computing separ-
ate trends before and after the year 1998, which has
become common practice in recent Ozone Assess-
ment Reports (see, e.g. WMO 2018), as the forcing
from ozone and halocarbons is not monotonic owing
to the signing of the Montreal Protocol in 1989.

Finally, analyzing six CMIP6 models which
provided relatively large ensembles (from 20 to 50
members), we have been able to quantify the fraction
of the CMIP6 model spread due to internal variab-
ility, as opposed to model differences. We find that
the standard deviation of the large ensembles, which
is due to internal variability alone, is 30–70% of that
of CMIP6 models for the period 1979-2014, with
a central estimate of 50%. This result highlights the
importance of using large ensembles when evaluating
trend differences across the CMIP6 models.
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