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The large amplitude oscillations ofthe shape ofNeptune's
Great Dark Spot are well reproduced by simple dynamical
models of an isolated vortex embedded in a background
shear flow. From the time series of the aspect ratio and
inclination of the vortex values are estimated for the
background shear and the mean vorticity of the Great
Dark Spot, and a lower bound is placed on the value of
the Rossby deformation radius. These models imply the
existence ofa planetary-scale zone ofdeterministic chaotic
advection in the atmosphere of Neptune.

T1 HE RECENT ENCOUNTER OF THE VOYAGER 2 SPACECRAFT
with Neptune has revealed the presence of a large coherent
structure in its atmosphere, dubbed the Great Dark Spot (1),

which undergoes dramatic variations in its shape. We propose that
the observed oscillations of the Great Dark Spot are the natural
oscillations of a vortex in a background shear flow.

In view of the paucity of atmospheric features on Neptune the
vorticity cannot be measured directly. By fitting the observed
oscillations in shape to those of sheared elliptical vortices we obtain
estimates of the background shear and the anomalous vorticity of
the Great Dark Spot without using any knowledge of the velocity
fields on Neptune. The vorticity is found to be larger than that of
the ambient flow, as is the case for the Great Red Spot on Jupiter.
Both vortices are anticyclonic.
We find that the latitudinal variation of the Coriolis parameter

(the 1B effect) has little influence on the dynamics of the system. Our
dynamical models suggest that the Rossby radius of deformation is
larger than about two thirds ofthe diameter ofthe Great Dark Spot.
Last, our models imply the existence of a planetary-scale zone of
deterministic chaotic fluid motion in the atmosphere of Neptune.
Voyager image analysis. We analyzed 28 projected Voyager

images, which were taken from the same images as figure 4A of
Smith et al. (1). The projection used was linear in latitude and
longitude, and centered at -19.6° latitude. These data span 31
Great Dark Spot rotation periods. The Great Dark Spot rotation
period, namely the rotation period of the planet as defined by the
Great Dark Spot, is approximately 18.3 hours. For comparison, the
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radio rotation period of Neptune is 16.11 hours.
We fit ellipses to the boundary of the Great Dark Spot with the

aid of the SAOimage software, which allows an ellipse to be
superimposed on the image and, with a pointer, to adjust the center,
minor axis, major axis, and orientation of that ellipse. In most
images we find that the shape of the Great Dark Spot is well
represented by an ellipse (see, for instance, Fig. 1). In a few cases a
tail is also present, but an elliptical core is still easily identified (as
illustrated in Fig. 2); in these cases the elliptical core is taken to
represent the vortex. Only in two images, during the ejection of the
large tail, is the representation of the Great Dark Spot as an ellipse
ambiguous. Table 1 gives the parameters of the fit ellipses. We
define X(O < A < 1) to be the ratio of the minor to major axis, the
inverse of the aspect ratio, and specify the orientation of the ellipse
by the angle (p between the major axis and the zonal direction,
measured counterclockwise.

Before settling on the manual elliptical fits, we tried a variety of
different techniques to objectively extract the boundary of the Great
Dark Spot from the images: clipping, gradient, laplacian, smooth-
ing, all of these in various combinations. The boundaries deter-
mined by these methods were judged to be unsatisfactory represen-
tations ofthe Great Dark Spot as one sees it in the images. The main
problem is caused by the presence of bright clouds which overlie the
Great Dark Spot. These distort the boundaries determined by the
simple objective methods. We did not try to develop a more
sophisticated fitting algorithm which could automatically account
for the presence of the clouds.

Because we had no objective method for fitting the boundary of
the Great Dark Spot, we estimated the errors in our fits by repeating
each fit independently several times (see Table 1). These error
estimates rigorously only represent our ability to reproduce our own
fits. The true errors are likely to be larger. For example, we did not
correct for the fact that the projection of the images distorts the
shape of the Great Dark Spot. Some uncertainty is also introduced
by the presence of the bright clouds near the boundary of the Great
Dark Spot (as can be seen from Fig. 2).
We note that the area of the Great Dark Spot as determined by

our fit ellipses is nearly constant (Fig. 3), even though our fitting
procedure was not geared toward an accurate determination of the
area. This would have required more careful photometry. Rather,
our fitting procedure was geared solely to determining the aspect
ratio and orientation of the Great Dark Spot. The diameter of a
circle with the same area as the Great Dark Spot, as determined by
our fit ellipses, is D = 9842 + 57 km, excluding the first image and
the last two images. The fit to the first image appears anomalous,
both in the area of the vortex and in the orientation angle. The last
two points show a marked decrease in the area which is associated
with the ejection of a large tail. Despite these misgivings, all of the
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Neptune encounter. The potential vorticity in this model is given by
11 = V2++py, where ,1 = 2Q cos O/RNeptune is the derivative of
fwith respect to northward distance. This system is known as the
quasi-geostrophic (-plane model.
Under the assumption of piecewise constant potential vorticity fl,

the components tlv and B respectively satisfy

V2V = IIV V2B + 1Y = fIB = -S (8)

Fig. 3. The area of the
Great Dark Spot versus
time, as determined
from our fit ellipses. The
error bars in Figs. 3, 4,
and 5 correspond to the
uncertainties given m
Table 1.

From the second of these equations we obtain the expression for the
streamfunction associated with the background shear:

1B= - 2Sy -11Y

Co

0ca

(9)

whereas tv has to be determined numerically. The background
velocity UB associated with B is:

UB = S + 2Y2 (10)

The uniform value of the potential vorticity inside the vortex is
Hl = qv + qB + Y1.
Model 3-equivalent barotropic (-plane. The third model additionally

allows for the presence of an infinitely deep lower layer rotating as a
solid body at the 18.3-hour period of the Great Dark Spot. The
effect of this lower layer is taken into account by defining the
potential vorticity Hl = V2+ p,y - _y2*p where -y is the inverse of
the Rossby radius of deformation. This model is variously known as
the equivalent barotropic or the reduced gravity model.
The components 'v and 'PB respectively satisfy

VV _Y2V = H V2 IB -Y2*B + (3Y = 0 (11)

Note that in this model the potential vorticity associated with the
background flow is identically zero, thus H1v = H.

For the background streamfunction, we choose the solution of
the equation which reduces to the background streamfunction (9) of
model 2 in the limit -y -* 0. This gives

'jB = Y[ - sinh(y y)1 - cosh(-yy)

with the associated velocity field

ILB = - , [1 - cosh(yy)] + s [sinh(yy)

(12)

(13)

Again, 4v must be obtained numerically.
Parameters. The unknown parameters of the models are the

background shear s, the anomalous potential vorticity HIv, and for
model 3, -y the inverse ofthe Rossby radius ofdeformation. We note
that 3 is given and at -19.6° latitude has the value 7.26 x 10-10
km-' s-1
Numerical methods. In our models the gradient of potential

vorticity is nonzero only on the boundary of the vortex, and the
dynamics is uniquely determined by the position of that boundary.
In model 1 the shape variations are governed by Eq. 7; in the other
two models the evolution of the boundary must be computed
directly from Eq. 1.
With the exception of model 1, vortices which are initially

elliptical do not remain elliptical. We extract an equivalent aspect
ratio and orientation of the vortex by computing the spatial
moments up to second order of the area enclosed by the vortex
boundary and then taking the aspect ratio and orientation to be
those of an equivalent ellipse with the same moments.
The evolution of the vortex boundary is computed with a simple

contour dynamics scheme (9), with a midpoint rule to evaluate the
contour integrals and a Bulirsch-Stoer (10) time-stepper, with a
relative accuracy per Great Dark Spot rotation period of 10-7 for
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the integrator. Because we are primarily interested in the shape of
the Great Dark Spot as defined by its second order and lower
moments, we do not need high spatial resolution. The computation-
al demands of the fitting procedure have limited us to use 50 nodes
to discretize the vortex boundary.
The parameters s, 11v, and -y, together with the initial aspect ratio

Ao and orientation upo of the vortex, are determined through a
standard minimization of x2 defined as the sum of the squares of the
residuals weighted by the inverse of the estimated standard devi-
ations. We use the Nelder-Mead downhill simplex algorithm to
carry out the minimization of x2 (11). We find that the variance in
the fits is larger than one would expect if the errors in Table 1 were
the true errors. Because we believe the errors in Table 1 to be

Table 1. The orientation angle y and the inverse X of the aspect ratio, as
determined by our fits to the projected Voyager images. The images are
labeled by Great Dark Spot rotation periods. During some periods there
were no usable images of the Dark Spot (1).

Frame (P

0 0.298 ± 0.013 0.431 + 0.010
1 0.150 ± 0.006 0.478 ± 0.005
2 0.084 ± 0.001 0.501 ± 0.006
3 0.049 ± 0.011 0.512 ± 0.005
4 -0.051 ± 0.006 0.478 ± 0.002
5 -0.072 ± 0.003 0.408 ± 0.005
6 -0.001 ± 0.006 0.357 ± 0.007
7 0.006 0.002 0.321 ± 0.002
8 0.052 ± 0.002 0.352 ± 0.005
9 0.059 0.004 0.354 0.006
10
11 0.159 ± 0.004 0.405 ± 0.010
12 0.166 ± 0.007 0.450 ± 0.007
13 0.093 ± 0.003 0.564 ± 0.009
14
15 -0.078 ± 0.003 0.441 + 0.008
16 -0.079 ± 0.003 0.404 ± 0.006
17 -0.034 ± 0.003 0.344 ± 0.003
18 0.063 ± 0.003 0.357 ± 0.008
19
20 0.131 0.008 0.443 ± 0.011
21 0.154 0.004 0.508 ± 0.011
22 0.135 +0.006 0.553 ± 0.013
23 0.077 ± 0.007 0.606 ± 0.012
24 -0.106 ± 0.006 0.590 ± 0.009
25 -0.125 ± 0.006 0.500 ± 0.003
26 -0.120 ± 0.002 0.416 ± 0.005
27 -0.035 ± 0.004 0.360 ± 0.003
28
29 0.039 0.002 0.310 ± 0.007
30 0.039 ± 0.006 0.385 ± 0.005
31 0.134 ± 0.003 0.452 ± 0.013
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Fig. 4. The inverse of
the aspect ratio versus
time. The data points
from our fits to the im-
ages are superimposed
on the fits to the dynam-
ical models. The solid
line is the best fit of
model 1. The fit for
model 2 is indistinguish-
able from that of model
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-y = 0.00025 km-'.

Fig. 5. The same as Fig.
4 but for the orientation
angle up.

Fig. 6. Best fit values
from model 3 of the
background shear s
around the Great Dark
Spot as a function of the
ratio -y* of the diameter
of the vortex to the
Rossby deformation ra-
dius.

4 5 6

underestimates ofthe true errors, we have used the variance ofthe fit
to provide a more realistic estimate of the uncertainties in the fit
parameters.

Results. First, the data indicate that the elliptical shape of the
Great Dark Spot is oscillating in both aspect ratio and orientation.
We can describe one cycle of its oscillation as follows: beginning
when the major axis is aligned with the zonal direction at maximum
aspect ratio (p = 0, minimum X), the elliptical shape rotates
counterclockwise (w > 0) as the aspect ratio decreases. The angle (p
reaches a maximum while the aspect ratio continues to decrease.
When the aspect ratio reaches its minimum the major axis is again
aligned with the zonal direction (y = 0, maximum X). This half
cycle is followed by a similar one with negative inclination (u < 0),
as the aspect ratio goes from minimum to maximum, bringing the
vortex back to its initial configuration.
The animated sequence ofVoyager images conveys an impression

of a rolling motion (1). The human eye tends to follow the ends of
the ellipse when it is most elongated, which occurs when u > 0; this
gives an impression of counterclockwise rotation.

Despite its obvious inadequacies, model 1 does a remarkably
good job of fitting the data. Simply choosing slqv in Eq. 7 so as to
match the maximum and minimum aspect ratio automatically gives
the amplitude of the oscillation in orientation and the shape of both
curves. This model appears to capture the essential dynamics of the
Great Dark Spot.
We emphasize that the data have more structure in them than is

simply described by a harmonic oscillation. In particular, the plot of
X versus time has broader valleys than peaks (Fig. 4), and the plot of
(p versus time has a noticeable saw-toothed appearance (Fig. 5). The
simple models we have presented reproduce this structure. This is
further evidence that these dynamical models are relevant to the
Great Dark Spot.
An important result of our models is that the shape oscillations

can only be reproduced if the vorticity of the Great Dark Spot is
greater than that of the background, as is the case for the Great Red
Spot.

In model 1, the detailed fits give an estimate of the vorticity in the
Great Dark Spot and the background shear. We find s = -0.954 ±
0.045 x 10- s-' (corresponding to 46 + 2 ms- per 100 latitude),
qv = 1.061 ± 0.017 x 10 5 s-1 (with yp0 = 0.109 ± 0.011, Xo =
0.4003 ± 0.0016). The total vorticity inside the vortex is then qv +
qB = qv - S = 2.015 ± 0.100 x 10-5 s1'.

For these best fit parameters, we have carried out the linear
stability (Floquet) analysis for the growth of two-dimensional
perturbations on the vortex boundary (15): we find that the vortex is
linearly stable (we have tested all modes with azimuthal wave num-
ber up to 100).
Our vorticity estimates improve on the earlier values of the

Voyager imaging team, who estimated the total vorticity of the

E

w-

-6 -4 -2 0 2 4

x (104 km)

Fig. 7. A Poincare surface of section for fluid
motion near the Great Dark Spot on Neptune.

6 The hatched region is the Great Dark Spot. The
chaotic zone, represented by the scattered points,
is much larger than the vortex.
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Great Dark Spot to be 0.9 x 10-5 s-1. That estimate was based on
the apparent rolling motion, assuming that it represented fluid
motion rather than a variation of shape. The Voyager imaging team
(1) thus incorrectly concluded that the vorticity of the Great Dark
Spot is smaller than the vorticity of the background, contrary to the
situation for the Great Red Spot.

In model 2 the variation in the Coriolis parameter with latitude (p
effect) is included. Recall, however, that since the potential vorticity
is taken to be piecewise uniform in this model, the vortex cannot
lose energy by Rossby wave radiation. We find that, within these
limitations, the p-effect has very little influence on the evolution of
the vortex shape for parameter values appropriate for the Great Dark
Spot. The detailed fits are virtually identical to those of model 1.

In model 3 we choose several values of the Rossby deformation
radius and, for each, fit for the same parameters as in the previous
models. For values of the Rossby deformation radius that are larger
than the size of the vortex, the dynamics is found to be qualitatively
similar to that of the first two models. When the vortex becomes
larger than the Rossby deformation radius, however, the distortion
of the elliptical shape becomes severe. Figure 6 shows the fit values
of the background shear s versus the ratio -y* of the diameter D of
the vortex to the Rossby deformation radius.
The Voyager imaging team reported (1) a value of the back-

ground shear at the latitude ofthe Great Dark Spot of 100 ms- I per
100 latitude, determined from a simple linear fit to the zonal velocity
profile as obtained from the motion of large features at the latitude
of the Great Dark Spot and further south. The features further north
suggest that the zonal velocity profile is better represented by a
parabolic shape, and thus the true shear near the Great Dark Spot is
likely to be smaller than the value reported by the Voyager imaging
team. Taking the value of 100 ms-1 per 100 latitude as an upper
bound, we infer from Fig. 6 that y* has to be less than 1.4, and
hence that the Rossby deformation radius is probably greater than
approximately 7000 km (or about two thirds the diameter of the
Great Dark Spot).

It has been shown (16) that vortex dynamics in the equivalent
barotropic system (model 3) is characterized by a strong suppression
of vorticity filamentation at large values of y*. Typically, filaments
are observed during vortex merger only for ry* < 3. The fact that
our fits suggest a value of y* between 1 and 2 in the vicinity of the
Great Dark Spot is consistent with the observation of filaments
being expelled around the vortex (1) (see, for instance, Fig. 2).

Planetary scale chaos. The motion of individual fluid elements,
given by Eq. 3, can be described in Hamiltonian terms, where the
streamfunction * is the Hamiltonian, and the Cartesian coordinates
y and x of a fluid element play the role of the canonical coordinate
and conjugate momentum, respectively. The oscillations in shape of
the vortex imply a time-dependent streamfunction, and thus the
motion of fluid element is governed by a one degree-of-freedom
time-dependent Hamiltonian. This system is complicated enough
for some trajectories to exhibit chaotic motion (17). In fact, we have
shown (8) that there are often large regions of chaotic advection
surrounding the sheared elliptical vortices ofmodel 1, depending on
the parameters chosen. It turns out that this is the case for the
parameters determined from the fit to the oscillations of the Great
Dark Spot.
The chaotic zones of a dynamical system are most easily exhibited

by computing Poincare surfaces of section. For model 1 the shape
oscillations are periodic, and a convenient Poincare section is
generated by looking at the fluid motion stroboscopically, that is by
plotting the successive positions offluid elements after every vortex
oscillation period. A Poincare section for model 1, with the best fit
parameters for the Great Dark Spot, is shown in Fig. 7 (two initial
conditions only were used to obtain this figure). The scattered dots

indicate a chaotic zone which is enormous given the size ofthe Great
Dark Spot (recall that the diameter of the Great Dark Spot is
comparable to the size of the Earth).
The characteristic property of chaotic motion is that nearby

trajectories diverge exponentially from one another. The mean
exponential rate of divergence is measured by the Lyapunov expo-
nent, which we have computed for the fluid motion near the Great
Dark Spot. We find that the time scale for exponential divergence of
nearby trajectories is approximately ten vortex oscillation periods,
which corresponds to about 80 days since the period of the vortex
oscillation is about 8 days.
The calculation ofthe extent of the chaotic zones for model 2 and

model 3 are too computationally demanding for us to carry out.
However, we expect that the qualitative nature ofthe fluid trajector-
ies will not change. Several important features of the fluid trajector-
ies will be preserved. For instance, for a stationary vortex there must
always be an infinite period trajectory which separates the fluid
which is trapped by the vortex from the fluid which is carried away
by the shear flow. The presence of a separtrix is a crucial ingredient
for the presence of chaotic behavior. When time dependence, such
as that associated with the vortex oscillations, is present, separatrices
generically broaden into chaotic zones. For models with more
general distributions of potential vorticity, we expect that the
streamlines will have similar qualitative features and thus it is
plausible to expect that chaotic zones will exist for similar reasons. In
fact, the presence of these planetary-scale chaotic zones may provide
a dynamical mechanism for the homogenization of the potential
vorticity in the vicinity of oscillating vortices.
Addendum on Jovian vortices. The Kida equations (Eq. 7) also

provide a rather good zeroth-order model for the dynamics of
Jovian vortices. For the Great Red Spot, there is evidence that the
potential vorticity is in fact not uniform (both in and around the
vortex) and that the topography of the lower layer plays an
important role in the potential vorticity balance (12); moreover, the
flow surrounding this vortex is a linear shear over only approximate-
ly two thirds of the latitudinal extent of the Great Red Spot (14),
and the size of that vortex is believed to be large compared to the
local Rossby deformation radius. These considerations notwith-
standing, we show that the Kida equations are able, in spite of their
simplicity, to capture the order of magnitude dynamics for both the
Great Red Spot and the White Oval BC of Jupiter.
For these vortices the aspect ratio X and inclination u appear to be

essentially time-dependent. Requiring the solutions of Eq. 7 to be
stationary yields a unique relation between the aspect ratio A of the
vortex and the ratio qB/qv of the background to anomalous vortici-
ties:

qB _ 1-
qv X(=+X)

(14)

provided the major axis is aligned with the zonal direction (p = 0).
The aspect ratio ofthe Great Red Spot is approximately 2.0 ± 0.2

(12), the average value of the anomalous vorticity is roughly
qv = 1.7 ± 1.0 x 10-5 S-' (13) and, from the zonal velocity profile
given by Limaye (14), we estimate the background vorticity to be qB
= 1.3 + 0.2 x 10-5 s-1. This yields a ratio qB/qv = 0.76 + 0.46, in
satisfactory agreement the value qB/qV = 0.66 ± 0.10 from Eq. 14.
For the White Oval BC the aspect ratio is 1.66 ± 0.10 (12), qB =
1.3 ± 0.2 x 10- S-s1, and qv = 3.7 ± 2.0 x 1i-5 S-1, so that qB/qV
= 0.35 ± 0.19. Again, this agrees well with the value 0.41 ± 0.06
from Eq. 14 required for a stationary vortex of this aspect ratio.

Considering the simplicity of our models and the uncertainty in
our knowledge of the vorticities, the agreement in both cases is
good. The fact that the predictions of model 1 are in reasonable
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agreement with the data for the Great Red Spot and the White Oval
BC on Jupiter lends support to our application of these simple
models to the Great Dark Spot of Neptune for which there is less
direct velocity data.

Finally, we point out that it would be of great interest to use the
models we have presented here to perform fits to the "brown barge"
type vortices on Jupiter (18), whose aspect ratios have been observed
to vary by as much as 10% over a 15-day period, and for which the
vorticity can be directly measured from velocity vectors.
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Structure of Ribonuclease H Phased at 2 A
Resolution by MAD Analysis of the

Selenomethionyl Protein

WEI YANG, WAYNE A. HENDRICKSON, ROBERT J. CROUCH, YOSHINORI SATOW

Ribonuclease H digests the RNA strand of duplex
RNA-DNA hybrids into oligonucleotides. This activity is
indispensable for retroviral infection and is involved in
bacterial replication. The ribonuclease H from Escherichia
coli is homologous with the retroviral proteins. The
crystal structure of the E. coli enzyme reveals a distinctive
at-, tertiary fold. Analysis of the molecular model impli-
cates a carboxyl triad in the catalytic mechanism and
suggests a likely mode for the binding of RNADNA
substrates. The structure was determined by the method
of multiwavelength anomalous diffraction (MAD) with
the use of synchrotron data from a crystal ofthe recombi-
nant selenomethionyl protein.

RB IBONUCLEASES H (RNASE's H) CONSTITUTE A FAMILY OF
enzymes that hydrolyze RNA molecules only when hybrid-
ized with complementary DNA strands (1). Although this

activity is distributed broadly, the biological role of RNase H is
poorly characterized, except in the instances of Escherichia coli and
retroviruses. RNase H participates in DNA replication in E. coli; it
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helps to specify the origin of genomic replication by suppressing
initiation at origins other than the locus oriC (2, 3); along with the
5' -- 3' exonuclease ofDNA polymerase I, it removes RNA primers
from the Okazaki fragments of lagging strand synthesis (4); and it
defines the origin of replication for ColEl-type plasmids by specific
cleavage of an RNA preprimer (5). However, these do not appear to
be vitally important activities since mh- mutants of E. coli survive
except in conjunction with certain other genetic defects (3, 6, 7). By
contrast, RNase H activity is absolutely indispensable for retroviral
replication. The RNase H of retroviruses is a component of reverse
transcriptase (RT) (8, 9). Briefly stated, during reverse transcription
the polymerase moiety ofthe transcriptase uses the genomic RNA as
a template for synthesis of an RNADNA intermediate; RNase H
then removes the RNA to free the complementary DNA strand
which serves as the template for plus strand synthesis; and finally the
resulting DNA duplex can be integrated into the host genome.
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