
J. Fluid Mech. (1989), vol. 205, p p .  215-242 
Printed in Oreat Britain 

215 

Two-layer geostrophic vortex dynamics. 
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We generalize the methods of two-dimensional contour dynamics to study a two- 
layer rotating fluid that obeys the quasi-geostrophic equations. We consider here 
only the case of a constant-potential-vorticity lower layer. We derive equilibrium 
solutions for monopolar (rotating) and dipolar (translating) geostrophic vortices in 
the upper layer, and compare them with the Euler case. We show that the equivalent 
barotropic (infinite lower layer) case is a singular limit of the two-layer system. We 
also investigate the effect of a finite lower layer on the merger of two regions of equal- 
sign potential vorticity in the upper layer. We discuss our results in the light of the 
recent laboratory experiments of Griffiths & Hopfinger (1986). The process of 
filamentation is found to be greatly suppressed for equivalent barotropic dynamics 
on scales larger than the radius of deformation. We show that the variation of the 
critical initial distance for merger as a function of the radius of deformation and the 
ratio of the layers at rest is closely related to the existence of vortex-pair equilibria 
and their geometrical properties. 

1. Introduction 
The role of coherent structures in the dynamics of two-dimensional vorticity fields 

has been the subject of many investigations in recent years. I n  particular, 
McWilliams (1984) has shown that, under certain conditions, coherent vortex 
structures emerge spontaneously from an initially random distribution of vorticity, 
and that, once formed, they play the dominant role in the subsequent evolution of 
the system. 

One successful way of determining the shapes of coherent two-dimensional 
structures has been to approximate them by finite-area vortex regions of piecewise- 
constant vorticity (vortex patches). Thus Deem & Zabusky (1978a, b) ,  P' ierre- 
humbert (1980), Saffman & Szeto (1980), Saffman & Schatzman (1982) and 
Dritschel (1985) have numerically determined fully nonlinear steady-state (i.e. 
rotating or translating without change in shape) solutions of the inviscid Euler 
equations in two dimensions, while Norbury (1973) determined three-dimensional 
translating solutions with axisymmetry. These solutions have been designated 
'V-states' (Vortex-states) by Deem & Zabusky (1978a, b).  

In two-dimensions, among the various types of fundamental interactions between 
vortices, it  is the question of the merger of two regions of same-sign vorticity that has 
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received the greatest attention. The earliest studies (Zabusky, Hughes & Roberts 
1979; Deem & Zabusky 1978a, b ;  Overman & Zabusky 1982a) used contour- 
dynamical algorithms to  investigate the evolution of two initially circular regions of 
constant vorticity. The same problem was considered with a perturbative approach, 
the moment model, by Melander, Zabusky & Styczek (1986), and more recently 
revisited using pseudospectral methods (Melander, Zabusky & McWilliams 1988). 
Several other types of interactions have also been examined, among which we 
mention asymmetric r..erger (Melander, Zabusky & McWilliams 1987 b) ,  mergers 
arising from unstable perturbed V-states (Overman & Zabusky 1982a) and scattering 
of translating V-states (Overman & Zabusky 1982b). The question of axisym- 
metrization has also been investigated. Melander, McWilliams & Zabusky (1987 a )  
have shown how an initially non-axisymmetric vorticity distribution will axi- 
symmetrize through the process of filamentation. Their pseudospectral calculations 
have been supported, for short times, by the contour dynamical computations of 
Dritschel (1988). 

The applicability of all of the above studies to  geophysical flows is, however, 
limited by the fact that  they treat exclusively two-dimensional systems. It is then a 
question of major concern to  investigate if and to  what extent the ideas that have 
emerged from the investigation of purely two-dimensional problems generalize to 
three-dimensional situations. With this in mind we have taken what we believe to be 
the simplest step away from two-dimensionality by turning our attention to the 
easiest possible two-layer system. 

The so called Phillips’ model (Phillips 1954) describes the evolution of a two-layer 
rotating fluid in the limit of small Rossby number (i.e. in geostrophic balance), and 
is therefore of particular relevance for geophysical flows. It is the simplest system 
that incorporates the properties of both rotation and stratification, and thereby can 
support baroclinic instability, which is an essentially three-dimensional phenomenon. 
Gryanic (1983), Hogg & Stommel (1985) and Young (1985) have studied the point- 
vortex solutions of the two-layer model and have investigated their interactions. 
Griffiths & Hopfinger (1986) have recently used the same model to  interpret their 
laboratory experiments with a rotating stratified fluid. In  particular, they have 
conducted experiments on the coalescence of two circular vortices in the upper layer 
(Griffiths & Hopfinger 1987). 

Generalizing the contour-dynamics method to the Phillips’ model, we have been 
able to address some of the fundamental questions that have already found an 
answer in the purely two-dimensional case. I n  particular we have found a variety of 
two-layer rotating and translating V-states. We have also examined in some detail 
the interaction of two like-signed vortices. Since the two vortices can be either in the 
same layer or in different layers, two distinct processes need to  be identified. I n  the 
former case we designate the coalescence of two vortices with the name ‘merger’, by 
analogy with the two-dimensional case. 

When the vortices coalesce from different layers we refer to  their interaction with 
the term ‘alignment ’ since, in recent high-resolution numerical simulations of 
stratified geostrophic turbulence, McWilliams (1989), has shown that vorticity in 
different layers tends to align in the vertical direction, yielding columnar vortex 
structures. In the language of turbulence theories, i t  should be clear that, in the same 
way as the merger process mediates the well-known reverse energy cascade of two- 
dimensional turbulence, the alignment process is the fundamental mechanism for the 
cascade from baroclinic to barotropic modes (see, for instance, Salmon 1982). The 
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alignment process has been studied in detail (Polvani 1988), and will be the subject 
of a second paper. 

In  this first paper, we consider only the simplest possible departure from two- 
dimensionality, and restrict our attention to vorticity fields in which the potential 
vorticity in the lower layer is uniform. We present here a variety of upper-layer V- 
states and our results for the investigation of the merger problem. We start with a 
general review of how to extend the method of contour dynamics to the two-layer 
model. 

2. Contour dynamics for the two-layer model 
The quasi-geostrophic two-layer model (Phillips' model) has been used extensively 

in the oceanographic and meteorological literature, and it will suffice here to recall 
its principal characteristics (for a full derivation see Pedlosky 1979). As shown in 
figure 1,  the system is composed of two horizontal layers of density p and p+Ap, 
where Ap 4 p.  The thickness H ,  (and H,) of the upper (and lower) layer is considered 
to be much smaller than the horizontal scale L of the system, so that the fluid is 
always in hydrostatic equilibrium. The system rotates with an angular velocity w 
large compared with the relative vorticity U / L  (U being the velocity scale), i.e. the 
Rossby number Ro = U/(ZwL) is small compared to 1. 

Under these assumptions, the motion in each layer is two-dimensional (cf. the 
Taylor-Proudman theorem) and can be described by a stream function $, (i = 1,2).  
The dynamics of the system is dictated by the statement of conservation of the 
geostrophic potential vorticity IT, in each layer. In  non-dimensional form, the two-layer 
model equations take the simple form 

[a,+J($r(, . ) ] I T 6  = 0 for i = 1,2,  

where l7, is defined by 

n1= V2$1+Y2($2-$J, 1 7 2  = V"2+~Y2($l--$2), (2) 

with 

Note that only two non-dimensional parameters appear in this formulation : 6 = 
H J H ,  is the ratio of the upper to lower layer thickness (when the fluid is a t  rest) and 

J ( A , B )  = a,A a,B-a,A a,B. 

y = L/L,, where 
1 SAPHl I L, = ( 2 w ) -  - 

( P I  

is the radius of deformation for the upper layer. The parameter y can be intuitively 
understood as the rigidity of the interface. In particular when y = 0 (which 
corresponds to a perfectly rigid interface) the two layers become uncoupled, and 
behave as two independent two-dimensional systems obeying the Euler equations. 

The principal limitation of this model rests in the fact that the layer thicknesses are 
only allowed to change by an O(Ro) amount with respect to their values when the 
fluid is a t  rest. Thus a phenomenon such as the formation of fronts is totally absent 
in this approximation. This model represents the stratification by two coupled layers 
in which the advection is two-dimensional, and i t  retains the linear relationship 
between the stream function and the geostrophic potential vorticity, as is apparent 
in (2). A direct analogy can therefore be drawn with the two-dimensional Euler 
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FIGURE 1. The quasi-geostrophic two-layer model. 

equations, were the vorticity V2$ plays the role of the geostrophic potential vorticity 
n. 

Consider then a field made up of Nj regions DY) ( j  = 1,2 refers to  the upper and 
lower layer respectively, and n = l,Nj) of constant geostrophic potential vorticity 
17Jn). It is easy to see that the stream function in layer i can be obtained from the 
Biot-Savart-type formula : 

where r = [(x-Iy+(y-q)"l" 

and G, is the Green function for the effect in layer i of a point vortex in layer j. The 
four different Green functions needed can be derived in a straightforward way from 
(2) and are found to be 

6 1 6 6 
1+6 1+8  1+6  1+8  

G,, = - logr- -Ko(rr ) ,  G,, = -logr+-Ko(fr), (4a, b)  

1 1 1 6 
l + d  1+6 l + d  1 + 6  

G,, = -logr+-Ko(fr), G,, = -logr--Ko(rr), (4c,  d )  

where r = y(i  + 6); 

and KO is the modified Bessel function of order zero. Differentiating (3) and applying 
Green's theorem, one obtains expressions for the velocities in layer i as contour 
integrals over the boundaries aDJn) of the regions of constant geostrophic potential 

vorticity : i 2 Ni r 

where (ZI$")] is the jump in geostrophic potential vorticity (outside-inside) at the 
boundary aDJn). Having derived the basic formulas for the full two-layer model, we 
now restrict our attention to  the case for which I?, = 0 everywhere. 

This situation constitutes the simplest departure from a purely two-dimensional 
situation. Note that, although it has zero geostrophic potential vorticity (i.e. 
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constant total potential vorticity equal to 2 w / H , ) ,  the lower layer is not a t  rest (i.e. 
$2 += 0) unless 6 = 0, and the objective of this paper is to understand the effect of the 
lower-layer motion on the evolution of the vorticity in the upper layer. Since the 
geostrophic potential vorticity resides uniquely in this layer, and since there is no 
need to calculate the fields in the lower layer to follow the evolution of the vorticity 
in the upper layer, as can be seen from ( 5 ) ,  we can imagine dealing with a purely two- 
dimensional system (the upper layer) in which vortices interact with a modified 
Green function G,, given by (4a),  instead of the simple logarithm. 

Before proceeding to present our results for the upper-layer V-states and merger, 
it is of great interest to examine carefully the limiting forms of GI, as y is varied from 
zero to  infinity. When 6 =k 0, i.e. in the presence ofa  finite lower layer, i t  is easily seen 
that w 

lim G,, = log ( r ) ,  lim G,, = -log ( r )  for 6 =I= 0 
1+6  Y-tO Y*m 

(ignoring terms independent of r which do not affect the velocities). Thus, as long as 
the lower layer is finite, i.e. S =I= 0, we can expect the dynamics to be identical to two- 
dimensional Euler dynamics in both limits, with the exception that, for every large 
y ,  time is resealed by a factor of 6(1 +a)-,. 

Of special interest is the case S = 0, for which the lower layer is infinitely deep. This 
situation is commonly referred to in the literature as the ‘equivalent barotropic’ 
model (or the ‘reduced gravity ’ model, or again the ‘ quasi-geostrophic shallow-water 
model’). It has been widely used in oceanographic and meteorological contexts to 
study the effect of density stratification without explicitly introducing a second 
layer. Since 

the large-y limit in the equivalent barotropic case is given by 

Thus, a t  large y the equivalent barotropic model exhibits singular behaviour, in as 
much as (6) is qualitatively very different from the logarithmic type of interaction 
that would occur if the lower layer were finite. This exponential decay underlies one 
of the major findings of this study (preliminarily reported in Polvani, Zabusky & 
Flier1 1988), namely that the dynamics of vortices in the equivalent barotropic model 
at large y is in many respects very different from those of a two-layer system with 
a deep lower layer of zero geostrophic potential vorticity. 

To illustrate this point we have plotted in figure 2(a)  the function Gll(r) ‘us. r for 
S = 0, 0.2 and 1 and, in figure 2 ( b ) ,  the azimuthal velocity due to  a point vortex in 
the upper layer at y = 5. Note how G,, diverges logarithmically when 6 =+ 0, but is cut 
off exponentially for the equivalent barotropic case. 

I n  practice, as will be shown in what follows, y does not have to be very large 
before the different behaviour appears. We have found that for motions on scales 
only a few times the radius of deformation, the results obtained from the equivalent 
barotropic model are remarkably different from those of a two-layer model with a 
deep but finite lower layer. 

An alternative way to understand how this arises is to  consider the competition of 
the two terms in (4a) when 6 << 1 and y b 1 at the same time. It is easy to see that the 
modified Bessel term will dominate when 13 < O(y-te-7). In  other words, the 
equivalent barotropic model reproduces the dynamics of a two-layer system with a 

8 FLM 205 
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FIGURE 2.  Plots of (a )  the Green function GI1(r) and ( b )  its derivative dG,,/dr, for y = 5. 

lower layer O(yie7) deeper than the upper one. Because this number increases 
exponentially with y ,  i t  is clear that the equivalent barotropic approximation at  
large y should be used with care for most oceanic and atmospheric systems, for which 
the relevant value of 6 is O(1). 

3. Rotating V-states 
We now turn our attention to the m = 2 rotating V-states. As shown in figure 3, 

the upper layer consist of a patch of uniform geostrophic potential vorticity (without 
loss of generality we choose i t  to have value 1 )  of aspect ratio h = R,/R, (again 
without loss of generality we choose R, = 1, which is equivalent to setting y = 

R,/L,) rotating with constant angular velocity 52 without change in shape in a 
background of zero geostrophic potential vorticity in the upper layer. The problem 
consists in determining the shape of the boundary, and the angular velocity Q. To 
do this we use the second-order algorithm of Wu, Overman & Zabusky (1984), with 
the modification that the logarithmic Green function of the Euler equations is 
replaced by Gll. We present only a very brief summary of that method here, and for 
a full exposition we refer the reader to Wu et al. (1984). 

By symmetry, only one quarter of the contour need be considered. It is discretized 
by N nodes placed a t  equal angular positions between 0 and (the results presented 
were obtained with N = 75). The unknowns are the radial distances Ri (i = 1,  N) from 
the origin to the nodes and the angular velocity Q. One starts from an initial guess 
for the Ri and Q and calculates the velocities a t  each node using a discretized version 
of (5 ) .  The new values of the Ri and Q are then obtained by enforcing the condition 
that the velocity be tangent to the boundary in the frame of reference rotating with 
the V-state. From these new values, new velocities are calculated, and the process is 
repeated until some convergence criterion is satisfied. In  practice, as was the case for 
Wu et al. (1984), a relaxation scheme is needed to ensure a convergence of the 
algorithm, i.e. at each step the new Ri are 'mixed' with a certain proportion of the 
previous ones. 

Since for each value of y ,  6 and h a V-state can be determined, the parameter space 
for this problem is three-dimensional, and an extraordinary amount of calculations 
would be necessary for its full exploration. We have decided to select the minimum 
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FIGURE 3. Schematic drawing of the geostrophic potential vorticity distribution in the upper 
layer for a monopolar rotating (m = 2) V-state. 

number of cases that would allow us to grasp the qualitative behaviour of the 
solutions as the parameters are varied. We have selected three values of the aspect 
ratio h (1.5,2.5 and 3.5) and, for each, three values of 6, the ratio of the layers’ depths 
a t  rest; S = 0 is an obvious choice, since it represents the equivalent barotropic 
model ; the other obvious choice is S = 1 (layers of equal depth) ; finally S = 0.2 was 
chosen as an intermediate value, since it roughly corresponds to the ratio of the 
depth of the oceanic thermocline to  the full depth of the ocean (in the simplest non- 
constant-density approximation the ocean is often modelled by a two-layer system, 
with the interface between the two layers representing the thermocline). 

For each value of h and S we have determined the V-state solutions for 21 values 
of y that  span in approximately equal intervals (on a logarithmic scale) the four 
orders of magnitude 0.01 < y < 100. The reason for extending our investigation to 
such high and low values of y is that we want to ensure that we recover the 
asymptotic results known for the limits y 4 1 and y 9- 1. Indeed, since in those limits, 
as was shown earlier, the Green function reduces to a pure logarithm (except for the 
ease 6 = 0), we expect the V-states to  reduce to  ellipses, following Kirchhoffs 
arguments. 

The problem can then be restated in the following simple form: if y is varied 
between zero and infinity, how do the m = 2 rotating V-states differ from Kirchhoff 
ellipses ? How does this difference depend on S and A P The answer is presented in 
figures 4, 5 and 6 for h = 1.5, 2.5 and 3.5 respectively. 

Consider first figure 4 in wtiich the aspect ratio h is held fixed and equal to 1.5. In  
figures 4 ( a ) ,  4(6) and 4(c) we have plotted one quarter of the equilibrium shapes for 
S = 0, 0.2 and 1 respectively; for clarity only the V-states for y = 0.01, 1 and 10 are 
shown (the solid lines represent the Kirchhoff ellipses). The first remarkable result is 
that, for small aspect ratio, over the whole range of y the shapes are extremely close 
to Kirchhoff ellipses. 

To quantify this we have calculated the quantity SA which represents the 
fractional change in area between the V-states and the Kirchhoff ellipse, or more 
precisely 

A, -A  
SA=----, 

A ,  
8-2 
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FIGTJRE 4. Rotating one-layer V-states of aspect ratio A = 1.5, for S = 0, 0.2 and 1.0. Only the 
hatched sector in figure 3 is shown. 

where A ,  and A are the area of the Kirchhoff ellipse and of the V-state respectively. 
In figure 4 (d ) we plot 64 as function of y for the three values of 6. It is immediately 
apparent that the case 6 = 0 is qualitatively different from the cases for which 6 is 
finite. This reflects the singular behaviour of the equivalent barotropic model a t  large 
y that we predicted from the analysis of the Green function. It is, however, 
interesting to note that, even for a lower layer considerably deeper than the upper 
one (5 to l ) ,  the fractional change in area barely exceeds 1 Yi, over the whole range 
of g for this relatively small value of the aspect ratio A. 

For the slightly higher value of A = 2.5,  the results are shown in figure 5. To keep 
t,he figures readable, for each d we show only a few V-states chosen to represent the 
variations in shape over the whole y-range; in particular the V-states for y = 0.01 
and 10 are always shown. Again the considerable insensitivity of the Kirchhoff ellipse 
to the presence of a lower layer is manifested in the fact that the maximum fractional 
change in area for 6 = 0.2 is of only a few percent even for this reasonably high value 
of the aspect ratio (5 to 2). The anomalous behaviour of the 6 = 0 case is reflected in 
the fact that, as y is increased, the shape never reverts back to the Kirchhoff ellipse. 
We have found that, a t  large y, our algorithm requires many more iterations to 
converge in the equivalent barotropic case than when 6 =+ 0, and we attribute this to 
the fact that the equilibrium shapes have both positive and negative curvatures. 
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FIGURE 5 .  Rotating one-layer V-states of aspect ratio h = 2.5. for 6 = 0, 0.2 and 1.0. 

This can be seen very clearly in figure 6 ( a )  in which the aspect ratio A = 3.5. For 
6 = 0, as y is increased from zero, the V-states bulge away from the Kirchhoff ellipse 
and eventually become ‘peanut ’ shaped. This singular behaviour is, however, 
restricted to the equivalent barotropic case and for 6 += 0 (figure 6 b,  c )  the conclusion 
is the same as the one reached for the previous two values of A, namely that over the 
entire y-range the V-states are remarkably close to Kirchhoff ellipses, even for quite 
large aspect ratios. 

In  figures 7 ( a ) ,  7 (b)  and 7 (c )  we have plotted the values of the angular velocity Q of 
the V-states as a function of y for h = 1.5, 2.5 and 3.5 respectively. For 6 += 0, both 
the small- and large-y-limits are finite and are given by 

6 
1+6 

limQ = Q K ,  l imQ =-Q, for S+0, 
Y 4 Y+m 

where 0, = h/(l+h)2 

is the angular velocity for a Kirchhoff ellipse of aspect ratio A. 
In the equivalent barotropic case 6 = 0, however, the angular velocity goes to zero 

as y becomes very large. This is easily understood by recalling that, in that limit, the 
Green function is a rapidly decaying exponential. 

We have fit,ted the log-log curves of Q vs. y at large y with straight lines, and the 
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FIGURE 6. Rotating one-layer V-states of aspect ratio h = 3.5, for S = 0, 0.2 and 1 .O. 

slopes were found to be 2.94, 2.93 and 2.89 for h = 1.5, 2.5 and 3.5 respectively. This 
strongly suggests that in developing an asympotic theory of the equivalent 
barotropic equations at large y a slow timescale ought to  be chosen to be proportional 
to y3. Pratt  & Stern (1986), in considering the long-wave approximation (i.e. y % 1) 
of a perturbation on a vorticity front in an equivalent barotropic model, found that 
a dominant balance could be reached only when time was scaled like y3 .  However, 
their derivation seems to us less transparent than it might be, in as much as it is 
rather hard to see why such a scaling arises naturally. A much simpler derivation of 
the equivalent barotropic long-wave equation is presented here in the Appendix. 

It is simple to derive the y3 scaling law for time a t  large y by considering how the 
kinematic boundary condition is satisfied a t  the edge of the V-states. Let R(6) be the 
radial distance of the boundary from the origin. Then the dimensional stream- 

function Y must satisfy a i a  
at Rae 
- R  = -- Y 

for all angles 0 on the boundary. From the asymptotic analysis one learns that, a t  
leading order in l/y, Y is independent of 6,  and that it is the O(l/y) correction to Y 
which allows the boundary condition to be satisfied in time. In  order to determine the 
scale for t we define 1 

Y 
tl= LR*, Y = qLk- Y*,  t = ynq-lt*, 
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where the starred quantities are non-dimensional and 0(1), and q is the vorticity 
scale. Y is scaled one order smaller than the leading-order geostrophic stream 
function. Substituting these scalings in the above boundary condition, and requiring 
that the left- and right-hand sides be of same order yields the value n = 3. 

4. Translating V-states 
The conclusions that were drawn from the analysis of the m = 2 rotating V-states 

are confirmed by the properties of the translating ones, for which a schematic 
drawing is given in figure 8. Two regions of equal and opposite geostrophic potential 
vorticity propagate in a straight line along the y-axis with constant velocity V 
without change in shape. Each state is characterized by an inner and an outer radius, 
xA and xB respectively. Without loss of generality we choose xB = 1, and define the 
parameter ,u = x A / x B .  As in the rotating case, by symmetry only one quarter of the 
state need be considered and is discretized with N nodes. The algorithm is identical 
to the one described above, with the exception of the boundary condition which has 
to be modified appropriately (see Wu et al. 1984). 
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FIGURE 8. Schematic drawing of the geostrophie potential vorticity distribution in the upper 
layer for a translating V-state. 

X Y 
FIGURE 9. Translating one-layer V-states for ,u = 0.2, and 8 = 0, 0.2 and 1.0. Only the hatched 

sector in figure 8 is shown. 
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FIGURE 10. Translating one-layer V-states for p = 0.06, and 6 = 0, 0.2 and 1 .O. 

For the dipolar states, however, the limiting cases are not known analytically, as 
was the case in the previous section. In  the y = 0 limit the translating Euler V-states 
of Deem & Zabusky (1978a, 6) are recovered; these are also the limiting states for 
y B 1 (with the velocity scaled by S/[1 +&I) provided 6 =+ 0. For the equivalent 
barotropic model in the large-y limit, the dipole tends to a pair of circles with V = 0. 
We have used the same values of y and S as for the rotating states to determine 
how much the solutions differ from the Euler solutions as y is varied from zero to 
infinity. 

Figures 9 (a) ,  9 (b )  and 9 (c) show the results obtained with N = 75 for ,u = 0.2 and 
6 = 0, 0.2 and 1 respectively (the solid curves are for y = 0). The equivalent 
barotropic solution relaxes monotonically from the Euler dipole to a circle. When 
6 =+ 0 the deviations from the Euler solutions are not very large, as was the case for 
the translating V-states. Note that, for this value of ,u, the solutions always have a 
smaller aspect ratio than the Euler solutions. In figure 9(d)  we have plotted the 
quantity AIA,, where A is the area of one half of the V-state and A ,  is the area of 
a circle of radius f (  1 - xA). 

When the ratio ,u of the inner to outer radii becomes smaller than a critical value 
(about 0.09) the behaviour becomes qualitatively different. As y is increased from 
zero the V-states become more elongated than the Euler ones. The case ,u = 0.06 is 
shown in figure 10. Note that for the equivalent barotropic case the maximum 
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FIQURE 11. The velocity V of translating V-states as a function of the radius of deformation y .  

deformation which occurs a t  approximately y = 7 is very large (the area essentially 
doubles, cf. figure 9d ). Finally, in figures 11 (a) and 11 ( b )  the velocity is plotted versus 
y for p = 0.2 and 0.06 respectively. Again the behaviour is qualitatively the same as 
was observed for the rotating states. 

5. Merger in the two-layer model 
As was mentioned in the introduction the question of merger of two regions of 

equal-sign vorticity has been extensively investigated for the two-dimensional Euler 
equations (Melander et al. 1988). The initial vorticity distribution is taken to be two 
circular regions of equal and constant vorticity whose centres are separated by a 
distance d,. The time evolution of such an initial configuration falls into either of two 
qualitatively distinct behaviours : if the initial distance exceeds the critical non- 
dimensional value of approximately 3.3 (the radius of the circles being the 
lengthscale), the two regions rotate about a common centre and pulsate as they 
revolve around each other. When, however, the initial distance is smaller than that 
critical value the two vortices approach each other and 'merge' forming a double 
spiral, and the h a 1  state is composed of a single vortex resulting from the 
coalescence of two originally distinct regions of vorticity. 

Recently, Griffiths & Hopfinger (1986, 1987) have conducted laboratory 
experiments with one- and two-layer rotating fluids to study the interactions of 
finite-area geostrophic vortices. For the purely barotropic case they were able to  
verify experimentally the value of 3.3 for the critical distance of vortex merger. Of 
interest to us here are the experiments on merger of two vortices in the upper layer 
of a two-layer rotating fluid. 

For simplicity, Griffiths & Hopfinger chose to consider a configuration in which the 
layers had equal depth. The vslues of the density stratification and of the rotation 
of the tank were chosen in such a way that the system was expected to obey the 
quasi-geostrophic two-layer equations (1) .  The authors in fact tested this assumption 
by analysing carefully the velocity field of a single circular vortex and comparing it 
with the theoretical prediction (for a circular geostrophic potential vorticity 
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FIGURE 12. The critical merger distance as a function of the initial distance d, and the inverse 
radius of deformation y-' for S = 1.  x represents a merger and 0 represents no merger. The dashed 
line reproduces the experimental results of Griffiths & Hopfinger (1987). 

Y-l 

distribution (1) can be solved exactly in terms of logarithms and modified Bessel 
functions). 

However, on the matter of merger of two vortices in the upper layer, the present 
computations show that some of the results of Griffiths & Hopfinger are difficult to 
reconcile with the predictions of the two-layer quasi-geostrophic model for inviscid 
initially circular regions of constant geostrophic potential vorticity. In figure 12 we 
have plotted their curve for the critical merger distance as a function of y-l. 

We have already pointed out that, as can be seen from (l), in the limit of vanishing 
y the two layers become decoupled and act as two independent two-dimensional 
Euler systems. Therefore as y+O the critical merger distance for vortices in the 
upper layer should be equal to the Euler value - i.e. 3.3. The fact that the results of 
Griffiths & Hopfinger are in disagreement with this prediction (at least for the range 
in y for which the experiments were performed) seems to indicate that at small y 
their system was not reproducing the dynamics of constant-potential-vorticity 
nearly-inviscid quasi-geostrophic finite-area vortices. 

We have ourselves conducted numerical experiments to determine how the critical 
merger distances changes as y is varied from zero to infinity. We have proceeded as 
follows. At t = 0 the geostrophic potential vorticity distribution is composed of two 
circles of radius 1 separated by a distance d,.  The geostrophic potential vorticity is 
constant within each circle, and, without loss of generality, we can take its value to 
be equal to 1. Each contour is discretized by a finite number of nodes. To follow the 
evolution of the contours, each node is advected in a Lagrangian fashion according 
t,n ._ 

-- dYk - - u ,  - - v  
dt dt 
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FIGURE 13. The critical merger distance as a function of the initial distance d,  and the inverse 
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where (Xk, Y,) is the position of node k, and u and v are calculated by evqluating the 
contour integrals in (5 ) .  We have used a simple fourth-order Runge-Kutta scheme 
for the time-stepping. Since we are only interested in determining whether the two 
vortices merge, every few time-steps we perform a test that stops the run as soon as 
contours have crossed, a sure sign that merger has occurred. We decide that no 
merger occurs after the two vortices have revolved around each other for a few times. 

Our results are also shown in figure 12. They were obtained by repeating the initial- 
value problem for many different values of d ,  and y.  The line for the critical merger 
distance was drawn in by hand and it serves the purpose of visually separating the 
region of merger from the region of no merger. 

It may a t  first seem surprising that over the whole range of y ,  the critical merger 
distance is contained in the interval between 3.2 and 3.4. However, this not only 
reproduces the expected Euler values for large and small y ,  but is also in qualitative 
agreement with the results of the previous sections for the V-stabs, in which we have 



Two-layer geostrophic vortex dynamics. Part 1 23 1 

shown that, for 6 = 1,  the solutions are remarkably close to  the Euler case over the 
entire y-range. 

In  order to lend support to  this interpretation we have conducted similar 
experiments for two different values of 8. In  figure 13 the results for 6 = 0.2 are 
shown. As expected from our knowledge of the V-states the deviations from the Euler 
case are more substantial and take place where y is O(1). The qualitative direction 
of the critical distance curve is easily understood from our knowledge of the Green 
function. When y is 0(1) the KO contribution to the Green function is felt most 
strongly, and is reflected in the fact that the two vortices interact less strongly than 
if the Green function were a pure logarithm ; i t  is thus necessary to put them closer 
at t = 0 (i.e. decrease d,) if merger is to  occur. 

Finally, for the equivalent barotropic case S = 0, the results are shown in figure 14. 
Once again we see that, in that model, the large-y limit exhibits a behaviour 
qualitatively different from the finite-d cases, because the vortices are exponentially 
shielded from each other as y becomes larger than O(1). 

6. Non-axisymmetrization and suppression of filamentation in the 
equivalent barotropic model at large y 

For the purpose of understanding whether and to what extent the findings of 
Melander et ul. (1987 a) concerning axisymmetrization through filamentation apply 
to the two-layer system of interest in this study (i.e. one with no geostrophic 
potential vorticity in the lower layer) we have examined a few cases of layer merger 
at higher resolution. 

I n  order to follow the evolution far enough in time, it becomes necessary to 
readjust the nodes representing the discretized contour every few time steps. The 
criterion we have chosen is based on the idea that more resolution is needed where 
the curvature is the greatest. More specifically we have decided to place the nodes 
along the contour in such a way that their density is directly proportional to the local 
curvature raised to the power f ;  this value was chosen because i t  can be shown to  be 
optimal for the Kirchhoff ellipse (Zou et al. 1988). For more details on the algorithm 
used, refer to  Polvani (1988). 

We now present a series of high-resolution mergers for which d, = 2.2. The number 
of nodes varies as the contours evolve and usually increases drastically when 
filaments are formed. In  these runs the number of nodes in each contour is usually 
of the order of a few hundred. Because of the symmetry of the problem, only one 
contour needs to  be computed at each time step, the other one being obtained by 
reflecting the first about the origin. 

In  figure 15 the merger for S = 0 and y = lop3 is shown. This is a pure Euler 
merger. Note that long thin vorticity filaments are shed as the two vortices coalesce 
to form a single vortex. Compare this with the merger at 6 = 0 but y = 1,  shown in 
figure 16. The overall qualitative behaviour is not dissimilar, with the exception that 
for y = 1, the vorticity in the filaments ‘rolls up’ into small pools. Thus, in contrast 
to the Euler case, the final state is really composed of three vortices instead of a 
vortex surrounded by filaments. 

This roll-up behaviour, as distinct from the continual elongation of the filaments 
present in the Euler case, is probably related t o  a similar phenomenon observed by 
Juckes & McIntyre (1987) in high-resolution one-layer spectral simulations of the 
polar vortex. A qualitatively similar result has also recently been obtained by 
Williams & Wilson (1988) in their finite-difference simulation of Jovian vortices (cf. 
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FIGURE 15. Merger of two initially circular regions of equal potential vorticity for S = 0 
and y = 0.001. The initial distance d, = 2.2. 
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FIGURE 16. Merger of two initially circular regions of equal potential vorticity for S = 0 
and y = 1 .  The initial distance d, = 2.2. 

in particular their figure 7).  Although their system is not quasi-geostrophic (they 
solved the full shallow-water equations with one layer), their parameter ranges are 
such that geostrophy is the prevailing balance in the flow. 

Maintaining 6 = 0 we show the case y = 3 in figure 17. Observe how drastically 
different the behaviour is a t  this higher value of y. In this case no filaments are 
formed and the vorticity does not axisymmetrize. This is undoubtedly a result of the 
fact that the Green function has no logarithmic component (this is the equivalent 
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FIGURE 17. Merger of two initially circular regions of equal potential vorticity for 8 = 0 
and y = 3. The initial distance d, = 2.2. 
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FIQURE 18. Merger of two initially circular regions of equal potential vorticity for 8 = 0 
and y = 5. The initial distance d, = 2.2. 

FIGURE 19. Merger of two initially circular regions of equal potential vorticity for 6 = 0.2 
and y = 5. The initial distance d, = 2.2. 

barotropic case S = 0). For computational purposes a ‘surgery’ was practiced on the 
contours at t = 26 ; the common portion of the contours that were sliding along each 
other was removed, and after the surgery only one contour is left. The surgery has 
no effect on the qualitative behaviour of the evolution (we have verified this by doing 
the surgery a t  slightly different times and comparing the results). 

The same non-axisymmetrizing behaviour can be observed in figure 18 for y = 5 
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(and still 6 = 0). Here again no filaments of vorticity are shed and instead large- 
amplitude non-breaking nonlinear waves are seen to propagate on the boundary of 
the vortex. Note that the overall rotation of the vortex is extremely small when 
compared with the Euler case, and this is a direct consequence of the fact that for 
a K O  Green function at large y most of the vortex interaction is very local. This is 
most apparent a t  the beginning of the merger, when only the portions of the vortices 
that are close enough to feel the influence of the other vortex undergo any 
deformation. A surgery was performed in this run at t = 24. 

We mention that D. G. Dritschel (private communication) has recently performed 
much higher resolution contour-surgical computations with the equivalent baro- 
tropic model, and confirmed the suppression of filamentation a t  large scales (i.e. 
comparable with the radius of deformation). This suppression can also be understood 
from an analysis of the stagnation points of the corotating stream function (Polvani, 
Flierl t Zabusky 19SSb). 

Finally, the merger for d, = 2.2, y = 5 but S = 0.2 is shown in figure 19. Sotice 
what a dramatic difference the presence of a finite (even if deep) lower layer makes. 
When S + 0 the presence of the KO Green function is only felt a t  small distances and 
manifests itself in the roll-up of vorticity in the filaments, but the gross features of the 
cvolution are dominated by the logarithmic component of the Green function. 

7. Merger and doubly connected rotating V-states 
We conclude this investigation of the upper-layer dynamics of the two-layer model 

by showing that the shapes of the critical merger curves as functions of the radius of 
deformation (cf. figures 12, 13 and 14) are intimately related to the existence and 
stability of corotating vortex-pair equilibria, which we designate hereafter with the 
term ‘doubly connected upper-layer rotating V-states ’, illustrated schematically in 
figure 20. 

These V-states are composed of two identical vortices in the upper layer, with 
equal and constant geostrophic potential vorticity, rotating around their common 
centroid with constant angular velocity and without change in shape. The only 
parameter needed to describe them is v = xA/xB(O < v < l),  the ratio of the inner to 
outer radius of each vortex (see figure 20). For each value of v one can calculate, from 
the shape of the V-state, the distance between the centroids of the two vortices and 
an equivalent radius for each vortex (defined as the square-root of the area divided 
by 7c). The ratio, d,, of these two quantities is then a function of v, y and S. 

Consider how the shapes of the vortices evolve as v is varied from 1 to 0 keeping 
the properties of the two-layer model unchanged (i.e. at fixed y and 6). For v near 1 
the vortices are nearly circular?, and the ratio of their distance to their radius, d,, 
is very large. As v is decreased the vortices must become more elliptical to resist each 
other’s shear and remain in equilibrium, and d, decreases as Y does. The last 
equilibrium to be found is the one a t  v = 0 when the two vortices are actually 
touching at  one point; this is commonly referred to as the ‘limiting’ V-state (Wu 
et aZ. 1984). 

The point of interest is that for the limiting V-state the value of d, is finite, and 
assumes the minimum value of all v. In  two dimensions, Saffman & Szeto (1980) 
showed how the limiting value of d, (approximately 3.16) is, in fact, extremely close 
to the critical distance for circular merger (approximately 3.3). The interpretation of 

t This was proven analytically by Dritschel (1985) for the two-dimensional Euler equations 
(Y = 0). 
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FIGURE 20. Schematic drawing of the geostrophic potential vorticity distribution in the upper 
layer for a doubly connected rotating V-state. 

FIGURE 21. Doubly connected upper-layer V-states for S = 1, y = 1 and several values of v.  As 
v + 0 the shape becomes more elongated. Some geometrical properties are given in table 1 .  

this result is that  the initial condition of a merger experiment can be considered to 
be a perturbation of a doubly connected rotating V-state, if one exists, around that 
value of d,. If none exists (or one does but is unstable) merger occurs; otherwise, the 
vortices pulsate and rotate around each other, oscillating around the underlying 
stable stationary V-state. The fact that, for the two-dimensional Euler equations, 
the limiting value of d ,  is close to the critical merger distance suggests that most 
doubly connected Euler V-states are actually stable, with the exception of the few 
‘cuspy’ ones near v = 0 (in the linear analysis of Dritschel 1985 instability appears 
for v < 0.083). 

We now generalize the idea of Saffman &, Szeto to the two-layer geostrophic model, 
and show that the results of $5  are strongly related to the existence of doubly 
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V 

0.500 
0.300 
0.200 
0.100 
0.050 
0.020 
0.010 
0.005 
0.002 
0.001 

TABLE 1. 

a dv R X Area 

0.01669 6.151 0.244 0.751 0.187 
0.041 75 4.023 0.325 0.653 0.331 
0.05928 3.458 0.352 0.608 0.388 
0.075 72 3.160 0.360 0.569 0.408 
0.08024 3.125 0.356 0.557 0.399 
0.08078 3.140 0.353 0.554 0.391 
0.08064 3.146 0.352 0.554 0.390 
0.080 57 3.148 0.352 0.554 0.389 
0.08053 3.149 0.352 0.554 0.389 
0.08053 3.149 0.352 0.554 0.389 

Some properties of doubly connected upper-layer V-states for y = 1, S = 1. 

FIGUEE 22. As in figure 21 but for y = 10. Notice that, in general, the shapes are less elongated 
than at lower y .  Properties are given in table 2. 

V 52 d" R X Area 

0.300 
0.200 
0.100 
0.050 
0.020 
0.010 
0.005 
0.002 
0.001 

0.00001 
0.00007 
0.00046 
0.000 92 
0.001 17 
0.001 21 
0.001 21 
0.001 20 
0.001 20 

3.721 
3.034 
2.666 
2.713 
2.819 
2.848 
2.856 
2.857 
2.857 

0.349 
0.396 
0.420 
0.406 
0.392 
0.389 
0.389 
0.389 
0.389 

0.650 
0.601 
0.560 
0.551 
0.553 
0.555 
0.555 
0.555 
0.555 

0.383 
0.493 
0.555 
0.519 
0.484 
0.477 
0.475 
0.475 
0.475 

TABLE 2. Some properties of doubly connected upper-layer V-states for y = 10, S = 0. 
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FIGURE 23. The limiting value of d, versus y-’ for 6 = 1 ,  0.2 and 0. The dots and crosses (no 
merger and merger) are the results of the initial-value problems described in $5. 
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connected upper-layer rotating V-states. These were calculated using appropriate 
modifications of the same algorithm with which the V-states of $03 and 4 were 
obtained. For further details on how we handled the very high curvatures that 
appear as the limiting V-state is approached, refer to Polvani (1988). 

As a first example we show in figure 21, a sequence of V-states a t  y = 1 and 6 = 1 
for several values of v. A few of their properties are given in table 1, including the 
angular velocity 52, the area, the equivalent radius and the centroid location (Z) of 
each vortex, and the ratio d ,  of the intercentroid distance to  the equivalent radius. 
A second example (figure 22) shows the family of doubly-connected equivalent 
barotropic (6 = 0) rotating V-states a t  y = 10 (see table 2 for properties of these 
V-states). 

Since our main objective is to  relate the existence of these V-states to the merger 
problem, we have concentrated our attention on the limiting V-states. I n  figures 23 (a ) ,  
23 ( b )  and 23 (c) we present the curves for the limiting value of d, versus y-’ for the 
three values 6 = 1.0, 0.2 and 0, respectivelyt (we have plotted on those figures the 
results of the initial-value experiments given in $ 5 ) .  

Notice how good the qualitative and quantitative agreement is, although, 
unfortunately, to reduce the computational task, we have had to use a rather coarse 
grid for the initial-value problems. For the case of equal layers (8 = 1 )  the limiting 
value of d, lies between 3.11 and 3.19 over the entire y-range, and is entirely 
contained within a single grid spacing in d,. For 6 = 0.2 the limiting value of d, varies 
between 3.0 and 3.2, which agrees well with the range of variation of the critical 
merger distance. Moreover the location of the minimum in y (see figure 23b) ,  which 
occurs near y = 0.6, is in good agreement with the coarse result of the initial-value 
computations. 

In general, as for the Euler (y = 0) case, the limiting value of d, is smaller than the 
critical merger distance and this is easily understood as the consequence of the 
probable instability of the cuspy near-limiting V-states. 

In  conclusion we would like to  restate in a different, and perhaps more illuminating 
way, what we believe to be the fundamental reason for the existence of a critical 
distance in the merger problem : when two vortices are sufficiently separated they fail 
to merge because of the presence ‘in the vicinity ’ (in the phase space of the system 
with a proper measure) of a stationary and stable configuration of vorticity that acts 
as an attractor for the vorticity field, preventing the collapse of the two vortices into 
a single one. The collapse inevitably occurs when the initial condition is ‘far’ from 
any stable doubly connected stationary state ; in that  case a single vortex constitutes 
the ‘nearest ’ equilibrium and merger occurs. We shall show, in the second paper, how 
this idea generalizes to the problem of alignment of two vortices in different layers. 

8. Conclusion 
Three main results have emerged from the study of the V-states and merger in the 

upper layer of a two-layer quasi-geostrophic system. The first is that the upper-layer 
dynamics in the presence of a lower layer containing no geostrophic potential 
vorticity is remarkably similar to  two-dimensional inviscid Euler dynamics. Second, 
we have shown that the critical distances for merger of two vortices in the upper 
layer are very closely related to the existence and geometrical properties of 

t Before plotting, the values of d, and y need to be rescaled to obtain the corresponding values 
for vortices of area ‘IC (recall that the merger experiments were conducted with circular vortices of 
radius 1). 
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equilibrium corotating vortex pairs in the parameter space spanned by the radius of 
deformation ( y ) ,  the ratio of the two layers at rest (6) and the initial intercentroid 
distance (dc) .  

The third conclusion concerns the singular nature of the equivalent barotropic 
model. We have shown that the dynamics of motions on scales of a few times the 
radius .of deformation are qualitatively very different from those of a two-layer 
system with a finite, even if very deep, lower layer with constant potential vorticity. 
I n  particular, the process of filamentation was found to be greatly suppressed (at 
least on scales comparable with the radius of deformation), and thus axisym- 
metrization almost totally inhibited. 

In  this study the geostrophic potential vorticity was confined to the upper layer 
alone. In the next paper we shall consider the dynamics of the same two-layer system 
with geostrophic potential vorticity present in both layers. I n  particular we shall 
present the phenomenology of the alignment problem, and show that, analogously to 
what was presented here for the merger problem, i t  can be related to the existence 
of two-layer corotating vortex equilibria. 

This work was started a t  the Woods Hole Geophysical Fluid Dynamics Summer 
Program during the Summer of 1986. The authors wish to thank Mr A. Maffei for his 
generous donation of computing facilities during the initial phases of this work, and 
acknowledge the contribution of Dr E. A. Overman for portions of the contour- 
dynamics algorithm used in this study. The high-resolution computations were 
performed on the Cray-1 computer of the National Center for Atmospheric Research, 
which is supported by the National Science Foundation. 

Appendix 
Consider a front that  separates the plane into two regions of constant potential 

vorticity as shown in figure 24. The front is located at y = L(x, t ) .  In  the equivalent 
barotropic formulation the dimensional stream function $(x, y ,  t )  must satisfy 

1 Vz@+---@+ = kQo for y >< L, 
- L; - 

where L, is the radius of deformation. The boundary conditions at y = L are as 
follows : 

$+ = $-, V$+*ii = V$-.ii (A 2) 

where f i  is the unit normal a t  the front, and the kinematic condition 

v(x ,  L,  t )  = a, L + u(x,  L,  t )  a, L,  (A 3) 

where the velocities u and v are defined in terms of the stream function by 

u = -ay$, v = ax$. 
First change variables from (2, y , t )  to (x,q,t), where 7 is defined by 

7 = y-L(x, t ) .  

I n  the new coordinate system the vorticity equation (A 1 )  becomes 

and the kinematic boundary condition simplifies to 

L, = $, a t  7 = O .  
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FIGURE 24. Sketch of a potential vorticity front in the equivalent barotropic model. 

Equations (A 4) and (A 5 )  are dimensional. Next non-dimensionalize as follows: 

L , z  = 0(9), 7 = O(L,), + = O(Q&), t = 0 - (AJ 
and obtain the non-dimensional vorticity equation : 

[ ( i + ~ ~ ) a ~ - i ] + ~ - ~ [ 2 ~ ~ a , a , + ~ , , a , ] ~ ~ + ~ ~ ~ [ a ~ ~ ~ . ,  = + I  for 7 so, ( ~ 6 )  

€ 3 , ~  =a,+. (A 7) 

and the non-dimensional kinematic boundary condition 

In (A 6) and (A 7) all the variables are non-dimensional and the only parameter that 
appears is 

Consider now the case E 4 1 (i.e. the large-y limit). Write + as an asymptotic series: 

$* = !P* +€#, +0(€2). (A 8) 

Substituting (A 8) into (A 6) and (A 7) and collecting like powers of E one obtains a 
sequence of problems. At lowest order one has 

[(l+L;)a;-l]YY, = + 1  for 7 3 0  (A 9) 

Y+ = Y-, a,t+ = 3 , ~ -  at 7 = 0. (A 10) 

together with the boundary conditions 

System (A 9) and (A 10) is easily solved to yield 

Y, = T(l-ers?) for 7 8 0 

where s is defined by 8-2 = 1 + g .  

At  next order the following problem emerges: 

[(l+L;)a;-l]$, = 2L, !P,,,+L,, Y*,, for 7 >< 0, (A 1 1 )  

$+ = $-, a7$+ = "9- at 7 = 0, (A 12) 

and #,= L, at 7 = O .  (A 13) 

together with conditions 

The solution of (A 11) and (A 12) is straightforward, and, after substituting it into 
(A 13) yields the equivalent barotropic long-wave equation 
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