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ABSTRACT

Solutions of the dry, adiabatic, primitive equations are computed, for the first time, to numerical convergence.
These solutions consist of the short-time evolution of a slightly perturbed, baroclinically unstable, midlatitude
jet, initially similar to the archetypal LC1 case of Thorncroft et al. The solutions are computed with two distinct
numerical schemes to demonstrate that they are not dependent on the method used to obtain them.

These solutions are used to propose a new test case for dynamical cores of atmospheric general circulation
models. Instantaneous horizontal and vertical cross sections of vorticity and vertical velocity after 12 days,
together with tables of key diagnostic quantities derived from the new solutions, are offered as reproducible
benchmarks. Unlike the Held and Suarez benchmark, the partial differential equations and the initial conditions
are here completely specified, and the new test case requires only 12 days of integration, involves no spatial or
temporal averaging, and does not call for physical parameterizations to be added to the dynamical core itself.

1. Introduction

The development of atmospheric general circulation
models (AGCMs) is an important task among the current
efforts to understand and predict the climate. At the
heart of every AGCM is the so-called dynamical core,
the component of the model that deals with the nu-
merical solution of the dry, adiabatic, primitive equa-
tions. While in many ways a much simpler task than
the design of other model components, the search for
ever more efficient numerical solvers for the primitive
equations is an important area of research, often neces-
sitated by the continual evolution of computer archi-
tectures.

In order to build new reliable dynamical cores and
quantitatively evaluate their accuracy, it is important to
test their solutions against known ones. The first step
in this direction was taken by Williamson et al. (1992,
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hereafter W92), who proposed a set of ‘‘standard tests’’
for the shallow-water equations in spherical geometry.
While useful in their own right, the tests in the W92
set present three major limitations. First, they cannot be
used to validate AGCM dynamical cores directly, since
the shallow-water equations lack the dependence on a
vertical coordinate. Second, most of the flows in the
W92 tests are unrealistically simple compared to the
kind of flows that need to be computed with typical
AGCMs. Third, and most importantly, in recent years
it has been shown that the most dynamically interesting
tests in W92 (tests 5 and 6) are in fact very difficult to
compute accurately; this severely limits their practical
utility. For a more complete discussion, see Galewsky
et al. (2004).

A second important step in the development of test
cases for dynamical cores was the proposal of Held and
Suarez (1994, hereafter HS94). They suggested adding
analytically specified parameterizations of two simple
physical processes (Newtonian relaxation and surface
drag) to a dynamical core, and then comparing the time-
mean, zonally averaged wind and temperature fields that
result from a 1000-day integration. The averaging over
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such a long integration period is dictated by the desire
to evaluate the long-term statistics of the computed cir-
culation, an important objective for any AGCM. Al-
though extremely idealized, the HS94 system is capable
of reproducing key features of the tropospheric circu-
lation and hence provides a realistic benchmark for the
comparison of dynamical cores.

One drawback of the HS94 test case is that the quan-
tities to be compared involve both temporal and spatial
averaging. One important application of dynamical core
test cases is the debugging of new cores, and it is easy
to imagine how subtle programming errors might be
masked by the temporal and spatial averaging. Another
drawback of the HS94 test case is that the authors did
not show actual numerical convergence of their solu-
tions, although this issue has been partially addressed
by Boer and Dennis (1997). A final minor drawback of
the HS94 test case is the fact that new physical param-
eterizations need to be added to the dynamical core
itself; ideally, one would want to test an AGCM dy-
namical core by simply switching off all physics with
a flag, and then integrating the dry, adiabatic, primitive
equations from a given initial condition, without the
need to add more code.

In order to address these shortcomings, we here pro-
pose a new test case that involves a short integration of
the unforced primitive equations, and we accurately
compute the solutions to be used as benchmarks. Unlike
the HS94 test case, the new test case is a simple initial
value problem and consists of solving a precisely spec-
ified set of equations (the primitive equations), with an
analytically specified initial condition (a baroclinically
unstable midlatitude jet), for a period of 12 days fol-
lowing a small initial perturbation. In order to construct
benchmark solutions, we compute the evolution of the
flow to numerical convergence. To the best of our
knowledge, this is the first set of published solutions of
the time-dependent, atmospheric, primitive equations in
spherical coordinates for which numerical convergence
has been attempted or achieved. Furthermore, we com-
pute solutions with two completely distinct numerical
schemes, thereby demonstrating that the solution to the
new test case is model independent and should thus be
reproducible with any future scheme. We provide both
snapshots of the actual fields, plots of key norms, and
tables of a few diagnostic quantities as references
against which solutions from future dynamical cores
may be contrasted.

From this it should be clear that the philosophy of
the new test case presented here is fundamentally dif-
ferent from the one originally proposed by HS94 and
common to most ‘‘model intercomparison’’ tests. In
those, the goal is to set up different models so as to
compute similar (if not identical) physical evolutions,
and then compare the output of the different models
with one another. For such tests, no unique or exact
solution is known or believed to exist, and the exercise
consists in contrasting the features produced by the dif-

ferent models, presumably in an effort to determine
which ones ‘‘do better’’ than the others.

However, for the development, debugging, and testing
of dynamical cores, we suggest that the emphasis be
placed on the mathematics and not the physics. To the
degree that an identical set of partial differential equa-
tions is agreed upon (e.g., the primitive equations), and
that identical initial and boundary conditions are used,
any consistent numerical scheme ought to produce the
same numerically converged solution. This is the pur-
pose of the present paper: to provide one such solution
to assist in the testing of future dynamical cores. We
view this test as complementary to the HS94 bench-
mark. In practice, we envisage our new test case being
performed first, to ensure that a newly developed core
is able to reproduce known solutions to within agreed
tolerances over short-time integration periods; once this
test is successfully passed, an HS94 integration can be
performed to ascertain the long-time statistics of the
model.

The paper is organized as follows. In the next section
we carefully describe the differential equations and the
initial conditions to be used for the new test case. In
section 3 we present the evolution of the flow over a
12-day period of integration, computed with a familiar
pseudospectral model, and demonstrate how numerical
convergence is achieved. In section 4, we compute so-
lutions to the same problem with a different numerical
model, based on the spectral-element method, and show
that the numerically converged solutions thus obtained
are identical to those obtained with the pseudospectral
model (up to a certain number of digits). In section 5,
we discuss the effect of hyperdiffusion on the solutions,
stressing the fact that identical differential equations
must be integrated if one is attempting to reproduce the
solutions presented here. We conclude with a summary
of how our solutions can be used as a new test case,
followed by a brief discussion.

2. Test case specifications

In this section we describe in detail the differential
equations and initial conditions to be used for the new
test case. It is important to note that, unlike the HS94
test case, we are aiming for complete reproducibility
here. Hence, we stress that the specifications in this
section need to be followed exactly if one is attempting
to reproduce the solutions presented in the next section.

a. The model equations

In order for this test to be of practical applicability
to the greatest number of atmospheric models, the dif-
ferential equations to be integrated were chosen to be
the dry, adiabatic, primitive equations in spherical co-
ordinates, as these are at the heart of the vast majority
of present-day AGCMs. For simplicity, we confine our
attention here to the case in which s is used as the
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FIG. 1. The initial zonal wind from (5) with contour intervals of
5 m s21 and the balanced potential temperature from (10) with contour
intervals of 5 K (the dashed line is the 300-K surface). The dash–
dotted lines are the zonal winds from Thorncroft et al. (1993).

vertical coordinate. We recognize that the majority of
comprehensive AGCMs use a hybrid vertical coordinate
(i.e., one involving both s and pressure); in that case,
setting the pressure coefficients to zero would be an
easy way of reproducing the solutions presented below.

Although these differential equations are well known,
we reproduce them here for the sake of clarity, repro-
ducibility, and completeness. The horizontal velocity
field u 5 (u, y), the temperature T, and the surface
pressure ps, satisfy the following four prognostic equa-
tions:

du RT
21 f k 3 u 1 =F 1 =p 5 n¹ usdt ps

dT kT
22 v 5 n¹ T

dt sps

1]p
1 = · (p u) ds 5 0, (1)E s]t 0

where = contains only the horizontal derivatives, s [
p/ps, the intermediate variables F and v (the geopoten-
tial and pressure vertical velocity) are computed diag-
nostically from the definitions

s

F 5 2R T d(lns9) and (2)E
1

s

v 5 su · =p 2 = · (p u) ds9, (3)s E s

0

and the material derivative is defined by

d ] ]
5 1 u · = 1 ṡ . (4)

dt ]t ]s

Our notation is completely standard and, for further de-
tails, the reader is referred to Durran (1999), where these
expressions are derived.

For this set of equations, the appropriate boundary
conditions are 5 0 at s 5 1 (the ground) and at sṡ
5 0 (the ‘‘top’’ of the atmosphere). Note that we have
explicitly included diffusive terms on the right-hand
side of the momentum and temperature equations in (1).
An explanation for the need to include these terms is
given in section 2c below.

b. The initial conditions

In order to meaningfully test an atmospheric dynam-
ical core, it seems reasonable to require that it be able
to compute the short-time evolution of a nontrivial ini-
tial condition, that is, one that represents a physical
event of importance for the atmospheric circulation. We
could think of no more obvious choice than the for-
mation of synoptic-scale eddies via baroclinic instabil-
ity. As such eddies are well known to play an essential
role in the circulation of the atmosphere, it would seem

that any decent dynamical core ought to be able to ac-
curately compute their development.

The initial conditions for the new test case thus con-
sist of a simple zonal flow, representing a typical mid-
latitude tropospheric jet, to which a small perturbation
is added to induce the development of baroclinic insta-
bility. Both the basic flow and the initial perturbation
are analytically specified, allowing the complete initial
condition to be reproducible in testing future dynamical
cores.

The basic flow, illustrated in Fig. 1, is constructed to
be similar to the one used in the study of Thorncroft et
al. (1993). This is easily accomplished by letting the
zonal velocity u be a simple product of a function of
latitude (f) and a function of pressure (p)

3 2u sin (pm )F(z) for f . 00u(f, p) 5 (5)50 for f , 0,

where m [ sinf, z [ 2H log(p/p0), and the vertical
structure F(z) is taken to be of the form

1 z 2 z pz03F(z) 5 1 2 tanh sin . (6)1 2 1 2[ ]2 Dz z0 1

With the numerical values of the parameters u0, z0, Dz0,
z1, H, and p0 given in Table 1, the above expressions
reproduce a zonal wind field that, below 200 hPa, is
nearly identical to the one labeled LC1 in Thorncroft
et al. (1993), as can be seen in Fig. 1. Of course, we
set the meridional velocity y 5 0.

The temperature T is initialized by combining the
meridional momentum equation,
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TABLE 1. Numerical values of the parameters to be used for the
new test case.

Parameter Value Units

g
a
V
R
k
cp

9.806
6.371 3 106

7.292 3 1025

287
2/7
R/k

m s22

m
1 s21

J kg21 K21

J kg21 K21

p0

H
u0

z0

Dz0

z1

105

7.34
50
22

5
30

Pa
km
m s21

km
km
km

T̂
l0

f0

a
b
n

1
0

p /4
1/3
1/6

7.0 3 105

K
radians
radians

m2 s21

]F
(af 1 u tanf)u 5 2 , (7)

]f

and the hydrostatic balance relation (equivalent to 2),

]F R
5 T, (8)

]z H

to obtain

]T ]u
215 2HR (af 1 2u tanf) , (9)

]f ]z

where f 5 2V sinf. Again, the precise numerical values
of R, a, and V are given in the Table 1. Meridional
integration of this equation yields the expression for the
initial temperature

f ]T(f9, z)
T(f, z) 5 df9 1 T (z). (10)E 0]f9

The constant of integration T0(z) is chosen so that, at
each level z, the global average of T(f, z) is identical
to TUS(z), the U.S. Standard Atmosphere, 1976 (COESA
1976) temperature. For easy reference, and to ensure
reproducibility, we explicitly list in the appendix the
numerical parameters that are needed to compute TUS(z).
Finally, since the initial winds in (5) are identically zero
at the ground, no surface geopotential needs to be spec-
ified to balance the initial condition.

The initial, unperturbed temperature profile resulting
from (10) is shown in Fig. 1. To construct it, the de-
rivative on the right-hand side of (9) is worked out
analytically, and thus the integrand in (10) is evaluated
exactly. Only the latitudinal integral needs to be per-
formed numerically, but this can be done very accu-
rately. We have used Gaussian quadrature, and have
found that a mere 100 Gauss–Legendre points for the
integral in (10) are sufficient to produce an initial bal-
anced T that is accurate to machine precision.

Because our initial zonal winds are very flat near the
equator [u(f) } f6 for 0 , f K 1], as demonstrated
by the nearly horizontal isentropes, the initial condition
in Fig. 1 is stable with respect to symmetric instability.
Furthermore, we have computed local Richardson num-
bers for our initial flow, and they are everywhere much
larger than 1/4; this indicates that it is also stable to
Kelvin–Helmholtz instabilities. Finally, we have
checked that N 2 is everywhere positive, and thus the
flow is stable to dry convective instability as well. Of
course, our initial condition is baroclinically unstable:
this is precisely what we are trying to set up.

In order to initiate the baroclinic instability, the zonal
flow just described is perturbed by adding to the basic
temperature profile a function T9 in the form of a lo-
calized bump, centered in the midlatitudes and on the
Greenwich meridian, specifically

l 2 l f 2 f0 02 2ˆT9(l, f) 5 T sech sech1 2 1 2a b

for 2p , l , p, (11)

where l is longitude. Using an amplitude T̂ 5 1 K, this
perturbation is applied identically at all pressure levels
(the numerical values of the other parameters are given
in Table 1). Note that we have not followed Thorncroft
et al. (1993) who perturbed the flow with the most un-
stable linear mode; this procedure requires the cum-
bersome computation of the linear modes, which is sure-
ly something one would like to avoid unless necessary.
Also, we have refrained from perturbing the flow with
a single (or a couple) of zonal wavenumbers, such as
m 5 5 or 6; while this is often done in the context of
spectral models, it is not as natural for finite-difference
or other spatial discretizations, and we have tried to
avoid an initial condition that might bias or skew the
solution in favor of a particular scheme.

The specification of the initial condition is completed
by the choice of a uniform initial surface pressure ps 5
p0.

c. The need for explicit diffusion

Having discussed the physical characteristics of the
initial condition, we now return to discussing the need
for the explicit diffusion terms in (1). It is well known
that the initial conditions we have chosen lead to the
development of sharp fronts over short periods of time
(i.e., on the order of days). While we are aware of no
formal proof, for all practical purposes the solution of
the inviscid equations develop features that look like
finite-time singularities. Therefore one cannot compute
the solution of inviscid equations for very long given
our initial condition.

It may be argued that the formation of fronts, inas-
much as it precludes the integration of inviscid equa-
tions, disqualifies the initial condition we have chosen.
However, we contend that our choice of initial condition
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is, in fact, extremely relevant to climate modeling. First,
baroclinic eddies are primary agents of temperature and
momentum transport in the atmosphere; hence one
would like to make sure that a given AGCM is able to
compute them accurately. Second, the formation of steep
horizontal gradients is one of the distinguishing features
of high Reynolds number, nearly two-dimensional
flows, such as large-scale atmospheric flows. Hence our
choice of initial condition is highly realistic and of im-
mediate practical interest for atmospheric modeling.

The choice of a simple diffusive operator to dissipate
subgrid-scale processes is dictated, mainly, by the fact
that it is easy to implement with most numerical
schemes. In principle, other forms of diffusion could
have been chosen, but most are specialized to specific
schemes, or difficult to implement in general. For in-
stance, ¹2n hyperdiffusion (with n 5 2 or n 5 3) acting
on the vorticity/divergence equations is popular with
spectral models, but it is very difficult to implement
with finite-difference or spectral-element schemes for
which the horizontal velocity is the prognostic variable.
In section 5 we demonstrate how the choice of diffusion
has a profound effect on the solutions. For the moment
we simply caution the reader that, if the numerical model
being tested does not solve the primitive equations with
the diffusion terms exactly as specified in (1), it is un-
likely that the computed solutions will reproduce the
ones presented in this paper.

Before presenting the actual solutions, a word is need-
ed as to the choice of the diffusion coefficient n. In
atmospheric modeling studies, it is customary to choose
the value of n to be as small as possible for a given
horizontal resolution, and to progressively decrease that
value as the resolution is increased. This is, for instance,
the procedure adopted by Boer and Denis (1997). In the
present context, however, we are trying to demonstrate
the convergence of our numerical solutions for a specific
set of partial differential equations. If the value of n
were changed as the resolution was increased, we would
effectively be changing the equations themselves, and
hence would not expect convergence. In other words,
if we were to decrease n with increasing resolution, we
would be trying to converge to the solution of the in-
viscid equations. As already argued, such solutions are
likely to be singular, and thus not a good choice for a
test case. Hence we need to keep the value of n fixed
as the resolution is increased. For the new test case, we
have used the value 7.0 3 105 m2 s21.

A final caveat: before computing the evolution of the
flow, it is essential that the dynamical core be rid of all
fudges (e.g., filters, fixers, smoothers, etc.) that are com-
monly found in AGCMs and not always explicitly doc-
umented. While these may be necessary for climate
modeling, the inclusion of such procedures clearly
amounts to solving different sets of equations than the
ones specified here, and will thus likely lead to different
results.

3. Numerically converged solutions

Having described how the new test case is to be set
up, we now discuss how we have obtained numerically
converged solutions. All the results in this section were
computed using the Geophysical Fluid Dynamics Lab-
oratory Flexible Modelling System (FMS) Spectral Dy-
namical Core (using the ‘‘Galway’’ release version),
hereafter referred to as GFDL-SDC. In a nutshell,
GFDL-SDC solves the primitive equations in s coor-
dinates, using a pseudospectral transform method in the
horizontal, a Simmons–Burridge finite-difference meth-
od in the vertical, and a Robert–Asselin filtered semi-
implicit Crank–Nicholson/leapfrog scheme for time in-
tegration. These techniques are completely standard.

The evolution of the temperature field at the surface,1

for the first 12 days,2 is illustrated in Fig. 2. While this
figure was constructed from a calculation using 20 ver-
tical levels (equally spaced in s), a horizontal trape-
zoidal truncation at wavenumber 341 (commonly de-
noted as a ‘‘T341L20’’) and a time step of 150 s, we
submit that it represents the numerically converged so-
lution of (1), in the sense that this figure will not change
(a) if the vertical, horizontal, or temporal discretizations
are further refined, and (b) if it is computed with a
different numerical scheme at sufficient resolution. We
next demonstrate the first fact. The second one is dis-
cussed in the following section.

First, let us consider the horizontal resolution. In or-
der to show that the solution in Fig. 2 is numerically
converged, we plot in Fig. 3 a canonical quantity, the
‘‘eddy kinetic energy’’ (EKE) as a function of time, for
five different horizontal resolutions: T21, T42, T85,
T170, and T341, all with 20 vertical levels. The time
steps used for these computations are 2400, 1200, 600,
300, and 150 s, respectively. Following Thorncroft et
al. (1993), EKE is defined as follows:

1 1
2 2EKE(t) 5 [(u 2 u) 1 (y 2 y ) ]r dV, (12)E24pa 2

where r is the density, overbars denote zonal averages,
and the volume integral is taken over the entire atmo-
sphere. The fact that all the curves are basically super-
imposed might suggest that even a very low T21 res-
olution might be enough to compute accurate solutions.
This, however, is not the case, as illustrated next.

1 We use the term ‘‘surface’’ to indicate s 5 0.975, which is very
nearly the value of s at our lowest model level for a 20-level cal-
culation. Since we are using a Simmons–Burridge (1981) scheme,
the model levels sk are located at values logsk 5 (sk11/2 logsk11/2 2
sk21/2 logsk21/2)/(sk11/2 2 sk21/2) 2 1, where sk11/2 are the level in-
terfaces. Thus, for a 20-level model, with levels of equal s thickness,
the lowest model level is located at s 5 exp[20.95 log(0.95)/.05 2
1] ø 0.974893147. . . To avoid inflicting cruel and unusual punish-
ment onto those wishing to reproduce our results, we extrapolate the
fields onto s 5 0.975 using a linear extrapolation.

2 At the behest of a concerned reviewer of the original manuscript,
we add that we are using here the solar definition of day (i.e., 1 day
5 86 400 s) as opposed to the sidereal definition.
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FIG. 2. The evolution from (a) day 4 to (e) day 12 of surface (s
5 0.975) temperature. The contour interval is 2.5 K. This solution
was computed with GFDL-SDC at T341L20 resolution.

FIG. 3. The time evolution of EKE, as defined in (12), for five
calculations of the GFDL-SDC, with 20 vertical levels and increasing
horizontal resolution.

In Fig. 4, the surface vorticity z at day 12 is plotted
for the five resolutions from T21 to T341. At T42 z is
still rather noisy, while at T85 it is nearly indistinguish-
able from the one at T170. One may thus consider the
T85 solution as numerically converged for most—if not
all—practical purposes. It should also be clear that there
is nothing general about the fact that convergence is here
achieved around T85. This value is only applicable to
this test case and is a direct consequence of our choice
of initial condition and of the value of the diffusivity n.

Finally, contrasting Figs. 4 and 3, one may correctly
conclude that EKE is a highly inappropriate indicator

of numerical convergence. Ideally, one would like to
construct error norms that are able to bring out differ-
ences that the eye is not able to detect from a contour
plot. In the case of EKE, precisely the reverse occurs:
the EKE suggests convergence while the contour plots
tell the opposite story. This implies that more careful
measures are needed to establish numerical conver-
gence.

To this end we have computed several norms relating
to the vorticity field. We wish to stress that z is not a
differentiated quantity, but one of the prognostic vari-
ables in the GFDL-SDC [as well as in the Community
Climate Model Version 3 (CCM3) and many other mod-
els]. It is the prognostic variables themselves that need
to be looked at in order to establish numerical conver-
gence, and not smoother integrated quantities (e.g., the
geopotential) as is often done. Since both T and ps are
relatively smooth fields, we concentrate on z as a sen-
sitive test of convergence (the divergence d and the
closely related vertical velocity v are discussed below).

In Fig. 5a, we show the L2 norm of z at the surface
(s 5 0.975). This norm is defined as follows:

p/21
|z | (s, t) [ cosf df2 E5Ï4p 2p/2

1/22p

23 dl[z(l, f, s, t)] (13)E 6
0

and has units of vorticity. Perhaps surprisingly, in view
of Fig. 4, plots of | z | 2 at the surface are qualitatively
similar to those of EKE, in that curves for all five res-



NOVEMBER 2004 2545P O L V A N I E T A L .

FIG. 4. The surface (s 5 0.975) vorticity, at day 12, for five dif-
ferent horizontal resolutions ranging from (a) T21 to (e) T341. Con-
tours from 27.5 to 7.5 3 1025 s21, in steps of 1 3 1025 s21; negative
values are blue, and positive values are red. Results from GFDL-
SDC, with 20 vertical levels.

olutions are superimposed. Again, this suggests that the
averaging involved in the computation of this norm
masks some of the noisy features that are apparent in
the actual plots of the vorticity field.

To apply a more stringent convergence test, we com-
pute the L` norm of z, defined by

| z | (s, t) [ max | z(l, f, s, t) | ,` (14)

(the maximum is over all latitudes and longitudes) and

plot its surface evolution in Fig. 5b. It is clear from this
figure that the T21 and T42 calculations are noticeably
different from their higher-resolution counterparts, as
the contour plots in Fig. 4 attest.

To bring out even more differences among the low-
and high-resolution calculations, it is necessary to com-
pute higher derivatives. This is illustrated in Fig. 5c,
where the L` norm of the gradient of z (more precisely
of its magnitude) is plotted. Note that the T42 values
are quite far from the converged values (even the T85
results are not completely identical to those at higher
resolution). This is perhaps worrisome, given the dy-
namical importance of vorticity gradients for the prop-
agation of Rossby waves (see, e.g., Scott et al. 2004).
Computation of higher and higher derivatives, of course,
will show differences at any resolution; hence we see
little point in carrying this exercise further.

For readers who might be interested in more tradi-
tional measures of convergence, we offer in Fig. 6 the
l2 relative error norm of the differences between the
lower resolutions and the T341 solution. Following Ja-
kob-Chien et al. (1995), we define this as

|z 2 z |T 2l (z) 5 , (15)2 |z |T 2

where the subscript T indicates the T341 solution. In
order to compute the numerator of l2(z) with a maximum
of accuracy, we first compute the Fourier/Legendre co-
efficients of z, then pad the coefficients up to T341 with
zeros, then transform back onto a T341 Gaussian grid,
and finally compute the integral of the difference using
Gaussian quadratures on the T341 grid. It should be
clear from Fig. 6 that our numerical solutions are con-
verging without problems, although the rate of conver-
gence does not appear to be exponential.

In Fig. 7, a log–log plot of l2(z) versus the number
of degrees of freedom (DOFs) at day 12, it can be seen
that the convergence rate with respect to the T341 so-
lution is in fact algebraic. The dotted line has a slope
of 20.955. We suspect that the algebraic convergence
is due to the nature of our initial conditions, that is, the
fact that not all derivatives of u as defined in (5) are
continuous. A more careful choice of initial conditions
would lead to exponential convergence. This, however,
would change the problem definition significantly (and
is left for future work). For the time being, we submit
that Figs. 6 and 7 adequately demonstrate that our nu-
merical solutions are converged with horizontal reso-
lution.

Second, we address the question of vertical resolu-
tion. Surprisingly enough, convergence is more easily
achieved in that case. In dealing with the vertical di-
rection, it will prove useful to monitor a quantity that
one might expect to be more sensitive to vertical dis-
cretization (rather than the vorticity z just discussed).
We have chosen to use the vertical velocity v, defined
in (3), as it is closely related to the divergence. Often
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FIG. 5. Vorticity norms as a function of time, computed for the GFDL-SDC solution in Fig. 4. Each frame shows five calculations of
increasing horizontal resolution, all with 20 vertical levels. The three norms are precisely defined in the text.

FIG. 6. Norm of the difference to the T341 solution, as defined in
(15), computed with GFDL-SDC. All solutions, including the one at
T341, are computed with 20 vertical levels.

FIG. 7. Norm of the difference to the T341 solution, as defined in
(15), at day 12, as a function of the DOFs. The four points correspond,
from left to right, to the T21, T42, T85, and T170 solutions, respec-
tively. The dashed line is a linear fit and has a slope of 20.955.

found to be rather noisy in AGCMs, the values of v
are crucially important to coupling the dynamical core
to many physical processes, for example, convective
parameterizations.

Using the horizontally converged resolution T85, we
have performed five calculations with 10, 20 40, 80,
and 160 levels, respectively. Noting that all the inter-
esting action is concentrated in the midlatitudes, where
the baroclinicity is originally strongest (cf. Fig. 2), we
plot vertical cross sections of v versus longitude at f

5 458N and t 5 12 days. Results3 obtained using the
GFDL-SDC are shown in Fig. 8 for the different number
of levels.

An alternating sequence of updrafts and downdrafts

3 As the Gaussian grid does not contain a point located at precisely
458N, we perform a linear interpolation in latitude to construct the
cross sections of v at 458N, shown in Fig. 8.
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FIG. 8. Vertical cross sections of the vertical velocity v at f 5
458N and t 5 12 days, obtained with the GFDL-SDC at T85 resolution
with (a) 10, (b) 20, (c) 40, (d) 80, and (e) 160 levels. Contours from
20.22 to 0.22 in steps of 0.04 Pa s21. Red indicates upward motion,
and blue indicates downward motion.

FIG. 9. The vertical velocity v, at s 5 0.5, f 5 458N, and t 5
12 days, obtained with the GFDL-SDC at T85. The solid line shows
the values with 160 levels, the dashed line with 10 levels. The curves
for 20, 40, and 80 levels are contained between the two plotted curves
and have been omitted for the sake of clarity.

accompanies the positive and negative centers that de-
velop in the vorticity field. Note that the features are
extremely similar for all calculations, even near the sur-
face. To further bring out the minuteness of the differ-
ences as the number of levels is increased from 10 to
160, we plot the values of v at the specific height s 5
0.5 in Fig. 9. For clarity, only the curves for 10 and
160 levels are shown, as the curves for 20, 40, and 80
levels are contained between these two.

Third, having demonstrated the convergence of our
numerical solution with vertical resolution, we finally

address the question of temporal resolution. To evaluate
this, we have computed T85L20 solutions with time
steps of 600, 300, and 150 s. Plots of the vorticity norms
similar to those in Fig. 5 show that curves for these
three different time steps are totally indistinguishable
from each other. For this reason, we have avoided re-
producing them here. With this last item, we believe to
have convincingly demonstrated that our solutions, ob-
tained with the GFDL-SDC, are numerically converged.

In summary then, solving the primitive equations as
defined in (1), with the initial conditions spelled out in
section 2, our semi-implicit pseudospectral model, with
second-order finite-differences in the vertical, and a sim-
ple leapfrog time step, is able to obtain converged so-
lutions with T85 horizontal resolution (roughly equiv-
alent to a 1.48 grid), 20 vertical levels, and a time step
of 600 s, for this particular value of n. These results
can now be used as a point of comparison with other
numerical schemes.

Finally, to assist modelers trying to reproduce this
test case in the future, we offer in Table 2 a number of
converged numerical values relating to the two key
fields we have discussed, namely, the vorticity at the
surface and pressure vertical velocity at 458N after 12
days of integration. We suggest that future dynamical
cores able to reproduce both the values in this table (to
the two significant digits reported) and to visually match
the converged surface z and v at 458N fields presented
above should be considered to have ‘‘passed’’ the new
test case.
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TABLE 2. Converged numerical values for the solutions to the test
case described in section 3 and figures therein. All values are for
t 5 12 days.

Quantity Value Units

EKE
|z|2 at s 5 0.975
|z|` at s 5 0.975
|¹z|` at s 5 0.975
Max (v) at 458N
Min (v) at 458N

2.4 3 103

7.8 3 1026

7.4 3 1025

3.0 3 10210

1.9 3 1021

21.7 3 1021

J m22

s21

s21

m21 s21

Pa s21

Pa s21

FIG. 10. Black contours: as in Fig. 4, but computed with NCAR-
SEDC at increasing horizontal resolution. Contour levels as in Fig.
4. Colored patches: the GFDL-SDC solution at T341. All solutions
computed with 20 vertical levels.

4. Computational validation of the solutions

Having demonstrated that one numerical scheme (in
this case, the GFDL-SDC) is able to numerically con-
verge as the spatial and temporal discretization is re-
fined, we have at this stage no guarantee this converged
solution is independent of the scheme we have used to
obtain it. To the best of our knowledge, there is no
rigorous general proof that solutions to the primitive
equations exist or that they are unique. However, we
are working under the assumption that all consistent
numerical schemes will converge to an identical nu-
merical solution.

To demonstrate that the converged numerical solution
discussed above is not an artifact of the pseudospectral
model that was used to compute it, we have adopted
the practical expedient of computing a new set of nu-
merical solutions to the identical set of equations and
initial conditions but with a different numerical scheme.
In what follows we show that the numerical solutions
obtained with this other scheme converge to those ob-
tained with the GFDL-SDC. Hence, for most practical
purposes, we are able to claim that the numerical so-
lutions we are presenting here ought to be reproducible
by any numerical scheme, and that they establish a
benchmark against which future dynamical cores can
be tested.

To compute a new set of independent solutions to the
equations and initial conditions of section 2, we use a
dynamical core whose horizontal spatial discretization
employs spectral elements in curvilinear coordinates on
a cubed sphere, with second-order finite differences for
the vertical discretization and advection. This dynamical
core is known as the National Center for Atmospheric
Research (NCAR) Spectral Element Dynamical Core
(hereafter NCAR-SEDC) and is fully documented in
Thomas and Loft (2004). We emphasize that the NCAR-
SEDC not only is based on a completely different nu-
merical method, but was compiled and executed on a
different machine than the one used for the GFDL-SDC
computations of the previous section.

In Fig. 10 we demonstrate the convergence of the
NCAR-SEDC solution to the GFDL-SDC solution, by
considering the surface (s 5 0.975) vorticity after 12
days of integration. The solid black contours show the
NCAR-SEDC solution for five calculations with in-
creasing horizontal resolution (and all with 20 equally

spaced vertical sigma levels). NCAR-SEDC computes
the solutions using a cubed-sphere spectral-element
method, for which the horizontal resolution is denoted
by the parameter ne, the number of spectral elements
along one edge of one face of the cube. The total number
of spectral elements in each NCAR-SEDC calculation
is thus 6 . To compute the number of grid points used2ne

at a particular resolution, one multiplies this number by
64 (8 3 8), the number of Gauss–Lobatto–Legendre
quadrature points in each element. Thus, for instance,
an NCAR-SEDC integration at ne 5 37 utilizes 64 3
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FIG. 11. As in Fig. 5, but for the NCAR-SEDC solutions illustrated in Fig. 10.

6 3 372 5 525 696 grid points; this is roughly equiv-
alent to a GFDL-SDC integration at T341, which in-
volves 1024 3 512 5 524 288 Gauss–Legendre grid
points. The horizontal resolutions for the five panels in
Fig. 10 are chosen to be roughly equivalent to their
pseudospectral counterparts in Fig. 4.

The key point in Fig. 10 is that, as the horizontal
resolution is increased, the black contours of the NCAR-
SEDC solutions become coincident with the color patch-
es that represent the T341 GFDL-SDC solution. The
agreement between colors and contours is already ex-
cellent with ne 5 5, although some tiny differences can
be detected. At ne 5 9 the colors and contours are in-
distinguishably superimposed. Hence, as for the pseu-
dospectral model, the spectral-element model appears
to visually converge at a resolution comparable to T85.

In order to go beyond a merely visual demonstration,
we plot in Fig. 11 the same norms for the surface vor-
ticity field that were computed for the GFDL-SDC so-
lutions. Although the manner in which convergence is
achieved with each model is different (not exactly a
surprising fact), the two models converge to the same
numerical solution at sufficiently high resolution. In
fact, the NCAR-SEDC curves at ne 5 37 are completely
superimposed on the GFDL-SDC ones at T341 (which
we have omitted for clarity). Similarly, the numerical
results in Table 2 are identical (to within the reported
number of digits) for GFDL-SDC and NCAR-SEDC at
the highest resolutions. We claim, therefore, that these
numerical results represent the converged solution of
system (1) with the initial conditions as specified.

Note that the numerical results reported in Table 2
are given to two significant figures. This is the number
of digits to which the GFDL-SDC and the NCAR-SEDC
solutions agree. As can be seen from Fig. 7, convergence
for the pseudospectral GFDL-SDC is algebraic as op-

posed to exponential, likely due to the fact that the initial
velocity components are not infinitely differentiable.
Thus, obtaining more digits would require much higher
resolutions, well beyond the computational power avail-
able to us. In any event, the main objective of the present
work is not to examine the convergence properties of a
particular numerical method with respect to the initial
condition, but to establish that one can compute a con-
verged numerical solution to the primitive equations,
independent of the numerical method.

For completeness, we offer in Fig. 12 the cross sec-
tions of v at 458N at day 12 computed with NCAR-
SEDC, at different vertical resolutions (black contours)
from 10 to 160 levels, and superimposed on the GFDL-
SDC solution (colored patches). Only at the lowest
NCAR-SEDC vertical resolution is one able to detect
the difference between the colors and the contours.
Again, there should be little doubt that both models are
converging to the same numerical solution.

5. Effects of hyperdiffusion

We offer in this section an example to demonstrate
the importance of specifying exactly the same diffusion
terms as in (1) if one is attempting to reproduce the
numerically converged solutions presented above.
While there is widespread practice of using a variety of
methods to smooth out solutions in AGCMs, we wish
to demonstrate here that indiscriminate use of such
methods is likely to generate solutions that will differ
substantially from the ones we have just presented.

With this goal in mind, we here compute a numeri-
cally converged solution to the dry, adiabatic, primitive
equations with a different diffusion operator. Specifi-
cally, the terms on the right-hand side of (1) are replaced
by the terms 2n¹4z, 2n¹4d, and 2n¹4T applied to the
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FIG. 12. Black contours: as in Fig. 8, but computed with NCAR-
SEDC at ne 5 19. Colored patches: the GFDL-SDC solution at a
resolution of T85L160.

vorticity, divergence, and temperature equations, re-
spectively (and not to the momentum equations them-
selves). Such a choice is very common with spectral
methods and, in fact, is the one adopted by both NCAR’s
CCM3 and GFDL’s Atmospheric Spectral Model (FMS-
AM2). Hence, consideration of ¹4 hyperdiffusion might
be of interest in illuminating the kind of baroclinic in-
stabilities that are computed by these well-established
AGCMs.

For n 5 2.5 3 1016 m4 s21, the numerical convergence
of the vorticity field at 12 days is illustrated in Fig. 13.
Note how different this solution is from the one with

the regular diffusion operator in Fig. 4, especially in its
ability to capture much steeper vorticity gradients. The
contour interval in Fig. 13 is double the one in Fig. 4.

It is also interesting to note that, with this value of
n, the T42 calculation is relatively noisy. Recall that the
vorticity z is not a differentiated quantity; it is one of
the prognostic variables. Thus the noise is due to the
value of n not being sufficiently large to produce smooth
fields at T42. Perhaps surprisingly, both CCM3 and
FMS-AM2, for which T42 is the standard horizontal
resolution, use the even smaller value n 5 1 3 1016 m4

s21 (Kiehl et al. 1996). The T42 solution, for that value,
is even noisier and further from converged than the one
shown here. These standard AGCMs, typically running
at T42, are therefore computing rather noisy fields.

From Fig. 13 it appears that T170 is the visually
converged resolution in this case. For completeness, we
then show in Fig. 14 the cross-sectional vertical velocity
at day 12, computed at T170 for 10 to 80 vertical levels
(we were unable to fit a T170 calculation with 160 ver-
tical levels on our machine). Again, note that the contour
interval is double the one used in Fig. 8, indicating much
stronger updrafts and downdrafts in this much less dif-
fusive solution. It is perhaps not immediately obvious
that one direct consequence of modifying the horizontal
diffusion is to alter the vertical velocity magnitude by
a factor of 2. This implies that physical parameteriza-
tions (e.g., convection schemes) as well as the vertical
transport of constituents (e.g., water vapor) are likely
to be profoundly impacted by the choice of horizontal
diffusion in AGCMs.

Finally, while we do not expect the solutions with
hyperdiffusion to be easily reproducible by models other
than those based on the spectral method, we report a
couple of values associated with the numerically con-
verged solutions in Figs. 13 and 14. At 12 days, the
maximum and minimum values of z at s 5 0.975 are
15 3 1025 and 28.4 3 1025 s21, respectively, and the
maximum and minimum values of v at 458N are 0.37
and 20.32 Pa s21.

6. Summary and discussion

We have computed and presented numerically con-
verged solutions to the dry, adiabatic, primitive equa-
tions in spherical coordinates. The solutions were ob-
tained with two completely independent numerical mod-
els. To the best of our knowledge, this is the first set of
such solutions to have been computed. These solutions
are meant to serve as benchmarks to help in the de-
bugging and evaluation of future dynamical cores of
AGCMs.

Specifically, we wish to propose a new test using the
results presented here. It consists in three steps. First,
starting from the initial conditions spelled out in section
2, one would produce numerically converged instanta-
neous fields of z at the surface and v at 458N after 12
days of integration. At the risk of stating the obvious,
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FIG. 13. As in Fig. 4, but for solutions with ¹4 hyperdiffusion.
Contours from 217 to 17 3 1025 s21, in steps of 2 3 1025 s21.

FIG. 14. As in Fig. 8, but for solutions with ¹4 hyperdiffusion (and
excluding the 160-level solution). Contours from 20.44 to 0.44 Pa
s21, in steps of 0.08 Pa s21. Results from GFDL-SDC, with 20 vertical
levels.

we stress that there is little point in considering non-
converged numerical results since one is then unable to
tell if the differences are due to truncation errors or
coding errors.

The second step would consist of performing a visual
comparison of z and v with the fields presented above.
The key qualitative features, number of positive and
negative maxima, and their relative positions should vi-
sually match those presented in this paper. Finally, the
third step would consist of comparing the values given
in Table 2 with those computed with future dynamical
cores. Agreement with the values in those tables should

suffice to ensure that a model is free of serious coding
errors or other deficiencies.

As pointed out in the introduction, we believe that
the new test proposed here should serve a complemen-
tary role to the by-now classic HS94 benchmark. Once
our test is passed, one may feel reasonably confident
that a dynamical core is free from major bugs, and the
next obvious step would then be to compute the statistics
of the model with a 1000-day HS94 integration.

Finally, one might rightly ask whether our choice of
including explicit diffusivity as part of the specifications
of our new test is likely to limit its applicability. Spe-
cifically, the objection might be raised in the context of
testing primitive equation models whose horizontal dis-
cretization does not require the explicit use of diffusivity
(e.g., semi-Lagrangian schemes). Such schemes, typi-
cally constructed with conservation properties in mind,
often involve implicit diffusion, and can thus be stably
integrated without the need of explicit diffusivity. An
example of current interest is the Lin–Rood (1996)
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TABLE A1. Numerical values of the bases zi and lapse rates (dT/
dz)i for the eight layers used to construct our piecewise linear ex-
pression for the U.S. Standard Atmosphere, 1976 temperature.

zi (km) (dT/dz)i (K km21)

0
11
20
32

26.5
0

11.0
12.8

47
51
71
80

0
22.8
22.0

0

scheme. One might argue that it is foolish to add explicit
diffusion if a numerical scheme does not necessitate it.

Our answer to this objection is twofold. First, it
should be clear that no obstacles exist to adding explicit
diffusion to any scheme: to the degree that an identical
set of partial differential equations is being solved, with
identical initial and boundary conditions, and that nu-
merically converged solutions are computed, any
scheme should be able to reproduce the results presented
in the paper. Second, if our initial conditions are inte-
grated with no explicit diffusivity, it is highly unclear,
in our opinion, what an implicitly diffusing scheme will
converge to as the resolution is increased. As our initial
condition is likely to generate infinite gradients in finite
time in the absence of diffusivity, an implicitly diffusing
scheme would presumably try to converge to a singular
solution as the resolution is increased (and the implicit
diffusion becomes negligible). Our suspicion, therefore,
is that, for these initial conditions, numerical conver-
gence may not be achievable with any scheme that does
not contain explicit diffusion.
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APPENDIX

The U.S. 1976 Standard Atmospheric
Temperature Profile

To compute the U.S. Standard Atmosphere, 1976
(COESA 1976) temperature, we use the canonical def-
inition of TUS(z) as being piecewise linear in each of
eight layers. The base zi of each layer and the lapse rate
(dTUS/dz) i in each layer are given in Table A1. From
these, for zi , z , zi11, the U.S. Standard Atmosphere,
1976 temperature is evaluated using the expression
TUS(z) 5 TUS(zi) 1 (dTUS/dz)i(z 2 zi). For z 5 0, we

use TUS(0) 5 288.15 K. Note that the formulas are being
here applied to the log pressure height z, and not the
‘‘real’’ height.
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