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Using a contour dynamical algorithm, we have found rotating tripolar V-state solutions for the inviscid
Euler equations in two-dimensions. We have studied their geometry as a function of their physical
parameters. Their stability was investigated with the aid of contour surgery, and most of the states were
found 1o be stable. Under finite-amplitude perturbations, tripoles are shown to either fission into two
asymmeiric dipoles or to evalve into a shiclded axisymmetric vortex, demonsirating the existence of
two new “reversible transitions” between topalogically distinct coherent vortex structures, These
dynamical results are confirmed by pseudo-spectral simulations, with which we also show how
continuous Lripelar long-lived coherent vortex structures can be generated in a variety of ways.
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[. INTRODUCTION

In recent years it has become appareni that coherent voriex structurcs play an
important role in the dynamics of two- and three-dimensional incompressible
flows, From geophysical observations and laboratory experiments, it is well known
that rotating and/or stratified flows can be realistically described by two-
dimensional systems. For this reason much effort has gone inio both analytical
and numerical investigations of the generation, evolution and interaction of two-
dimensional coherent structures.

These have most often been observed as the final stage of unstable laminar
flows, or of initially random vorticity fields. A by now classical example is the
study of McWilliams {1984) on the spontaneous emergence of mostly monopolar
isolated vortices from an initially stochastic vorticity distribution. Another beauti-
ful instance is provided by the recent soap film experiments of Couder and
Basdevant (1986), in which dipoles are ejected from an unstable wake.

Since the frequency with which these coherent structures appear decreases very
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rapidly with the increasing number of poles, the first examples of tripoles have
only been observed fairly recently. To the best of our knowledge, the ecarliest
reference in the literature is due to Leith (1981), who first conjectured their
existence. Larichev and Reznik (1983) observed the formation of a tripole from the
collision of two asymmetric dipoles, and the first clear picture was provided by
Legras er al. (1988) in high-resolution spectral simulations of homogeneous
turbulence. Van Heiist and Klosterziel {1988) have been able to produce labora-
tory examples of tripoles using a two-layer rotating fluid.

Our aim is in this study to investigate the cxistence and stability of two-
dimensionul coherent tripolar vortices. Since the complexity of the analytical
solution increases drastically with the number of poles (Legras, private communi-
cation), we have taken an aliernative approach and resorted to contour dynamical
tcchniques to determine the shape of two-dimensional, inviscid, finite-area, con-
stanl vorticily, tripoles (tripolar V-states). Such techniques have been used
suceessfully to find monopolar, dipolar {Deem and Zabusky, [978; Pierrehumbert,
1980y and multipolar V-states (Dritschel, 1985), as well as a variety of multi-layer
geostrophic V-states (Polvani, 1988). We have investigated the stability of our
tripolar V-slates via contour surgery.

We have also studied the evolution of tripoles in a continuous and viscous
model with the help of a pseudospectral code. Using as initial condition smoothed
out versions of the V-stales obtained with contour dynamics, continwous long-
lived tripolar coherent structures are easily obtained. Furthermore, we show how
continuous (ripoles can readily be generated from an initial condition composed of
three ellipses. The high-resolution spectral computations are found to coincide
remarkably well with the results obtained via contour surgery.

2. FINITE-AREA CONSTANT VORTICITY TRIPOLES
We consider the inviscid Euler equations in two-dimensions:
(E+y.e,—y, ) w=0, and V¢=o, (1)

where  is the vorticity, and the Eulerian velocities are obtained from the
streamfunction f by the relations:

u=—y, and v=i,.

We seek to determine stationary (ie. rotating with constant angular velocity Q
without change in shape) solutions to (1), corresponding to the vorticity distribu-
tion shown schematically in Figure 1. The vorticity is everywhere zero except in
three regions where it has a constant value: without loss of generality we choose
w=1 in the regions —l<x<—a and a<x<l (hereafter referred to as the
“satellite” vortices) and w=7y<0 in the region —~b<x<b {the “central” or “core”
vortex). The unknowns are the shapes of the three vortices and the angular
velocity {1
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Figure 1 A schematic drawing of a tripolar V-state.

We recall that simpler stationary solutions of (1) are known. Monopole
solutions corresponding to a single rotating region of constant vorticity and dipole
solutions corresponding to two co-translating regions of equal and opposite
vorticity were first found by Deem and Zabusky (1978). By analogy with
clectromagnetic theory, what we wish to determine here are the shapes of the
quadrupole distributions of vorticity and thus the term tripole, although by now
well established in the literature, is somewhat of a misnomer. In this perspective,
we point out that the N =3 corotating solutions of Dritschel (1985} do not belong
to the category of coherent structures that we designate with the term tripole,
which we apply exclusively to the case y <0 to which this study is confined.

2.1. Tripolar V-states

As can be seen from Figure 1 the parameter space of this problem is three
dimensional (4, b and y can be chosen independently) and therefore an exhaustive
study would be prohibitively expensive in computational terms. We have decided
to present here only the two values y= —2 and —4, which are representative of
the general properties of such structures. The parameters « and b vary between
and 1, and we have attempted to determine the equilibrium shapes for all values of
a and b that are multiples of 0.05.

To do this, we have modified the algorithm of Wu et al. (1984) to make it
applicable to the geometry of our problem; this is a second-order iterative scheme,
with overrelaxation, where the unknowns are the radial positions of the nodes
discretizing the contour and the angular velocity Q. We have proceeded as follows:
for each of the two values of y and for each value of @ between 0 and 1 in steps of
0.05, we first calculate the state for b=0.05 from an initial guess of three circles.
Once the scheme has converged to a steady state, we use its expanded shape as the
initial guess for the state with b=0.1, and the b=0.1 state is then used as the
initial guess for the »=0.15 state, and so on. Eventually, when b becomes
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Table 1 Quantitative measurcs of the V-states for y= -2

I b Q R d Ty ra r, |

09 01 —00I042 099912 0.94997 0.10029 005103 —0.06320 0.00818
09 02 —004382  0.99943 0.94989 0.20071 0.05391 —0.25312 000913
09 03 —009969  0.99891 094975 0.30143 0.05798 —0.57091 0.01056
09 04 017850 099773 0.94954 0.40285 0.06277 —1.01968  0.01238
09 05 028173 099501 0.94926 0.50625 0.06795 —1.61032 001451
09 06 042319 098187 0.9485%6 0.62406 0.07284 —2.44699 001667
0.8 01 —000944 099845 0.89987 0.10132 0.10216 —0.06450 003279
08 02 —004732 099767 0.839946 0.20329 0.10874 —0.25966  Q.03715
08 03 011165 099438 0.89876 030088 0.11799 —0.59174 004373
ng 04 —0.20560 098735 0.897714 0.41469 0.12874 —1.08048 005207
08 0.5 —034696 096564 0.89660 0.54193 0.13931 —1.84533  0.06097
07 01 —000664 099612 084966 0.10335 0.15320 006711 007373
07 02 005067 099300 0.84849 0.20863 0.16481 —0.27349  0.085313
07 03 012843 093217 0.84649 031919 0.18100 —0.64016  0.10292
07 04 —0.25657 095530 0.84387 0.44850 0.15897 —1,26390  0.12437
06 0.1 —0.00152 096952 0.79928 0.10679 0.20399 —-007166  0.13073
06 02 005457 098137 0.79654 0.21843 022300 —0.29978  0.15622
06 03 015814 095070 0.79197 0.34620 0.24917 —0.75306  0.19506
0.5 0d 000644 101518 0.74861 0.11238 0.25444 —0.07935  0.20339
05 02 006166 095122 0.74264 0.23689 0.28542 —-0.35260  0.25593
04 01 001747 1.01426 0.69724 0.12195 0.30492 —0.09344  0.2920%
04 02 —010287 085027 0.08516 0.29861 0.35985 —0.56024 040681
031 01 0.02851 1.04346 0.64341 0.14502 0.35967 —0.13214 040640

sufficiently large, the algorithm fails to converge and the calculation is then
restarted for a different value of y and a.

Because the arclength of the central and sateliite contours can differ substan-
tially, it is necessary (o choose an unequal number of points on the two contours,
The criterion we have adopted in this study is to discretize the contours in such a
way that the distance between two consccutive nodes is approximately the same
on the central vortex and the satellites. For the results presented here, the total
number of nodes varies between 80 and 500. These were found sufficient to make
all the figures shown in Tables 1 and 2 significant.

We have found that, in general, when b becomes close to a we cannot achieve
convergence. The type of contour dynamical algorithm we have used is well
known to be unable to resolve the very high curvatures that appear as a limiting
state is approached; limiting V-states usually possess nondifferentiable points on
their contours, as is the case, for instance, with the m=2,3 monopolar rotating V-
states (Wu et al., 1984). When this happens one must either increase drastically the
resolution or resort to higher-order algorithms. Since we are not in this study
concerned with the possible existence of limiting V-states, we have contented
ourselves with the solutions that can be obtained with the second-order scheme
already mentioned. It is also plausible that the algorithm used here may have
difficulty converging on unstable V-states, as is suggested by the fact that, as we
will show in the next section, the vast majority of the tripolar V-states we have
found are also stable.
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Table 2 Quaniitative measures of the V-states for 7= —4

a b Q R d " ry r, r,

09 0.1 -002146  0.998% 0.94994 0.10015 0.05203 —0.12605  0.00851
09 02 —008806 099922 094978 0.20040 0.05720 —0.50467  0.01028
0.9 03  —0.19939 099847 0.94948 0.30087 0.06395 — 113754 001285
09 04 —0.35608 099697 0.94901 0.40184 0.07149 —2.02911 001606
08 01 —002164 099826 (.89973 0.10069 1.10441 —0.12740  0.03425
08 02 00938 089676 (0.89891 0.20186 0.01602 —0.51206  0.04229
08 03 —022273 099231 0.89743 0.30420 0.13108 —1.16284  0.05398
08 04 —040493 0098395 0.8950% 0.40637 0.14768 —2.10591 0.06852
07 0.1 —002009 099650 0.34929 0.10175 0.15702 —0.03011 007746
07 02 --0.10515 099063 0.84699 0.20490 0.17695 —0.52761  0.09837
07 03  —025285 097665 084272 (31155 0.20262 —1.21970  0.12898
06 0l —001624  0.99188 0.79848 0.10355 (.20984 —0.13474  0.13833
06 02 —0.11482 097680 0.79316 0.21035 0.24122 —0.55602  0.1827%
06 03 -029537 094136 0.78309 0.32571 0.28113 — 133312 (.24830
05 01 —000934 0974(7 0.74704 0.10638 0.26294 —0.14222 021721
05 02 —012610 094539 - 0.73557 0.21954 0.31130 —0.60569  0.30445
05 03 —0J36355  0.8a827 0.71510 035225 0.368%99 —1.55920 042773
04 01 0.00159 1.43490 0.69432 0.1107¢ 0.31676 —0.15426 031522
04 02 —0.13803  0.87006 0.66957 0.23411 0.39234 —0.68874 048368
03 01 0.01826  1.0650( (.63853 0.11784 0.3728% -0.17450 043683
03 02 —010359 061939 0.57387 0.24232 0.49952 —0.73789  0.78390
0.2 01 0.04713 108550 0.57337 0.12883 043574 —0.20855 059648
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Figure 2 Tripolar V-state solutions for ;= —~2, a=085 and 5=005 to 0.55. As b increases the
satellites become more elongated.

In Figure 2 we show the states for y=—2, a=0.85 and b=0.05 to 0.55. Notice
that when the three vortices are sufficiently separated their shapes are not very
different from circles (as conjectured by Zabusky, 1981), and in this case an
analytical perturbative approach could easily be used to obtain a first approxima-
tion to the equilibrium configuration and the angular velocity of the tripole, as
was done by Dritschel (1983). For fixed y and a, as b is increased, the shape of the
satellite vortices becomes more elongated since they must resist a greater shear
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Figure 3 Tripalar V-state solutions for y= —2, a=0.6 and =005 to 0.35. Note the large deformation
of the core as the area of the satellites becomes considerable.
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Figure 4 Tripolar ¥-slate solutions for y=—4, «=05 and =005 to 0.3. Note the small negative
curvature on the satellites of the b=0.25 and =03 state.
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from the central vortex and maintain a equilibrium configuration. As @ decreases
for fixed v, the satellites become more considerable in size and the central vortex
deforms too, as can be seen from Figure 3 (y=—2, a=0.6 and b=0.05 to 0.35}.

As the area of the satellites becomes comparable with the one of the central
vortex, the shapes differ significantly from circles, and as b is increased towards a
the satellites start to develop a concave region; this oceurs, for instance, in the case
y=—4, a=0.5 (see Figure 4). Finally, some extreme shapes appear for small values
of a, where the satellites are much greater than the central vortex. In Figure 5, a
characteristic example is shown (y=—4, a=0.3 and bh=0.05 ta 0.2). For tiny cores,
the external vortices are nearly circular, while they exhibit very large curvatures as
b is increased.

In Tables 1 and 2 we present some guantitative measures for the V-states we
have obtained at y=—2 and —4 respectively. In particular, we tabulate the
angular velocity Q, the ratio R of € to the angular velocity Q,, of the equivalent
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Figure 5 Tripolar V-state solutions for = —4, a=0.3 and »=0.05 10 0.2.

point-voriex tripole, the distance d of the centroid of the satellite from the origin
along the x-axis, the average radii », and r,, and the circulations I'; and I'; of the
core and the satellites respectively.

The value of Q,, was calculated using the simple formula:

1 I,
o — ' (r 412}
p 27rd2( 1+2) (2)

For the V-states we have found, the relative difference between Q and 2, 1s of the
order of a few percent, even for the cases when the shapes of the vortices are far
from circular. This may be surprising, but a quantitatively similar behavior was
found by Dritschel (1985)—large discrepancies between  and €} start to appear
only when high curvature regions are present on the contours. In general, the
value of R is less than one, with the exception of the case when the satellites are
greater than the center vortex and nearly circular. In that case, they tend to
resemble the N =2 V-states of Dritschel (1985), for which R is greater than one.

Finally, it is of interest to point out that since the values of a, b and v can be
chosen in such a way as (o obtain tripoles with both positive as well as negative
total circulation, there exist stationary states for which Q=0, ie. non-rotating
tripoles. Of the states that we have numerically determined the one for y= -2,
a=0.6 and b=0.1 (for which Q=0.0015) comes closest to a non-rotating station-
ary state. It is readily seen from (2) that a point vortex tripole will be non-rotating
provided 2I',=—T, irrespective of the distance between the vortices. The
numerical value for the case y=—2, a=0.6 and b=0.1 is —2T" /', =1.09.

Tripoles with zerc circulation are of special interest because the velocity fields
they generate decrease very rapidly away from them. For a non-rotating point
vortex tripole one can show that the velocity field decreases like 1/r* as r becomes
large (compared with a 1/r dependence for a point vortex monopole, and a 1/r?
dependence for a symmetric dipole). This implies that such coherent structures are
almost invisible, in the sense that their presence is felt only at very short distances,
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2.2. Evolution of Perturbed Tripolar V-states

The stability of point-vortex tripoles was analysed by Morikawa and Swenson
(1971); they showed that linear instability appears for y> —1.25. Our aim in this
section is to understand the finite-area problem, and determine the stability of the
tripolar V-states obtained in the previous section, whose point-vortex counterparts l
arc lincarly stable. One way of doing this is to consider thc growth rates of
infinitesimal perturbations on the contours. Such an analysis was carried out, for
instance, by Dritschel (1985) who performed a very careful study of the linear
stability of N corotating states of equal vorticity. This approach, however, does
not provide much insight into the large amplitude evolution of the perturbed
states, when nonlinear cffects are likely to play a major role in the dynamics. '

We have thus adopted the alternative approach of following the time evolution
of perturbed tripoles with a contour surgery code {Dritschel, 1988); for the runs
presented here, we have taken several hundred nodes at =0, and chosen the cut-
off scale such that the circulation is typically conserved to better than onc part in
a thousand (for the worst cases where a lot of surgery has occurred). Two types of
initial perturbations have been implemented here: the first one consists of adding a
very small random perturbation to the vortex boundary. This method has been
used by Dritschel (1989) for the stability of nested multi-contour V-states; it allows
the most unstable normal mode of the system—if onc exists—to manifest itself.
The second type is a finite-amplitude perturbation, in which we displace one
satellite from the equilibrium position by some amount; with this method also all
the modes are excited.

We have tested all the steady states prescnted in the previous section, with a
perturbation of the first type. Each node (x,, y,) on the equilibrium solution was
displaced by a random amount (x,, y,) to a new position {x,, y,) so that:

'xp:xe+6xr yp=ye+8yr1

. .: i where (x,, y,) are taken from a random number generator and are between minus
B one and plus one, and ¢ is the amplitude of perturbation; we have tested each V-
oy state for e=0.01 and 0.05.
. Of the states in Tables 1 and 2, only the y=—4, a=02 and b=0.1 state was
5 found to be unstable to this type of perturbation. We show its evolution for
£=005 in Figure 6: an asymmetric mode emerges as the central vortex drifts
towards one of the satellites and eventually the two satellites merge, yielding a
rather dipolar structure. The stable V-states were observed to undergo an
osciliation in shape, shedding relatively few filaments, but maintaining a tripolar
coherent configuration.

For the majority of the V-states obtained in the previous section, the coherence
was found to be so strong that not only we conclude that they are stable, but
large amplitude perturbations were necessary to break the tripolar structures
apart. To accomplish this, we have used a disturbance of the second form, i.e. the
lateral displacement of one of the satellites by a considerable amount—i.e. O{1)
with respect to the characteristic length scale of the structure. We report two




TRIPOLAR COHERENT VORTEX STRUCTURES 95

OO | 00 | o0 | O

SR INC SR NS

Figure 6 The evolution of a perturbed y=—4, =02 and b=0.! V-state. Each node of the
equilibrium shape was randomly displaced as described in the text; here e=0.05. Time evalves to the
right and downwards; the {rames shown are at r=0,3,6,.. .,
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Figure 7 The evolution of a perturbed y= —2, a=0.4 and b=0.2 V-state. At t=0 the lelt satellite was
displaced a distance 0.1 to the right. Frames shown at 1=0,6,12,....

qualitatively different behaviors under breaking: the formation of two dipoles and
axisymmetrization.

An cxample is shown in Figure 7, where a strongly perturbed y=-2, a=04
and b=0.2 tripole is seen to break into two asymmetric dipoles. The mechanism
for breaking in this case is the tearing apart of the central vortex by the two
satellites, which for the initial condition of Figure 7, occurs in about a quarter of a
rotation period. Notice that although the positive and negative vorticities enclosed
by the poles of each pair are not equal (actually the negative vorticity is twice the
positive one) the area of the negative vortex is about half the area of the positive
one in each pair, and thus two rather well balanced dipoles emerge.

The second behavior is observed when tripoles with very large satellites are
strongly perturbed, and is illustrated in Figure 8, where a y=-4, ¢=0.3 and
b=0.2 tripole with a large perturbation on the left satellife breaks into a very
convoluted shape that eventually closely resembles an axisymmetric shielded
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Figore § The evolution of a perturbed y=—4, =03 and b=0.2 V-state. At t =0 the left satellite was
displaced a distance 0.07 to the right. The time frames are at t=0,5,10,....

vortex. As has been shown by Carton et al. (1988), the reverse process can also
occur, namely the emergence of a tripole from the evolution of a perturbed
unstable axisymmetric shielded vortex.

3. CONTINUQUS TRIPOLES

Since the tripoles that have previously been observed have spontaneously emerged
in spectral simulations of two-dimensional turbulent flows, we have proceeded to
investigate some of their phenomenology in a continuous model, and more
specifically the ways in which they can be generated. The spectral code we have
used {Basdevant, 1981) is based on a Galerkin dealiased numerical scheme, with a
Heun-type time advection procedure (leapfrog with an Euler carrection). As is
conventional, some hyperviscosity (vk'®) is necessary to keep the enstrophy
bounded in the small scales; in spite of this, nonetheless, the results presented here
are essentially inviscid, since the energy is typically conserved to better than one
part in 107* by the end of the run. The resolution of our runs is 256 grid points in
each direction and, since the time step is bounded by the Courant-Friedrichs-Lewy
condition, the simulations are limited to only a few overall rotation times of the
coherent structures.

3.1. Generation of Continuous Tripoles from Smoothed V-states
There are several reasons for studying the evolution in a continuous model of the

tripolar V-states obtained with contour dynamics. The first one is the simple fact
that infinite vorticity gradients are unphysical, and thus never realized in




TRIPOLAR COHERENT VORTEX STRUCTURES
Job

GOB

Figure 9 The vorticity field for the spectral evolution of a smoothed y=—4, a=0.5 and b=0.3
V-state. The times shown are 1=0,3,6....

geophysical flows and laboratory experiments; therefore a continuous distribution
of vorticity is undoubtedly more realistic. '

From a different point of view, however, one can interpret the study of the
evolution of a continuous system from a V-state initial condition as an investi-
gation of the “robustness” of the V-states themselves. We call a V-state robust if
its evolution in a nearly inviscid spectral model does not lead to a drastic change
in the topology of the vorticity field. A counter-example is provided by the
Kirchhoff ellipse, which is an exact nonlincar V-state solution of the Euler
equations. For any value of its aspect ratio, Melander ef al. (1987) have indicated
that it evolves into a nearly axisymmetric vorticity field when taken as an initial
condition in a spectral calculation.* It is the robustness of tripolar V-states that
we wish to investigate in this section.

In order to use the fripolar V-state solutions obtained with contour dynamics as
initial conditions of a spectral calculation, it is necessary to deal with the classical
problem constituted by the existence of an infinite vorticity gradient at the
boundary of the V-state. Such a gradient is well known to generate strong
numerical instabilities in a spectral simulation (Gibbs’ phenomenon). This problem
is avoided by smoothing the boundaries of the initial vorticity field. To do this we
have used a very simple scheme that replaces the vorticity at a grid point by the
arithmetic mean of the neighboring values whenever the x- or y-gradient of the
vorticity at that grid point is larger than a threshold value.

As a representative example of the several experiments we have conducted, we
show, in Figure 9, the evolution obtained by using a smoothed y= —4, a=0.5 and
b=0.3 V-state as the initial condition, Note that the vorticity field retains its
tripolar character, with the central vortex smaller in size than the satellites, and a

*Incidentally, work in progress by D. G. Dritschel and B. Legras suggests that not all ellipses
axisymmetrize (private communicatian).




L. M. POLYAN] AND X, J. CARTON

a b
<o 000 | 000
0.8
1.6
2.4
3.2

vl Q) ©

Figure 10 The vorticity field for the spectral evolution of three smaothed ellipses. The central cllipse
has vorticity —2, and the satellites +1. In case {a), the satellites were symmetrically located with
respeel to the central ellipse, while in {5} the core was displaced by 20% towards the right ellipse. The
times shown are scaled by the overall rotation period Ty of the coherent structure.

small negative curvature on the satellites persists. [We have chosen to show this
particular run, because it exhibits the additional interesting feature of two weak
maxima inside each satellite, suggesting the existence of a finite-amplitude
equilibrated mode 4 state (a pentapole?}]. From a large number of similar runs, we
conclude that there exist continuous stationary tripolar solutions to the Euler
equations whose geometrical characteristics are similar to the V-state solutions,
and that they are stable.

3.2. Generation of Continuous Tripoles from Three Elfipses

One may argue from the results of the preceding section that continuous tripoles
were readily obtained solely because the initial conditions were already very close
to the steady solutions. We now present an alternative way to generate tripoles. In
this section we use three smoothed ellipses as initial conditions. In the run shown
in Figure 10a, the major axis is chosen to be of length 1.1 and 0.8 for the central
vortex and the satellites respectively, and the minor axes are 0.7 and 045
respectively. The central vortex has vorticity +2 and the satellites —1.

The total time for this run is longer than for the run of the previous section
(nearly $ turnover times). Some oscillations of the satellites around the core and
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Fignre 11 The vorticity field for the spectral evolution of a smoothed perturbed y=—2, ¢=0.4 and
h=0.2 V-state. Both satellites were displaced by 0.1 towards the central vortex at 1=0. The times
shown are 1=0,3,6,....
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some vorticity shedding into filaments occurs, but, after approximately three
rotation periods, the tripole is seen to stabilize, and the vortex structure seems
strongly stable.

In Figure 10b we show a run whose initial condition is not symmetric about the
y-axis; this allows us to excite all the asymmetric modes as well (which were
absent in the previous run). The geometrical properties of the ellipses are the same
as for Figure 10a at t=0, but the vortex core wus shifted by 209 to the right.
With this initial condition the evolution is more complex and the filamentation
processes are stronger but again a coherent tripolar structure can be seen to
emerge. From a number of similar experiments we conclude that, in the language
of dynamical systems, continuous tripolar coherent vortex structures constitute an
important attractor basin.

3.3. Breakup of Perturbed Continuous Tripoles

In this last section, we want to show that the qualitative results obtained with
contour surgery on the evolution of strongly perturbed tripoles are true manifes-
tations of the underlying nonlinear dynamics of these vortex structures, and are
quite independent of the model one uses. In particular we want to confirm the two
main processes of breaking and axisymmetrization, that were found with contour
Surgery, are not a peculiarity of the constant vorticity formulation, but are a true
iepresentation of the evolution of certain perturbed tripoles.

In Figure 11, we present the breaking of a smoothed y= -2, ¢=0.4 and hb=02
V-state, whose satellites were both displaced by a distance of 0.1 towards the
central vorfex at t=0. Comparison with Figure 7 shows that the same instability
mechanism is present as the central vortex is split in two and the two asymmetric
dipoles are formed. Tt is interesting to note that the reverse process, namely the
formation of a tripole following the collision of two asymmetric dipoles, has also
been observed (Larichev and Reznik, 1983).
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Figure 12 The vorticily field for the spectral evolution of a smoothed perturbed y=—4, a=0.3 and
b=02 V-state. As in Figure 8, the left satellite was displaced towards the center by an amount 0.07.
The time frames are at =0,6,12,....

An example of axisymmetrization is given in Figure 12. As in Figure 8, we
perturb a y=—4, @=03 and b=02 V-state by shifting the left satellite towards
the central vortex. Notice how closely many features of the evolution in Figure 8
are also found in Figure 12. Undoubtedly the presence of filaments in the nearly
inviscid simulations implies the eventual completion of the axisymmetrization at
much longer times than the ones shown in Figure 12, as is the case for the exactly
inviscid contour surgery simulations of Figure & the presence of Newtonian
viscosity (vk?) would considerably speed up the axisymmetrization.

4, CONCLUSION

Using complementary modelling (contour surgery as well as pseudo-spectral
methods) we have investigated the existence and stability of tripolar coherent
vortex structures in two-dimensional flows. We have determined the equilibrium
contours for rotating finite-area tripolar V-states that are exact nonlinear solutions
of the Euler equations in two dimensions. We have examined their stability with
the aid of a contour surgical algorithm which has revealed that most of them are
stable to small amplitude disturbances but, when strongly perturbed, they either
break up into two asymmetric dipoles or axisymmetrize.

We have also shown, by means of a pseudospeciral code, how easily tripelar
coherent vortex structures can be generated in the case of continuous distributions
of vorticity. The nearly inviscid spectral simulations reproduce well the results
obtained with contour surgery, and demonstrate the “robustness” of the piecewise-
constant V-state solutions. In view of the experimental data, it is not unreasonable
to conjecture that similar structures exist in non-homogeneous systems.

Dritschel (1986) remarked that vortex merging and splitting of an ellipse into
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lwo vortices are symmetric processes, in the sense that, in some cases, the
transition between an elongated ellipse and two like-signed vortices is not very
energetic. In the present study we have uncovered two other such “reversible”
transitions: the one between a tripole and two dipoles, and the one between a
tripole and a shielded axisymmetric vortex. In the light of this and other recent
studies, it would seem that the present knowledge of coherent two-dimensional
vorlex structures is ripe for a synthetic description of their existence, stability and
transitions in terms of the nonlinear regimes of a unique dynamical system.
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