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Motivated by the observed potential vorticity structure of the stratospheric polar 
vortex, we study the dynamics of linear and nonlinear waves on a zonal vorticity 
interface in a two-dimensional barotropic flow on the surface of a sphere (interfacial 
Rossby waves). After reviewing the linear problem, we determine, with the help of an 
iterative scheme, the shapes of steadily propagating nonlinear waves; a stability 
analysis reveals that they are (nonlinearly) stable up to very large amplitude. 

We also consider multi-vortex equilibria on a sphere: we extend the results of 
Thompson (1883) and show that a (latitudinal) ring of point vortices is more unstable 
on the sphere than in the plane; notably, no more than three point vortices on the 
equator can be stable. We also determine the shapes of finite-area multi-vortex 
equilibria, and reveal additional modes of instability feeding off shape deformations 
which ultimately result in the complex merger of some or all of the vortices. 

We discuss two specific applications to geophysical flows: for conditions similar to 
those of the wintertime terrestrial stratosphere, we show that perturbations to a polar 
vortex with azimuthal wavenumber 3 are close to being stationary, and hence are likely 
to be resonant with the tropospheric wave forcing; this is often observed in high- 
resolution numerical simulations as well as in the ozone data. Secondly, we show that 
the linear dispersion relation for interfacial Rossby waves yields a good fit to the phase 
velocity of the waves observed on Saturn’s ‘ribbon’. 

1. Introduction 
The dynamics of the stratospheric polar vortex has attracted much research interest 

in recent years in the light of mounting evidence of man’s adverse impact on the 
environment (e.g. the ozone hole-see McIntyre 1991 for a review). With few 
exceptions, however, most of the work to date has been concentrated on the 
development of complex two- and three-dimensional numerical models. These giant 
models have somehow obscured the fact that a number of basic dynamical questions 
can be addressed in a simpler context. 

With this in mind, we consider in this paper the vorticity dynamics of a two- 
dimensional sheet of constant-density ideal fluid on the surface of a sphere (commonly 
referred to as the barotropic model), possibly the simplest system by which atmospheric 
flows may be approximated. Far from being a useless oversimplification, the barotropic 
model has already provided rich insights into the evolution of the polar vortex (Juckes 
& McIntyre 1987; Polvani & Plumb 1993; Waugh 1992). In this paper, we concentrate 
on the dynamics of waves and vortices in a barotropic spherical fluid; in particular, we 
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FIGURE 1 .  A sketch of the vorticity distribution for a one-contour polar cap. The unperturbed 
edge of the polar cap is at 9 = a,, i.e. z( = sin#) = zo. 

study the question of the existence and stability of nonlinear wave and vortex equilibria 
on the surface of a sphere. 

For a barotropic atmosphere in solid-body rotation, the vorticity is zonally 
symmetric and proportional to the sine of latitude, i.e. the axial Cartesian coordinate. 
However, it is by now well established that the potential vorticity distribution in the 
wintertime stratosphere is very far from solid-body rotation ; on isentropic surfaces one 
finds a latitudinal band of very steep potential vorticity gradients separating two 
regions of rather weak gradients, the ‘inside’ of the polar vortex to the north and the 
‘outside’ to the south. Numerical studies have shown (Juckes & McIntyre 1987) that 
it is the dynamical effect of breaking Rossby waves, induced by the planetary wave 
forcing from the troposphere, that leads to the formation of such a steep gradient 
separating two regions of relatively uniform isentropic potential vorticity. This 
phenomenon, named vortex stripping, has recently been the object of an extensive study 
(Dritschel & Legras 1993). 

In view of this, it would seem reasonable to start by considering the simplest possible 
(relevant) vorticity distribution for a two-dimensional ideal fluid on the surface of a 
sphere, namely a single zonal vorticity jump separating the spherical surface into two 
regions of uniform vorticity, as shown in figure 1. We start by considering the simplest 
case where the vorticity interface is zonally symmetric (i.e. a latitudinal circle), for 
which the flow field is easily calculated. We then consider perturbations to this zonal 
boundary and obtain the linear dispersion relation for waves on the vorticity interface. 
These waves are in fact Rossby waves, since the restoring mechanism responsible for 
wave propagation is provided by the presence of a vorticity gradient; we call them 
interfacial Rossby waves. The next step consists in considering waves of finite 
amplitude, and determining those shapes that propagate without deformation. 

Such finite-amplitude steadily propagating vorticity waves were first determined for 
perturbations to a circular vortex on a plane by Deem & Zabusky (1978), who coined 
the name ‘V-state’ (i.e. vortex state). Since then, similar equilibria have been found for 
a variety of planar vorticity distributions : dipolar (Pierrehumbert 1980), tripolar 
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(Polvani & Carton 1990), multipolar (Dritschel 1985), for vortex streets (Saffman & 
Schatzman 1982), as well as for multi-contour (Dritschel 1989) and multi-layer systems 
(Polvani 1989, 1991). To the best of our knowledge, the results presented here are the 
first known nonlinear wave and vortex equilibria obtained for spherical geometry. 

In $2, waves on a zonal vorticity interface are considered. The problem is set up in 
$2.1, and the linear results are reviewed in $2.2. The algorithm used to obtain the 
nonlinear wave solutions is presented in $2.3. Ironically, the method employed relies 
heavily on the use of Cartesian coordinates instead of spherical ones since, as we will 
show, this choice considerably simplifies the calculation. The solutions for large- 
amplitude nonlinear waves propagating without change in shape on a vorticity 
interface are presented and discussed in $2.4. Finally, the stability of these waves is 
considered in $2.5. Surprisingly, we find that most of these waves are stable to finite- 
amplitude perturbations even when the flow departs very greatly from zonal symmetry. 

In $ 3 we consider corotating multiple-vortex equilibria. From a physical viewpoint, 
such solutions are relevant to major warming events in the stratosphere, when the 
polar vortex is broken up into a number of pieces (the breaking into two smaller 
vortices has been repeatedly observed). From a mathematical viewpoint, these 
solutions are of interest because of their connection to known results in planar 
geometry. For instance, it is well known that a system of Npoint vortices, placed along 
a circle is unstable for N 2 8 (Thompson 1883), but finite-area vortices can be unstable 
even for N = 2 (Dritschel 1985). We have extended these results to the sphere, for both 
the point and finite-area multiple-vortex equilibria, in $ 3.1 and $ 3.2 respectively. 

The results summarized in $4, where two specific applications are discussed: the first 
to the dynamics of the stratospheric polar vortex, the second to the waves on Saturn’s 
‘ribbon’. 

2. Linear and nonlinear interfacial Rossby waves 
2.1. The basicjlow 

We consider the dynamics of an inviscid, incompressible, unforced and infinitesimally 
thin fluid shell on the surface of a sphere of unit radius. We will be working throughout 
this paper (except where noted) in a frame of reference that is fixed in space, as opposed 
to the more common meterological convention of choosing a frame rotating with the 
Earth. The barotropic analogue of the quantity of dynamical importance (the 
isentropic potential vorticity) is what is usually referred to as the ‘absolute vorticity ’, 
which is equal to the vorticity in the rotating frame of the Earth plus the Coriolis term 
f = 20,sin 9 (0, being the Earth’s angular velocity and 9 the latitude). 

Since the absolute vorticity is the quantity that is nearly piecewise uniform in the 
flows that we are interested in, it is more convenient to move to an absolute frame and 
simply consider the vorticity in that frame, which is precisely the absolute vorticity. The 
reader should not be confused as to whether the dynamics described here are those of 
a rotating fluid or not; a simple change of frame cannot possibly affect the dynamics. 
What matters is what vorticity distribution is relevant to the flow one is considering. 
The stratospheric polar vortex is characterized by near-uniform regions of absolute 
vorticity and therefore using an absolute frame leads to much simplification. 

In that frame, the barotopic dynamics is dictated by the material conservation of 
vorticit y, 

-+-- ( 
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where 9 is the latitude, p, the longitude, and u and v are the zonal and meridional 
velocities. (All quantities and expressions in this paper are non-dimensional, except 
where otherwise noted.) The vorticity w is the two-dimensional spherical Laplacian of 
the stream function @, namely 

and the velocities are related to the stream function via the geostrophic relations : 

Note that the latitude 9 is not the correct conjugate variable to the longitude p,. The 
proper choice is z = sins, the axial component in Cartesian coordinates, from which 
Hamilton's equations are recovered, namely 

Notice also that an area element on the spherical surface takes the simple form dzdp  
We have found, in general, that the use of Cartesian coordinates leads to major 
simplifications to all expressions. For instance, the three Cartesian components of the 
velocity vector are obtained from the stream function from the simple expression 

dxldt = x x O@. (4) 
Consider now the piecewise-uniform vorticity distribution for an unperturbed (i.e. 

zonally symmetric) polar cap, namely w = wN north of some latitude a,, and w = ws 
to the south. The flow associated with this vorticity field is obviously zonal (i.e. 
v = 0) and, may be obtained by integrating (2), and substituting into (3). However, 
it is easier to work in Cartesian coordinates. Thus, rewriting (2) as 

d 
dz 

--[(l -z"4.4] = w 

yields immediately 
~ " ( 1  -Z)/(I + z > I ~  for z > z0 

for z < zo. 
U =  

\-w,[(l  +z)/(l -z)li (5)  

Note that continuity of the velocity field at the edge of the polar cap (z = zo = sins,), 
leads to the constraint 

(1-zZ,)oN+(zO+ 1)wS = 0. (6 )  

Hence zo, wN and ws cannot be specified independently. This is due to the well-known 
fact that the integral of the vorticity over the whole spherical surface (the left-hand side 
of (6 ) )  must be identically zero. The flow given by (5),  a simple zonal jet peaking at the 
edge of the polar vortex,? is an exact time-independent solution of (1). We next 
consider the stability of this flow. 

t To obtain the flow in a frame of reference rotating with an angular velocity if(the conventional 
frame in metrology), it is sufficient to subtract a term (if) cos 8 = ( i f )  (1 - 2); from the velocities in 
(5) .  
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2.2. The linear waves 
Since the vorticity gradient never changes sign with latitude, one expects that the flow 
(5) is linearly stable under small perturbations (cf. Rayleigh’s theorem); in fact it is 
stable to finite-amplitude perturbations (Dritschel 1988 a). Hence the question of 
interest is to determine the angular velocity of normal mode perturbations on the 
vorticity interface at z = z,. Instead of proceeding by solving for the perturbed flow in 
both regions and matching at the boundary, is it much simpler to deal with the position 
of the vorticity jump alone. This type of analysis has been carried out previously 
(Dritschel 1988b, Appendix A; and Dritschel & Polvani 1992) and we briefly 
summarize it here for clarity and completeness. 

Let the perturbed position of the vorticity jump be 

z = zo + Z{(V, t), 
where zo is the undisturbed position and z’ the perturbation (see figure 1). The stability 
problem then reduces to writing a linear evolution equation for ~’(QI, t). This is easily 
obtained by using the vertical component of the equations of motion (Dritschel 1988 c)  

which gives the velocity field at any point on the sphere from a given vorticity 
distribution that is piecewise uniform, with vorticity jumping by the values 9, across 
the contours Vk (for a rederivation of (7) see Dritschel & Polvani 1992, Appendix A). 
For the one-contour polar-cap vorticity distribution shown in figure 1, the z- 
component of (7) gives 

where 9 = wN-ws is the vorticity jump, and Q, = &2 is the angular velocity of the 
undisturbed flow. The dispersion relation is obtained by letting 

z‘(q, t) = iei(mp-gt) + c . c - 7  

where m is the azimuthal wavenumber, CT the frequency and 2 a constant amplitude. 
Upon substitution into (8), using the undisturbed quantities inside the logarithmic 
expression and the identity 

1 2n sin /3 sin (mp) dp = 1 for all m, %lo 1-cosp 

one obtains the very simple dispersion relation 

Q = Q, - 6/2m, (9) 
where 52 3 g/m. It is perhaps surprising that this expression is identical to the one for 
a planar circular vortex (see Lamb 1932,s 158) - it is independent of the latitude 9, of 
the undisturbed polar cap. The first term is of course a simple Doppler shift, due to the 
advection of the perturbations by the mean flow. The second term, representing the 
angular velocity of the perturbations in a frame that moves with the mean flow, is 
always opposite in sign to the vorticity jump 6 (this is of course the characteristic 
signature of ‘ westward’-propagating Rossby waves). It is also interesting to note that, 
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FIGURE 2.  A sketch of the nonlinear solutions as seen from the north pole. Because of symmetry, only 
the portion 0 < 9, < (n/m) needs to be computed. At large amplitude, the contour is not a single- 
valued function of the longitude p. 

in the long-wavelength limit SZ varies as l / m  and not l / m 2  as is the case for the 
traditional Rossby waves. An application of this to a feature on Saturn is discussed in 
§4* 

We now abandon the restrictions of linear theory, and address the question of large- 
amplitude interfacial spherical Rossby waves. In particular, we wish to determine those 
perturbations of the polar cap that rotate at a fixed angular velocity without change 
in shape. Both the angular velocity and the shape are unknowns that have to be 
determined by solving a nonlinear problem. In this section we discuss the main features 
of the numerical algorithm that we have used to obtain the equilibrium vorticity 
distributions. The actual results, including the nonlinear dispersion relations and 
shapes as well as questions of stability, are presented in the next two subsections.? 

The basic set-up is sketched in figure 2. Given a region of uniform vorticity wN,  
centred around the pole and having m-fold symmetry, we have to find those shapes that 
rotate at constant angular velocity D without deformation. These shapes, which are 
finite-amplitude extensions of the linear waves discussed in the previous subsection, are 
then exact nonlinear solutions of (1). Such solutions were originally found for a vortex 
patch on the plane by Deem & Zabusky (1978), and we are here extending that problem 
to spherical geometry. The novelty resides in that, while on an infinite plane there is no 
characteristic lengthscale, there does exist one on a spherical surface, namely the 
sphere’s radius. This means that, compared to the planar case, an additional parameter 
is necessary to describe the solutions of the spherical problem, and for intuitive 
reasons, we take this to be the latitude 9, of the undisturbed vortex. 

Apart from the wavenumber m, the other parameter needed to identify each solution 
is then related to the amplitude of the wave. Given the Cartesian coordinates (x, y ,  z)  

f Since the discussion of this subsection is of a rather technical nature, we recommend that those 
mainly interested in the physical results read only the first three paragraphs of this section, where the 
problem is set up and the basic parameters are defined, and then proceed directly to the next 
subsection. 

2.3. The algorithm for the nonlinear problem 
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of a point on the sphere, define the variable % = 1 - z.  From symmetry considerations, 
it is clear that only the portion of the vortex boundary with 0 < cp < (n /m)  need be 
determined. The solutions are parametrized by the aspect ratio A, defined as 

A -  Z(v = 0) 
%(cp = n/n)  ‘ 

A given solution is then described by a wavenumber m, an ‘average latitude’ of the 
boundary 19, and an aspect ratio A. Linear theory corresponds to Ih - 11 4 1, while the 
planar solutions of Deem & Zabusky correspond to %(cp) < 1. 

To determine the shape of the vortex, a parameterization of the boundary is needed. 
The simplest way to do this would be to use the longitude cp. This was our original 
approach, but we soon discovered that, at large amplitude, the vortex boundary 
becomes multiple-valued in cp as the perturbations ‘ fold-over’. Hence a more flexible 
formalism is needed. We have used the arclength s along the boundary as the 
independent variable that parametrizes the boundary of the polar cap, which is then 
described by the three functions x = x(s), subject to the constraint 

1x1 = (x2+y2+2)1= 1. 

The algorithm we use is an iteration scheme. From the value of x(s) at the nth 
iteration, which we write x,(s), the algorithm finds x,+,(s) at the next iteration by 
letting 

(10) 

The small correction x’(s) is made in the direction of the normal ii = x, x dx,/ds to the 
vortex boundary. 

It is then necessary to relate the function ~ ( s )  to the stream function $ along the 
boundary, and this is accomplished as follows. First one transfers to a frame that 
rotates with the unknown angular velocity 52. The stream function $, in that rotating 
frame is then given by 

x,+&) = xn(s) + x’(s) = XJS) + r(s) ii. 

$,(x) = $(x) - Q(1- z) = $(x) - 52%. (1 1) 
In the limit Z < 1, the second term reduces to $2r2, so that the familiar planar 
expression is recovered near the pole, as expected. 

In the rotating frame the boundary of the polar cap is, of course, stationary; this 
implies that the boundary itself is a streamline, $, = C. Substituting (10) into (1 l), and 
performing a straightforward Taylor expansion yields, after truncation to first-order 
terms (the primed terms), 

@,(&+I) = $(x,+1) - Q,+l .%+I = c 
= $(x,> + ?@ 0) $(x,) - Q,(%, - 7%) - Q’Z, 

where we have defined 52’ = Q,,, - 52, (recall that 52 is also an unknown that needs to 
be iterated). Inverting this, one obtains an expression for 7 in terms of quantities that 
are known at the nth iteration (except C and fz’ - see immediately below): 

where ~(x , )  = (ii.V)$(x,)+Q,n,. The two constants C and 52‘ are as yet 
undetermined. They are chosen in such a way that the area and the aspect ratio of the 
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solution be equal to fixed values specified at the beginning of the iteration. These two 
constraints yield a simple linear system for C and Q' at each iteration: 

a,C+b,Q' =cl,  a,C+b,Q'=c,, (14) 
where the a, b and c are six constants that can be evaluated from the known solution 
at the nth iteration (see Appendix A). Solving for C and Q' in (14), the (n + 1)th iterate 
is then uniquely specified in terms of the nth one via (13) and (10). 

A first guess for x(s) and SZ is necessary to start the iteration. In practice we proceed 
by fixing z, and finding solutions at progressively increasing aspect ratio h for a given 
wavenumber rn. For h x 1 linear theory provides a good guess. As h becomes large, we 
use the converged solution at a given h as a guess for the solution at slightly larger A. 
We proceed in this way until, at large amplitudes, the algorithm fails to converge. To 
test convergence, we compute at each iteration the L,-norm of the vector x,,~ - x,, and 
stop the process when Ix,+,-x,I < E .  

This is only the skeleton of the algorithm. More details are given in Appendix A, 
including the expressions for the constants in (14), and the formulae needed to compute 
x and 1c. in terms of contour integrals. All the solutions presented in this paper were 
obtained with the contour discretization of Contour Surgery (as detailed in Dritschel 
1989), which is cubic in the deviations from a straight line. Also, all the contour 
integrals are evaluated with cubic splines. Hence the algorithm is O(l/N4), where N is 
the number of nodes that discretize the vortex boundary. 

2.4. The nonlinear waves 
We now discuss the nonlinear wave solutions obtained with this algorithm. These 
waveforms are exact nonlinear solutions of (1). Each solution is characterized by three 
parameters: a wavenumber m, an aspect ratio h > 1, and a latitude 8, of the edge of 
the corresponding circular polar cap. The equilibria have area equal to 2n( 1 -sin 8,), 
independent of m and A. To reduce the computational task, we have computed only the 
first six wavenumbers (m = 2, . . ., 7), and restricted our attention to three representative 
latitudes: 9, = 60", 30", 0". Needless to say, near the pole (8, = 90") one recovers the 
'V-state' solutions of Deem & Zabusky (1978). The solutions presented here were 
obtained with typically 250 nodes on each contour and a convergence criterion of 
E = requiring from a handful of iterations for the solutions near the linear regime 
to a hundred or so iterations for the very large-amplitude waves. 

We start with the parameter values more directly of interest to the stratospheric 
polar vortex, namely 8, = 60". The solutions for the polar-cap boundary are shown in 
figure 3 (a)  (we have computed many more solutions than the ones shown in this figure). 
The stability of these equilibria will be extensively discussed in the next section; with 
regard to figure 3(a) it suffices to say at this stage that the solid lines represent stable 
nonlinear equilibrium solutions. The solid line with largest amplitude is the largest- 
amplitude stable equilibrium that was found. The dotted line is the largest-amplitude 
unstable equilibrium (at larger amplitude our algorithm does not converge). Hence the 

FIGURE 3. (a) The nonlinear wave solutions for 6, = 60". These are polar stereographic views from 
the north pole, indicated by the cross. The outer circle is the equator. The solid lines represent stable 
solutions for the edge of the polar cap at progressively increasing amplitudes of the wave. The dotted 
lines are the largest-amplitude unstable solutions, as described in the text (see $2.5). (b) The nonlinear 
dispersion relations for the equilibria shown in (a). The values of SZ are given in units of 6, the 
vorticity jump across the interface. Recall that the linear dispersion relation is SZ = (m - 1)/(2m). The 
dotted part of the line shows the stable solutions, each dot corresponding to a different equilibrium. 
The solid portions of each line are the unstable solutions. Each line corresponds to a different 
m, 2 < m < 7. 
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region between the largest-amplitude solid curve and the dotted curve contains the 
converged unstable equilibria. 

Notice first that, with the exception of mode 2, the amplitude is still rather small 
before the waves develop cusps. This behaviour is typical of similar nonlinear vortex 
equilibrium problems (Polvani, Flier1 & Zabusky 1989~). Essentially, in the frame of 
reference rotating with the wave m, the flow exhibits m stagnation points, located 
outside the vortex edge at longitudes ips = 2nj /m( j  = 0 ,  . . ., m - 1). It is a simple matter 
to show that the meridional location of the stagnation points for the linear waves are 
given by the simple expression : 

2,- l / m  
l - l / m .  

Hence as m increases, the stagnation points get increasingly close to the vortex 
boundary, and thus cusps develop at smaller wave amplitude. The m = 2 wave is a 
notable exception, as is the case for the planar problem. The solution first bifurcates 
in the direction of a 'dumbbell' shape (dotted line in figure 3a) ,  and at even larger 
amplitudes it further bifurcates into a two-vortex equilibrium when the neck is cut off; 
such equilibria are discussed in $3.2. Although these are unforced barotropic 
equilibria, the presence of similar ones in the stratosphere may affect the evolution of 
the polar vortex during major warming events. 

All the solutions in figure 3 (a)  have the same area, equal to 2n(l -zo), and thus we 
need only plot the angular velocity Q versus the aspect ratio for each mode. These 
nonlinear dispersion relations are given in figure 3(b). The dotted and solid portions 
of each curve are used to represent the stability properties, the latter being the unstable 
equilibria. To each dot corresponds a stable equilibrium solution. The m = 2 wave 
extends much further in amplitude (i.e. in A)  because it bifurcates into a peanut shape, 
while the higher modes are arrested by the presence of the corotating stagnation points. 

As we decrease the value of a,, nonlinear waves exist for larger amplitudes. The case 
9, = 30" is shown in figure 4(a).  These are orthographic projections from 20" latitude 
0" longitude. Again the m = 2 wave extends to A+ co, bifurcating ultimately into a 
two-vortex equilibrium. The nonlinear dispersion relations are shown in figure 4 (b). 
Notice that the drop in angular velocity with amplitude is more marked at this value 

Incidentally, we have compared these numerically derived dispersion curves with the 
ones from weakly nonlinear theory. From Appendix A of Dritschel(1988b), it is easy 
to show that the weakly nonlinear dispersion relation that includes terms of order 
amplitude squared is given by 

2, = 

of 9,. 

where the first term in the bracket is the linear term, cf. (9), and the wave amplitude 
e is related to the aspect ratio via h = (1 - e)/( 1 + e). For the solutions with 9, = 30", 
these values are plotted (solid lines) against the fully nonlinear ones (dots) in figure 
4(c). Notice how the agreement holds to very large amplitudes. 

FIGURE 4. (a) The nonlinear wave solutions for 8, = 30". These are orthographic projections from 
20" latitude and 0" longitude. The north pole is indicated by the cross. The dashed line is the equator. 
The solid lines represent stable steadily propagating solutions at progressively increasing amplitudes 
of the wave. The dotted lines are unstable solutions, as described in the text (see 02.5). (b) Same as 
figure 3(b), but for 9, = 30". (c) The weakly nonlinear dispersion relation (solid curves) for the 
2 < m < 7 waves at 8, = 30", as a function of aspect ratio. The dots correspond to the numerically 
derived fully nonlinear values. 
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FIGURE 5. (a)  Same as figure 4(a), but for 8, = 0". (b)  Same as figure 3(b), but for 8, = 0" 
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Lastly the equatorial solutions (i.e. 9, = 0') are shown in figure 5(a). Again these are 
orthographic projections from 20" latitude 0" longitude. The corresponding nonlinear 
dispersion relations are given in figure 5(b). The fall-off of the angular velocity with 
amplitude is very steep for these equatorial waves. 

Mode 2 is particularly interesting, since we can find solutions up to very large 
amplitudes and find analytically the equilibrium corresponding to h --f GO. This is 
constructed by dividing the sphere by two great circles lying in mutually orthogonal 
planes intersecting on the x-axis, and filling the different sectors with alternating values 
of positive and negative vorticity. The vorticity distribution is then reminiscent of a 
beach ball. It is also clear that such a solution exists for each mode m, the sphere being 
subdivided into 2m sectors of alternating vorticity. Our algorithm, however, does not 
bifurcate into such beach ball equilibria for m > 2. This is because there are a large 
number of other highly symmetric solutions on the sphere; these can all be constructed 
by filling in any pattern formed by the nodal lines of a spherical harmonic function with 
alternating values of vorticity (see Busse 1975). It should be clear that these equilibrium 
solutions are all unstable since they have cusps on their boundaries (Dritschel & 
McIntyre 1990). The stability properties of the smooth equilibria are discussed next. 

2.5. Stability of the nonlinear waves 
Two main approaches have been used in the past to study the stability of equilibrium 
nonlinear vortex-patch solutions. The first approach (Saffman & Schatzman 1982 ; 
Dritschel 1985) consists of doing an explicit linear stability analysis of the numerically 
obtained nonlinear equilibria. While this approach yields the global stability picture, 
it requires much labour and only yields linear results. An alternative method (Zabusky 
1981; Dritschel 1985, 1989; Polvani & Carton 1990) consists of taking initial value 
problems with slightly perturbed equilibria, and observing their evolution. This is 
computationally intensive but straightforward, and moreover yields results on the 
nonlinear evolution of the unstable equilibria. 

We have used the second approach in this paper. The equilibrium solutions are 
perturbed by displacing each nodal position by a very small amount, a random number 
between 6 and - 6. This is equivalent to superimposing a large number of linear modes 
on the nonlinear equilibrium, and allows the most unstable mode to emerge naturally, 
as well as the nonlinear development to be observed. We have used the value 6 = 0.001 
for the results presented here (recall that the sphere has radius 1). 

The numerical initial value problems are performed with spherical Contour Surgery 
(Dritschel 1988 c, 1989). For stable equilibria, we typically compute dozens of periods 
without any noticeable change in shape; this does not of course guarantee stability. 
However, in the unstable cases the perturbation grows to large amplitudes in a few 
rotation periods. In other words, with the possible exception of the stability boundary 
where the growth rates could be extremely small, we have allowed enough time to see 
the most unstable mode emerge from the initial conditions. 

The main stability results have already been mentioned. In figures 3(a), 4(a) and 
5(a), the solid line are stable equilibria. The region between the dotted line and the 
largest-amplitude solid line is where our algorithm converged to equilibria that were 
found to be unstable. Notice that this region is pretty small. We suspect that the reason 
why our algorithm does not converge at even higher amplitude is related to the 
instability of the solutions it is trying to converge to. Similarly, in figures 3(b), 4(b) and 
5(b) the solid portion of the lines are unstable regions, while each dot of the lower- 
amplitude portion represents a stable converged equilibrium solution. 
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FIGURE 6. The vorticity field at t = 30 for a randomly perturbed m = 6, 8, = 30", h = 1.597 wave. 
The non-dimensional time corresponds to approximately 12 periods of the unperturbed wave. This 
is an orthographic projection from 80" latitude, 30" longitude. 

A first result that can easily be gathered from figures 3-5 is that these nonlinear 
waves are stable up to considerable amplitudes. A most striking example of this is the 
equatorial mode-2 wave (cf. figure 5a). The first unstable equilibrium is found near 
h z 39; at this stage the vorticity distribution resembles a baseball; below the stability 
threshold, we have found such unusual shapes to be extremely stable, i.e. the nonlinear 
evolution consists of wavy oscillations superimposed on the baseball shape, without a 
major disruption of the vorticity distribution. 

Secondly, we have found that instability manifests itself in two rather distinct 
fashions, which we have termed 'weak' and 'strong' instabilities. Weak instability is 
found near the cuspy solutions, and leads to the smoothing of the cusps by the ejection 
of thin filaments. This is typical of the high-wavenumber equilibria (m > 2) at 9, = 30" 
and 60". An example is given in figure 6 for the m = 6 wave at 9, = 30" with amplitude 
h = 1.597. (For all the figures in this section 5 = 27~)  We show the numerical solution 
at t = 30, which corresponds to about 12 periods of the undisturbed wave (the first 
filaments are actually observed around t z 10). The reason we call this a weak 
instability is that the main morphology of the vorticity field remains unchanged; by 
shedding filaments the vortex effectively reduces slightly its aspect ratio until it becomes 
stable. 

Strong instability, on the other hand, leads to a major rearrangement of the vorticity. 
This is most commonly observed for the equatorial waves at large amplitude. A typical 
instability is given in figure 7, which shows the evolution of a slightly perturbed 
m = 5 ,  9, = 0" wave with h = 3.444. Notice that it takes about nine rotation periods 
before the instability emerges from the random perturbation field, but once the 
amplitude of the disturbance is sufficiently large the shedding of vortices by breakup 
of the lobes is quite rapid. For these equatorial waves the direction of the breaking is 
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FIGURE 7. The evolution of an initially perturbed m = 5,9, = 0" wave with h = 3.444. The numbers 
beside each frame indicates the time. The rotation period of the unperturbed nonlinear wave is 
approximately 3.860. 

very much dependent on the initial conditions, as is evidenced by the case shown in 
figure 8. Here a randomly perturbed m = 7, 9, = 0" wave with h = 2.333 breaks 
inward, leading to the entrainment of low-vorticity fluid into the northern polar cap. 
For the 9, = 30" and 60" waves however, the breaking always occurs outwards, i.e. the 
lobes of the waves pinch-off patches of high vorticity in the south of the polar cap. This 
is because the shear is always greater equatorward (Dritschel 19883, 1989). The fact 
that patches, rather than filaments, are pinched-off is related to the general instability 
of strips of vorticity located in equatorial regions - basically, the shear is not adequate 
to elongate the lobes and roll-up occurs instead (see Dritschel & Polvani 1992 for 
further remarks). 

We have found that for mildly supercritical amplitudes the most unstable modes are 
symmetric ones, as exemplified by figures 7 and 8. At larger supercritical amplitudes, 
however, the evolution is asymmetric. An example of this is given in figure 9, for the 
m = 5, 9, = 0" wave at h = 3.878. Again, notice that it takes more than three wave 
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FIGURE 8. Same as figure 7 but for an m = 7, 8, = 0” wave with A = 2.333. The rotation period 
of the unperturbed nonlinear wave is approximately 2.995. 

rotation periods before the instability emerges, but after that the catastrophic 
disruption of the vorticity field is comparatively fast. Notice how the lobes of the finite- 
amplitude unstable waves pinch-off and merge (cf. frames t = 16.5, 17, and 17.5 of 
figure 9). 

The m = 2 waves exhibits the most peculiar behaviour. As we have already pointed 
out (cf. figure 5 a)  the equatorial waves m = 2 are stable to extremely large amplitudes, 
in which the vorticity distribution resembles a baseball. The stability boundary is found 
at A M 39. The nonlinear evolution of the unstable equilibria is, however, remarkable. 
It should be classified as ‘strong’ following the definition adopted above, were it not 
for the fact that the initial state periodically recurs. An example for the equilibrium at 
A = 65.667 is shown in figure 10. The instability, which disrupts the original shape at 
about one-third of the unstable equilibrium rotation period ( t  M 12), leads to an 
oscillation of the vorticity distribution between two very simple unstable states : a 
‘beach-ball’ state (cf. t = 21,47.5,91.5 of figure lo), and a state where the positive 
vorticity is confined to two elliptical polar caps (cf. t = 14.5,67.5 in figure 10). 
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FIGURE 9. Same as figure 7 but for an m = 5, 8, = 0" wave with h = 3.878. The rotation period 
of the unperturbed nonlinear wave is approximately 4.520. 

Finally, the instability of the 9, = 60, m = 2 equilibria reveals a behaviour that may 
be important for the dynamics of the stratospheric polar vortex during major 
warmings. This is illustrated in figure 11, depicting the evolution of a slightly perturbed 
equilibrium ( A  = 65.667). After about one rotation period, the instability splits the 
vortex into two pieces that rotate around the pole without merging. The relative 
constancy of the distance between the two vortices as well as their shapes strongly 
suggests that there exist equilibria composed of more than one vortex. They are the 
subject of the next section. 

3. Multi-vortex equilibria on the sphere 
3.1.  Point-vortex equilibria and their stability 

Before considering the equilibrium shapes and stability properties of arrays of 
corotating finite-area vortices on the spherical surface, we derive the analogous results 
for arrays of point vortices. The corresponding problem for the planar geometry is 
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FIGURE 10. Same as figure 7 but for an m = 2, equatorial wave with h = 65.667. The rotation 
period of the unperturbed nonlinear wave is approximately 34.885. 

a century old; Thomson (1883) discovered that N corotating point vortices of equal 
strength are (linearly) stable for N < 7. The finite-area solutions for N = 2 were found 
by Saffman & Szeto (1980) and for 2 < N < 8 by Dritschel (1985). The main stability 
result for the finite-area vortices is that instability occurs at any N when the area of the 
vortices becomes sufficiently large ; loosely speaking, when the vortices are nearly 
touching the configuration is almost always unstable (when N = 7, any finite size leads 
to instability - see Dhanak 1992). We now extend these results to spherical geometry. 

Consider first a single point vortex of strength K, located at x' on a spherical surface. 
The stream function $ it induces at any point x on the sphere is given by the simple 
expression 

(1 5)  

Recall that the strength K is defined by K = I'/2n: where r is the circulation. It is 
important to notice that the form (15) includes a constant vorticity of value -:K spread 
evenly over the spherical surface; this is necessary to ensure that the global circulation 

+(x) = fK log (1 - x * x'). 
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FIGURE 1 1 .  Same as figure 7 but for an rn = 2, 8, = 60" wave with h = 65.667. The rotation 
period of the unperturbed nonlinear wave is approximately 8.222. 

is equal to zero. The analogous expression in latitude and longitude coordinates is 
found in Kimura & Okamoto (1987). 

Consider next N point vortices located at positions x k  (k  = 0, . . ., N -  1) on the 
sphere, and with strengths K ~ .  The equations of motion for this system take a very 
simple form in Cartesian coordinates. Substituting (1 5) into (4) yields immediately: 

We now limit our attention to the steadily rotating configuration constituted by N 
equidistant point vortices located on the same latitudinal circle z = z,,, and with 
identical strength K .  This equilibrium is an exact solution of (16), with 

where r ,  = (1 -z$. The angular velocity SZ with which this array of point vortices 
x k  = (yo coscpOk, ro sincp,,, zo), cpOk = 2nk/N,  k = 0, .. ., N -  1, 

rotates is given by  
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N zc 9, (deg.1 
2 always stable 
3 always stable 
4 1 / 4 3  35.26438968 ... 

6 2 / 4 5  63.434948 82.. . 
I 1 90 

> I  always unstable 
TABLE 1 .  The critical values of z and latitude, z, and 8, respectively, equatorward of which an array 
of N corotating colatitudinal point vortices of equal strength become unstable on a spherical surface 

5 1 / 4 2  45 

where 52, is the angular velocity of N corotating point vortices on the plane. Hence 52 
decreases monotonically with latitude. Near the pole (zo + 1) the planar value is 
recovered. More interestingly, 52 vanishes when the point vortices are located on the 
equator (or indeed any great circle around the sphere). 

The stability analysis for this configuration is messy but not intrinsically difficult. We 
limit ourselves to sketching the main points of the derivation. As pointed out in $2.1, 
the variable conjugate to the Cartesian vertical coordinate z is the longitude v. From 
(16), one can write the evolution equation for these two variables: 

where ri = (1 -z$, and 1 - x j . x k  = 1 -z.z -rirkcos(vk-vj). By analogy with the 
J .  k planar problem, the perturbed vortex position for the kth vortex is written in the form 

(see Dritschel 1985) 

where oPk = ezxipkfN and p indicates the symmetry of the mode, p = 0, 1, . . ., [ i N ]  (here 
[ I  indicates 'integer value of'), and and 6 are infinitesimal constant amplitudes. 
Substitution of these expression into (18) and linearization yields a standard eigenvalue 
problem for the growth rate r.~. After much algebra, one obtains the following 
dispersion relation : 

(r.Tr:)z = ( p -  l)z ( p +  1 -N) ' - (N-  1)2 -r:(N- 1) [ ( p -  1) ( p +  1 - N )  - ( N -  l)]. 

The general result from this formula is that point vortex arrays are more unstable on 
the sphere than in the plane. At the pole, N c 7 is stable, N = 7 is neutral and N > 7 
is unstable, in accordance with the planar results. Away from the pole, N = 7 is always 
unstable and, as the equilibrium latitude of the vortex array is decreased, N = 6 first 
become unstable equatorward of approximately 63", N = 5 equatorward of 45", 
N = 4 equatorward of approximately 35", so that, on the equator itself only N = 2 and 3 
are stable. The critical values of z are summarized in table 1. We have numerically 
verified them by direct numerical integration of (16). With this in mind we now proceed 
to considering the finite-area problem. 

3.2. Finite-area multi-vortex equilibria and their stability 
Knowing the point-vortex results, we now determine the finite-area multi-vortex 
equilibria, and study their stability. The algorithm used to determine the equilibrium 
shapes is quite similar to the one described in $2.3, and the relevant details are given 

Zk = 20 + @: Wpk e* and fpk = v o k  f 6 W p k  e&t, 

(19) 
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x 

FIGURE 12. Finite-area multiple-vortex equilibria for 9, = 60". This is an orthographic projection 
from 65" latitude and 90" longitude. The cross indicates the pole, and the dashed line the equator. 
Solid (dotted) lines indicate stable (unstable) equilibria (cf. $3.2).  

in Appendix B. Each multi-vortex equilibrium composed of N vortices is uniquely 
defined by two parameters: the latitude 9, of vorticity centroid and the fractional area 
p, defined as the total area enclosed by the vortex patches divided by 4n. The algorithm 
proceeds at fixed 9, by progressively increasing p until convergence can no longer be 
achieved within several hundred iterations. 

Consider first the equilibria for 9, = 60" and 2 < N < 7, shown in orthographic 
projection in figure 12. To make the presentation more concise, we use different line 
patterns to indicate stability; solid (dashed) lines indicate stable (unstable) solutions; 
moreover, although for clarity only a selected number of solutions are shown, the 
largest-amplitude solid (dashed) line corresponds to the largest-amplitude stable 
(unstable) equilibrium to which we have been able to converge. The stability was tested 
via initial value problems, as described in g2.5. It should be repeated that by stability, 



56 L. M .  Polvani and D. G. Dritschel 

- -______-- - - -  

FIGURE 13. Same as figure 12, but for 8, = 30". The orthographic projection 
here is from 35" latitude and 30" longitude. 

we really mean robustness, i.e. whether the perturbed vortex arrays maintain their 
coherence, or whether the vortices stray far from their relative initial positions and 
merge. 

With respect to figure 12, it is interesting to note that, while six point vortices are 
linearly unstable at 9, = 60" (cf. table l), the corresponding finite-area equilibria are 
robust, at least up to a certain amplitude. The evolution of slightly perturbed N = 6 
solutions shows that the vortices alternately arrange themselves along a circle and 
along the sides of a 'triangle', but the basic morphology of the equilibrium is not 
changed. This is in contrast with the unstable solutions (say for N = 7), where slightfy 
perturbed vortices wander very far from their respective positions and repeatedly 
merge. 

Although we have tried a number of variations on our algorithm, for most values of 
Nit  has not converged for large p ,  i.e. when the vortices are nearly touching (cf. figure 
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FIGLJRE 14. Same as figure 12, but for = 30". The orthographic projection 
here is from 10" latitude and 20" longitude. 

12). This must be because these solutions are almost certainly unstable (as is well 
known to happen in the planar case, Dritschel 1985). For N = 3 and 4, the algorithm 
stopped converging immediately after the stability boundary was reached. It is safe to 
speculate that for N = 2, 5 and 6 ,  the stability boundary is probably not very far from 
the largest stable solution we have found. 

Decreasing the latitude makes things more unstable, as one would expect from the 
point-vortex results. Figure 13 shows the 9, = 30" solutions. At this latitude all the 
stability boundaries have been determined. Again, it is notable that, for small areas at 
least, four and five finite-area vortex arrays are robust, although four and five point 
vortices are linearly unstable. 

The equatorial multi-vortex equilibria are presented in figure 14. In agreement with 
the point-vortex result, only the N = 2 and 3 equatorial equilibria are stable. The two- 
vortex solution is not shown, since it is known analytically; two polar caps bounded 

3 FLM 2 5 5  
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FIGURE 15. The evolution of the slightly perturbed N = 6 equilibrium with p = 0.1. 
The six vortices merge pairwise. 

by circular contours is an exact solution. Even this becomes unstable for sufficiently 
large p. The linear stability of the N = 2 configuration can be worked out from 
Dritschel & Polvani (1992); it is easy to show that instability sets in for 

p > 4 2 -  1 = 0.4142136 ... . 

Unfortunately, the algorithm was unable to reach the expected stability boundary for 
N = 3 at large p. 

These equatorial arrays are very reminiscent of vortex streets, especially for larger 
values of N .  Indeed their instability also proceeds in a similar fashion, i.e. by vortex 
pairing and merger. A typical example for the equatorial N = 6, p = 0.1 equilibrium 
is shown in figure 15. Notice that the vortex produced after the merger is far from 
circular, and moreover shows no tendency for axisymmetrization. 

For completeness, the variation in angular velocity SZ as a function of the fractional 
area ,u is shown in figure 16. Since SZ = 0 for all equatorial equilibria, only the cases 
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FIGURE 16. The fractional variation in angular velocity SZ compared to the equivalent point-vortex 
value 51," (given by (17)) versus the p, the percentage of the area of the sphere covered by the 
equilibrium vortices. (a) 8 = 30°, (b) 9 = 60'. 

a0 = 30" and 60" are shown. Moreover, for each finite-area equilibrium, we can define 
the quantity Q,, as the angular velocity of a point-vortex array whose vortices have 
same circulation (computed with (17)). Since the difference between 52 and QPv is 
usually small, we plot the fractional difference (52-52,,)/52,,. As can be seen from 
figure 16, the main conclusion is that finite-area vortex equilibria rotate faster than 
their point-vortex counterparts, although the fractional difference is never more than 
about lo%,  at least for the solutions we have obtained. 

4. Summary and applications 
In this paper, we have examined two of the simplest non-axisymmetric equilibrium 

flows on the surface of a sphere, flows consisting of just two uniform values of vorticity 
separated by either a single interface or by several identical disjoint contours. We have 
determined their equilibrium configurations, and have examined their (nonlinear) 
stability by direct, high-precision, long-time numerical integration. We find that 
extensive sets of the equilibrium solutions are stable. In the case of a single interface, 
the steadily propagating waves are generally stable to large amplitude, i.e. so that the 
flow is very far from zonally symmetric. The most important form of instability 
manifests itself when the very large-amplitude waves pinch-off to produce isolated 
vortices. 

In the case of several vortices, we have shown that colatitudinal point-vortex arrays 
are more unstable on a sphere than on a plane. In particular, while six or fewer vortices 

3-2 
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are stable at high latitudes, only three vortex equilibria are stable on the equator; this 
result is also valid for finite-area equilibria. This study thus confirms one of the findings 
of our previous study on the roll-up of vortex strips on the sphere (Dritschel & Polvani 
1992), namely that barotropic vorticity configurations tend to be more unstable near 
the equator than near the poles. 

In venturing an application to the Earths stratosphere, one has to admit that the 
neglected effects of radiation and vertical structure distance somewhat this idealized 
model from the real thing. However, certain features of the complex dynamics of the 
polar vortex can be captured by the very simple model shown in figure 1. In particular, 
it is worth examining what values one obtains from the dispersion relation (9) for 
conditions similar to the Earth's stratosphere. 

Following Juckes & McIntyre (1987), we take wN = 2.6Q2,, and 9, = 55". These 
choices give, from (5),  a reasonable peak westerly wind speed (as measured on the 
Earth) of 115 m/s at the edge of the vortex. With these parameters describing the 
undisturbed flow, the angular velocities as well as the periods for these waves are given 
in table 2 (the values are computed in the standard meterological frame of reference, 
i.e. as they would be measured by a observer rotating with the Earth's velocity Qe).  

These numbers are only indicative, since a barotropic uniform-vorticity cap is a very 
crude model of the polar vortex. However, it is interesting to note that, for sufficiently 
large wavenumber (in this case m > 3), the westerly mean flow dominates the Rossby 
wave propagation mechanism, leading to eastward motion, while for the gravest modes 
one finds westward propagation typical of Rossby waves. The m = 3 wave is closest to 
being stationary in the Earth's frame of reference. 

This quasi-stationary character of the m = 3 wave (and m = 4 to some extent) would 
suggest that, under forcing conditions similar to the ones present in the stratosphere, 
it would be the most 'resonant' mode, i.e. the one that would extract the most energy 
from stationary waves perturbing the vortex from below. This has in fact been 
repeatedly observed in high-resolution numerical models of the stratospheric 
circulation. For a very clean example the reader is referred to figure F9 of the review 
by McIntyre (1991), where the polar vortex appears with an unmistakeably triangular 
shape. That figure comes from a high-resolution shallow-water model, but similar 
results have been found in barotropic simulations (Juckes & McIntyre 1987; Waugh 
1992). The analysis of the total ozone in the stratosphere using the TOMS spectrometer 
also show that, before breaking, the polar vortex often assumes a triangular form (see, 
for instance, figure 1 of Bowman 1992). 

In studying the nonlinear regime, we have shown that once a polar vortex is 
sufficiently elongated it becomes dynamically unstable (cf. figure 11). This suggests that 
planetary wave forcing may be crucial only in the initial phases of a major warming 
event, in providing the elongation of the vortex, with the subsequent evolution being 
the consequence of simple barotropic instability. Moreover, the existence of stable two- 
vortex equilibria probably plays the role of an attractor in affecting its evolution. 

The simple barotropic model in spherical geometry may well have interesting 
applications to the atmospheres of the outer planets. A particularly relevant one is the 
so-called 'ribbon' on Saturn. This feature, centred around 46" N, resembles a wavy 
black line embedded in a white background (see Ingersoll et al. 1984 for a review). 
There is evidence (Smith et al. 1982) that the circulation is cyclonic north of the ribbon 
and anticyclonic south of it, suggesting that the ribbon itself is a region of very strong 
vorticity gradients. 

Sromovsky et al. (1983) have carefully analysed the shape of the ribbon, and 
extracted from the data the phase velocity of waves propagating on the ribbon as a 
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FIGURE 17. The angular velocity of 0, in units of deg. longitude per hour, versus the azimuthal 
wavenumber rn. The data points correspond to the solid circles in figure 8 of Sromovsky et al. (1983) 
for wavenumbers 5, 9, 12, 19, 26, 34, 38, 47 and 51. The line is our fit to the dispersion relation for 
interfacial Rossby waves. 

m Q' (Q,) T' (days) 
1 - 1 .ooo - 1.0 
2 -0.285 -3.5 
3 -0.046 -21.4 
4 0.073 13.8 
5 0.144 6.9 
6 0.197 5.2 
7 0.226 4.4 

TABLE 2.  The angular velocities Q' = Q-Q, (in units of the Earth's angular velocity 0,) and the 
periods T' = 27c/0' (in days) for the linear waves propagating on the edge of a polar cap of uniform 
vorticity 2.652, extending from the pole to 55", as a function of the azimuthal wavenumber rn. The 
values are computed in a frame of reference that rotates with angular velocity Q,, as they would be 
measured by an observer on the Earth. 

function of their azimuthal wavenumber m. They have also showed how the Rossby 
wave dispersion relation is inadequate to fit the data because the angular velocity of 
Rossby waves decays too rapidly for small m (it varies as m-2). The dispersion relation 
(9) for interfacial Rossby waves decays only as m-l, and therefore seems a better 
candidate to describe the waves on the ribbon. 

We have fitted the angular velocity values obtained by Sromovsky et al. (1983) to the 
form 0 = 0,--3/(2m). The value of 0, is simply the angular velocity associated with 
the jet located at the vorticity interface; the fit gives 0, = 0.74+0.02" longitude/hour, 
corresponding to a jet peak of approximately 145 ms-l. The fit also provides the value 
of the vorticity jump across the ribbon; we find 07 = 3.72k0.45" longitude/hour. As 
one may see from figure 17, this good fit strongly suggests that the dynamics of waves 
on Saturn's ribbon is dictated by the steepness of the vorticity gradient over a very 
narrow latitudinal region; this explains why traditional Rossby wave dynamics, which 
rests on vorticity gradients that are evenly spread over the spherical surface, is unable 
to reproduce the observations, as Sromovsky et al. (1983) have shown. 
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Appendix A 
The constants C and Q' in (14) are chosen so that the area enclosed by the vortex 

is equal to A,  = 2n( 1 - z,,), and its aspect ratio is A. Given the boundary shape x(s), the 
area A(x)  of the polar cap is given by the expression 

At the nth iteration, we must require that A(x,+,) = A,. Substituting (10) into the last 
equality above and using (13) yields, after some algebra, the equation a, C+ b,Q' = 
c,, where 

a, = x-'(x,)ds, ds, C, = A,-A(x,)+ fzzj - ds,. f 
In practice, owing to the symmetry of the problem, the integrals only need be evaluated 
over the interval (O,n/m) (see figure 2). 

The aspect-ratio constraint is imposed by requiring that 

Finally, expressions are needed to evaluate $ and x in terms of contour integrals. 
Some elementary but convoluted algebraic manipulations yield 

As for y? itself, we have derived, after much algebra, the following simple expression: 
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Appendix B 
The general scheme for computing multi-vortex equilibria is very similar to the one 

described in 92.3 and Appendix A. The area constraint yields, as for the wave problem, 
an equation of the form a, C+ b, Q' = c,. The constants are the same as the ones given 
in Appendix A, with the proviso that the integrals are taken around a single vortex, and 
that the area A,  of each vortex is given by A ,  = = (47cp)/N (recall that p is the 
fractional area of the total array of vortices). 

The second equation for C and Q' is obtained by enforcing that the centroid of 
vorticity X of each vortex be held fixed during the iteration. Letting 

J =  x,xdx,, i 
where x, is the position of the vortex boundary after the nth iteration, the expression 
for the centroid of each vortex is simply X = J/IJI = ( X ,  Y, 2). Since by construction 
(and without loss of generality) we set Y = 0, and since the centroid lies on a sphere 
so that X = (1 -.@, the constraint reduces to imposing that Z = sin 9, = z,,. This 
leads to a linear equation of the form 

a,C+b,Q' =c2 ,  

where a,, b, and c2 are given by the following expressions, obtained after substitution 
of (10) into the above definition for 2, and linearization: 

with ((x) = = X z - Z x .  
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