
The Astrophysical Journal, 738:71 (24pp), 2011 September 1 doi:10.1088/0004-637X/738/1/71
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

Adam P. Showman
1,4

and Lorenzo M. Polvani
2,3

1 Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721, USA;
showman@lpl.arizona.edu

2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
3 Lamont-Doherty Earth Observatory, Palisades, NY, USA

Received 2011 March 15; accepted 2011 June 17; published 2011 August 12

ABSTRACT

The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric
circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period
planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward,
or “superrotating,” jet stream at the equator. When the radiative and advection timescales are comparable,
this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of
degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of
equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible
for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial
jet results from the interaction of the mean flow with standing Rossby waves induced by the day–night thermal
forcing. The strong longitudinal variations in radiative heating—namely intense dayside heating and nightside
cooling—trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby
waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing
equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties
in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave–mean-flow interaction
produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial
Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously
rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet
obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet speed on forcing
amplitude, strength of friction, and other parameters, as well as the conditions under which jets can form at all.
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1. INTRODUCTION

The past few years have witnessed major strides in our
efforts to understand the atmospheric circulation of short-period
exoplanets—both gas giants (hot Jupiters) and smaller terrestrial
planets. Infrared photometry, spectra, and light curves from
the Spitzer Space Telescope and Hubble Space Telescope now
provide constraints on the three-dimensional (3D) temperature
structure of several hot Jupiters, which hint at a vigorous
atmospheric circulation on these bodies (e.g., Knutson et al.
2007, 2009; Charbonneau et al. 2008; Harrington et al. 2006;
Cowan et al. 2007; Swain et al. 2009; Crossfield et al. 2010).
These observations have motivated a growing effort to model
the atmospheric circulation on these objects: to date, many
3D atmospheric circulation models of hot Jupiters have been
published (Showman & Guillot 2002; Cooper & Showman
2005, 2006; Showman et al. 2008, 2009; Dobbs-Dixon & Lin
2008; Menou & Rauscher 2009; Rauscher & Menou 2010;
Dobbs-Dixon et al. 2010; Thrastarson & Cho 2010; Lewis
et al. 2010; Perna et al. 2010; Heng et al. 2010). These models
have emphasized synchronously rotating hot Jupiters in circular,
approximately 2–5 day orbits.

4 Part of the work was carried out while A.P.S. was on sabbatical at the
Department of Applied Physics and Applied Mathematics, Columbia
University, New York, NY, USA.

Just as the last decade witnessed the first characterization of
hot Jupiters, the next decade will see a shift toward characteriz-
ing “super Earths” (planets of 1–10 Earth masses) and terrestrial
planets. To date, roughly 30 super Earths have been discovered,
including several that transit their host stars (Charbonneau et al.
2009; Léger et al. 2009; Batalha et al. 2011) with hundreds
of additional candidates recently announced from the NASA
Kepler mission (Borucki et al. 2011). Attempts to observation-
ally characterize their atmospheres have already begun (Bean
et al. 2010). In anticipation of this vanguard, several 3D circula-
tion models of tidally locked, short-period terrestrial exoplanets
have been published (Joshi et al. 1997; Joshi 2003; Merlis &
Schneider 2010; Heng & Vogt 2010).

Intriguingly, the flows in most of these 3D models—both
hot Jupiters and terrestrial planets—develop a fast eastward, or
superrotating, jet stream at the equator, with westward flow
typically occurring at deeper levels and/or higher latitudes.
In hot-Jupiter models, the superrotating jet extends from the
equator to latitudes of typically 20◦–60◦ and is perhaps the
dominant dynamical feature of the modeled flows. In some
cases (depending on the strength of the imposed stellar heating
and other factors), this jet causes an eastward displacement
of the hottest regions from the substellar point by ∼10◦–60◦
longitude. Showman & Guillot (2002) first predicted this feature
and suggested that, if it existed on hot Jupiters, it would have
important implications for infrared spectra and light curves. This
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prediction has been confirmed in Spitzer infrared observations
of HD 189733b (Knutson et al. 2007, 2009), suggesting that this
planet may indeed exhibit a superrotating jet.

However, despite the ubiquity of equatorial superrotation
in 3D models of synchronously rotating exoplanets—and its
relevance for observations—the mechanisms that produce this
superrotation have yet to be identified. As demonstrated in a
theorem due to Hide (1969), such superrotation cannot result
from atmospheric circulations that are longitudinally symmet-
ric or that conserve angular momentum per unit mass about
the planetary rotation axis. The equatorial atmosphere is the re-
gion of the planet farthest from the planetary rotation axis, and a
superrotating equatorial jet therefore corresponds to a local max-
imum in the angular momentum per unit mass about the plane-
tary rotation axis. Thus, any angular-momentum-conserving cir-
culation that moves air to the equatorial atmosphere from higher
latitudes or deeper levels tends to produce westward equatorial
flow. Equivalently, Coriolis forces always induce westward ac-
celeration for air moving equatorward or upward, so an eastward
equatorial jet cannot result from Coriolis forces acting on air that
moves into the equatorial atmosphere from higher latitudes or
deeper levels. In Earth’s equatorial troposphere, for example, the
flow is westward, which results from the tropospheric Hadley
cell on Earth (a regime where a mean overturning circulation
and its Coriolis accelerations plays the defining role; Held &
Hou 1980). To maintain equatorial superrotation, a mechanism
is needed that pumps angular momentum per unit mass from
regions where it is small (outside the jet) to regions where it
is large (within the jet)—a so-called up-gradient momentum
transport. According to Hide’s theorem, this transport can only
be accomplished by waves or eddies.

Equatorial superrotation exists in several atmospheres of
the solar system—the equatorial atmospheres of Venus,
Titan, Jupiter, and Saturn all superrotate. Even localized lay-
ers within Earth’s equatorial stratosphere exhibit superrotation,
part of a phenomenon called the “Quasi-Biennial Oscillation”
or QBO (Andrews et al. 1987). The mechanisms for driv-
ing the equatorial superrotation on these planets are diverse.
Possible mechanisms include eddy transport associated with
baroclinic instabilities, barotropic instabilities, turbulence, and
the absorption/radiation of various types of atmospheric waves
(e.g., Williams 2003a, 2003b; Lian & Showman 2008, 2010;
Schneider & Liu 2009; Del Genio et al. 1993; Del Genio &
Zhou 1996; Andrews et al. 1987; Mitchell & Vallis 2010).

Here, we demonstrate how the equatorial superrotation in 3D
models of synchronously rotating, short-period exoplanets can
result from the existence of standing, planetary-scale Rossby
waves; such waves are naturally excited by the longitudinally de-
pendent heating patterns—dayside heating and nightside cool-
ing—that accompany the photospheric regions of short-period,
synchronously rotating planets. Section 2 provides background.
In Section 3, we present an analytic theory demonstrating the
mechanism, and we systematically explore its behavior in ide-
alized, nonlinear one-layer models. In Section 4, we extend the
analysis to 3D circulation models. In Section 5, we summarize
and discuss implications.

2. BACKGROUND THEORY

The ability of Rossby waves to accelerate jets can be
schematically illustrated using the two-dimensional nondi-
vergent barotropic vorticity equation, which is the simplest
model for the global-scale flow of a planetary atmosphere
(see discussion in Vallis 2006; Showman et al. 2010). The

equation reads
d(ζ + f )

dt
= F, (1)

where ζ ≡ k · ∇ × v is the relative vorticity, v is the horizontal
wind velocity, k is the local upward unit vector, f ≡ 2Ω sin φ is
the Coriolis parameter, Ω is the planetary rotation rate (2π over
the rotation period), φ is the latitude, and d/dt = ∂/∂t + v ·∇ is
the material derivative (i.e., the derivative following the flow).
The equation states that individual fluid parcels conserve the
absolute vorticity, ζ +f , save for vorticity sources/sinks, which
are represented by the term F. The equation can equivalently be
written as

∂ζ

∂t
+ v · ∇ζ + vβ = F, (2)

where v is the meridional (northward) wind speed and β =
df/dy is the gradient of the Coriolis parameter with northward
distance y. Because the flow in this simple model is horizontally
nondivergent, we can define a streamfunction ψ such that
u = −∂ψ/∂y and v = ∂ψ/∂x, where x is the eastward
coordinate and u is the zonal (eastward) wind speed. This allows
the equation to be written as a function of one variable, ψ .

For purposes of illustration, consider the linearized version
of Equation (2) with no sources and sinks. The solutions to this
linearized, unforced equation are Rossby waves. For simplicity,
we consider Cartesian geometry with constant β, representing
a local region on the sphere. Decomposing variables into
zonal means (denoted with overbars) and deviations therefrom
(denoted with primes), and assuming that the mean flow is zero,
leads to a solution given by ψ ′ = ψ̂ exp[i(kx + ly)], where i is
the imaginary number and k and l are the zonal and meridional
wavenumbers. The dispersion relation is

ω = − βk

k2 + l2
. (3)

These waves propagate meridionally with a group velocity given
by

∂ω

∂l
= 2βkl

(k2 + l2)2
. (4)

A simple argument, first clearly presented by Thompson
(1971) and reviewed in Held (2000) and Vallis (2006), shows
how these waves can produce an east–west acceleration of the
zonal-mean flow. The latitudinal transport of eastward eddy
momentum per unit mass is u′v′, where u′ and v′ are the
deviations of the zonal and meridional winds from their zonal
means, respectively, and the overbar denotes a zonal average.
Using the solutions for the wave-induced zonal and meridional
wind, u′ = −ilψ̂ exp[i(kx + ly)] and v′ = ikψ̂ exp[i(kx + ly)],
yields a momentum flux

u′v′ = −1

2
ψ̂2kl. (5)

Since the group velocity must point away from the region
of wave generation (which we call the “wave source”), and
since β is positive, we must have kl > 0 north of the source
and kl < 0 south of the source. Thus, north of the source,
u′v′ is negative, implying southward transport of eastward
momentum. But south of the source, u′v′ is positive, implying
northward transport of eastward momentum. Rossby waves
therefore transport eastward momentum into the wave-source
region. An eastward acceleration must therefore occur in the
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wave-source region and a westward acceleration must occur in
the region of wave breaking or dissipation. This can lead to the
formation of zonal (east–west) jet streams.5

Rossby waves correspond to latitudinal oscillations in sur-
faces of constant potential vorticity6; thus, any process that trig-
gers such oscillations at large scales will tend to excite Rossby
waves. In Earth’s atmosphere, one of the predominant sources
is baroclinic instability, which occurs in the midlatitude tropo-
sphere where latitudinal temperature gradients are large. Spa-
tially varying tropospheric heating and cooling (e.g., due to
land–sea contrasts) or flow over topography also perturb the
potential vorticity contours and can therefore trigger Rossby
waves. In the atmospheres of tidally locked, hot exoplanets, on
the other hand, the day–night heating pattern constitutes the
overriding dynamical forcing. For such planets, we expect this
heating/cooling pattern to trigger Rossby waves at low latitudes
(Figure 1).

The above theory is for free waves. Consider now the ex-
tension to an atmosphere forced by vorticity sources/sinks and
damped by frictional drag. The zonal-mean zonal momentum
equation of the barotropic system reads

∂u

∂t
= −∂(u′v′)

∂y
− u

τdrag
, (6)

where overbars denote zonal means and primes denote devia-
tions therefrom. The equation states that accelerations of the
zonal-mean zonal flow result from convergences of the lati-
tudinal eddy momentum flux and from drag, which we have
parameterized as a term that relaxes the zonal-mean zonal wind
toward zero over a drag time constant τdrag. The relationship
between the eddy acceleration in Equation (6) and the vorticity
sources/sinks can be made in two steps. First, we note that the
definition of vorticity implies that v′ζ ′ = −∂(u′v′)/∂y. Second,
we multiply the linearized version of Equation (2) by ζ ′ and
zonally average. This leads to an equation for the budget of the

5 The dynamical picture outlined above is not limited to small-amplitude
disturbances, as can be shown with a simple argument described, for example,
in Held (2000) and Vallis (2006). Imagine an initially undisturbed latitude,
where the absolute-vorticity contour initially aligns with the latitude circle, and
suppose a disturbance—of any amplitude—propagates into that latitude from
elsewhere. The disturbance will perturb the absolute vorticity contours, causing
northward transport of air in some regions and southward transport in others.
Because absolute vorticity generally increases northward, the northward
advection carries with it air of low absolute vorticity, whereas the southward
advection carries with it air of high absolute vorticity. Thus, this process will
generally cause a southward flux of absolute vorticity, thereby decreasing the
areal integral of the absolute vorticity over the polar cap bounded by the
latitude circle in question. By Stokes’ theorem, this implies that the
zonal-mean zonal wind decelerates (i.e., accelerates westward) because of this
vorticity flux. In the absence of dissipative processes, this deceleration would
reverse if the disturbance exited the region. However, when mixing occurs
(e.g., if the wave breaks), or if the disturbance is damped before air parcels can
return to their original latitudes, then the areal integral of the vorticity inside
the latitude circle has been irreversibly decreased, and the westward impulse
cannot be undone. Thus, we again recover the result that westward
acceleration occurs in the region of wave dissipation; if momentum is
conserved, eastward acceleration would then occur in the wave-source region.
6 Potential vorticity is a quantity related to vorticity that is conserved in
adiabatic, frictionless, stratified flow. For the barotropic system it is simply the
absolute vorticity ζ + f , for the shallow-water system it is absolute vorticity
over layer thickness (ζ + f )/h, and for a 3D stratified atmosphere it is given
by ρ−1(∇ × v + 2�) · ∇θ , where ρ is the density, Ω is the planetary rotation
vector, and θ is the potential temperature. For discussion of the conservation of
potential vorticity and its uses in dynamics, see Pedlosky (1987) or Vallis
(2006).

Figure 1. Illustration of the dynamical mechanism for generating equatorial
superrotation on tidally locked short-period exoplanets, including hot Jupiters
and super Earths. The intense day–night heating gradient generates standing,
planetary-scale Rossby and Kelvin waves. These waves develop a structure
with velocities tilting northwest-to-southeast in the northern hemisphere and
southwest-to-northeast in the southern hemisphere (yellow and red ovals).
In turn, these patterns transport eddy momentum from high latitudes to the
equator (dashed arrows). Equatorial superrotation therefore emerges (thick,
right-pointing arrow).

(A color version of this figure is available in the online journal.)

so-called pseudomomentum (Vallis 2006, p. 493):

∂A
∂t

+ v′ζ ′ = ζ ′F ′

2(β − ∂2u
∂y2 )

. (7)

For the two-dimensional nondivergent model, A = (β −
∂2u/∂y2)−1ζ ′2/2 is the pseudomomentum, which is a measure
of wave activity. By combining Equations (6) and (7) and
supposing that the wave amplitudes and zonal-mean zonal wind
are statistically steady, i.e., ∂A/∂t ≈ 0 and ∂u/∂t ≈ 0, we
obtain

u

τdrag
= ζ ′F ′

2(β − ∂2u
∂y2 )

. (8)

This equation relates the vorticity sources/sinks and drag to
the zonal-mean zonal wind, u. When eddy sources/sinks of
relative vorticity on average exhibit the same sign as the vorticity
itself (i.e., ζ ′F ′ > 0), the eddy acceleration is eastward, and in
steady state results in an eastward zonal-mean zonal wind. When
sources/sink of relative vorticity tend to exhibit the opposite sign
as the vorticity (ζ ′F ′ < 0), the eddy acceleration is westward,
and in steady state results in westward zonal-mean zonal wind.7

In analogy with the free solutions, this behavior is typically
interpreted in terms of the generation, latitudinal propagation,
and dissipation of Rossby waves.

This mechanism is thought to be responsible for the eddy-
driven jet streams (and the associated eastward surface winds)
in Earth’s midlatitudes: baroclinic instability generates Rossby
waves that radiate away from the midlatitudes, causing eastward
eddy acceleration there and leading to eastward surface flow

7 These arguments assume that β − ∂2u/∂y2 > 0, which is generally the case.
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in steady state (Held 2000; Vallis 2006). At the equator,
Earth’s troposphere does not superrotate; nevertheless, idealized
Earth general circulation models (GCMs) have shown that the
presence of strong zonally varying heating and cooling in the
tropics can cause equatorial superrotation to emerge (Suarez &
Duffy 1992; Saravanan 1993; Kraucunas & Hartmann 2005;
Norton 2006). In analogy with the theory described above, Held
(1999) suggested heuristically that the superrotation in these
models results from the generation and poleward propagation
of Rossby waves by the tropical heating sources.

Still, application of this barotropic theory to tidally locked
exoplanets is problematic. Most models of atmospheric circu-
lation on synchronously rotating, zero-eccentricity hot Jupiters
exhibit relatively steady circulation patterns whose velocity and
temperature patterns are approximately symmetric about the
equator (Showman & Guillot 2002; Cooper & Showman 2005,
2006; Showman et al. 2008, 2009; Dobbs-Dixon & Lin 2008;
Rauscher & Menou 2010). In such models, the relative vorticity
is approximately antisymmetric about, and zero at, the equator.
Equation (8) predicts that u = 0 at the equator for this situation.
Thus, while attractive, this theory fails to explain the equatorial
superrotation in these hot-Jupiter models.

There are other difficulties. First, the theory presented here
assumes the flow is barotropic—i.e., it can be described by
Equation (1)—and thereby ignores the role of finite Rossby de-
formation radius in shaping the wave properties. Second, vertical
motions normally accompany regions of heating and cooling,
and these vertical motions lead to nonzero horizontal diver-
gence. The low-latitude flow is thus inherently divergent in the
presence of heating/cooling, in conflict with the stated assump-
tions. Moreover, the theory cannot account in any rigorous way
for the generation of the Rossby waves by thermal forcing. The
above equations include no thermodynamics and only the effect
of such forcing in producing relative vorticity is represented.
Away from the equator, one expects that heating produces ris-
ing motion and horizontal divergence aloft, which generates
anticyclonic relative vorticity by the action of Coriolis forces.
At the equator, however, this vorticity source is small, leaving
unclear the applicability of this barotropic theory in producing
eastward flow at the equator.8 When the geostrophic assumption
is relaxed and a finite deformation radius is included, analytic
solutions of freely propagating equatorial waves show that such
waves tend to be trapped within an equatorial waveguide and
cannot propagate away from the equator (Holton 2004; Andrews
et al. 1987); such wave solutions involve no net meridional
(north–south) momentum transports, thus raising the question
of whether the above mechanism is viable at the equator in the

8 Within the context of barotropic theory, one can relax the nondivergent
assumption by resolving the horizontal velocity into rotational and divergent
components, specifying the horizontal divergence field, and then solving
Equation (2) for the rotational component of the flow (see Sardeshmukh &
Hoskins 1985, 1988). In this context, the specified divergence field represents
the spatial field of heating and cooling. The vorticity source in Equation (2)
would then be F = −(ζ + f )∇ · vχ − vχ · ∇(ζ + f ), where vχ is the specified
divergent component of the flow field and the velocity and vorticity on the
left-hand side of Equation (2) represent only the rotational component. One
can then rework Equations (6)–(8) under the usual barotropic assumptions that
vertical momentum/vorticity transport and vortex tilting are negligible.
However, such a divergent barotropic model suffers from the same failing as
the nondivergent version: when the pattern of heating/cooling and flow field
are mirror symmetric about the equator—as in most hot-Jupiter models—the
vorticity source F is zero at the equator, leading to a Rossby wave source ζ ′F ′
that is likewise zero at the equator. In the presence of frictional drag, one again
obtains the result that u = 0 at the equator. Thus, even such an extended
barotropic treatment is insufficient to explain the equatorial superrotation in
hot-Jupiter models.

presence of finite deformation radius. Finally, for hot Jupiters,
the Rossby waves are expected to be global in scale, and it is
not clear a priori whether there is room for them to propagate
poleward from the equatorial regions.

We present a sequence of models in the following sections that
overcome these obstacles and provide a theoretical foundation
for understanding equatorial superrotation on tidally locked
exoplanets.

3. SHALLOW-WATER MODEL OF EQUATORIAL
SUPERROTATION

Full GCM solutions, although useful, involve so many in-
teracting processes that it is often difficult to cleanly identify
specific dynamical mechanisms from such solutions (see, e.g.,
Showman et al. 2010). Simplified models therefore play an im-
portant role in atmospheric dynamics. Here, we present a highly
idealized model intended to capture the mechanism in the sim-
plest possible context.

We adopt a two-layer model, with constant densities in each
layer, where the upper layer represents the meteorologically
active atmosphere and the lower layer represents the quiescent
deep atmosphere and interior. In the limit where the lower layer
becomes infinitely deep and the lower-layer winds and pressure
gradients remain steady in time (which requires the upper layer
to be isostatically balanced), this two-layer system reduced to
the shallow-water equations for the flow in the upper layer (e.g.,
Vallis 2006, p. 129–130):

dv
dt

+ g∇h + f k × v = R − v
τdrag

(9)

∂h

∂t
+ ∇ · (vh) = heq(λ, φ) − h

τrad
≡ Q, (10)

where v(λ, φ, t) is the horizontal velocity, h(λ, φ, t) is the upper
layer thickness, t is the time, g is the (reduced) gravity,9 f =
2Ω sin φ is the Coriolis parameter, k is the upward unit vector, Ω
is the planetary rotation rate, and φ is the latitude. Again, d/dt =
∂/∂t +v ·∇ is the material derivative. The boundary between the
layers represents an atmospheric isentrope, across which mass
is exchanged in the presence of heating or cooling. Heating and
cooling are therefore represented in the shallow-water system
using mass sources and sinks, represented here as a Newtonian
relaxation of the height toward a specified radiative-equilibrium
height heq—thick on the dayside and thin on the nightside—over
a radiative timescale τrad. The momentum Equations (9) include
drag with a timescale τdrag, which could represent the potentially
important effects of magnetohydrodynamic friction (Perna et al.
2010), vertical turbulent mixing (e.g., Li & Goodman 2010), or
momentum transport by breaking gravity waves (Lindzen 1981;
Watkins & Cho 2010).

The term R in Equation (9) represents the effect on the upper
layer of momentum advection from the lower layer, and takes
the same form as in Shell & Held (2004) and Showman &
Polvani (2010):

R(λ, φ, t) =
{
−Qv

h
, Q > 0;

0, Q < 0,
(11)

9 g in Equation (9) is the actual gravity times the fractional density difference
between the layers, and is therefore called the “reduced gravity.” When
interpreting this shallow-water model in the context of a 3D atmosphere, this
density difference should be interpreted as (for example) the fractional change
in potential temperature across a scale height. This is of order unity for a hot
Jupiter.
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where λ and φ are longitude and latitude. Air moving out of
the upper layer (Q < 0) does not locally affect the upper
layer’s specific angular momentum or wind speed, hence R = 0
for that case. But air transported into the upper layer carries
lower-layer momentum with it and thus alters the local specific
angular momentum and zonal wind in the upper layer. For the
simplest case where the lower-layer winds are assumed to be
zero, this process preserves the column-integrated vh of the
upper layer, leading to the expression in Equation (11) for
Q > 0. Importantly, the expression for R follows directly from
the momentum budget and contains no free parameters.10

The relative roles of the two terms on the right-hand side
of the momentum equation can be clarified by rewriting it as
follows:

dv
dt

+g∇h+f k×v=−v
[

1

τdrag
+

1

τrad

(
heq − h

h

)
H(heq − h)

]
,

(12)
where H(heq − h) is the Heaviside step function, defined as 1
when heq − h > 0 and 0 otherwise. Dynamically, it should
be clear that both terms on the right-hand side play a role
analogous to drag; one can define the entire quantity in square
braces as one over an effective drag time constant. Still, the
second term (R) is spatially heterogeneous and only exists in
regions of heating, and we will show that its effect on the zonal-
mean flow is qualitatively different than that of the first term
(frictional drag). For a strongly irradiated hot Jupiter, we might
expect (heq − h)/h ∼ 0.01–1, and if so then the first term
would dominate if τdrag 	 τrad whereas the second term would
dominate if τdrag 
 τrad.

We present linear, analytic solutions and fully nonlinear,
numerically determined solutions of Equations (9)–(11) in the
next two subsections.

3.1. Linear Solutions

To enable analytic solutions, we solve Equations (9)–(11) in
Cartesian geometry assuming that the Coriolis parameter can
be approximated as f = βy, where y is the northward distance
from the equator and β (the gradient of Coriolis parameter with
northward distance) is assumed constant. This approximation,
called the “equatorial β-plane,” is strictly valid only at low
latitudes, but we will see in Section 3.2 that the qualitative
features of these solutions are recovered by the full solutions in
spherical geometry.

We now linearize Equations (9)–(11) about a state of rest.
By definition, all the terms in the linearized equations have
magnitudes that scale with the forcing amplitude. Note that
the term R involves the product of the velocity and forcing
amplitude, and therefore is quadratic in the forcing amplitude
and does not appear in the linearized equations. (We will come
back to it when evaluating the implications of the solutions for
the zonal-mean zonal wind.) The linearized equations read

∂u

∂t
+ g

∂η

∂x
− βyv = − u

τdrag
(13)

10 The condition that air moving out of the upper layer induces no change in
the upper layer’s specific momentum requires that such momentum advection
cause no accelerations, implying that R = 0 for Q < 0. To derive the
expression for the case Q > 0, add v times the continuity equation to h times
the momentum equation, thus yielding an equation for the time rate of change
of vh. Terms involving heating/cooling are hR + vQ. In the special case where
the lower-layer winds are zero, mass transport into the upper layer does not
change the column-integrated horizontal wind, vh, of the upper layer. This
implies that hR + vQ = 0, thus yielding Equation (11).

∂v

∂t
+ g

∂η

∂y
+ βyu = − v

τdrag
(14)

∂η

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
= S(x, y) − η

τrad
, (15)

where x is the eastward distance and η is the deviation of
the thickness from its constant reference value H, such that
h = H +η. The quantity S ≡ (heq−H )/τrad is the forcing, which
can also be expressed as S ≡ ηeq/τrad, where ηeq ≡ heq − H is
the deviation of the radiative-equilibrium height from H.

The free solutions to these equations (i.e., when the right-
hand sides are set to zero) are the well-known equatorially
trapped wave modes, described for example in Holton (2004)
and Andrews et al. (1987). Given the intense heating and cooling
experienced by hot, tidally locked exoplanets, however, we seek
solutions to the forced problem. Most 3D dynamical models
of hot Jupiters exhibit relatively steady circulation patterns
(Showman & Guillot 2002; Cooper & Showman 2005, 2006;
Dobbs-Dixon & Lin 2008; Dobbs-Dixon et al. 2010; Showman
et al. 2008, 2009; Rauscher & Menou 2010), and so we seek
steady solutions in the presence of forcing and damping.

We nondimensionalize Equations (13)–(15) with a length
scale L = (

√
gH/β)1/2, a velocity scale U = √

gH , and a
timescale T = (

√
gHβ)−1/2, which correspond respectively

to the equatorial Rossby deformation radius, the gravity wave
speed, and the time for a gravity wave to cross a deformation
radius in the shallow-water system. The thickness is nondimen-
sionalized with H, the drag and thermal time constants with T ,
and the forcing with H/T . This yields, for steady flows,

∂η

∂x
− yv = − u

τdrag
(16)

∂η

∂y
+ yu = − v

τdrag
(17)

(
∂u

∂x
+

∂v

∂y

)
= S(x, y) − η

τrad
, (18)

where all quantities, including τrad and τdrag, are now nondimen-
sional.

In pioneering investigations, Matsuno (1966) and Gill (1980)
obtained analytic solutions to Equations (16)–(18) for the special
case where the drag and radiative time constants are equal and
drag is neglected from the meridional momentum Equation (17);
the latter assumption is called the “longwave approximation”
because it is valid in the limit where zonal length scales
greatly exceed meridional ones. On tidally locked exoplanets,
however, the drag and radiative timescales can differ greatly, and
the longwave approximation may not apply, because the flow
exhibits comparable zonal and meridional scales. We therefore
retain the full form of Equations (16)–(18).

Equations (16)–(18) can be combined to yield a single
differential equation for the meridional velocity v (e.g., Wu
et al. 2001):

1

τdrag

(
∂2v

∂y2
+

∂2v

∂x2

)
+

∂v

∂x
− 1

τrad

(
y2 +

1

τ 2
drag

)
v

=
(

−y
∂S

∂x
+

1

τdrag

∂S

∂y

)
. (19)
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If one seeks separable solutions, then, as described by Gill
(1980) and Wu et al. (2001), the meridional structure of the
solutions to this equation with finite τdrag are the parabolic
cylinder functions ψn(y), which are simply Gaussians times
Hermite polynomials11:

ψn(y) = exp

(
− y2

2P2

)
Hn

( y

P

)
, (20)

where P ≡ (τrad/τdrag)1/4 is the fourth root of a Prandtl number.
Our goal is to specify the thermal forcing, S(x, y), and solve

for the unknowns u, v, and η. In general, any desired pattern of
thermal forcing can be represented as

S(x, y) =
∞∑

n=0

Sn(x)ψn(y). (21)

For tidally locked exoplanets, we expect this pattern to consist
of a day–night variation in heating/cooling whose amplitude
peaks at low latitudes and diminishes near the poles. We take
the forcing to be symmetric about the equator (appropriate for
a planet with zero obliquity) and, to keep the mathematics
tractable, retain solely the term S0, corresponding to the pattern
of heating and cooling that is a Gaussian, centered about the
equator, with a latitudinal half-width of the equatorial Rossby
radius of deformation modified by frictional and radiative
effects. While the full solution would require consideration of
Sn for all n � 0, the first term, S0, will be the dominant term
for cases where the deformation radius is similar to a planetary
radius, as is the case on typical hot Jupiters. Consideration of
this term alone will therefore suffice to illustrate the qualitative
features relevant for inducing an equatorially superrotating jet
on tidally locked exoplanets.

Appendix B describes the solution method of
Equations (16)–(18) and presents the solution for the specific
case where the forcing consists solely of the S0 term varying
sinusoidally in longitude, i.e., S(x, y) = Ŝ0e

ikxψ0(y), where Ŝ0
is a constant. Figure 2 shows an example for parameter values
typical of a hot Jupiter or hot super Earth (zonal wavelengths
associated with the day–night heating contrast of a planetary
circumference and radiative time constants of order 105 s). For
this example, the drag time constant is taken equal to the radia-
tive time constant. Figure 2(a) shows the radiative-equilibrium
height field and Figure 2(b) presents the steady-state height and
velocity fields.

The solutions exhibit several important features. Although
the radiative-equilibrium height field is symmetric in longitude
about the substellar point (Figure 2(a)), the actual height field
deviates significantly from radiative equilibrium and exhibits
considerable dynamical structure (Figure 2(b)). Two fundamen-
tal types of behavior are present. First, at mid-to-high latitudes
(|y| ∼ 1–3 in the figure), the flow exhibits vortical behavior.
The dayside contains an anticyclone in each hemisphere, man-
ifesting as a pressure high (i.e., local maximum of the height)
around which winds flow clockwise in the northern hemisphere
and counterclockwise in the southern hemisphere; the nightside
contains a cyclone in each hemisphere, manifesting as a pressure
low around which winds flow counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Second,
at low latitudes (|y| � 1), the flows are nearly east–west; they

11 The first few Hermite polynomials are H0(ξ ) = 1, H1(ξ ) = 2ξ ,
H2(ξ ) = 4ξ2 − 2, and H3(ξ ) = 8ξ3 − 12ξ .

(a)

(b)

(c)

Figure 2. Example linear, analytic solution for parameters relevant to hot, tidally
locked exoplanets. (a) Spatial structure of radiative-equilibrium height field, heq
(orange scale and contours). (b) Height field (orange scale) and horizontal wind
velocities (arrows) for the linear, analytic solution forced by relaxation to the
heq profile shown in panel (a) and with nondimensional zonal wavenumber
k = 0.5 and nondimensional radiative and drag times τrad = τdrag = 5.
For a hot Jupiter or hot super Earth, these correspond to dimensional zonal
wavelengths of a planetary circumference and dimensional radiative and drag
time constants of ∼105 s (see Appendix A). In (a) and (b), the horizontal and
vertical axes are dimensionless eastward and northward distance, respectively;
one unit of distance corresponds to a dimensional distance of one Rossby
deformation radius, (

√
gH/β)1/2. The × marks the longitude along the equator

where h reaches a maximum and the eddy zonal wind changes sign. (c) Zonal
(east–west) accelerations of the zonal-mean flow implied by the linear solution.
The black and dark blue curves give the accelerations due to horizontal and
vertical eddy transport (terms II and III, respectively, in Equation (22)). The
light-green and cyan curves show friction (term IV) and the effect of the mean-
meridional circulation (term I), respectively. The red curve shows the sum of all
terms. The numerical values adopt a forcing amplitude Δheq/H = 1. For this
value, the nondimensional peak winds approach 0.5, corresponding to speeds
of ∼1 km s−1 on a hot Jupiter.

(A color version of this figure is available in the online journal.)

diverge from a point east of the substellar longitude (marked
with a cross in Figure 2(b)) and converge toward a point east of
the antistellar longitude.

As discussed by Gill (1980), these features can be interpreted
in terms of forced, damped, and steady equatorial wave modes.
The mid-to-high latitude feature described above is dynamically
analogous to that of an n = 1 equatorially trapped Rossby
wave, which exhibits cyclones and anticyclones—alternating
in longitude—that peak off the equator (see Matsuno 1966,
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Figure 3. Analytic solutions of linearized shallow-water equations (Equations (16)–(18)), as presented in Appendix B, for dimensionless zonal wavenumber k = 0.5
and dimensionless radiative and drag time constants of 1, 10, and 100, corresponding roughly to dimensional time constants of 6 hr, 3 Earth days, and 1 month for
parameters appropriate to hot Jupiters (see Appendix A). All of these cases are forced by Newtonian relaxation of the height field toward a distribution analogous to
that in Figure 2(a).

(A color version of this figure is available in the online journal.)

Figure 4(c) for an example of the flow field in this mode). The
low-latitude feature discussed above is dynamically analogous
to a superposition of the n = 1 Rossby wave and the equatorial
Kelvin wave, which is a fundamental equatorially trapped wave
mode with strong zonal winds but very weak meridional winds
and whose amplitude is symmetric about, and peaks at, the
equator (see, e.g., Holton 2004 or Andrews et al. 1987). Both
of these wave modes exhibit winds that are primarily east–west
at the equator; in the example shown in Figure 2, the Kelvin
component dominates over the n = 1 Rossby component at the
equator.

Equations (16)–(18) indicate that this is a problem governed
by two parameters: the radiative time constant and the drag
time constant. We now examine how the behavior depends
on their values. Figure 3 shows linear solutions, as presented
in Appendix B, for dimensionless radiative time constants of
1, 10, and 100 (top, middle, and bottom rows, respectively)
and drag time constants of 1, 10, and 100 (left, middle,

and right columns, respectively). For parameters appropriate
to hot Jupiters (rotation period of 3 Earth days and gH ≈
4 × 106 m2 s−2), these dimensionless values correspond to
dimensional time constants of ∼3 × 104, 3 × 105, and 3 × 106 s,
respectively (see Appendix A). When the radiative and drag
time constants are short (upper left corner of Figure 3), the
maximum and minimum thermal (height) perturbations lie on
the equator and are close to the substellar and antistellar points;
in this limit, the height field is close to radiative equilibrium
(compare the top left of Figure 3 with Figure 2(a)),12 and
distinct Rossby-wave gyres do not appear. When the radiative
and drag time constants have intermediate values (middle of
Figure 3), cyclones and anticyclones become visible and—as
in Figure 2(b)—exhibit height extrema that are phase shifted

12 Appendix B demonstrates formally that, in the limit of either time constant
going to zero, the height field converges to the radiative-equilibrium height
field.
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westward of the extrema in radiative equilibrium. Similarly, the
height extrema along the equator become phase shifted eastward
relative to radiative equilibrium; thickness variations along the
equator become modest relative to those in midlatitudes. When
the radiative and drag time constants are long (lower right corner
of Figure 3), the height field becomes dominated by the off-
equatorial anticyclones and cyclones, with minimal variation of
height at the equator. In the limits τrad → ∞ and τdrag → ∞,
the solution becomes flat at the equator and is symmetric in
longitude about the x = 0 axis (a point demonstrated explicitly
in Appendix C); Figure 3 shows that this limit is almost reached
even for τrad and τdrag of 100.

Much of the behavior in Figure 3 can be understood in terms of
the zonal propagation of equatorially trapped Rossby and Kelvin
modes. Kelvin waves exhibit eastward group propagation while
long-wavelength, equatorially trapped Rossby waves exhibit
westward group propagation. When τrad and τdrag are very short
(upper left corner of Figure 3), the damping is so strong that the
waves are unable to propagate zonally. As a result, the height
is close to the radiative equilibrium height field. When the
two time constants have intermediate values, the propagation
produces an eastward phase shift of the height field at the
equator (the Kelvin component) and a westward phase shift of
the height field in the off-equatorial cyclones and anticyclones
(the Rossby component)—exactly as seen in Figure 2(b) and
the middle of Figure 3. As the two time constants become very
long, the westward phase offset of the off-equatorial cyclones
and anticyclones achieves maximal values of 90◦. At the equator,
however, the height variations go to zero; this is explained by the
fact that Coriolis forces are zero at the equator, so the linearized
force balance is between pressure-gradient forces and drag.
Weak drag requires weak pressure-gradient forces and hence
a flat layer at the equator.

Now, the key point of our paper is that these linear solutions
have major implications for the development of equatorial
superrotation on tidally locked exoplanets. As can be seen in
Figures 2(b) and 3, the wind vectors exhibit an overall tilt
from northwest-to-southeast in the northern hemisphere and
southwest-to-northeast in the southern hemisphere. This pattern,
which resembles a chevron centered at the equator and pointing
east, is particularly strong when the radiative and drag time
constants are short, but occurs in all the cases shown. This
structure implies that, on average, equatorward moving air
has faster-than-average eastward wind speed while poleward
moving air has slower-than-average eastward wind speed, so that
u′v′ < 0 in the northern hemisphere and u′v′ > 0 in the southern
hemisphere. As shown schematically in Figure 1, this is exactly
the type of pattern that causes a flux of eastward eddy momentum
to the equator and can induce equatorial superrotation. Since
momentum is being removed from the midlatitudes, one would
expect westward zonal-mean flow to develop there.

The physical mechanism responsible for producing these
phase tilts is twofold. First, the differential wave propagation
discussed above: this propagation causes an eastward phase
shift of the height field in the Kelvin waves and a westward shift
of the height field in the Rossby waves relative to the radiative-
equilibrium height field. Because the Rossby wave lies on the
poleward flanks of the Kelvin wave, the result is a chevron
pattern where the height contours tilt northwest–southeast in the
northern hemisphere and southwest–northeast in the southern
hemisphere. To the extent that velocity vectors approximately
parallel the geopotential contours (as they tend to do away
from the equator when drag is weak or moderate), this will

generate tilts in the velocities such that u′v′ < 0 in the northern
hemisphere and u′v′ > 0 in the southern hemisphere.

The second mechanism for generating the velocity tilts
needed for equatorial superrotation is simply the three-way
force balance between Coriolis, drag, and pressure-gradient
forces. Because drag acts opposite to the velocity, and Cori-
olis forces are perpendicular to the velocity, this three-way
force balance requires the velocities to be rotated clockwise
of −∇η in the northern hemisphere and counterclockwise of
−∇η in the southern hemisphere. Given the expected day–night
gradients in η, this balance implies that the velocities will
tend to tilt northwest–southeast in the northern hemisphere and
southwest–northeast in the northern hemisphere. We demon-
strate this fact explicitly with an analytic solution in the limit of
τrad → 0 in Appendix D; even when the height field is nearly in
radiative equilibrium and hence exhibits no overall phase tilts,
the velocities themselves develop tilts such that u′v′ < 0 in the
northern hemisphere and u′v′ > 0 in the southern hemisphere
(see Figure 15). The calculation in the limit τrad → 0 is par-
ticularly interesting because, in this limit, there is no zonal
propagation of the Kelvin and Rossby waves: the radiative
damping is infinitely strong and the zonal phase shift of the
height field (relative to radiative equilibrium) is zero. This is the
dominant mechanism for the velocity tilts in the top left panel
of Figure 3.

To demonstrate explicitly how superrotation would emerge
from these standing-wave patterns, we analyze the zonal ac-
celerations associated with these linear solutions. Decomposing
variables into their zonal means (denoted by overbars) and de-
viations therefrom (denoted with primes) and zonally averag-
ing the zonal-momentum equation (Equation (9)) leads to (e.g.,
Thuburn & Lagneau 1999)

∂u

∂t
= v∗

[
f − ∂u

∂y

]
︸ ︷︷ ︸

I

− 1

h

∂

∂y
[(hv)′u′]︸ ︷︷ ︸
II

+

[
1

h
u′Q′ + Ru

∗
]

︸ ︷︷ ︸
III

− u∗

τdrag︸ ︷︷ ︸
IV

− 1

h

∂(h′u′)
∂t

(22)

where a is the planetary radius and A
∗ ≡ hA/h denotes

the thickness-weighted zonal average of any quantity A.
Equation (22) is the shallow-water version of the Transformed
Eulerian Mean (TEM) momentum equation, analogous to that
in the isentropic-coordinate form of the primitive equations (see
Andrews et al. 1987, Section 3.9). On the right-hand side, terms
I, II, and III represent accelerations due to (1) momentum ad-
vection by the mean-meridional circulation, (2) the convergence
of the meridional flux of zonal eddy momentum, and (3) corre-
lations between the regions of eddy zonal flow and eddy mass
source (essentially vertical eddy-momentum transport). Within
this term, the quantity Ru is the zonal component of R (equal
to −Qu/h when Q > 0 and 0 when Q < 0). Term IV is the
frictional drag. The final term represents the time rate of change
of the eddy momentum. In the linear limit, all the terms on the
right-hand side of Equation (22) have vanishingly small ampli-
tude and, in this case, the solutions in Figures 2 and 3 represent
true steady states. At any finite amplitude, however, terms I–IV
are nonzero and would cause generation of a zonal-mean zonal
flow.

Figure 2(c) depicts these terms for the example solution
presented in Figure 2(b). As expected, horizontal convergence of
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Figure 4. Accelerations of the zonal-mean zonal flow for the same solutions as in Figure 3. Black curve is the acceleration due to horizontal eddy-momentum
convergence (term II in Equation (22)) and blue curve is the acceleration due to vertical eddy-momentum transport (term III). Red curve is the sum of terms I, II, III,
and IV. Numerical values plotted here assume that Ŝ0/τrad (which is essentially equivalent to Δheq/H ) equals one.

(A color version of this figure is available in the online journal.)

eddy momentum, term II, causes a strong eastward acceleration
at the equator and westward acceleration in the midlatitudes
(black curve). On the other hand, the acceleration associated
with vertical eddy-momentum transport, term III, is strong and
westward at the equator (blue), implying downward transport
of eddy momentum at the equator. The remaining terms—the
mean-meridional circulation (term I, cyan) and mass-weighted
friction (term IV, light green)—are small at the equator. The two
eddy terms partially cancel at the equator, but the acceleration
due to horizontal eddy momentum convergences exceeds that
due to vertical eddy momentum convergences, leading to a net
eastward acceleration at the equator and westward acceleration
in midlatitudes (red curve).

Remarkably, despite the wide range of morphologies that oc-
cur when τrad and τdrag are varied (Figure 3), all the solutions ex-
hibit an equatorward flux of eddy momentum and a net eastward
acceleration at the equator. This is shown in Figure 4, which
presents the two eddy acceleration terms from Equation (22) for
each of the cases shown in Figure 3. These solutions therefore

suggest that superrotation at the equator and westward mean
flow in the midlatitudes should occur at essentially any value of
the control parameters.

The patterns of spatial velocity and mass source/sink illumi-
nate the physical origin of the westward equatorial acceleration
caused by the vertical eddy exchange. The solutions show that
the longitudes of zero zonal wind at the equator lie east of the
mass-source extrema (Figure 2(b)), a feature also clearly visible
in the steady, linear calculations of Matsuno (1966, Figure 9)
and Gill (1980, Figure 1). Because of this shift, equatorial mass
sources (sinks) occur predominantly in regions of westward
(eastward) eddy zonal flow. On average, therefore, the mass
sink regions transport air with eastward column-integrated eddy
momentum out of the layer. The mass source regions trans-
port air with no relative zonal momentum from the quiescent
abyssal layer into the upper layer; this process conserves the lo-
cal, column-integrated relative momentum vh of the upper layer.
Thus, when zonally averaged, vertical exchange at the equator
removes momentum from the layer, leading to (u′Q′ + Ru

∗
) <

9
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0 and contributing a westward acceleration (blue curve in
Figure 2(c)).

The above argument, however, does not determine which of
the two eddy terms (II and III in Equation (22)) dominates.
To determine which is larger—and hence whether the net
equatorial eddy acceleration is eastward or westward—we write
the zonally averaged zonal momentum equation in the form

∂u

∂t
= v′ζ ′ + v(f + ζ ) − u

τdrag
+ Ru, (23)

where ζ is the relative vorticity. For the case where the forcing is
symmetric about the equator, the solutions are symmetric about
the equator in u and h but antisymmetric about the equator in v
and ζ . As a result, the meridional velocity and relative vorticity
are zero at the equator, so the terms v(f + ζ ) and v′ζ ′ vanish
there. Therefore,

∂u

∂t
= − u

τdrag
+ Ru at y = 0. (24)

Essentially, at the equator, Ru is the mismatch between the
accelerations caused by horizontal and vertical eddy-momentum
fluxes. The analytic solutions, which assume u = 0, show that
u is predominantly westward in regions where Q > 0, which
therefore implies that Ru > 0. From Equation (24), the net
eddy-induced acceleration is therefore eastward. This explains,
in a general way, the sign of the net eddy accelerations at
the equator in Figure 4. Of course, once a zonal-mean flow
(u �= 0) develops, the magnitude of Ru changes and the friction
term becomes important in Equation (24); eventually these
terms balance and allow a steady state to be achieved. We
discuss the possible steady states in light of this equation in
Section 3.2.

We have so far emphasized the spatial patterns of the
circulation, but it is also interesting to examine the magnitudes
of the velocities predicted by our linear solutions. When the
day–night difference in the radiative-equilibrium height is
comparable to the mean value and the radiative time constant is
a few days or less (as expected for the strongly forced conditions
on hot Jupiters), the winds shown in Figures 2(b) and 3 reach
nondimensional speeds of order unity. For a hot Jupiter, with
typical g = 20 m s−2 and H = 200 km, this corresponds to
dimensional speeds of ∼2 km s−1. To within a factor of a
few, this is similar to the speeds obtained in fully nonlinear
3D atmospheric circulation models of hot Jupiters (Showman
& Guillot 2002; Cooper & Showman 2005; Showman et al.
2008, 2009; Dobbs-Dixon & Lin 2008; Dobbs-Dixon et al.
2010; Menou & Rauscher 2009; Rauscher & Menou 2010;
Thrastarson & Cho 2010). For a tidally locked, Earth-like planet
in the habitable zone of an M-dwarf, with g = 10 m s−2,
H = 10 km, and an Earth-like radiative time constant of
∼10 days (corresponding to dimensionless time constants of
10–100), the solutions then yield nondimensional speeds of
∼0.02–0.1. This corresponds to dimensional speeds of up to
a few tens of m s−1, similar to speeds obtained in models of
tidally locked terrestrial planets (Joshi et al. 1997; Heng & Vogt
2010; Merlis & Schneider 2010).

3.2. Nonlinear Solutions

Next, we relax the small-amplitude and Cartesian constraints
to demonstrate how nonlinearity and full spherical geometry

affect the solutions, and we show how the wave-induced accel-
erations interact with the mean flow to generate an equilibrated
state exhibiting equatorial superrotation. To do so, we solve the
fully nonlinear forms of Equations (9)–(11) in global, spherical
geometry, using a radiative-equilibrium thickness given by

heq = H + Δheq cos λ cos φ, (25)

where H is the mean thickness, Δheq is the day–night contrast
in radiative-equilibrium thickness, and the substellar point is
at longitude 0◦ and latitude 0◦. The planet is assumed to be
synchronously rotating, so that the pattern of heq(λ, φ) remains
fixed in time. For concreteness, we adopt planetary parameters
appropriate to a hot Jupiter, although we expect qualitatively
similar solutions to apply to super Earths. For a typical gravity of
20 m s−2 and scale height of 200 km appropriate to hot Jupiters,
we might expect gH = 4 × 106 m2 s−2, and we adopt this
value for all our runs. (Note that g and H do not need to be
specified independently.) We also take Ω = 3.2 × 10−5 s−1 and
a = 8.2×107 m, corresponding to rotation period and planetary
radius of 2.3 Earth days and 1.15 Jupiter radii, respectively,
similar to the values for HD 189733b.

We reiterate that the equations represent a two-layer system
with an active layer overlying a quiescent, infinitely deep lower
layer. Because of coupling between the layers (specifically, mass
exchange in the presence of heating/cooling), the solutions
readily reach a steady state for any value of the drag time
constant, including the limit where drag is excluded entirely
in the upper layer (τdrag → ∞). This in fact is a simple
representation of the situation in many full 3D GCMs of solar
system atmospheres, including Earth, which often have strong
frictional drag near the surface, little-to-no friction in the upper
layers, and yet easily reach a steady configuration throughout
all the model layers. In our case, we find that, when drag is
strong, the solutions reach steady states in runtimes �10τdrag.
In the case where drag is turned off, the time to reach steady
state is determined by the magnitude of momentum and energy
exchange between the layers (e.g., by the magnitude of the
R term), and is generally �10τrad|H/Δh|, where |Δh|/H is a
characteristic value of the fractional height variations in the
active layer. All solutions shown here are equilibrated and
steady.

We solve Equations (9)–(11) using the Spectral Transform
Shallow Water Model (STSWM) of Hack & Jakob (1992).
Rather than integrating the equations for u and v, the code
solves the momentum equations in a vorticity-divergence form.
The initial condition is a flat layer of geopotential gH at rest;
the equations are integrated using a spectral truncation of T170,
corresponding to a resolution of 0.◦7 in longitude and latitude
(i.e., a global grid of 512 × 256 in longitude and latitude). A
∇6 hyperviscosity is applied to each of the dynamical variables
to maintain numerical stability. The code adopts the leapfrog
time-stepping scheme and applies an Asselin filter at each time
step to suppress the computational mode. These methods are
standard practice; for further details, the reader is referred to
Hack & Jakob (1992).

To facilitate comparison with the analytic theory in
Section 3.1, we first describe the solutions at very low amplitude
where the behavior is linear. Figure 5 shows the geopotential
(i.e., gh) for equal radiative and drag time constants of 0.1, 1,
and 10 (Earth) days, respectively. Qualitatively, the numerical
solutions in spherical geometry bear a striking resemblance to
the analytic solutions on a β plane. At time constants of a frac-
tion of day, the geopotential maxima occur on the equator, and
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Figure 5. Geopotential gh (orange scale and contours) for the equilibrated
(steady-state) solutions to the shallow-water equations (Equations (9)–(11)) in
full spherical geometry assuming equal radiative and drag time constants of
0.1, 1, and 10 days in (a), (b), and (c), respectively. White is thick and dark is
thin. Although the equations solved are fully nonlinear, the forcing amplitude is
small here (Δheq/H = 0.01) so that the solutions in these panels are essentially
linear.

(A color version of this figure is available in the online journal.)

for time constants of 0.1 days (panel (a)), the geopotential re-
sembles the radiative-equilibrium solution, with wind flowing
from the substellar point to the antistellar point. Longer time
constants (1 day, panel (b)) allow zonal energy propagation of
the Kelvin and Rossby waves, leading to an eastward phase shift
of the geopotential at the equator and a westward phase shift
at high latitudes (∼40◦–90◦). The result is contours of geopo-
tential that develop northwest–southeast tilts in the northern
hemisphere and southwest–northeast tilts in the southern hemi-
sphere. When the time constants are long (10 days, panel (c))
off-equatorial cyclones and anticyclones dominate the geopo-
tential, with only weak geopotential variations along the equator.
These vortices are oval in shape, exhibiting no overall phase tilt,
though the regions close to the equator do develop phase tilts
(westward–poleward to eastward–equatorward). The momen-
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Figure 6. Geopotential gh (orange scale and contours) for the equilibrated
(steady-state) solutions to the shallow-water equations (Equations (9)–(11)) in
full spherical geometry illustrating the effect of varying τdrag in the linear limit.
All of the cases depicted have τrad = 1 day. The drag time constant is 1 day,
10 days, and infinite in the top, middle, and bottom panels, respectively. White
is thick and dark is thin. As in Figure 5, Δheq/H = 0.01 here.

(A color version of this figure is available in the online journal.)

tum fluxes cause a prograde eddy acceleration (and superrota-
tion) at the equator for all these cases. All of these features are
also shared by the analytic solutions (Figure 3).

We now explore how the solutions change when the ra-
diative and frictional timescales are different. In the linear
limit, the latitudinal width of the region exhibiting prograde
phase tilts (i.e., northwest-to-southeast in the northern hemi-
sphere and southwest-to-northeast in the southern hemisphere)
contracts toward the equator when the drag time constant
greatly exceeds the radiative time constant. This is illustrated in
Figure 6, which shows the equilibrated (steady-state) solutions
for τrad = 1 day and τdrag/τrad = 1 (top), 10 (middle), and in-
finite (bottom). When the time constants are equal, the entire
northern (southern) hemisphere exhibits northwest-to-southeast
(southwest-to-northeast) phase tilts. When τdrag/τrad = 10, these
phase tilts are confined within ∼20◦ latitude of the equator, and
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for τdrag → ∞, the width shrinks toward zero. This behavior
is explained by the analytic theory in Section 3.1. As shown
in Equation (20), the parabolic cylinder functions comprising
the latitudinal structure exhibit a characteristic latitudinal width
of L(τrad/τdrag)1/4, where L = (

√
gH/β)1/2 is the equatorial

Rossby deformation radius; these functions thus collapse to-
ward the equator as τdrag/τrad becomes infinite.13 Poleward of
this region, the solutions exhibit phase tilts of the opposite di-
rection (northeast-to-southwest in the northern hemisphere and
southeast-to-northwest in the southern hemisphere). Appendix
C gives the explanation for this reversal in phase tilts; the low-
amplitude, full spherical numerical solutions at τdrag/τrad 
 1
strongly resemble analytic solutions in the absence of drag, pre-
sented in Appendix C (compare Figures 6(c) and 14).

Nonlinearity alters the solutions in several important ways,
which we illustrate in Figure 7, showing a sequence of solutions
for τrad = 0.1 days, τdrag = 10 days and, from top to bottom, am-
plitudes Δheq/H of 0.01, 0.1, and 0.5, respectively. This choice
of time constants is representative of the regime of strong radia-
tive forcing and weak drag that may be appropriate to typical
hot Jupiters. Increasing the forcing amplitude (i.e., increasing
Δheq/H while holding τrad and τdrag constant) of course leads
to increased wind speeds and day–night geopotential variations;
for the parameters in Figure 7, the zonal-mean zonal wind speed
at the equator ranges from ∼10 m s−1 at the lowest amplitude to
almost 1000 m s−1 for the highest amplitude shown. Moreover,
beyond a critical value of Δheq/H (depending on the values of
τrad and τdrag), the solutions begin to deviate qualitatively from
the linear solutions.

First, nonlinearity allows greater geopotential variations to
occur along the equator, such that at extreme forcing amplitude
the geopotential extrema can in some cases occur along the equa-
tor when they otherwise would not. In the linear limit, the zonal
force balance at the equator in the steady state is between the
pressure-gradient force and drag (see Equation (13)); therefore,
when drag is weak, the pressure-gradient force must likewise
be small, implying that minimal variations of geopotential oc-
cur along the equator. This restriction does not apply at higher
latitudes (where the Coriolis force can balance the pressure-
gradient force), so for very weak drag the thickness extrema
generally occur off the equator (as can be seen in the lower
right portion of Figure 3; Figures 5(b) and (c); Figure 6; and
Figure 7(a)). At large forcing amplitude, however, the momen-
tum advection term v · ∇v and the R terms become important
and can balance the pressure-gradient force, allowing signifi-
cant zonal pressure gradients—and hence significant variations
in thickness—to occur along the equator. For the parameters in
Figure 7, the thickness variations peak at the equator when the
forcing amplitude is sufficiently large (bottom panel).

Second, at high amplitude, the phase tilts of wind and geopo-
tential tend to be from northwest-to-southeast (southwest-to-
northeast) throughout much of the northern (southern) hemi-
sphere—as in Figures 7(b) and (c)—even when the phase tilts
are in the opposite direction at low amplitude (as in Figure 7(a)).
This effect can be directly attributed to the term R in the mo-
mentum equations. As shown in Equation (12), R plays a role

13 The numerical solutions show that the region of prograde phase tilts does
not become precisely zero as τdrag becomes infinite because of the R term. As
shown in Equation (12), R plays a role analogous to drag, and the effective
drag time constant (one over the quantity in square brackets in Equation (12))
has a characteristic magnitude τradh/(heq − h). This suggests that, in the
absence of drag, the region of prograde phase tilts exhibits a latitudinal width
of order L[(heq − h)/h]1/4. This goes to zero in the limit of zero amplitude but
is nonzero at any finite amplitude.
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Figure 7. Geopotential gh (orange scale and contours) for the equilibrated
solutions to the shallow-water equations (Equations (9)–(11)) in full spherical
geometry illustrating the effect of nonlinearity. All of the cases depicted have
τrad = 0.1 days and τdrag = 10 days. The forcing amplitude is Δheq/H = 0.01,
0.1, and 0.5 in (a), (b), and (c), respectively. White is thick and dark is thin.
Range of gh values is 3.97–4.03 × 106 m2 s−2, 3.6–4.3 × 106 m2 s−2, and
2.1–5.5 × 106 m2 s−2 from top to bottom, respectively. The solution in (a)
is steady; those in (b) and (c) exhibit small-scale eddy generation and time
variability (most evident in panel b), although the global properties (total kinetic
energy, potential energy, and equatorial jet speed) are essentially constant in
time.

(A color version of this figure is available in the online journal.)

analogous to drag. When true drag is weak or absent, the effec-
tive drag time constant (one over the quantity in square brackets
in Equation (12)) has a characteristic magnitude τradh/(heq −h).
At large forcing amplitude, h/(heq − h) ∼ 1, and in that case
the effective drag time constant is comparable to τrad. The linear
solutions show that prograde phase tilts dominate over much
of the globe when the radiative and drag time constants are
comparable, but when the drag time constant greatly exceeds
the radiative time constant, the phase tilts are in the oppo-
site direction (see Figure 6). In Figure 7, τdrag/τrad = 100,
but the ratio of the effective drag time constant to the radiative
time constant decreases from top to bottom and reaches ∼1 in
the bottom panel, explaining the transition in the phase tilts from
Figures 7(a) to (c). Through the momentum fluxes that accom-
pany these phase tilts, the equatorial jet becomes broader and
more dominant with increasing nonlinearity.

The momentum balance in the equatorial jet can achieve
steady state in two ways. In steady state, Equation (24) becomes

u

τdrag
= Ru (at the equator). (26)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8. Fully nonlinear shallow-water solutions with τrad = 1 day, τdrag = 1 day, and Δheq/H = 1.25 (left column) and τrad = 0.1 days, no drag (τdrag → ∞),
and Δheq/H = 0.2 (right column). (a, e) Geopotential gh (orange scale and contours, with thick and thin regions in white and black, respectively). Scale runs from
1.1–5.4×106 m2 s−2 in the top panel and 3.3–4.6×106 m2 s−2 in the bottom panel. (b, f) Zonal-mean zonal wind u. (c, g) Accelerations of the zonal-mean zonal wind
in the equilibrated state. From Equation (27), curves are terms I (cyan), II (black), III (dark blue), and IV (light green). (d, h) Mass source gQ at the equator (orange
scale, white being positive and dark being negative values) and winds (arrows). Mass source scale runs from −41.3 to 45.1 m2 s−3 (left) and −38.1 to 33.2 m2 s−3

(right).

(A color version of this figure is available in the online journal.)

As described previously, when the zonal-mean zonal winds are
weak, the zonal wind u is predominantly westward in regions
where Q > 0, so that Ru > 0 (Section 3.1 and Figure 4). This
implies an eastward eddy acceleration of the zonal-mean zonal
winds at the equator, which induces equatorial superrotation. In
the first type of steady state, corresponding to a regime of strong
friction (short drag time constant), this superrotation implies a
strong westward acceleration due to friction (−u/τdrag). Steady
state occurs when the zonal-mean equatorial jet becomes strong
enough for the friction to balance the eastward eddy-induced
acceleration at the equator. We call this the “high Prandtl
number” regime. In the second type of steady state, which we
call the “low Prandtl number” regime, the friction is sufficiently
weak that the term −u/τdrag is unimportant in the momentum
balance. Because of the eastward eddy acceleration, the zonal-
mean zonal winds can build to high speed. Once they do, they
change the nature of Ru—the larger u becomes, the smaller the

extent to which u < 0 in the region Q > 0, as necessary for
Ru > 0. Eventually, for sufficiently large u, the quantity Ru goes
to zero at the equator. The equatorial jet thus achieves steady
state.

Figure 8 shows examples of each of these regimes illustrating
how the momentum balance occurs. The left column presents
an example with strong drag (τrad = τdrag = 1 day) and the
right column presents an example with weak drag (τrad =
0.1 days and τdrag = ∞); both are equilibrated and steady.
These are high-amplitude cases, so the thickness (top row, a
and e) exhibits large fractional variations, and the phase tilts
exhibit an overall trend of northwest-to-southeast (southwest-to-
northeast) in the northern (southern) hemisphere, as explained in
previous discussion (Figure 7). These tilts indicate transport of
eddy momentum from midlatitudes to the equator; as a result,
the zonal-mean zonal winds are eastward at the equator and
westward in the midlatitudes (b and f). Interestingly, however,
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the relative strengths of the equatorial and midlatitude jets differ
and reflect the range of possible variation. Panels (c) and (g)
show the terms in the zonal-mean momentum equation, just the
spherical equivalent of Equation (22):

∂u

∂t
= v∗

[
f − 1

a cos φ

∂(u cos φ)

∂φ

]
︸ ︷︷ ︸

I

− 1

ha cos2 φ

∂

∂φ
[(hv)′u′ cos2 φ]︸ ︷︷ ︸

II

+

[
1

h
u′Q′ + Ru

∗
]

︸ ︷︷ ︸
III

− u∗

τdrag︸ ︷︷ ︸
IV

− 1

h

∂(h′u′)
∂t

. (27)

As expected, horizontal convergence of eddy momentum, term
II, causes a strong eastward acceleration at the equator and west-
ward acceleration in midlatitudes (black curves). The vertical
eddy-momentum transport, term III (dark blue curves), causes
a westward acceleration at the equator that counteracts the east-
ward acceleration due to horizontal eddy-momentum conver-
gence. In the case of strong drag (Figure 8(c)), the cancellation
is imperfect, leading to a net eddy-induced acceleration that is
eastward at the equator—as predicted by the linear, analytic
theory in Section 3.1 (compare to Figure 2(c)). A superrotating
equatorial jet therefore emerges and only reaches steady state
when the jet becomes sufficiently strong that the zonal-mean
drag on the jet, −u∗/τdrag, balances the eastward acceleration
at the equator (Figure 8(c)). On the other hand, when drag is
absent, the superrotation induced by the eddy fluxes becomes
quite strong (Figure 8(f)). This mean flow alters the eddy fluxes,
causing them to self-adjust to an equilibrium where the acceler-
ations at the equator due to horizontal and vertical momentum
fluxes cancel, leading to no net eddy-induced acceleration at the
equator in steady state (Figure 8(g)).

We find that equatorial superrotation occurs at all forcing am-
plitudes, even arbitrarily small amplitudes where the solutions
behave linearly. This is illustrated in Figure 9, which shows the
equilibrated equatorial zonal-mean zonal wind versus forcing
amplitude for solutions with a range of τrad and τdrag combi-
nations. We therefore conclude that the mechanism for gener-
ating equatorial superrotation described here has no inherent
threshold. Nevertheless, other processes—not included in the
shallow-water model—can in some cases overwhelm the desire
of the day–night forcing to trigger superrotation, particularly
when the day–night forcing is weak. This occurs for example in
the cases examined by Suarez & Duffy (1992) and Saravanan
(1993), where superrotation only developed for forcing ampli-
tudes exceeding a threshold value. In their case, the tropical wave
forcing only triggers superrotation when it attains sufficiently
great amplitudes to overcome the westward torques provided
by midlatitude eddies propagating into the tropics. These issues
are discussed further in Section 5.

In all the cases shown in Figure 9 where τdrag is finite, the
zonal-mean speed of equatorial superrotation scales with the
square of the forcing amplitude when the forcing amplitude is
sufficiently small. This in fact is the expected low-amplitude
behavior in the high-Prandtl-number regime described above:
at low amplitude, the solutions become linear, such that the ve-
locities, height perturbations, and mass source/sink scale with
the forcing amplitude. Because Ru scales as the product of the

Figure 9. Equilibrated (steady-state) equatorial jet speed from the nonlinear
shallow-water solutions for a variety of forcing amplitudes, radiative time
constants, and drag time constants. The jet is eastward (i.e., superrotating)
in all cases. In most cases, the zonal-mean jet speed scales as forcing amplitude
squared at low amplitude but exhibits a flatter dependence at high amplitude.
Here, forcing amplitude is defined as gΔheq/τrad.

(A color version of this figure is available in the online journal.)

mass source/sink and the velocities at low amplitude, it is there-
fore quadratic in the forcing amplitude. In the frictional regime,
Equation (26) implies that u at the equator is simply τradRu, and
therefore u itself is quadratic in the forcing amplitude. This be-
havior breaks down when the solutions become sufficiently high
amplitude, as can be seen in Figure 9. The low-Prandtl-number
regime is more complex and can lead to a variety of scaling
behaviors depending on the parameters.

The flow in the shallow-water models differs from that in 3D
models in one major respect. In many 3D models of hot Jupiters,
eastward equatorial flow occurs not only in the zonal mean but at
all longitudes, at least over some range of pressures. In contrast,
although the shallow-water models described here all exhibit
eastward zonal-mean flow at the equator, the zonal wind at
the equator is always westward over some range of longitudes.
This can be seen as follows: Ru is essentially the mismatch in
equatorial zonal acceleration between horizontal and vertical
eddy-momentum transport and in steady state, when u > 0,
will be greater than or equal to zero. From the definition of
Ru, this implies westward equatorial flow at some longitudes.
This trait probably arises because the meteorologically active
atmosphere has here been resolved with only one layer overlying
a deep interior; in future work, it would be interesting to explore
models that represent the flow with two or more layers overlying
a quiescent interior to see whether they can develop equatorial
flow that is eastward at all longitudes.

4. THREE-DIMENSIONAL MODEL OF EQUATORIAL
SUPERROTATION

Here, we show how the basic mechanism for generating
equatorial superrotation identified in Section 3 occurs also in
3D under realistic conditions. To do so, we analyze the 3D
model of HD 189733b presented in Showman et al. (2009).
Showman et al. (2009) coupled the dynamical core of the
MITgcm (Adcroft et al. 2004), which solves the primitive
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Figure 10. Temperature (color scale, in K) and winds (arrows) during the spin-up phase of the three-dimensional, solar-metallicity model of HD 189733b from
Showman et al. (2009). This shows the state at the 30 mbar pressure level—near the mean infrared photosphere—at a time of one Earth day, after the day–night forcing
has generated a global wave response but before strong zonal-mean jets have developed. Substellar point is at 0◦ latitude, 0◦ longitude. Note the development of a
“Matsuno–Gill”-type pattern, which leads to an equatorward flux of eddy momentum that pumps the equatorial jet.

(A color version of this figure is available in the online journal.)

equations of meteorology in global, spherical geometry, using
pressure as a vertical coordinate, to the state-of-the-art, nongray
radiative transfer scheme of Marley & McKay (1999), which
solves the multi-stream radiative transfer equations using the
correlated-k method to treat the wavelength dependence of
the opacities. This coupled model, dubbed the Substellar and
Planetary Atmospheric Circulation and Radiation (SPARC)
model, is to date the only GCM to include realistic radiative
transfer for hot Jupiters. Gaseous opacities were calculated
assuming local chemical equilibrium for a specified atmospheric
metallicity, assuming rainout of any condensates (i.e., ignoring
cloud opacity). Showman et al. (2009) presented synchronously
rotating models of HD 189733b with 1, 5, and 10 times
solar metallicity and of HD 209458b with solar metallicity,
along with several models with nonsynchronous rotation. Their
HD 189733b models in particular compare favorably with a
variety of observational constraints (Showman et al. 2009;
Agol et al. 2010), and here we focus on their solar metallicity,
synchronously rotating HD 189733b case. This model adopts
planetary radius and gravity of 8.24 × 107 m and 9.36 m s−2.
The rotation rate is 3.3 × 10−5 s, corresponding to a rotation
period of 2.2 Earth days.

Figure 10 shows the velocity and temperature structure at the
30 mbar level during the spin-up phase of this model—after
the forcing has had sufficient time to trigger a global wave
response but before the equatorial jet has spun up to high
speed. The velocity pattern in the 3D model (Figure 10)
strongly resembles the standing Kelvin and Rossby-wave pattern
described in Section 3. The flow clearly exhibits the east–west
divergence along the equator, emanating from a point near the
substellar longitude, identified in Section 3 as the standing
Kelvin-wave response. The longitude of peak divergence (i.e.,
the longitude at the equator where the zonal velocity changes
sign) lies east of the substellar longitude, as expected from the
analytic theory and nonlinear shallow-water runs in Section 3.
Moreover, the flow exhibits the broad gyres in each hemisphere,
anticyclonic on the dayside and cyclonic on the nightside,
identified in Section 3 as the standing Rossby-wave response.
As predicted analytically, the velocities in these gyres exhibit
a northwest-to-southeast (southwest-to-northeast) phase tilt in
the northern (southern) hemisphere. These phase tilts imply

that u′v′ is negative in the northern hemisphere and positive
in the southern hemisphere. Eddy momentum therefore fluxes
from the midlatitudes to the equator, and it is this flux that
produces the superrotating equatorial jet (see Figure 1). The
overall qualitative resemblance to the analytic calculation in
Figure 2 is striking.

As in the shallow-water solutions, the 3D models exhibit a
net downward eddy momentum flux at the equator through-
out the upper atmosphere where the radiative heating/cooling
is strong. This momentum flux results from the fact that, at the
equator, (1) the Matsuno–Gill-type standing-wave patterns lead
to net zonal eddy velocities that are predominantly westward
on the dayside and eastward on the nightside (see Figure 10)
and (2) net radiative heating occurs on much of the dayside,
leading to net upward velocities, whereas net radiative cooling
occurs on the nightside, leading to net downward velocities.
Thus, at the equator, upward velocities tend to be correlated
with westward eddy velocities and vice versa. This transports
eastward momentum downward and causes a westward accel-
eration at the equator throughout the upper atmosphere, which
counteracts the eastward equatorial acceleration caused by lati-
tudinal eddy-momentum transport—just as predicted by the an-
alytic and numerical shallow-water solutions in Section 3 (see
Figures 2, 4, and 8).

To quantify the accelerations resulting from these momen-
tum fluxes, we consider the Eulerian-mean zonal-momentum
equation in pressure coordinates. By expanding the dynamical
variables into zonal-mean and deviation (eddy) components, and
zonally averaging the zonal-momentum equation, and adopting
pressure as the vertical coordinate, we obtain14

∂u

∂t
= v

[
f − 1

a cos φ

∂(u cos φ)

∂φ

]
− ω

∂u

∂p

− 1

a cos2 φ

∂(u′v′ cos2 φ)

∂φ
− ∂(u′ω′)

∂p
+ X. (28)

On the right-hand side, the terms describe the meridional mo-
mentum advection by the zonal-mean circulation, vertical mo-
mentum advection by the zonal-mean circulation, the meridional

14 An equation analogous to this, except using log-pressure rather than
pressure itself as the coordinate, can be found in Andrews et al. (1987,
Equation (3.3.2a)).
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Figure 11. Time evolution of the upper-atmospheric circulation in the three-
dimensional model of HD 189733b by Showman et al. (2009). Top: zonal-mean
zonal wind at the equator. Bottom: zonal accelerations due to latitudinal eddy-
momentum convergence, −(a cos2 φ)−1∂(u′v′ cos2 φ)/∂φ (black curve) and
vertical eddy-momentum convergence, −∂(u′ω′)/∂p (blue curve). All quantities
are shown in the upper atmosphere, averaged vertically from 30 mbar to the top
of the model.

(A color version of this figure is available in the online journal.)

eddy-momentum convergence, the vertical eddy-momentum
convergence, and friction (represented generically by X), re-
spectively. At the equator, the Coriolis term is zero. Because
of the approximate symmetry of the flow about the equator, v
and the meridional gradient of u are small there, so the mean-
meridional advection term is small at the equator. The mean
vertical-advection term also tends to be weak for the flow con-
sidered here, and the net zonal acceleration at the equator is then
determined primarily by a competition between the horizontal
and vertical eddy-momentum convergence terms (the analogs of
terms II and III in Equation (27) for the shallow-water system).

Figure 11 shows the time evolution of the zonal-mean zonal
wind and the two eddy acceleration terms at the equator for the
solar-metallicity model of HD 189733b from Showman et al.
(2009). These are vertical averages through the top portion of
the atmosphere where the radiative heating/cooling is strong.
The zonal-mean zonal wind accelerates rapidly from the initial
rest state and approaches an equilibrium within ∼100 days (top).
As expected, the acceleration due to horizontal eddy transport is
eastward, while that due to vertical eddy transport is westward
(bottom). Moreover, as suggested by the linear and nonlinear
shallow-water calculations, the magnitude of the horizontal
momentum convergence exceeds that of the vertical momentum
convergence during spin-up, so the net acceleration is eastward
at early times. A superrotating equatorial jet therefore develops.
As the jet speed builds, the two acceleration terms weaken
significantly, and the ratio of their magnitudes approaches one.
As a result, the net acceleration drops to zero, allowing the jet to
equilibrate to a constant speed (top). This model is in the same
regime as the shallow-water calculation presented in the right
column of Figure 8.

The weakening in time of the eddy accelerations seen in
Figure 11 indicates that the mean flow, once it forms, exerts
a back-reaction on the eddies that alters their structure. The
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Figure 12. Top: temperature (color scale, in K) and winds (arrows) for the
solar-metallicity model of HD 189733b from Showman et al. (2009). Bottom:
eddy temperature T ′ (color scale, in K) and eddy winds (u′, v′) (arrows) for
the same model. Both are shown at 30 mbar pressure, near the mean infrared
photosphere, after the winds at these levels have reached steady state.

(A color version of this figure is available in the online journal.)

nature of these changes is illustrated in Figure 12. The top panel
shows the temperatures and winds at 30 mbar pressure after
the flow at this altitude has become steady; the superrotating
equatorial jet, eastward offset of the hottest region from the
substellar point, and other features are evident as detailed
in Showman et al. (2009). The bottom panel depicts the
eddy temperature and eddy winds for the same pressure and
time—that is, T ′ in color scale and (u′,v′) as arrows. Several
features are similar to those in Figure 10: the eddy flow near
the equator is approximately zonal and exhibits a Kelvin-
wave-like character, with predominantly eastward flow at some
longitudes and westward flow at others; the midlatitudes contain
broad Rossby-wave gyres in each hemisphere, anticyclonic
on the dayside and cyclonic on the nightside. Interestingly,
however, the Kelvin-wave structure is shifted eastward, and the
midlatitude velocity structure differs significantly, relative to
that with weak mean flow (compare Figure 12(b) to Figures 2(b)
and 10). From longitudes of about −75◦ to +40◦, the midlatitude
velocity structure induces equatorward momentum flux (i.e.,
u′v′ negative in the northern hemisphere and positive in the
southern hemisphere), but at longitudes ∼80◦–150◦ the flux
is reversed (i.e., u′v′ positive in the northern hemisphere and
negative in the southern hemisphere). Due to this cancellation,
the magnitude of the zonally averaged flux u′v′ is significantly
weaker in the equilibrated state than during the spin-up phase,
when the signs of the midlatitude u′v′ add coherently at most
longitudes (see Figure 10).

The latitudinal pattern of zonal-mean eddy accelerations in
the upper atmosphere of the 3D model, shown in Figure 13,
exhibit a strong relationship to those from the shallow-water
calculations. The comparison is most apt to shallow-water
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Figure 13. Zonal-mean zonal accelerations from the solar-metallicity model of
HD 189733b from Showman et al. (2009). Black and blue show accelerations
due to latitudinal and vertical convergence of eddy momentum, respectively.
Both are vertically averaged from 30 mbar to the top of the model at 0.2 mbar
and temporally averaged from 11 to 870 days.

(A color version of this figure is available in the online journal.)

calculations with short radiative time constant (τrad ∼ 0.1–1
day), weak frictional drag (τdrag → ∞), and large amplitude,
as depicted for example in the right column of Figure 8. In
the 3D model (Figure 13), the acceleration due to horizontal
eddy-momentum convergence is eastward at the equator and
westward in midlatitudes, in agreement with analytic theory
and nonlinear shallow-water solutions (compare black curve in
Figure 13 to Figures 4 and 8(g)). Near the poles, the situation
is more complex. Poleward of ∼50◦ latitude, the acceleration
in the upper atmosphere of the 3D run is eastward. In the
shallow-water solutions, the pattern of eddy accelerations at high
latitude depend on τrad, τdrag, and the forcing amplitude (e.g.,
compare Figures 8(c) and (g) poleward of ∼60◦ latitude), but
for the shallow-water cases most relevant to the 3D run shown
here—such as the right column in Figure 8—the acceleration
due to horizontal eddy convergence becomes eastward at high
latitudes (Figure 8(g)), like that in the 3D run. In the 3D model,
the acceleration due to vertical eddy-momentum convergence
(blue curve in Figure 13) is westward at the equator and eastward
in the midlatitudes, again like that arising in the shallow-water
solutions, although a significant difference is that the midlatitude
eastward acceleration is weak in the shallow-water runs but
strong in the 3D run (relative to the magnitude of acceleration
at the equator).

Of course, the standing eddy patterns and resulting zonal-
wind accelerations in 3D models depend on the strength of ra-
diative heating/cooling and drag, just as they do in the shallow-
water models. For example, in the shallow-water solutions, the
Kelvin-wave structure and Rossby gyres are spatially distinct
when the radiative and/or drag time constants are long and the
forcing amplitude is small but not when the time constants are
short or the forcing amplitude is large (e.g., compare the upper
left versus the lower right of Figure 3, the top versus the bottom
of Figure 5, and the top versus the bottom of Figure 7). The
3D models shown here lie at an intermediate position along this
continuum, with Rossby and Kelvin-wave structures that are vis-
ibly distinct, analogous for example to the shallow-water case
in Figure 2(b). 3D models with very strong heating rates, how-
ever, seem to exhibit eddy patterns lacking distinct Rossby wave
gyres, more analogous to the top left case in Figure 3 and the
top case in Figure 5. Examples of models in this regime include

the topmost part of the atmosphere in the models of Cooper &
Showman (2005, 2006), Koskinen et al. (2007), Rauscher &
Menou (2010), and the HD 209458b model of Showman et al.
(2009). In contrast, cases in the literature with more mod-
est heating rates tend to exhibit distinct standing Rossby and
Kelvin-wave structures; examples include Showman & Guillot
(2002, Figure 5), Heng & Vogt (2010, Figures 1 and 12), the
lower portion of some of the models of Koskinen et al. (2007,
Figure 3(b)), and several of the runs in Thrastarson & Cho
(2010), which exhibit a planetary-scale cyclone and anticyclone
in each hemisphere.

Despite differences of detail, the overall broad similarities
described here between the 3D and shallow-water models argue
strongly that the mechanism for equatorial jet maintenance that
we have identified occurs in both the shallow-water and 3D
models.

5. DISCUSSION

The development of an eastward equatorial jet—that is, equa-
torial superrotation—is a common feature emerging from 3D
models of synchronously rotating hot Jupiters and extraso-
lar terrestrial planets (Showman & Guillot 2002; Cooper &
Showman 2005, 2006; Showman et al. 2008, 2009;
Dobbs-Dixon & Lin 2008; Menou & Rauscher 2009; Rauscher
& Menou 2010; Perna et al. 2010; Heng et al. 2010; Joshi et al.
1997; Merlis & Schneider 2010; Heng & Vogt 2010). Showman
& Guillot (2002) first pointed out that, when the radiative and
advective time constants are similar, this superrotation causes
an eastward displacement of the hottest regions from the sub-
stellar point—a phenomenon discovered on HD 189733b five
years later (Knutson et al. 2007, 2009). Despite its relevance,
however, the dynamical mechanisms responsible for generating
the equatorial superrotation on tidally locked exoplanets have
not been previously identified.

Here, we have shown that the equatorial superrotating jet
results from an interaction of the mean flow with standing,
planetary-scale Rossby and Kelvin waves generated by the
day–night thermal forcing. The strong longitudinal variations
in radiative heating—namely intense dayside heating and night-
side cooling—trigger the formation of standing, planetary-scale
equatorial Rossby and Kelvin waves; this is essentially a lin-
ear response when wind speeds are modest, although non-
linearities affect the wave structure at high amplitude. The
Kelvin waves straddle the equator while the Rossby waves lie
on their poleward flanks. As a result of the differential zonal
propagation—Kelvin waves propagating to the east and long-
wavelength Rossby waves to the west—as well as the multi-
way force balance between pressure-gradient, Coriolis, advec-
tive, and drag forces, the velocities develop tilts that resemble
an eastward-pointing chevron centered at the equator. These
velocity tilts pump eastward momentum from high latitudes
to the equator, thereby inducing equatorial superrotation. In
steady state, the zonal-mean equatorial jet speed near the pho-
tosphere is determined by a balance between this eastward,
wave-induced acceleration and westward equatorial accelera-
tion resulting from vertical eddy-momentum transport and/or
drag. We demonstrated the mechanism in a hierarchy of dynam-
ical models—including linear, analytic shallow-water models,
fully nonlinear shallow-water models, and state-of-the-art 3D
GCMs. For conditions relevant to hot Jupiters, such equatorial
superrotation occurs over a wide range of radiative heating rates
and drag time constants. The consistency of the picture emerging
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from this sequence of models with widely varying complexity
is encouraging and suggests that the mechanism is robust.

The mechanism identified here has several implications.
1. It implies that the equatorial jet results from a direct, essen-

tially weakly nonlinear interaction between the thermally
forced waves and the mean flow at the planetary scale.
Eddy–eddy interactions, including the possibility of inverse
or forward energy cascades or other turbulent interactions,
may occur but are not essential to the basic mechanism.
(This is analogous to the situation suggested by O’Gorman
& Schneider (2007) for interaction of baroclinic midlatitude
eddies with the mean flow on Earth.)

2. The wave–mean-flow interaction produces an equatorial jet
whose latitudinal width is comparable to that of the Rossby
waves, namely the equatorial Rossby deformation radius
modified by radiative and frictional effects. For conditions
typical of synchronously rotating hot Jupiters, this length is
comparable to a planetary radius, explaining the broad scale
of the equatorial jet obtained in most hot Jupiter models.

3. When acting in isolation, this mechanism for generating
superrotation has no inherent forcing-amplitude threshold;
it operates at any forcing amplitude, unlike the behavior
reported in some earlier studies in the terrestrial context
(Suarez & Duffy 1992; Saravanan 1993).

4. For parameter combinations appropriate to hot exoplanets,
our models yield flows whose hottest regions along the
equator lie to the east of the substellar point. This property
results from the eastward group propagation of Kelvin
waves. The development of a strong mean flow (equatorial
superrotation) further enhances the offset by its eastward
advection of the temperature pattern. Together, these effects
can explain the offsets observed on HD 189733b (Knutson
et al. 2007, 2009).

Despite the ubiquity of superrotation in our models, the flow
could shift regimes to one with westward zonal-mean equato-
rial flow if westward equatorial accelerations caused by other
processes—not considered here—become important. For exam-
ple, if baroclinic instabilities occur in midlatitudes, they could
cause Rossby wave radiation at midlatitudes, potentially allow-
ing absorption of Rossby waves near the equator. This would
contribute a westward wave-induced acceleration near the equa-
tor. If this westward acceleration dominates over the eastward
equatorial acceleration caused by the day–night heating contrast,
then the net wave-induced acceleration at the equator could be
westward and equatorial superrotation would not occur. This
could occur on hot Jupiters if the planetary rotation rate is suf-
ficiently fast and heating rates are sufficiently low. Note that
baroclinic instabilities cannot occur in a one-layer model such
as the shallow-water model, helping to explain why no such tran-
sitions to westward zonal-mean equatorial flow were seen in the
shallow-water models presented here. In some cases, Hadley
cells may also force the circulation into a regime of westward
equatorial flow, particularly if the planetary obliquity is nonzero;
this is the case in Earth’s troposphere. On the other hand, if the
planetary rotation is sufficiently slow, additional mechanisms
for generating equatorial superrotation become possible, even
when the forcing is axisymmetric (Del Genio & Zhou 1996;
Mitchell & Vallis 2010). Exploring the combinations of orbital
semimajor axes, stellar fluxes, planetary rotation rates, and at-
mospheric compositions under which such regime transitions
can occur in 3D models is an important goal for future work, as
such transitions could have major implications for visible and
infrared light curves.

It is worth mentioning that the presence of a physical
surface—and entropy gradients on that surface—promote the
existence of baroclinic instabilities in midlatitudes (see, for
example, Vallis 2006, chap. 6), so tidally locked terrestrial
planets may be more prone than hot Jupiters to experience a
regime transition to a flow containing midlatitude eastward jets
in addition to, or instead of, a flow dominated by equatorial
superrotation.

In the geophysical-fluid-dynamics (GFD) literature, the gen-
eration of midlatitude eastward zonal jets is often described
theoretically using simple barotropic considerations analogous
to those summarized in Section 2, involving the propagation
of waves. While such barotropic considerations seem to work
reasonably well for midlatitude jets, the barotropic framework
fundamentally fails to explain the emergence of equatorial su-
perrotation in 3D models of synchronously rotating exoplanets,
where the flow is often steady and symmetric about the equator.
The theory presented here overcomes this obstacle and repre-
sents an extension of the barotropic framework to a thermally
forced, stratified, ageostrophic flow with finite Rossby deforma-
tion radius.

Specifically, the generation of eastward jets is often inter-
preted in terms of the meridional propagation of Rossby waves
away from a source region and their dissipation at other lati-
tudes (e.g., Held 2000; Vallis 2006). As described in Section
2, this interpretation seems to flow naturally from barotropic
theory, in which free Rossby waves, even at the equator, can
propagate not only in longitude but also in latitude. In con-
trast, although our work clearly shows how superrotation can
emerge on tidally locked planets, meridional wave propagation
plays no obvious role in our theory. Unlike barotropic Rossby
waves, the baroclinic Rossby waves in our theory are equato-
rially trapped, confined to an equatorial waveguide: they can
propagate in longitude and potentially height but not latitude.15

Moreover, under conditions appropriate to typical hot Jupiters,
these waves exhibit meridional scales typically stretching from
the equator to the pole. It is not at all clear that the paradigm of
waves propagating from one latitude to another applies in this
context. Rather, the velocity tilts that allow the meridional mo-
mentum fluxes to generate superrotation appear to be explained
by the differential zonal—rather than meridional—propagation
of equatorially trapped Kelvin and Rossby waves. Future work
may further clarify the issue.

This research was supported by NASA Origins grant
NNX08AF27G and PATM grant NNX10AB91G to A.P.S.

APPENDIX A

NONDIMENSIONALIZATION

The nondimensional solutions to Equations (16)–(18) involve
three dimensionless parameters—k, τrad, and τdrag. Here we
relate these dimensionless parameters to physical properties for
exoplanets. For synchronously locked exoplanets, we expect
the forcing to correspond to a zonal planetary wavenumber 1,
implying a dimensional wavenumber of a−1, where a is the

15 Although the theory presented here is for steady, forced conditions, this key
distinction holds even for freely propagating, unforced waves: barotropic
Rossby waves can generally propagate in latitude—even at the equator—while
baroclinic equatorial Rossby waves tend to be confined to an equatorial
waveguide. For a discussion of the trapping of equatorial waves, see Holton
(2004, pp. 394–400, 429–432) or Andrews et al. (1987, pp. 200–208).
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planetary radius. Thus, our dimensionless wavenumber k has
the value a−1(

√
gH/β)1/2, that is

k =
(√

gH

2Ωa

)1/2

. (A1)

If we assume for purposes of illustration that the mean layer
thickness H is a scale height, then gH is just RT , where R
is the specific gas constant and T is the mean temperature
of the atmosphere. For a hydrogen atmosphere where R =
3700 J kg−1 K−1, this gives

k = 0.75

(
T

1000 K

)1/4 (
P

3 days

)1/2 (
RJ

a

)1/2

, (A2)

where P is the rotational period and RJ is Jupiter’s radius. For a
carbon dioxide atmosphere where R = 189 J kg−1 K−1,

k = 1.2

(
T

1000 K

)1/4 (
P

3 days

)1/2 (
R⊕
a

)1/2

, (A3)

where R⊕ is Earth’s radius. Thus, relevant values of k for a hot
Jupiter and a hot Earth are similar, in the range of ∼0.5–2. Hotter
atmospheres, longer rotation (=orbital) periods, and smaller
planetary radii would promote larger values of k.

Consider now τrad and τdrag. Their nondimensional values are
their dimensional values times (

√
gHβ)1/2. Considering τnondim

to be either dimensionless time constant (τrad or τdrag) and τdim
to be its dimensional counterpart, we have

τnondim = τdim

(
2Ω

√
gH

a

)1/2

. (A4)

Again equating gH with RT , for a hot Jupiter with a hydrogen
atmosphere we obtain

τnondim = 3.6
( τdim

105 s

) (
RJ

a

)1/2 (
T

1000 K

)1/4 (
3 days

P

)1/2

,

(A5)
while for a hot Earth with a CO2 atmosphere

τnondim = 5.7
( τdim

105 s

) (
R⊕
a

)1/2 (
T

1000 K

)1/4 (
3 days

P

)1/2

.

(A6)

APPENDIX B

ANALYTIC SOLUTIONS FOR GENERAL τrad AND τdrag

Here we present solutions to the nondimensional, linearized
shallow-water Equations (16)–(18), subject to thermal forcing
and drag. We follow the solution method outlined by Gill (1980)
and Wu et al. (2001). For notational brevity, we define α ≡ τ−1

drag

and γ ≡ τ−1
rad . Defining

q = √
γ η +

√
αu (B1)

r = √
γ η − √

αu, (B2)

we convert the coupled equations for u, v, and η
(Equations (16)–(18)) to equivalent equations for q, r, and v:

∂q

∂x
+

√
α

∂v

∂y
= √

γ yv +
√

αS(x, y) − √
αγ q (B3)

∂r

∂x
− √

α
∂v

∂y
= √

γ yv +
√

αγ r − √
αS(x, y) (B4)

yq − yr +
√

α

γ

∂q

∂y
+

√
α

γ

∂r

∂y
= −2α3/2v. (B5)

Gill (1980) and Wu et al. (2001) neglected the drag term in
the meridional momentum equation, which is equivalent to
dropping the term on the right-hand side of Equation (B5).
However, we retain the full form of Equations (B3)–(B5). These
equations are separable, and we adopt series solutions

{q, r, v, S} =
∞∑

n=0

{qn(x), rn(x), vn(x), Sn(x)}ψn(y). (B6)

Recursion relations for the parabolic cylinder functions are

dψn

dy
= 2nψn−1

P
− yψn

P2
(B7)

dψn

dy
= −ψn+1

P
+

yψn

P2
. (B8)

Inserting expressions (B6) into Equations (B3)–(B5), using the
recursion relations (B7) and (B8), and invoking the orthogo-
nality of the parabolic cylinder functions leads to the system

dqn

dx
+

√
αγ qn − (αγ )1/4vn−1 = √

αSn n � 1 (B9)

drn

dx
− √

αγ rn − 2(n + 1)(αγ )1/4vn+1 = −√
αSn n � 0 (B10)

2(n + 1)qn+1 − rn−1 = −2α3/2
(γ

α

)1/4
vn. n � 1 (B11)

Equations (B9) and (B11) do not apply for n = 0, and
Equations (B3)–(B5) instead yield for that case

dq0

dx
+

√
αγ q0 = √

αS0 (B12)

(α/γ )1/4q1 = −α3/2v0. (B13)

Given a specified longitude and latitude dependence of the
forcing (and hence given Sn(x) for all n � 0), our goal is to
solve for qn(x), rn(x), and vn(x). To determine q0, we simply
use Equation (B12). For n = 1, Equation (B9) relates q1 and
v0 to S1. To determine v0, use Equation (B13). Inserting into
Equation (B9), we obtain

dq1

dx
+

(√
αγ +

1

α

)
q1 = √

αS1. (B14)

Obtaining an equation for qn for n � 2 requires full use
of Equations (B9)–(B11). First, rewrite Equation (B10) as
an equation for drn−2/dx in terms of rn−2, vn−1, and Sn−2.
Next, obtain an equation for rn−2 from Equation (B11), and
differentiate this expression to obtain an equation for drn−2/dx.
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Inserting these two expressions into the equation derived from
Equation (B10) yields

2n
dqn

dx
+ 2α3/2

(γ

α

)1/4 dvn−1

dx

− √
αγ

[
2nqn + 2α3/2

(γ

α

)1/4
vn−1

]
− 2(n − 1)(αγ )1/4vn−1 = −√

αSn−2. (B15)

Equations (B9) and (B15) form two coupled differential equa-
tions for qn and vn−1 in terms of the known coefficients Si.
We solve for vn−1 from Equation (B9) and insert this into
Equation (B15) to obtain a single ordinary differential equa-
tion for qn in terms of Sn, dSn/dx, and Sn−2:

α
d2qn

dx2
+

dqn

dx
− [(2n − 1)α1/2γ 1/2 + α2γ ]qn

= −[α2γ 1/2 + (n − 1)α1/2]Sn + α3/2 dSn

dx
− α1/2

2
Sn−2

(B16)

for n � 2. With Equations (B12), (B14), and (B16), all possible
qn are determined from the specified forcing terms. To determine
vn from the qn, we use Equation (B13) for n = 0, while for
n � 1, we use Equation (B9):

(αγ )1/4vn = dqn+1

dx
+

√
αγ qn+1 − √

αSn+1. (B17)

To determine rn from the qn and vn, we use Equation (B11):

rn = 2(n + 2)qn+2 + 2α3/2
(γ

α

)1/4
vn+1 (B18)

valid for all n � 0.
We now specify the forcing and solve for the response. For

simplicity, consider a sinusoidal variation of all the variables in
longitude:

{qn(x), rn(x), vn(x), Sn(x)} = {q̂n, r̂n, v̂n, Ŝn}eikx, (B19)

where q̂n, r̂n, v̂n, and Ŝn are complex constants and k is the di-
mensionless zonal wavenumber associated with the day–night
heating contrast. We take the forcing to be symmetric about the
equator (appropriate for a planet with zero obliquity) and, to
keep the mathematics tractable, assume that the forcing is rep-
resented solely by the term S0(x), corresponding to the pattern
of heating and cooling that is a Gaussian, centered about the
equator, with a half-width (in latitude) of the equatorial Rossby
radius of deformation modified by frictional and radiative ef-
fects:

S(x, y) = Ŝ0ψ0(y)eikx. (B20)

While the full solution would require consideration of Sn for all
n � 0, the first term, S0, will be the dominant term for cases
where the deformation radius is similar to a planetary radius,
as is the case on typical hot Jupiters. Consideration of this term
alone will therefore suffice to illustrate the qualitative features
relevant for pumping the equatorial jet on hot Jupiters.

With these assumptions, Equation (B12) implies

q̂0 =
√

α(
√

αγ − ik)

αγ + k2
Ŝ0. (B21)

Given that S1 = 0, Equation (B14) implies that q1 = 0.
Similarly, Equation (B16) implies that

q̂2 = α3/2k2 + 3αγ 1/2 + α5/2γ + ikα1/2

2[(αk2 + 3α1/2γ 1/2 + α2γ )2 + k2]
Ŝ0. (B22)

All q̂n, with n � 3, equal zero. From Equation (B13), v0 = 0,
whereas

v̂1 = (ik +
√

αγ )

(αγ )1/4
q̂2 (B23)

which can be expressed in terms of the real and imaginary
components of q̂2 = q̂2real + iq̂2imag , as

v̂1 =
[

(αγ )1/4q̂2real − k

(αγ )1/4
q̂2imag

]

+ i

[
(αγ )1/4q̂2imag +

k

(αγ )1/4
q̂2real

]
. (B24)

All vn, with n � 2, equal zero. From Equation (B18),

r̂0 = (4 + 2α3/2√γ + 2αik)q̂2 (B25)

or equivalently

r̂0 = [(
4 + 2α3/2√γ

)
q̂2real − 2αkq̂2imag

]
+ i

[(
4 + 2α3/2√γ

)
q̂2imag + 2αkq̂2real

]
. (B26)

All rn, with n � 1 equal zero. This completes the solutions for
q, r, and v. The solutions for u and η are then determined from
(see Equations (B1) and (B2))

η = q + r

2
√

γ
(B27)

u = q − r

2
√

α
. (B28)

It is interesting to consider limits of these solutions as γ and
α become infinitely large (implying that the radiative or drag
time constants go to zero). The solution presented above implies
that, in the limit α → ∞ at constant γ , or in the limit γ → ∞ at
constant α, the quantities q̂0 → Ŝo/

√
γ , q̂2 → Ŝ0/(2α3/2γ ), and

r̂0 → Ŝ0/
√

γ . Noting that η = (2
√

γ )−1[q̂0ψ0(y) + q̂2ψ2(y) +
r̂0ψ0(y)]eikx , these limits imply that η → Ŝ0γ

−1eikx , which, by
definition, is simply the radiative-equilibrium height field. Thus,
when either time constant goes to zero, the height field becomes
the radiative-equilibrium height field—even if the other time
constant is nonzero.

APPENDIX C

ANALYTIC SOLUTIONS IN THE ABSENCE OF DRAG

The steady, linearized, nondimensional shallow-water equa-
tions on an equatorial β plane (Equations (16)–(18)) have a
particularly simple analytic solution in the case when frictional
drag is set to zero. In this case, the nondimensional equation
governing the meridional velocity (Equation (19)) becomes

y2v

τrad
− ∂v

∂x
= y

∂S

∂x
. (C1)

This equation differs vastly from Equation (19) because it
no longer contains any y derivatives. As before, we seek
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separable solutions that are sinusoids in x. We specify the
forcing amplitude S(x, y) = S̃(y)eikx (where S̃(y) is a specified
function that describes the latitude dependence of the radiative
heating/cooling), and search for solutions u = ũ(y)eikx , v =
ṽ(y)eikx , and η = η̃(y)eikx , ũ(y), ṽ(y), and η̃(y) are complex
functions of latitude that we seek to determine. Inserting these
expressions into Equation (C1), we obtain(

y

τrad
− ik

y

)
ṽ = ikS̃ (C2)

from which we have the solution

ṽ = S̃(y)kτrad
iy3 − kτrady

y4 + k2τ 2
rad

. (C3)

The height field is determined by the fact that ∂η/∂x = yv
(Equation (16)), which yields

η̃ = S̃(y)τrad
y4 + iy2kτrad

y4 + k2τ 2
rad

. (C4)

We can then determine u using yu = −∂η/∂y (Equation (17)),
which yields

ũ = S̃(y)τrad

[
4

y6 + iy4kτrad

(y4 + k2τrad)2
− 4y2 + 2ikτrad

y4 + k2τ 2
rad

]

− ∂S̃(y)

∂y
τrad

[
y3 + iykτrad

y4 + k2τ 2
rad

]
. (C5)

Note that S̃(y) can be any function; there is no need to
decompose the solution into a summation over normal modes
(e.g., parabolic cylinder functions), as in the case of finite τdrag.

The solutions take on a particularly simple form in the limit
τrad → ∞:

ṽ = −S̃(y) (C6)

η̃ = iS̃(y)y2

k
(C7)

ũ = 4S̃i

[
y4

k3
− 2

k

]
− ∂S̃

∂y

iy

k
. (C8)

It can be seen that, in this limit, the amplitudes of v are in phase
with S. The peaks in η and u are shifted by 90◦ in longitude
relative to S(x,y) and are zero at x = 0. The solution in this case
is mirror symmetric about the y-axis, unlike the case with finite
time constants.

Figure 14 illustrates the solutions for the case S̃(y) = Ŝe−l2y2

with l = 0.6 and Ŝ being a real constant. As in Figures 2 and 3,
the solutions exhibit midlatitude cyclones and anticyclones, with
equatorial flow that is zonally aligned and diverges from a
longitude near the substellar point. Because drag is zero, the
layer is flat at the equator (see Equation (C4), which shows
that η = 0 for y = 0). Interestingly, when τrad is finite,
the westward phase shift of the Rossby waves is large at low
latitudes and approaches zero at high latitudes (Figure 14(b)).
This leads to phase tilts that are southwest–northeast in the
northern hemisphere and northwest–southeast in the southern
hemisphere—opposite to the cases shown in Figures 2 and 3. In

(a)

(b)

(c)

Figure 14. Analytic solutions of the linearized shallow-water
Equations (16)–(18) in the limit of zero frictional drag. Panel (a) shows
the radiative-equilibrium height field. Panels (b) and (c) show the solutions
(height field in color scale and velocity as arrows) for dimensionless τrad = 10
and ∞, respectively.

(A color version of this figure is available in the online journal.)

the limit τrad → ∞, these phase tilts disappear and the solution
strongly resembles that shown in the bottom right corner of
Figure 3.

Analysis of the continuity equation explains these behaviors.
In addition to the mass source/sink caused by the forcing S, two
processes affect the local layer thickness—radiative damping
and horizontal convergence/divergence. Consider how their
relative strengths depend on latitude. In the absence of drag, the
linearized force balance is geostrophic, i.e., yv = ∂η/∂x and
yu = −∂η/∂y (see Equations (16) and (17)). This means that,
for a given velocity amplitude, the thickness gradients—and
hence lateral thickness variations themselves—will be larger
farther from the equator. As a result, for a given velocity
amplitude, the radiative damping (which is −η/τrad) is stronger
farther from the equator. On the other hand, in geostrophic
balance, the wind flows parallel to contours of constant height,
which severely limits the horizontal convergence/divergence;
convergence can only come about due to variations of Coriolis
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Figure 15. Analytic solution of the linearized, dimensionless shallow-water equations on an equatorial beta plane Equations (16)–(18) in the limit τrad → 0. The
left column shows solution for τdrag = 0.01, corresponding to the drag-dominated limit; the right column shows solution for τdrag = 1, implying that Coriolis and
drag forces are comparable over much of the plotted region. In both cases, the top panel shows winds and height field (≡radiative-equilibrium height field) and the

bottom panel shows divergence. The radiative-equilibrium height field is taken as ηeq = ηeq0 e
−l2y2

eikx with l = 0.316 and k = 0.5. For ηeq0 = 0.8, the maximum
dimensionless wind speed is 0.0045 on the left and 0.45 on the right. The dimensionless divergence ranges between −0.0036 and 0.0036 on the left and between
−0.54 and 0.54 on the right.

(A color version of this figure is available in the online journal.)

parameter f with latitude, which are stronger near the equator.
In geostrophic balance, the horizontal divergence is −βv/f ,
which is just −v/y for the equatorial beta plane considered
here. Thus, for a given velocity amplitude, the amplitude of
horizontal convergence is large near the equator but small
at high latitudes. Given these latitude dependences, we thus
expect that the thickness changes caused by the forcing (S)
will predominantly be balanced by radiative relaxation at high
latitude but horizontal convergence/divergence at low latitude.

Equations (C1) and (C2), which represent the zonal deriva-
tive of the continuity equation, describe exactly this balance.
The three terms correspond to local changes in layer thick-
ness due to the forcing S (right side), mass source/sinks due
to radiative damping (first term on left side), and changes
in the layer thickness due to horizontal convergence or di-
vergence of the fluid flow (second term on left side). For a
given amplitude of v, the radiative damping increases with
latitude (scaling with y), while the effect of horizontal con-
vergence decreases with latitude (scaling with y−1). The tran-
sition occurs at y ∼ √

kτrad (or y ∼ √
gHkτrad/β using

dimensional quantities): radiative relaxation balances the forc-
ing poleward of this latitude, whereas thickness changes due
to horizontal convergence balance the forcing equatorward of
this latitude.

When radiative relaxation balances the forcing (y �
√

kτrad),
the height field is in phase (in longitude) with the radiative equi-
librium height field. When convergence/divergence balances

the forcing (y �
√

kτrad), the convergence ∂u/∂x + ∂v/∂y,
and therefore v itself, are phase with the radiative-equilibrium
height field. Since ∂η/∂x = yv, this implies that the height field
is phase shifted westward by 90◦ relative to the radiative equi-
librium height field. In the transition zone (y ∼ √

kτrad), these
arguments imply that the phase lines of thickness—and there-
fore the velocities themselves—tilt from southwest-to-northeast
in the northern hemisphere and northwest-to-southeast in the
southern hemisphere. This explains the phase tilts seen in
Figure 14(b). In the limit τrad → ∞, the whole domain lies
in the region where convergence balances forcing, explaining
the lack of phase tilts of η̃ in Figure 14(c).

APPENDIX D

ANALYTIC SOLUTION IN THE LIMIT τrad → 0

There also exist simple analytic solutions to the dimension-
less, linearized shallow-water Equations (16)–(18), for general
τdrag, in the limit τrad → 0. This limit is particularly relevant
for the hottest of tidally locked exoplanets, which, due to high
temperature and/or significant visible-wavelength opacity, are
expected to have short radiative time constants. Moreover, as
a simplification of the full system it provides insights into the
dynamical mechanisms.

In Appendix B, we showed that, in the limit τrad → 0,
the height field converges toward the radiative-equilibrium
height field. Thus, in the momentum equations, we can replace
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the height with radiative-equilibrium height. The continuity
equation involves the difference between η and ηeq, however,
and so we must retain η in that equation. This leads to the
system:

∂ηeq

∂x
− yv = − u

τdrag
(D1)

∂ηeq

∂y
+ yu = − v

τdrag
(D2)

(
∂u

∂x
+

∂v

∂y

)
= ηeq − η

τrad
. (D3)

Equations (D1) and (D2) constitute an algebraic system for u
and v that can directly be solved to yield

u = −
∂ηeq

∂x
+ yτdrag

∂ηeq

∂y

1
τdrag

+ y2τdrag
(D4)

v =
− ∂ηeq

∂y
+ yτdrag

∂ηeq

∂x

1
τdrag

+ y2τdrag
. (D5)

Given u and v, Equation (D3) can then be solved to determine
the (tiny) mismatch between η and ηeq.

Consider the limits of this solution for extreme values of the
drag time constant. As τdrag → 0, Equations (D1) and (D2)
imply that u = −τ−1

drag∂ηeq/∂x and v = −τ−1
drag∂ηeq/∂y. In this

strong-drag limit, the winds simply flow down the pressure
gradient. On the other hand, in the limit of large τdrag, then
away from the equator, we obtain u = −y−1∂ηeq/∂y and
v = y−1∂ηeq∂x—implying geostrophic balance. Note that the
approximate solutions (D4) and (D5) are singular at the equator
in the limit τdrag → ∞; in this limit, the divergence becomes
infinite at the equator, and the assumption that η = ηeq used to
derive Equations (D4) and (D5) no longer holds.

Figure 15 displays this solution for a drag-dominated case
(τdrag = 0.01, left column) and case where drag is comparable
to Coriolis forces over much of the domain (τdrag = 1, right
column). The top row shows the winds with the assumed height
field, and the bottom row shows the winds and the horizontal
divergence. As expected, when drag is strong (left column), the
air flows directly from the substellar point toward the antistellar
point and is almost parallel to the pressure gradients. When drag
is less dominant, however (right column), the solution forms
a Matsuno–Gill-type wind pattern which exhibits velocities
that tilt northwest–southeast in the northern hemisphere and
southwest–northeast in the southern hemisphere. As discussed
in Section 3, this pattern of velocity tilts would generate
equatorial superrotation.

The mechanism for generating these velocity tilts is, simply,
the three-way force balance between pressure-gradient, Corio-
lis, and drag forces. Because drag points in the opposite direction
of the velocities, and Coriolis forces are perpendicular to the ve-
locities, this three-way balance must give a velocity direction
that is rotated clockwise of −∇η in the northern hemisphere and
counterclockwise of −∇η in the southern hemisphere. A visual
inspection of Figure 15 makes clear that, given the expected
pattern of ∇ηeq, this rotation forces the flow pattern to adopt ve-
locity tilts that are northwest–southeast (southwest–northeast)
in the northern (southern) hemisphere.
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