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ABSTRACT

The question of convective (i.e., spatial) instability of baroclinic waves on an f-plane is studied in the context
of the two-layer model. The viscous and inviscid marginal curves for linear convective instability are obtained.
The finite-amplitude problem shows that when dissipation is O(1) it acts to stabilize the waves that are of Eady
type. For very small dissipation the weakly nonlinear analysis reveals that at low frequencies, contrary to what
is known to occur in the temporal problem, in addition to the baroclinic component a barotropic correction
to the “mean” flow is generated by the nonlinearities, and spatial equilibration occurs provided the ratio of
shear to mean flow does not exceed some critical value. In the same limit, the slightly dissipative nonlinear
dynamics reveals the presence of large spatial vacillations immediately downstream of the source, even if asymp-
totically (i.e., very far away from the source) the amplitudes are found to reach steady values. No case of period
doubling or aperiodic behavior was found. The results obtained seem to be qualitatively independent of the

form chosen to model the dissipation.

1. Introduction

In recent years, much attention has been given to
the question of absolute instability of baroclinic flows.
Thacker (1976) investigated the familiar two-layer
model in the context of Gulf Stream meander growth,
and Merkine (1977) revisited the same problem in
connection with cyclogenesis. More recently, Farrell
(1982, 1983) and Pierrehumbert (1986) have examined
the question for the Charney problem (Charney 1947).

The heart of the matter is the response of a stratified
rotating fluid to a localized source of perturbations. If
the perturbations are found to decay in time, the system
is said to be stable. If the perturbations grow, two sit-
uations are possible. In the case of convective instability
a disturbance will grow as it moves away from the
source but will propagate faster than it spreads so that
at any given point in space the response will vanish
after a long enough time. Alternatively, when the sys-
tem is absolutely unstable, an initial disturbance will,
at any given point, grow faster than it moves away
from that point, with the net result being that the re-
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sponse of the system will amplify with time at every
point in space.

For perturbations that are independent of the me-
ridional coordinate, the two-layer model on an f-plane
was found by Thacker (1976) to possess absolute in-
stability when the ratio of the shear to the mean flow
exceeds the value of 1 /16. Merkine (1977) extended
this result to include disturbances with meridional
variations and derived an approximate condition for
absolute instability. If / is the meridional wavenumber,
F the Froude number of the system and

n=W— V)V + V),

where V| and V), are the dimensional mean zonal ve-
locities in the upper and lower layer respectively, the
two-layer model is absolutely unstable for

7> Q- PR~ (1.1)

However, for the Charney problem, in the case when
the surface velocity is greater or equal to zero, Pierre-
humbert (1986) has shown that no absolute instability
is present. This would suggest that the presence of ab-
solute instability may only be a property of the two-
layer model, and that spatially growing modes, which
are the consequence of convective instability, may in
fact play a more important role than previously
thought. .

In the two-layer model, as Merkine (1977) points
out, the spatial modes possess several properties that
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distinguish them from the more familiar temporal
modes: they are weakly dispersive, their phase speed is
not equal to the speed of the mean flow and their spatial
growth rate is not linear in the shear, as is the case for
the temporal modes. Moreover, one can show from
the energetics that, in addition to the familiar conver-
sion of available potential into kinetic energy, spatially
-growing modes can extract energy from the mean flow
through the work of ageostrophlc pressure gradients
and Coriolis forces.

In order to investigate further the dynamics of spa-
tially amplifying modes, Merkine (1978) examined
their finite-amplitude dynamics in the two-layer model
and found that weak nonlinearity may lead to both
amplitude equilibration and subcritical destabilization
depending on the values of F and . He found no spatial
vacillation or aperiodic behavior, however, because he
was considering an inviscid system.

In the presence of Ekman dissipation, the temporal
evolution of finite-amplitude baroclinic waves in the
two-layer model is well known to exhibit a rich variety
of behaviors (Pedlosky and Frenzen 1980). For large
dissipation, the amplitude evolves to a steady value.
As dissipation is decreased periodic vacillations appear
and, in some ranges, the solution is found to be ape-

.riodic. As dissipation is decreased even further, the so-
lution becomes again periodic, but the amplitude of
the vacillation becomes independent of the value of
the dissipation.

For the temporal problem, it is also known that the
form chosen to model the dissipation plays a crucial
role in the presence or absence of nonsteady solutions
(Pedlosky and Polvani 1987). When dissipation is taken
to be proportional to potential vorticity (as opposed to
the Ekman case) the amplitude vacillation due to wave-
mean flow interactions disappears.

In the light of these results, the principal goal of the
present work is therefore to investigate the role played
by dissipation in the weakly nonlinear dynamics of
spatially growing baroclinic waves, in particular with

_respect to the possible existence of spatial finite-am-
plitude vacillations. The existence of periodic and pos-
sibly aperiodic variations in the eddy activity down-
stream of a source of perturbations might then be as-
cribed uniquely to the nonlinear character of the
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dynamics without the need to invoke other physical
mechanisms.

2. The linear convective stability problem

We consider the well-known two-layer model (Ped-
losky 1970) in a zonal channel between y = 0 and y
=1, on an f-plane. The geostrophic perturbation
streamfunctions ; on the zonal mean flow U, are
known to evolve according to the quasi-geostrophic
potential vorticity equations, which can be written in
nondimensional form:

[0 + Uidx + J(Yu, * )IL; + F(U; — Uj)ox¢
= —rVy; — rgF(Y; — ¥),

i=1,2 and j=3-i (2.1)

where
= VA + F(y; — ¥)

is the potential vorticity. Four nondimensional pa-
rameters appear in these equations: r measures the
strength of the dissipation and F is the Froude number.
Because we have chosen the mean flow (V| + V3)/2 as
the velocity scale, the nondimensional quantities U,
and U, are related to the third parameter 7 (defined in
the prev1ous section) by the relatlons U =1+nand
=1-9 :

The fourth parameter g has been introduced in order
to represent two kinds of dissipation: For ¢ = 1, dis-
sipation will be proportional to the potential vorticity
itself, while, for g = 0 only Ekman dissipation will be
present. As mentioned earlier, the form of the dissi-
pation is known to play a crucial role in determining
the behavior of the finite-amplitude solutions for the
temporal problem,; it is therefore important to be able
to incorporate both types in the same formalism for
the spatial problem of interest here.

Upon substitution of exponential solutions of the
form:

¥i = A; explitkx + ly — wi)]

into (2.1) and linearization, one obtains the dispersion
relation for the two-layer model, with can be written
as follows:

kU Uy = 23w + k¥ w? + F(U? + U?) + IPUUS] — 2kw[l? + 2F] + o[ + 2F]

— 2irlk — ][k + 12 + (g + 1)F] ~

(Notice that this is a fourth-order polynomial in k but
is only second order in w. On a B-plane the two-layer
model dispersion relation would have been a sixth-or-
der polynomial in k. As will become apparent in what
follows, it is for reasons of simplicity that we have cho-
sen to limit ourselves to the case 8 = 0 in this study).

Consider first the temporal inviscid problem, for

P2+ 12+ 2gF] = 0. (2.2)

which r = 0. One chooses & to be real, solves the qua-
dratic for w as a function of k and obtains the result:

k*+ I — 2F)'?
) =k

When Im(w) > 0 (<0), the system is unstable (stable).

(2.3)
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The critical value of F is then found by setting Im(w)
= (. This yields the marginal inviscid temporal stability
curve:

k*+ P

Fy(k) = )

(2.4)

One would like to proceed in an analogous way to
determine the spatial (i.e., convective) instability. The
procedure in this case is not as simple, however. First,
since the dispersion relation is a fourth order polyno-
mial in k, one cannot solve analytically for k(w) in a
useful way. Second, one cannot deduce from the sign
of Im(k) whether a given mode is amplifying or eva-
nescent (and thereby deduce the stability of the system).

Briggs (1964) has developed a straightforward pro- -

cedure that allows one to distinguish between spatial
amplification and evanescence directly from the dis-
persion relation. For a given fixed Re(w), one follows
the trajectory, in the complex k plane, of the roots k(w)
of the dispersion relation as Im(w) is varied from pos-
itive infinity to zero. The modes whose trajectory
crosses the real k axis are amplifying; the other are
evanescent.

By carrying out this procedure for many values of
F and w, one can construct the inviscid spatial marginal
curve Fi(w). In practice one finds that, for a given real
w, two of the four roots are complex and evanescent
for all values of F; the other two roots are real for F
< Fi;. When F > F;; they acquire a nonzero imaginary
part and are complex conjugates. Contrary to the claim
of Merkine (1977) only one of these two roots is am-
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FIG. 1a. The inviscid spatial (F,,) and temporal (F) marginal
stability curves, for p = 0.8 and / = =.
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plifying, namely the one which grows in the direction
of the mean flow; the other one is evanescent.

In Fig. 1a we show both F; and F;, as functions of
w for the values » = 0.8 and / = w; F;(w) is obtained
from F; (k) by noting that on the temporal marginal
curve w = k. Note that the two curves become identical
in the limit of small w and converge to F = [%/2 for
o —>0. In Fig. 1b we have plotted the values of k on
the marginal curves.

Surprisingly enough, it turns out that when r # 0
the problem of finding the marginal curves is actually
simpler than in the inviscid case. Indeed, by inspection
of the dispersion relation (2.2), one can see that the
only way it can be satisfied with w and & both real is
when the imaginary term proportional to 2ir vanishes
identically; for this to happen one must require that w
= k on the marginal curve. From the other terms one
then derives an analytic expression for the viscous
marginal curve F,(w), which is the same for both the
temporal and spatial problem:

w?+ 2 2 W+
2 2wy’
Fy(w) = 2 (2.5)
1 -— a—
q e

In Fig. 2a and 2b, the viscous marginal curves F,(w)
are plotted versus w at several values for r for n = 0.8,
= 7 and ¢ = 0 and g = 1, respectively, together with
the inviscid spatial marginal curve Fj. The region
above the marginal curves is unstable. When the dis-
sipation is proportipnal to potential vorticity (i.e., g
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FIG. 1b. The marginal inviscid spatial wavenumber k. vs w for 3
= 0.8 and / = . The dashed line is the temporal inviscid marginal

k=w.
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FIG. 2a. The viscous spatial marginal stability curve F, for 7 = 0.05,
0.5and 1.0, for ¢ = 0, » = 0.8 and / = =. The solid line is the inviscid
spatial marginal stability curve Fj;.

= 1) F, has a singularity at w; = r/», and all frequencies
smaller than w; are stable.

It is important to note that, while for the temporal
problem, as r = 0 the viscous marginal curve tends
toward the inviscid curve, this is not the case for the
spatial problem. Indeed, as r - 0, F, tends toward («?
+ [?)/2 which does not correspond to Fj. In other
words, as dissipation in decreased to zero the spatial
viscous marginal curve approaches the temporal invis-
cid curve and, even for r < 1, is different by an O(1)
amount from the spatial inviscid marginal curve. This
fact has crucial consequences on the degree of the spa-
tial amplitude equation that we wish to obtain.

More specifically, consider first the region where w
is large, so that the viscous marginal curve differs by
an O(1) amount from the inviscid curve (even for r
< 1). A similar situation occurs for the temporal prob-
lem with 8 # 0 (Romea 1977). One can expect that,
since the marginal curve is not the point where two
roots coalesce, the amplitude equation will be of first
order.

On the other hand, when w < 1 and r < 1, where
the spatial viscous and spatial inviscid curves are iden-
tical at O(1), i.e., their difference is of O(r?), we expect
a second-order amplitude equation, since two roots of
the dispersion relation do coalesce on the marginal
curve. ‘ ,

Before proceeding to the finite-amplitude problem,
we point out that the concept of convective instability

- is only meaningful when the system is free from ab-
solute instabilities. By establishing the convective mar-
ginal stability curve, we have determined that, when F
exceeds the some critical value, the system possesses a
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FIG. 2b. As in Fig. 2a, but with ¢ = 1.

spatially amplifying mode. However, where the system
is absolutely unstable for that value of F, the existence
of a spatially growing mode would be irrelevant since
the response of the system would be growing with time
at every point in space.

In practice there exists an upper bound on Fbeyond
which the two-layer model becomes absolutely unsta-
ble. For the inviscid case, the upper bound on F is
approximately given by the condition (1.1). The finite-
amplitude theory that we present next will only be ap-
plicable for those values of F for which the system is
free from absolute instabilities.

3. The convective finite-amplitude problem for
r=0(1)

We now turn our attention to the spatial finite-am-
plitude evolution of a slightly supercritical baroclinic
wave when the dissipation is O(1), in which case F,
and Fj differ by O(1). We take the Frounde number
to be

F=F,+A @3
where A <€ 1 is the value of the supercriticality. It is
easy to show from the dispersion relation (2.2) that for
such an unstable wave the spatial growth rate will be.
O(4). The geostrophic fields can then be considered to

.depend on a long space variable X = Ax, in addition

to the short space variables x and y and the time vari-
able ¢. After the appropriate change of variables and
substitution of (3.1) into (2.1) the potential vorticity
equation takes the form:
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@, + UdIV: + Fo(¥; — ¥)) + Fo(U; — UDdyi + r[Vi + gFu (¥ — ¥i)l
= —A{Udx[V¥i + F,(¢; — )] + (3, + Uidx)[20x0x¥: + (¥; — ¥l + Fo(Ui — Up)oxyi

+ (Ui = Upaxs + r(20.0x¢ + a@; — ¥l} — T, [V + Fo(y; — ¥)]} + hot

fori =1, 2 andj = 3 — i; hot = higher order terms.
Now the fields themselves must be expanded as
power series in A2, We therefore write:

vi= AV + AV + AY® + hot].  (3.3)

Substituting (3.3) into (3.2), one obtains a series of
problems in powers of A!/2, At O(A'/?), the linear prob-
lem itself is recovered. Since we are interested in the
spatial evolution of a single baroclinic wave we choose

0@ = AX) explitkx — wf)] sin(ly) + cc

U@ = yA(X) expli(kx — wt)] sin(ly) + cc  (3.4)
where » is given by:
K+ _rk2+12+qF.,
—— L (3.5)
| _irg
wn

and F, is from (2.5). We note that, although v is a
complex number, which implies a phase shift between
the upper and lower layer, one can show that |y| = 1,
as in the temporal problem. Note that the solution (3.4)
automatically satisfies the boundary condition of no
meridional flow at y = 0 and y = 1, provided / is a
multiple of 7.
At O(A) the following problem emerges:

@0+ UV + Fuy = )]
+ FuU = Uohi® + rV¥® + gF, "

—¢M] = IO, F,y®. (3.6)
The solution of (3.6) is easily obtained and is given by
¥ = (=1)*'p|4|* sin(2ly) 3.7

where

— va'Yi
2rl(1 + qF,/20%)

and v; is the imaginary part of v. It is important to
note that at this order, as is the case for the temporal
problem, the fields have only a baroclinic component
since Y, = —y,(, and that they represent O(A) cor-
rections to the x and ¢ independent flow (by analogy
with the temporal problem we are going to refer to this
component of the streamfunction with the expression
“mean” flow). The difference here is that we have ap-
plied the boundary condition dx¢{"’ =0 at y = 0, 1
instead of the condition 8,8,¢; = 0 at y = 0, 1 that one
uses in the temporal problem.

Indeed, provided the Rossby number is small, one
can easily show that the meridional velocity induced

p (3.8)

3.2)

by the variation of the geostrophic streamfunction on
the long spatial scale X is dominant (in an asymptotic
sense) when compared to the ageostrophic component.
It is therefore the former that must be set to zero at
this order to enforce the condition of no meridional
flow at y =0, 1.

As expected from the arguments given in section 2,
the removal of secular terms at O(A¥?) yields a first-
order spatial amplitude equation which we write is the
following form:

dA
n @A+ a,A|14|? 3.9)

where ay = —by/c and a; = —b,/c and
bo = iwn(y + 1)?
by = [i(w? + 1%/20]{(w* + * + F,)(1 + ¥?)
— 2yF, = 2Q21* + F, )1 + v}
¢ =2vyF,n — (" + >+ F)U, — ¥*U))

+ 29(F, — w?)(1 + ¥ + 2riw(1 — v?). (3.10)

Since the system is linearly unstable, we know that
Re(ag) is positive. The crucial quantity that determines
whether spatial equilibration takes place is the sign of
Re(a,). Figure 3a shows the plotted values of Re(a,) as
functions of w for n = 0.8 and / = = for both types of
dissipation. The amplitudes of the equilibrated solu-
tions aré shown in Fig. 3b. It is interesting to remark
that the amplitudes decrease with increasing frequency.

Notice that, qualitatively, both Ekman and potential
vorticity dissipation give similar results. The important
point is that for all w to the right of the minimum value
of F,, i.e., on the “Eady” branch of the marginal curve,
spatial equilibration will take place. With reference to
the inviscid results of Merkine (1978), we then conclude
that O(1) viscosity will equilibrate all w except those
on the ‘““viscous” branch of the marginal curve (i.e.,
those to the left of the minimum F,).

For very small w, i.e., those on the viscous branch
of F,, the effect of dissipation is in fact destabilizing;
however this may not be important in practice, since
in that part of the marginal curve F has quite large
values, and therefore the system is already absolutely
unstable. .

4. The convective finite-amplitude problem for r < 1
ande <1

We finally consider the case when dissipation is very
small (r < 1), for which there exists a region where the
viscous marginal curve F, and the inviscid spatial mar-
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FIG. 3a. Re (a;) for 7= 1, = 0.8 and / = =. The solid line cor-
responds to Ekman dissipation (g = 0); the dashed line to potential
vorticity dissipation (g = 1).

ginal curve F;; differ only by an amount O(%). The
curves F, and F;; overlap at O(1) forw < 1 when r <€ 1.
We note that since, as can be seen from (2.5) and Fig.
2a and 2b, F, has a boundary layer near w = 0 whose
width is O(r), we must choose w > r to be sure we are
in the overlap region. :

In order to determine how the space and time vari-
ables are to be scaled one examines the dispersion re-
lation (2.2) for w < 1. If A is the order of the super-
criticality, it is easy to determine that the interesting
region is the one where w = O(A'?), and, since k = O(w)
near the marginal curve, x must also be rescaled by
O(A™!7?), Moreover we must introduce an even longer
scale X = Ax over which the amplitude varies. Finally,
to make sure that the boundary layer of F, is well to
the left of the region of interest, we choose r = O(A).

After rescaling the variables as indicated above and
setting F = F, + 8A, where Fp = [%/2, A < 1 is the
order of the supercriticality and § is an O(1) number
that will be determined later, the potential vorticity
Eq. (2.1) can be written:

0, + Uid)m; + Fo(U; — Uj)axyi
= —A"2{Udxm; + Fo(U; — Updxy + 78,
+ PgFo(y; — i)} — A{(9: + Uid)[6(¥; — ¥i)
+ 02] + (U — Ui} — S, i)

- A'/ZJX(\P,-, 7l',') + hot. (41)
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FIG. 3b. The amplitude of the equilibrated solution —Re(ao/a;)
for =1, n = 0.8 and / = . The solid line is for g = 0; the dashed
one for g = 1.

where
J(4, B) = 3,49,B — 3,A0,B
Jx(A4, B) = dxA3,B — 3,AdxB
and

m = 9,4 + Fo(y; — ¥).

The new O(1) viscosity parameter 7 is defined by the
identity r = FA. Again we must now expand the fields
in powers of A!/2, as in (3.3), to obtain a sequence of
problems.

At O(A'?) we have the inviscid marginal wave in
the low frequency limit, namely:

@ = A(X) expliw(x — 1)] sin(ly) + cc

2@ = ¢, 4.2)

At O(A) we must introduce corrections to the x and ¢
independent (““mean”’) flow, which we denote by ¥;(X,
¥). Up to this order the problem is identical to the
temporal case, provided we substitute the long space
scale with a long time scale. The " fields are given
by

v = (X, )
¥ = Wa(X, )
2i

- [g% + fA] expliw(x — 0] sin(ly) + cc
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Imposition of a solvability condition at O(A%?) yields
the spatial amplitude equations. There are two types
of resonant terms that must be set to zero at that order.

First, we must eliminate the terms proportional to
expliw(x — )] sin(/y) that have the same structure as
the marginal wave (4.2). This leads, after much algebra,
to the spatial evolution equation for the wave amplitude
A i

d’4 (3+q) .dA
+ ——

"\ 2 ) Tax

_en[ @ PP (1+g
? 2 W\ 2
o 1
- 714 f dy sin21)3, (¥, — ¥;) = 0. (4.3)
0

It is perhaps surprising to realize at this point that (4.3)
is identical to the amplitude evolution equation of the
temporal problem provided one subtitutes d/dX by
d/dT (cf. Eq. 4.10 of Pedlosky 1971 in the limit of k
< 1). Note in particular that the wave 4 only interacts
with the baroclinic component ¥, — ¥, of the “mean”
flow.

The square bracket in front of the linear term reflects
the fact that, in order to be truly supercritical, we must
incorporate in the choice of F the O(A) corrections to
the marginal curve (i.e., the last two terms inside the
square bracket); these can be easily obtained from (2.5).
In what follows we have, without loss of generality,
chosen & so that the coefficient of the linear term is
identically 1.

The second kind of secularities that must be set to
zero consists of those terms that are independent of x
and ¢. Their removal yields the amplitude equations
for the “mean” flow corrections ¥;(X, y), which are
found to take the form:

x[U\(8,2¥, + Fo¥y) — FoUy ¥ ] + F[9,2,
3 [d|A |2

+ gFo(¥, — ¥)] = — | —— + 2F|4 lz] sin(2ly)
71 dX

GX[Uz(éyz‘Ilz + FoV,) — FoU,Ws]
+ F[8,°%, + qF (¥, — ¥))]
3 2
=— % [%‘— + 2F|A| 2] sin2ly). (4.4)

Equations (4.4) can be integrated immediately with re-
spect to y because the boundary condition for the
“mean” flow corrections at y = 0 and 1 is 9y ¥; = 0.
It is convenient to write:

Vi(X, y) = Pi(X) sin(2ly). (4.5)

Upon substitution of (4.5) into (4.4) and (4.3) and after
the rescaling
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we obtain a fourth-order system of nonlinear ordinary
differential equations which describe the spatial evo-
lution of the wave amplitude W and the barotropic
and baroclinic components of the “mean” flow Brand
B, respectively:

‘Z;VZ’Jr(?‘_Z“L_q) ;%Xu—/— W+ WBc=0

D %BYT = #{[4nBc — 5Br] + qnBc}
- 4,7[W‘%V+ FWZ]

P % = #{[3nBr — 4Bc] — qBc}

+ 4[W%V + r‘Wz] (4.6)

where B and By are defined by

_ B, —B, B +B,

BC 2 ’ T P

and the determinant D = 5 — 35 arises when the two
equations of (4.4) are diagonalized to obtain the
form (4.6). When 5 = n. = +V5/3, for which D = 0,
the “mean” flow corrections, whose meridional struc-
ture is sin(2/y), are resonant with the marginal wave
(we note that, because of our choice of the velocity
scale, when n = 5., U; and U, have opposite sign).

This is not a dissipative effect, and, although he failed
to recognize it, is also present in the inviscid analysis
of Merkine (1978) (consider, for instance, the denom-
inator in Merkine’s Eq. 2.16). If one wanted to analyze
this resonance, one could do a local analysis near
= 9., and include the “mean” flow corrections at lowest
order with the marginal wave as part of a triad.

It is also important to note that in (4.6) the nonlinear
interaction of the wave with itself forces both a baro-
clinic and a barotropic component of the “mean” flow.
In the temporal problem only the baroclinic compo-
nent is generated, and the set of equations analogous
to (4.6) is one degree lower.

The presence of a nonzero barotropic “mean” flow
correction in the spatial problem is a direct conse-
quence of the existence of pressure gradients with re-

" spect to the long space scale X. The absence of such

gradients in the temporal problem forces the “mean”
flow correction to be purely baroclinic in order for mass
conservation to be satisfied.



1984

System (4.6) possesses steady (i.e., space independent
solutions). They are:

W==+(1+ q/4)'?, Bc=1, Br=0. (4.7

In this case Bris identically zero. Only when there are
spatial variations can the system have a nonzero baro-
tropic “mean” flow correction. Note also that when
disspation is taken to be proportional to potential vor-
ticity (g = 1) the steady solutions have a somewhat
larger amplitude than when only Ekman dissipation is
present.

The linear stability of solutions (4. 7) can be inves-
tigated analytically. It is easy to show that, irrespective
of the values of 7 and g, the steady states are stable for
In| < In.| and unstable otherwise. This is due to the
fact that one of the eigenvalues of the system obtained
by linearizing (4.6) about the steady solution (4.7) can
be shown to be always proportional to 1/D.

In the inviscid limit, 7 = 0, the set of equations (4.6)

can be integrated twice to yield the following system:
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This shows that spatial equilibration is only possible
when |n| < || for which D > 0 (compare 4.8 with
Egs. (7.16.47) of Pedlosky 1987). When this condition
is satisfied, the inviscid system (4.8) will have limit cycle
solutions in the form of elliptic functions.

Therefore, as in the temporal problem, a low fre-
quency inviscid slightly supercritical baroclinic wave
can undergo amplitude vacillation, provided the ratio
of shear to mean flow is not too large. One example is
show in Fig. 4. Notice that, as can be seen from (4.8),
the barotropic and baroclinic “mean” flow corrections
are 180° out of phase, and that the baroclinic com-
ponent is in phase with the wave itself.

In order to apply our experience with familar dy-
namical systems to understand the behavior of system
(4.6), we have found it useful to consider the case »

< 1. If we let

W= w9 + g + O(?)

W 4 Brc = bYc + nbiye + O 4.9
dXz“W"'EW[Wz_WOz]:O T.C cTm (n°) 4.9)
4 4 and substitute the definitions (4.9) into (4.6), the lowest
22 w2 __Mm e g2 order equations in 7 obeyed by w®, b, and b-? are
Bc D [W" = Wo), Br D (7" = Wl (4.8) easily found to be
e
W
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i
B, -1’
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FI1G. 4. Inviscid limit cycle solution of (4.6) for = 0.8 and / = . The initial conditions
were: W= dW/dX = 1 and By = B, = Q.
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2..,(0) ©0)
dw® (3 + q) dAWT oy w9 O = 0

dax? 2
dZi‘” - % WORBLO + % [w(o) %«» + WOy
(4.10)
©
dz; = b, (4.11)

In this limit, the barotropic “mean” flow correction
decays by itself, and the wave and the baroclinic com-
ponent obey the third-order system (4.10). Without
great effort one can show that system (4.10) is equiv-
alent (i.e., obtainable by a linear transformation) to the
familiar Lorenz set (Lorenz 1963):

X =06y — ox
¥y

z

Rx—y—xz

I

xy — bz 4.12)
(where ( ° ) denotes ordinary differentiation with re-
spect to a rescaled independent variable). The linear
transformation that maps (4.10) into (4.12), determines
the values of the parameters ¢ (Prandtl number), R
(Rayleigh number) and b in terms of the parameters
of system (4.10). It is found that

2 _24+¢

o [

=l+q’

1
, R=1+-. (4.1
51+g¢ F @.13)

When dissipation is of Ekman type (g = 0) the
Prandtl number of the equivalent Lorenz set is equal
to 2 and b = 3, for which values the Lorenz set is
known to possess a strange attractor for certain values
of R, and to exhibit limit cycle behavior at R = oo,
which, through (4.13) corresponds to very small but
nonzero dissipation in (4.10). However, for potential
vorticity, dissipation (g = 1) ¢ = 1 and b = 1; at this
value of the Prandtl number all initial conditions of
the Lorenz set will converge to the stable steady state
solutions.

From these observations we may therefore expect
that, in the limit of small 7, system (4.6) will exhibit
vacillations for 7 < 1 when ¢ = 0, but not when g = 1.
This situation is similar to the one found in the tem-
poral problem (Pedlosky and Polvani 1987). The above
analysis, however, gives us no clues as to the behavior
we can expect when n = O(1), since (4.6) is then ver-
itably a fourth-order system and the analogy with the
Lorenz set no longer holds.

For that case we have had to resort to numerical
integrations of (4.6). We have implemented the time
step with a fourth-order Runge-Kutta algorithm. An
alternative fourth-order Taylor scheme was also used,
to validate the Runge-Kutta results. In all the runs we
have carried out the numerical integrations far enough
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to determine without possible doubt the behavior of
the solution. ‘

As expected from the preceding asymptotic analysis
for small n and small dissipation, vacillating solutions
were found for the full system (4.6) when ¢ = 0. We
give one example in Fig. 5a; for the run we chose 7
=0.01 and # = 0.01; the initial conditions were: W
= dW/dX = 1 and By = B¢ = 0. The integration was
carried out to approximately 500 dissipative e-folding
distances, and only the last few periods are shown in
the figure. Notice how different this limit cycle behavior
is from the inviscid case of Fig. 4. In particular, as can
be seen from (4.6) itself, the barotropic “mean” flow
correction Br is O(n) smaller than either W or Bc.

As F was progressively increased, keeping 5 constant
(and very small) and g = 0, the limit cycle behavior
gradually gave way to steady state solutions. Above 7
> 0.02 only steady amplitudes were found. Some win-
dows of amplitude vacillation were detected between
regions of steady amplitude, but no period doubling
or aperiodic behavior was observed. Figure 5b shows
a solution obtained with all the parameters identical
to the ones used for Fig. 5a, except for ¢ which had the
value 1. As expected, at small », the choice of potential
vorticity dissipation has expunged all vacillations.

By far the most interesting result is the effect of the
existence of a nonzero barotropic “mean” flow cor-
rection when n = O(1). It turns out that, although in
that parameter range, even for extremely small dissi-
pations, the solutions of system (4.6) are found to relax
to steady amplitudes as X = oo, independent of the
value of g, large vacillations persist over large distances
downstream of the source, with O(1) barotropic
“mean” flow corrections.

We give one example in Figs. 6a, b and 7a, b (for ¢
= 0 and 1 respectively), for which the initial conditions
are the same as for Fig. 5, but with » = 0.8 and 7
= 0.001. In general, we have found that for n = 0.1
steady amplitude behavior occurs in the limit X = oo
for all values of #although, in practice, if the dissipation
is extremely small, the system will vacillate very far
out before a steady amplitude is reached.

Indeed, for the spatial case as opposed to the tem-
poral problem, one is not as much interested in the
asymptotic behavior of the solution as in the response
of the system in a large region downstream of the
source. Figures 6a and 7a show that, in that region, the
nonlinear dynamics of an unstable baroclinic wave can
be responsible for the presence of both baroclinic and
barotropic “mean” flow corrections whose amplitude
exhibits rapid spatial vacillation.

5. Conclusion

The investigation of slightly supercritical spatially
growing baroclinic waves in the two-layer model has
revealed that an O(1) dissipation will act, in combi-
nation with the nonlinear self-interaction, to equilibrate
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and g = 0. Initial conditions identical to the ones of Fig. 4.
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all waves on the “Eady” branch of the spatial marginal
curve, for which some cases of inviscid subcritical de-
stabilization were reported earlier (Merkine 1978).

In the limit of small dissipation and low frequency,
however, nonlinear instability has been shown to exist
when the ratio of shear to mean flow exceeds an O(1)
critical value. We have also shown that, in the same
limit, baroclinic waves can exhibit spatially vacillating
behavior. This means that, downstream of a source of
perturbations and due solely to the internal nonlinear
baroclinic wave dynamics, one may expect regions of
variable eddy activity generated by the self-interaction
of the wave. Furthermore, the associated “mean” flow
corrections will have both baroclinic and barotropic
components.

Perhaps the most unexpected conclusion to emerge
from this study is that, in contrast with the temporal
problem, the form chosen to model the dissipation is
not as crucial in determining the qualitative behavior
of these results.

The model used in this study is very idealized and
certainly far too simple for a direct comparison with
actual geophysical flows such as the Gulf Stream.
Among other aspects that should be addressed in future
investigations of this problem, we mention the effect
of the planetary gradient of potential vorticity and the
presence of several forcing frequencies at the source.
It is our belief that the main qualitative conclusions of
this study, namely the existence of spatial vacillations
and of barotropic mean flow corrections, will be con-
firmed by future more realistic models.
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