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ABSTRACT: How do ocean initial states impact historical and future climate projections in Earth system models? To an-
swer this question, we use the 50-member Canadian Earth System Model (CanESM2) large ensemble, in which individual
ensemble members are initialized using a combination of different oceanic initial states and atmospheric microperturba-
tions. We show that global ocean heat content anomalies associated with the different ocean initial states, particularly dif-
ferences in deep ocean heat content due to ocean drift, persist from initialization at year 1950 through the end of the
simulations at year 2100. We also find that these anomalies most readily impact surface climate over the Southern Ocean.
Differences in ocean initial states affect Southern Ocean surface climate because persistent deep ocean temperature anom-
alies upwell along sloping isopycnal surfaces that delineate neighboring branches of the upper and lower cells of the global
meridional overturning circulation. As a result, up to a quarter of the ensemble variance in Southern Ocean turbulent heat
fluxes, heat uptake, and surface temperature trends can be traced to variance in the ocean initial state, notably deep ocean
temperature differences of order 0.1 K due to model drift. Such a discernible impact of varying ocean initial conditions on
ensemble variance over the Southern Ocean is evident throughout the full 150 simulation years of the ensemble, even
though upper ocean temperature anomalies due to varying ocean initial conditions rapidly dissipate over the first two decades
of model integration over much of the rest of the globe.

KEYWORDS: Atmosphere-ocean interaction; Climate variability; Climate models; Ensembles;
General circulation models; Model initialization

1. Introduction

Earth’s climate system is variable over a range of time
scales, from seconds to decades to millennia (Peixoto and
Oort 1992). This abundant internal variability presents chal-
lenges for understanding the climate system’s response to an-
thropogenic greenhouse gas emissions and other forcing
agents: What part of the observed (or modeled) change in cli-
mate is due to the forcing, greenhouse gas or otherwise, and
what part is due to the internal variability of the Earth
system?

“Large ensembles” are an important tool for separating the
forced response from internal variability. These ensembles
are a sizeable collection of experiments using a single Earth
system model (ESM) subjected to identical forcings but with
different initial conditions. Because two ESM integrations
forced identically will diverge even if they start from a nearly

identical initial state, such a large ensemble may be used to
create an array of possible climate trajectories. Differences
between ensemble members are then attributable solely to in-
ternal variability in the model, while the mean evolution of all
ensemble members is attributable to the forcing. In this
framework, the actual trajectory of Earth’s climate is just one
of many possible trajectories that might arise from the applied
forcing in a perfect model.

Large ensembles show that internal variability lends sub-
stantial uncertainty to future climate projections (Deser et al.
2012, 2014). In the 40-member Community Earth System
Model Large Ensemble (CESM-LE; see Kay et al. 2015), for
example, individual ensemble members exhibit significantly
different global mean surface temperature trends even a cen-
tury after initialization, and regional surface temperature
trends show even greater variance between members. In the
Arctic, where internal variability is particularly large, analysis
of large ensembles suggests that much of the observed total
sea ice area decline, warming, and change in precipitation is
attributable to greenhouse gas forcing (Screen et al. 2014).
However, variability in the atmospheric circulation may still
account for up to half the observed downward trend in sum-
mer sea ice (Ding et al. 2017), since circulation changes that
accompany Arctic warming are difficult to distinguish from in-
ternal variability (Screen et al. 2014; Wettstein and Deser
2014). Moreover, local trends in sea ice area are only attribut-
able to greenhouse gas forcing in certain regions and over
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certain seasons (England et al. 2019). Indeed, the precise tim-
ing of a sea ice–free Arctic in summer depends largely on the
sequence of internal variability in a given ensemble member
(Swart et al. 2015), and may depend very little on the emis-
sions scenario (Jahn et al. 2016). Other studies show that in-
ternal variability is significant for such varied climate change
indicators as Hadley cell expansion (Kang et al. 2013), atmo-
spheric river landfall frequency (Hagos et al. 2016), and
Southern Ocean carbon uptake (Lovenduski et al. 2016).

Because large ensembles have become an indispensable
tool for understanding how the climate system evolves in the
presence of internal variability, it is reasonable to consider
just how these ensembles are constructed. Thus far, there are
two commonly used methods for creating initial conditions to
spawn large ensembles [as described by Stainforth et al.
(2007)]: microinitialization, using tiny perturbations (i.e., of a
magnitude similar to machine round-off error) in the atmo-
spheric initial state, or macroinitialization, using different
ocean starting states. Because large ensembles generally use
either atmospheric microperturbations (see, e.g., the CESM-
LE; Kay et al. 2015) or varying ocean initial conditions (see,
e.g., the MPI Grand Ensemble, which uses ocean initial states
sampled from a long control experiment; Maher et al. 2019)
for their ensemble initialization, it is unclear whether the two
methods yield a similar range of ensemble internal variability
and, therefore, a similar spread in climate projections. Be-
cause each ESM has its own representation of internal climate
variability, macroinitialization and microinitialization would
need to be applied in the same ESM in order to assess
whether constructing an ensemble through macroinitialization
increases ensemble variance relative to one constructed solely
through microinitialization.

The importance of the ocean state for driving Earth system
evolution is already well recognized in other applications. In
the field of decadal climate predictability, accurate ocean
state initialization is of prime importance in determining
the climate’s trajectory (see, e.g., Latif and Keenlyside
2011; Bellucci et al. 2013; Meehl et al. 2014; Yeager and
Robson 2017, and many others). Initialization of coupled
climate models with a given phase of the Atlantic multide-
cadal oscillation (AMO), Pacific decadal oscillation (PDO),
or both, partly determines the evolution of ocean tempera-
ture, salinity, and sea surface height over one or more deca-
des (see, e.g., Griffies and Bryan 1997; Rodwell et al. 1999;
Mochizuki et al. 2012; Chikamoto et al. 2013), and may
enhance predictability of the extratropical circulation, the hy-
drologic cycle, and tropical Atlantic variability over seasonal,
interannual, and decadal time scales (see, e.g., Dunstone et al.
2011; Simpson et al. 2019; Athanasiadis et al. 2020). Further-
more, climate model experiments also suggest that the ocean
state may help drive multidecadal trends in Antarctic sea ice,
including the expansion of Antarctic sea ice area over the satel-
lite era (1979–2015; see Cavalieri et al. 1996, updated yearly)
some have suggested that tropical–extratropical teleconnections
mediated by the interdecadal Pacific oscillation may have facili-
tated Antarctic sea ice expansion over that period (Meehl et al.
2016), while others have pointed to the state of the Southern

Ocean as the implicating factor (Zhang et al. 2019; Singh et al.
2019).

Given this wealth of evidence that the ocean state impacts
climate evolution, it is reasonable to hypothesize that large
ensembles initialized from many different ocean states may
exhibit variability not found in those initialized from a single
ocean state. Indeed, one prior study exploring the matter sug-
gests that initializing a large ensemble with a range of ocean
initial conditions increases ensemble variance beyond that
possible with only atmospheric microperturbations. Hawkins
et al. (2016) used an Earth system model of intermediate
complexity (EMIC) to show that a historically forced large
ensemble starting from several distinct ocean initial states
displayed significantly greater variance in global and regional
temperature trends, even a century after initialization, com-
pared to one starting from only a single ocean initial state.
More specifically, the phase of the Atlantic meridional over-
turning circulation from which an ensemble member was ini-
tialized influenced Northern Hemispheric temperature trends,
particularly in those regions proximal to the North Atlantic.
Because these experiments utilized an EMIC rather than an
ESM, however, there remains a question of whether such
increased variability is a product of the greater sensitivity
of simpler models to parameter and initial condition pertur-
bations (as is the case for sea ice instability; see Wagner
and Eisenman 2015), or whether such increased variability
is also found in large ensembles of more comprehensive
Earth system models.

The analysis performed by Hawkins et al. (2016) also high-
lights another key question: while the phasing of decadal-scale
internal variability may give rise to differences in ocean initial
conditions whose effects persist with time, might ocean initial
conditions also differ in other substantive ways? Indeed, not
all ESMs exhibit long time scale modes of internal variability
from which to sample ocean initial states [see, e.g., the inter-
model comparison of Southern Ocean overturning variability
in Behrens et al. (2016)]. Specifically, the deep ocean (below
2000 m) is one area where there is significant uncertainty in
present-day ocean state estimates (see Abraham et al. 2013;
Cheng et al. 2017; Gasparin et al. 2020), which are only com-
pounded when estimating the deep ocean state in the era
prior to ocean observation networks, pre-2001 (see, e.g.,
Crowley et al. 2003). Moreover, anomalies in the deep ocean
state may persist for centuries or millennia, given that long
time scales of adjustment characterize the deep ocean. Gebbie
and Huybers (2019), for example, show that cooling from the
Little Ice Age (circa 1700 CE) is evident in the deep Pacific
Ocean today, which significantly impacts the rate at which
global ocean heat content is rising at present. Additionally,
deep ocean temperatures in many ESMs frequently trend ei-
ther up or down over long time scales, due to insufficient
spinup or energy leaks in model components (Sen Gupta et al.
2012, 2013; Hobbs et al. 2016). These considerations suggest
that uncertainty in deep ocean temperatures may be an im-
portant factor that impacts surface climate in a large ensem-
ble, particularly over regions where the deep ocean more
readily interacts with the surface (such as the North Atlantic
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or the Southern Oceans; see Ganachaud and Wunsch 2000;
Marshall and Speer 2012).

In this study, we examine the above by answering the fol-
lowing question: is ESM ensemble variance amplified by ini-
tializing members from different ocean states, particularly
those with different deep ocean temperatures [rather than dif-
ferent phasing of modes of internal variability, as in Hawkins
et al. (2016)], compared to initializing members with atmo-
spheric microperturbations alone? More specifically, does the
persistence of deep ocean temperature variance in a large en-
semble increase uncertainty in projected surface climate, either
globally or regionally? To answer these questions, we ana-
lyze the Canadian Earth System Model version 2 (CanESM2;
Arora et al. 2011) large ensemble, run with historical and
RCP8.5 future scenario forcings (Taylor et al. 2012; Deser
et al. 2020) from 1950 to 2100. This large ensemble is com-
posed of five microensembles (consisting of 10 ensemble
members each), where individual members of a given micro-
ensemble are initialized from an identical ocean state, but
each microensemble is initialized from a distinct ocean state.
Most importantly, as we will show, these ocean initial states
differ by O(0:1)K in their deep ocean temperatures, a range
made possible by deep ocean drift in the preindustrial con-
trol experiment from which microensembles were branched
over 50-yr intervals. Both the unique structure of this 50-
member large ensemble and the range of deep ocean temper-
atures generated by the ocean drift permit us to decompose
the variance in the ensemble into a component due to the
ocean initial state, notably variance in deep ocean tempera-
tures and ocean heat content, and a component due to atmo-
spheric microperturbations alone.

We begin our analysis of the CanESM2 large ensemble by
evaluating how ocean initial conditions, including potential
temperature and ocean heat content, differ between microen-
sembles (section 3a). We then show how the ocean state
evolves from 1850 to 2100 in each microensemble, and com-
pute the extent to which ocean potential temperature vari-
ance in the full ensemble can be attributed to different ocean
initial conditions (section 3b). Finally, we demonstrate that it
is over the Southern Ocean where such initial conditions con-
tinue to impact ensemble variance in surface climate, up to
150 years following model initialization in 1950 (section 3c).
In section 4, we conclude by discussing the implications of our
findings for the design of large ensembles, and how climate
system predictability may be limited by our imperfect knowl-
edge of prior ocean states.

2. Methods

The Canadian Earth System Model, version 2 (CanESM2)
is state-of-the-art, fully coupled, and has atmosphere, ocean,
sea ice, and land components [described in detail in Arora
et al. (2011)]. The atmosphere model, CanAM4 (von Salzen
et al. 2013), utilizes a spectral dynamical core at T63 trunca-
tion, with a resolution of 1.875 at the equator; there are
35 vertical levels, which extend to 1 hPa. New parameteriza-
tions include a correlated-k radiative transfer scheme (Li and
Barker 2005), a prognostic bulk aerosol treatment (Ma et al.

2010), and single-moment cloud microphysics (Khairoutdinov
and Kogan 2000). The ocean model has 40 vertical levels with
a nominal horizontal resolution of 1. It utilizes the K-profile
parameterization for vertical mixing at the boundary layer
(Large et al. 1994) and the GM90 parameterization for mixing
by subgrid scale eddies along isopycnal surfaces (Gent and
McWilliams 1990). The sea ice model is fully dynamic and
thermodynamic, and both the land and ocean models include
a prognostic carbon cycle (Christian et al. 2010).

CanESM2 compares favorably with other models partici-
pating in phase 5 of the Climate Model Intercomparison
Project (CMIP5; see Taylor et al. 2012), in terms of its rep-
resentation of both mean state climate and internal variability
over seasonal to centennial time scales (Flato et al. 2014). Fur-
ther studies indicate reasonable simulation of coupled modes
of climate variability, including ENSO (see, e.g., Bellenger
et al. 2014), the PDO (see, e.g., Yim et al. 2015), and Southern
Hemispheric extratropical circulation features (including the
SAM, jet position, and location of the maximum westerly
wind stress; see Thomas et al. 2015). CanESM2 also simulates
both the mean state and variability of meridional ocean heat
transport well, including its gyre and overturning components
(see Yang and Saenko 2012).

As illustrated in Fig. 1, ocean initial conditions for the
50-member CanESM2 large ensemble are constructed by
branching five runs from different points in an 1850s preindus-
trial control experiment (Kirchmeier-Young et al. 2017). The
first of the five branches (which will give rise to microensem-
ble 5) starts after 2271 model-years of the preindustrial con-
trol simulation, and subsequent branches each begin 50 years
after the previous branch (years 2321, 2371, 2421, and 2471,
corresponding to microensembles 4, 3, 2, and 1, respectively).
The preindustrial control has a top-of-atmosphere anomaly of
0.17 W m22, and the deep ocean is drifting by approximately
20.1 K (100 years)21 [see Fig. 1b; as documented for CMIP5-
participating models in Hobbs et al. (2016)]. Because of this
deep ocean drift, there is approximately a 0.2-K range in deep
ocean temperatures (below 1500 m) between these branches.

Each of these five branches is subjected to identical histori-
cal forcings from years 1850 to 1950. Differences in deep
ocean temperatures between branches, which are primarily
attributable to ocean drift, persist as each branch is integrated
forward in time, and give rise to a set of distinct ocean initial
states. At year 1950, each of the five branched runs is sub-
jected to 10 distinct sets of random microperturbations in the
atmosphere (by using 10 different preset seeds for a random
number generator employed in the model’s cloud microphys-
ics parameterization) to produce 10 ensemble members each.
Hereafter, we use the term microensemble to refer to each set
of 10 ensemble members that shares an identical ocean initial
state at year 1950. As per the protocol of phase 5 of the Cli-
mate Model Intercomparison Project (CMIP5; see Taylor
et al. 2012), all of these ensemble members are subjected to
identical historical forcings (from 1950 to 2005) and the
RCP8.5 scenario forcing (from 2006 to 2100, to yield a total
nominal greenhouse gas forcing of 8.5 W m22 by the end of
the twenty-first century, relative to the preindustrial).
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a. Decomposition of ensemble variance

We now describe the process by which we estimate how
much variance in the whole ensemble is attributable to ocean
initial conditions, and how much is attributable to atmo-
spheric microperturbations.

The variance s2
X in a climatically relevant quantity X (such

as temperature, surface fluxes, ocean heat content, or others)
between all ensemble members over a given year is computed
as

s2
X(t) 5

+
n

i51

[X(t) 2 X (t)]2

n 2 1
, (1)

where X (t) is the average of X across all ensemble members
at year t, and n is the number of ensemble members (equal to
50 in the CanESM2 large ensemble). While this can be a func-
tion of time, we drop this time-dependent notation in the fol-
lowing description for the sake of clarity.

The total variance between ensemble members over a given
year can be approximated as the sum of two variances: 1) the
variance between microensembles, due to the different ocean
states used to initialize each microensemble, is denoted by
s 2
X,ocean; and 2) the variance within microensembles, due to

application of different atmospheric microperturbations in
each ensemble member, is denoted by s2

X,atmos. In other
words,

s2
X 5 s2

X,ocean 1 s2
X,atmos 1 «: (2)

In Eq. (2) above, the error « includes the nonlinear interac-
tion term; « generally constitutes less than 5% of the total
variance, which we drop for convenience. This approxima-
tion, inspired by the decomposition of variance performed
by Hawkins and Sutton (2009), makes sources of ensemble var-
iance simple to compute and easy to attribute, to first order.

The variance within microensembles, s2
X,atmos is computed

as the average of the variance within each microensemble:

s2
X,atmos 5

1
p
+
p

k51

+
m

j51

(Xk,j 2 Xk)2

m 2 1
, (3)

where Xk,j is the value of X in the jth member of the kth mi-
croensemble, and Xk is the mean of X in microensemble k. In
the above equation, m is the number of ensemble members in
each microensemble (equal to 10 for the CanESM2 large en-
semble), and p is the number of microensembles (five for the
CanESM2 large ensemble). The variance between micro-
ensembles, s2

X,ocean, is computed as the variance of the indi-
vidual microensemble means:

s2
X,ocean 5

+
p

k51

(Xk 2 X )2

p 2 1
, (4)

where X is the mean of X in the entire ensemble (i.e., over all
50 members of the CanESM2 large ensemble).

Because individual ensemble members within each micro-
ensemble all start with identical ocean initial conditions at
year 1950, the variance within microensembles, s2

X,atmos, is at-
tributable solely to initial microperturbations (on the order of
machine error) in the surface atmospheric temperature. Simi-
larly, the variance between microensembles, s 2

X,ocean, arises
from the different ocean initial conditions in each microen-
semble; by considering the variance of the microensemble
means, the impact of varying atmospheric microperturbations
is averaged out. The fraction of the ensemble variance in X
due to ocean initial conditions at time t can then be written as
follows:

xOcnICs(t) 5
s2
X,ocean(t)
s 2
X(t)

: (5)

We label xOcnICs(t) as statistically distinct from zero using a
bootstrapped 90%-confidence approach as follows. For 100

FIG. 1. (a) Initialization structure of the 50-member CanESM2
large ensemble. Five runs were branched at 50-yr intervals from
the 1850 preindustrial control, and each was subjected to identical
historical forcings from the period 1850 to 1950. At year 1950, each
of the five runs was perturbed with 10 distinct random atmospheric
microperturbations, which created 10 ensemble members per
branched run. Each of these microensembles of 10 members were
subjected to identical historical forcings (for the period 1950–2005),
and then subject to the RCP8.5 future preindustrial control sce-
nario forcing (Taylor et al. 2012) to year 2100. (b) Ocean potential
temperature drift in the run (in K century21) computed as the
linear trend in the zonal mean potential temperature over years
2271–2470.
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realizations, we randomly assign each of the 50 ensemble
members into 5 microensembles of 10 members each, and
recompute the variance between microensembles (s̃ 2

X,between)
and within microensembles (s̃ 2

X,within). These randomly re-
sampled microensembles are synthetic, in that their members
do not share the same ocean initial conditions as do members
of the original microensembles. Therefore, nonzero values of
s̃ 2
X,between are attributable solely to chance, not to ocean initial

conditions. We repeat the above randomization a total of
100 times to get 100 synthetic realizations of s̃ 2

X,between, to
compare to the variance between the real microensembles,
s2
X,ocean. We treat s2

X,ocean as statistically different from
s̃ 2

X,between if s2
X,ocean . s̃ 2

X,between at least 90% of the time,
accepting a 10% possibility that the difference could be due
to chance. We use a 90% confidence level, rather than the
more customary 95% level, in order to avoid type II errors
that are more likely to arise when comparing the variance of
two quantities (see Von Storch and Zwiers 2002).

b. Deep ocean drift and de-drifting

The present study focuses on how differences in the deep
ocean state, primarily generated by model drift, impact vari-
ance in surface climate over time in the CanESM2 large en-
semble. However, not all the differences in ocean initial states
between microensembles are due to deep ocean drift (i.e., are
created from the deep ocean potential temperature trends
shown in Fig. 1b); some may be due to internal variability
in CanESM2. We employ de-drifting to distinguish between
drift-generated differences between microensembles, and in-
ternal variability–generated differences. De-drifted results are
shown in the online supplemental material.

For de-drifting each microensemble i, we assume that for
some variable Xi(t), the drift generates a linear trend dX/dt
that can be computed from the preindustrial control. The im-
pact of this drift on microensemble i will be an additional
(DXi)drift 5 Dti(dX/dt), where Dti is the time span over which
the ith microensemble has drifted, relative to the first micro-
ensemble. Therefore, we remove the drift by performing the
following operation:

Xi,de-drift(t) 5 Xi(t) 2
dX
dt

∣
∣
∣
∣
piC

Dti: (6)

Note that this differs from the de-drifting procedures outlined
in Sen Gupta et al. (2012) and Sen Gupta et al. (2013), where
the authors de-drift to remove trends due to ocean drift from
the forced response. Here, de-drifting serves to remove differ-
ences in the ocean state between microensembles that are at-
tributable to ocean drift in the preindustrial control.

3. Results

a. Ocean initial conditions in the CanESM2
large ensemble

We begin by examining how ocean initial conditions at year
1950 vary between microensembles. Figure 2 shows the anom-
aly in the mean (zonally averaged) ocean potential temperature

in each microensemble, relative to the mean over all ensemble
members (i.e., [uk]2 [u], where [uk] is the average zonal-mean
potential temperature in microensemble k, and [u] is the aver-
age zonal-mean potential temperature in the full 50-member
ensemble). At year 1950, there are several key areas where
ocean initial temperatures differ significantly between microen-
sembles: within the Arctic basin (poleward of 758N), in the
Northern Hemisphere subpolar oceans (between 608 and
758N), and in the global deep ocean (below 1.5-km depth at lat-
itudes south of 608N). Further differences are also apparent in
the upper ocean (above 500 m), particularly in the tropics and
over the Southern Ocean (poleward of 458S). While upper
ocean temperature differences between microensembles arise
from internal variability, deep ocean temperature differences
are generated by drift in the preindustrial control experiment
(see Fig. S1 in the online supplemental material; also recall
section 2 and Fig. 1b).

We further note that there is little coherence between
anomalies over different areas: individual microensembles are
neither uniformly cooler than average globally nor uniformly
warmer. For example, cool temperatures in the subpolar
Northern Hemisphere may be associated with either cool
anomalies in the global deep ocean (as in microensemble 1;
Fig. 2a) or warm anomalies (as in microensemble 5; Fig. 2e).

In Fig. 3, we show the average initial ocean heat content
anomaly per unit area (in 109 J m22) in each microensem-
ble, relative to the average over the full ensemble (i.e.,
OHCk 2OHC). As expected, anomalies in ocean potential
temperature result in significant differences in ocean heat con-
tent between microensembles. Over most latitudes, the aver-
age heat content anomaly in each microensemble is consistent
with the potential temperature anomaly in the deep ocean
(below 1.5 km): anomalously cool deep ocean temperatures in
microensemble 1 (Fig. 2a) are accompanied by lower-than-
average ocean heat content over much of the globe (Fig. 3a),
while anomalously warm deep ocean temperatures in micro-
ensemble 5 (Fig. 2e) are accompanied by higher-than-average
ocean heat content. Although anomalies in potential tempera-
ture in the deep ocean are small (below 2-km depth, there is
less than a 0.2-K difference between microensembles 1 and 5,
as shown in Fig. 2), ocean heat content anomalies are substan-
tial (on the order of 109 J m22) because of the enormous vol-
ume of the deep ocean.

b. Ocean evolution in the CanESM2 large ensemble

In Fig. 4, we show the evolution of global ocean heat con-
tent from 1950 to 2100 in each microensemble, OHCk (rela-
tive to the ensemble mean global ocean heat content from
1950 to 1970). At year 1950, the average global ocean heat
content in each microensemble, relative to that in other mi-
croensembles, is consistent with the temperature and ocean
heat content anomalies shown previously (recall Figs. 2 and 3).
For example, microensemble 1 has, on average, the most
anomalously cold deep ocean temperatures (Fig. 2a) and the
lowest ocean heat content per unit area (Fig. 3a), relative
to other microensembles; therefore, unsurprisingly, its aver-
age global ocean heat content is the lowest of the five
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microensembles (Fig. 4a, thick dark blue line). Similarly,
microensemble 5 has, on average, the most anomalously
warm deep ocean temperatures and highest ocean heat con-
tent per unit area, giving it the greatest average global
ocean heat content of all microensembles (Fig. 4a, thick
dark red line). The total range in global ocean heat content
between microensemble means is approximately 350 ZJ at
year 1950 (Fig. 4b; difference between thick dark red and
dark blue lines). Much of the variance in ocean heat content
between microensembles is attributable to deep ocean drift:
when de-drifted, the range in global ocean heat content

between microensembles is only 60 ZJ at year 1950 (see
Fig. S2).

The global ocean heat content remains relatively constant
from years 1950 to 1980 in all ensemble members, but begins
to increase after year 1980 (Fig. 4a). The rate at which global
ocean heat content increases is not constant in time, but accel-
erates in all microensembles (Fig. 4a; the ocean heat content
time series have positive curvature) as the forcing and rate
of ocean heat uptake increase (Shi et al. 2018). As such, by
year 2100, the global ocean heat content has increased by
approximately 3500 ZJ due to (historical and RCP8.5)

FIG. 2. Zonal-mean ocean potential anomaly (in K; shading) in (a)–(e) microensembles 1–5,
respectively, at year 1950 relative to the mean potential temperature (contours at 273, 275, 285,
and 295 K) in the full ensemble at year 1950.
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FIG. 3. Anomaly in ocean heat content per unit area (in 109 J m22) at
year 1950 in (a)–(e) microensembles 1–5, respectively, relative to the mean
ocean heat content in the full ensemble at year 1950; in other words,
OHCk (t5 1950)2OHC(t5 1950).
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forcings that have warmed the planet and increased global
ocean temperatures.

Of particular note in Fig. 4b is that the ordering of the aver-
age global ocean heat content anomaly in each microensemble,
OHCk 2OHC, remains constant with respect to other mi-
croensembles throughout the 150 years of the experiment:
for example, the average global ocean heat content in
microensemble 2 is always greater than that in microensem-
ble 1 [i.e., OHC1 (t),OHC2 (t) for all t] and less than that in
microensembles 3 through 5 [i.e., OHC2 (t),OHC3;4;5 (t) for
all t]. This is also evident in individual ensemble members
within each microensemble: for example, the global ocean
heat content anomalies in individual ensemble members
from microensemble 1 (Fig. 4b, thin dark blue lines) are al-
ways less than those in individual ensemble members in
microensemble 2 (Fig. 4b, thin light blue lines). Indeed,
only microensembles 3 and 4 show significant overlap be-
tween ocean heat content in individual ensemble members
(Fig. 4b, compare thin gray and pink lines), although their
microensemble means never overlap during the 150-yr ex-
periment. Furthermore, the range of the microensemble
means remains relatively constant at 350 ZJ up to year
2100, although the range of individual ensemble members

adds approximately 50 ZJ in additional variance over the
course of the experiment (Fig. 4b; compare range of thick
lines to range of thin lines). Such persistent differences in
global ocean heat content between microensembles are
largely attributable to differences in ocean initial condi-
tions produced by ocean drift; when de-drifted, the range
of the microensemble means is only 20 ZJ at year 2100 (see
Fig. S2).

Figure 5 shows that the average global ocean heat content
remains distinct in each microensemble because the mean po-
tential temperature anomaly in the deep ocean in each micro-
ensemble [uk(t)2 u(t); below 1.5 km] persists through the full
150 years of the experiment. Microensembles 1 and 2 always
have cooler than average deep ocean potential temperature
anomalies from 1950 to 2100 (Figs. 5a,b), although the magni-
tude of these cool anomalies appears to dissipate somewhat
with time (particularly in microensemble 1; see Fig. 5a). Simi-
larly, microensembles 4 and 5 have warmer than average
deep ocean potential temperature anomalies, with larger
anomalies near year 1950 than year 2100 (Figs. 5d,e). Unlike
the deep ocean, upper ocean potential temperatures (above
1 km) do not persist for nearly so long: in all microensembles,
most coherent upper ocean potential temperature anomalies

FIG. 4. Evolution of global ocean heat content in the CanESM2 large ensemble, color-coded
by microensemble, with thin lines denoting individual ensemble members and thick lines denot-
ing microensemble means [ OHCk (t) ]. Shown are the (a) drift-corrected global ocean heat con-
tent in each ensemble member (in ZJ), relative to the ensemble-mean global ocean heat content
over years 1950–70 and (b) the global ocean heat content anomaly (in ZJ) relative to the yearly
ensemble-mean ocean heat content [i.e., OHCk (t)2OHC(t) for the kth microensemble, and
OHCi(t)2OHC(t) for the ith ensemble member]. For (a), we drift-correct by removing the lin-
ear trend in ocean heat content in the preindustrial control from each ensemble member [as de-
scribed in Sen Gupta et al. (2012)].
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FIG. 5. Evolution of the area-weighted, globally averaged, ocean potential temperature
anomaly (in K) in each microensemble. The anomaly is computed relative to the global
mean potential temperature in the full ensemble each year.

S I N GH E T AL . 39115 JANUARY 2023

Unauthenticated | Downloaded 02/18/23 10:28 PM UTC



have dissipated by year 2000. Even though upper ocean tem-
peratures dissipate over the course of several decades, the
average global ocean heat content anomalies in each micro-
ensemble (and their constituent individual ensemble members)
remain constant with time relative to each other because
small (of magnitude 0.1 K) potential temperature ano-
malies in the deep ocean persist over century-long time
scales.

Figure 6 shows the mean potential temperature anomaly at
2080 in each microensemble relative to that in the full ensem-
ble [i.e., uk(t5 2080)2 u(t5 2080)], which illustrates how the
deep ocean temperature differences identified at year 1950

(recall Fig. 2) persist over centennial time scales. In all micro-
ensembles, the deep ocean temperature anomalies (below
2000 m and south of 608N) at year 2080 are of the same sign
as those at year 1950, albeit of somewhat weaker magnitude
(cf. microensembles in Fig. 6 with same microensembles in
Fig. 2; note that the color bar range is twice as large in Fig. 2
as in Fig. 6). De-drifting confirms that differences in deep
ocean temperatures between microensembles are predomi-
nantly due to ocean drift in the preindustrial control, not in-
ternal variability (see Fig. S3). On the other hand, upper
ocean temperature anomalies in individual microensembles
are substantially weaker at year 2080 than at year 1950, and

FIG. 6. Zonal-mean ocean potential anomaly (in K; shading) in each microensemble at year
2080 relative to the mean potential temperature (contours at 273, 275, 285, and 295 K) in the full
ensemble at year 2080; in other words, OHCk (t5 2080)2OHC(t5 2080).
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are generally not of the same sign or spatially coherent with
those at the start of the experiment. In the Arctic basin (pole-
ward of 708N), we do find some evidence of coherence in tem-
perature anomalies from 1950 and 2080, although not in all
microensembles: potential temperature anomalies are of the
same sign through the course of the experiment in microen-
sembles 1, 3, and 4, but are of different (or mixed) sign in en-
sembles 2 and 5.

ATTRIBUTION OF OCEAN STATE EVOLUTION TO

ATMOSPHERE AND OCEAN INITIAL STATES

We now compute the fraction of the total variance in ocean
potential temperature in the CanESM2 large ensemble that is
attributable to ocean initial conditions, xOcnICs 5 s 2

u,ocean/s
2
u

(i.e., the fraction of the total ensemble variance that is

between microensembles, as detailed in section 2a). Figure 7
shows this quantity from four 20-yr periods over the course
of the experiment, and Fig. 8 shows a closer view of the top
2000 m of the water column. Figures S4 and S5 are analogous
to Figs. 7 and 8, respectively, but show the variance attribut-
able to ocean initial conditions following de-drifting of each
microensemble (see section 2b).

Early in the experiment (from years 1950 to 1970; Figs. 7a
and 8a), most ensemble variance in ocean potential tem-
perature below 1500 m is between microensembles (i.e.,
s 2
u,ocean .. s2

u,atmos; note red and orange colors), indicating
that it is attributable to the different ocean initial condi-
tions in each microensemble. Even in the upper ocean (above
1000 m), at least half of the ensemble variance is attributable
to these differences in ocean initial conditions, though this

FIG. 7. Fraction of total variance in zonal-mean ocean potential temperature attributable to
variance between microensembles, xOcnICs 5 s2

u,ocean/s
2
u, over four time periods spanning the full

150 years of the experiment: years (a) 1950–70, (b) 1980–2000, (c) 2020–40, and (d) 2060–80.
Also shown are isopycnal contours (solid lines; at sigma levels 27.6 and 27.8 kg m23) and the
ocean meridional mass overturning streamfunction (pink contours at [24, 4] 3 109 kg s21).
Hatched areas indicate that the fraction of ensemble variance attributable to ocean initial condi-
tions is not statistically distinct from zero at p, 0.1.
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varies by latitude and depth. Above 3500 m, approximately
half of this variance in potential temperature arises from dif-
ferences in ocean initial conditions due to model drift (cf.
Figs. 7a and 8a with Figs. S4a and S5a).

By years 1980–2000 (Figs. 7b and 8b) and beyond (Figs. 7c,d
and 8c,d), much of the ensemble variance in upper ocean po-
tential temperatures (above 1000 m at most latitudes) is no
longer attributable to differences between ocean initial states,
but rather to atmospheric variability (note hatched blue and
green areas, where the fraction of the variance attributable to
ocean initial conditions is not statistically distinct from zero).
At some latitudes, atmospheric variability penetrates even
deeper into the ocean: in the subpolar Northern Hemisphere,
circa 608N, and also in the deep Southern Ocean, poleward of
608S below 2000 m. This occurs because the subpolar North
Atlantic and the Antarctic continental shelves are locales of
weak vertical stratification and deep convection, which allows
atmospheric anomalies to penetrate to depth at these lati-
tudes. Indeed, we observe that the variance attributable to
ocean initial conditions steadily decreases with time in the

deep Southern Ocean (compare, in succession, Figs. 7b–d), as
anomalies attributable to atmospheric variability penetrate
farther into the deep ocean along the descending branch of
the deep overturning cell (Fig. 7, dotted purple lines).

On the other hand, nearly all ensemble variance in deep
ocean temperatures, north of 508S, is attributable to ocean
initial conditions over the full 150 years of the experiment
(Fig. 7, dark red regions below 2000 m). Approximately half
of this variance attributable to ocean initial conditions is due
to potential temperature differences between microensembles
arising from deep ocean drift (cf. Figs. 7b–d with Figs. S4b–d).
These persistent deep ocean temperature anomalies appear
to be isolated from the surface at most latitudes, as only a
small fraction of upper ocean temperature variance is attrib-
utable to ocean initial conditions. Therefore, persistent deep
ocean temperature anomalies (recall Figs. 5 and 6) do not im-
pact surface climate directly. Indeed, the upper ocean is
highly stably stratified at most latitudes (Peixoto and Oort
1992), which effectively isolates deep ocean waters from those
nearer the surface.

FIG. 8. As for Fig. 7, but only including the top 2000 m of the ocean.
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However, in the upper ocean between 608 and 708S, we find
that approximately 50% of ensemble variance is between mi-
croensembles over all time periods (Figs. 8a–d) and is there-
fore attributable to differences in ocean initial conditions.
Indeed, we note a plume-like feature that emerges from the
deep ocean around 2500 m, near 508S, where most ensemble
variance is due to ocean initial conditions, and follows sloping
isopycnal surfaces to the upper ocean near 658S (see orange
and yellow shaded regions between black contours in Figs. 7
and 8). This feature is apparent over all time periods shown
(although it does appear to weaken with time; cf. Figs. 8b,d),
and is coincident with climatological upwelling of deep waters
in the ascending branch of the lower cell of the oceanic merid-
ional overturning circulation (Figs. 7 and 8, dashed pink con-
tour at243 109 kg s21; also see Marshall and Speer 2012). In
other words, the lower cell of the meridional overturning cir-
culation transports deep ocean temperature anomalies, attrib-
utable to ocean initial conditions, into the upper ocean circa
658S. As a result, the Southern Ocean, between 558 and 708S,
is the primary locale where surface conditions are impacted
directly by persisting deep ocean temperature anomalies,
which are due to differences in ocean initial conditions be-
tween microensembles. We note that this upwelling feature is
not present when microensembles are de-drifted prior to com-
puting the variance attributable to ocean initial conditions (cf.
Figs. S5b–d to Figs. 8b–d), indicating that it arises from differ-
ences in deep ocean temperatures between microensembles
due to model drift.

We also note that only about half of the temperature vari-
ance in the Southern Ocean upwelling branch of the overturn-
ing circulation is attributable to ocean initial conditions
(particularly over longer time scales; see Figs. 8b–d). This
suggests that while persistent deep ocean temperature
anomalies upwell along sloping isopycnal surfaces, adiabatic
eddies also transport temperature anomalies from the sur-
face to depth along these same isopycnal surfaces (see Gent
and McWilliams 1990; Marshall and Speer 2012). Mixing
with equatorward-flowing Antarctic Intermediate and Sub-
antarctic Mode Waters (Rintoul 1991) likely also contributes
further atmosphere-sourced temperature variance to these
upwelling waters. Therefore, temperature anomalies that up-
well from the deep ocean are responsible for about half the
ensemble variance, while the rest is attributable to variability
generated by atmospheric temperature anomalies mixed
down from the surface.

c. Impact on surface climate

We now consider the impact of ocean initial conditions on
ensemble variance in surface climate, focusing on quantities
central to the forced evolution of the ensemble. These include
upper ocean heat content, surface temperature trends, and
air–sea fluxes, which govern the rate at which the ocean takes
up excess heat. As described above, persistent deep ocean
temperature anomalies (attributable to differences in ocean
initial conditions, as shown in Figs. 7 and 8) primarily affect
upper ocean temperature variance between 558 and 758S. As
expected, we find the greatest fraction of variance in upper

ocean heat content (reckoned from the surface to 300 m
depth) attributable to ocean initial conditions circa these
same Southern Ocean latitudes (Fig. 9a, which shows
xOcnICs 5 s2

OHC;ocean/s
2
OHC; note area between pink horizontal

lines, which delineate the Southern Ocean). This is evident
over the entire course of the experiment, although it is great-
est near the beginning of the experiment (circa year 1960), de-
creases thereafter, but increases again between years 2055
and 2095.

The primary mechanism by which converging ocean heat
impacts the surface climate is through changes in surface tur-
bulent (sensible and latent heat) fluxes (Sutton and Mathieu
2002). This relationship is apparent from the physics that gov-
erns evolution of the ocean mixed layer temperature To:

rcwhML

dTo

dt
5 2rcwhMLv · =To 1 Qsfc(To), (7)

where r is the density of seawater, cw is its heat capacity, hML

is the mixed layer depth, v is the advective velocity, and
Qsfc(To) is the sum of the surface fluxes (positive into the
ocean). In brief, the temperature evolution of the upper ocean
depends on convergent temperature advection by fluid flow
(rcwhMLv · =To) and energy loss or gain through surface
fluxes [Qsfc(To)]. Therefore, temperature anomalies that up-
well from the deep drive the evolution of upper Southern
Ocean temperatures, which then further impact surface fluxes.
Turbulent surface fluxes, in particular, depend on the temper-
ature difference between the ocean surface and overlying at-
mosphere, indicating that these respond to changes in upper
ocean temperature.

Indeed, we find that the Southern Ocean, between 458 and
708S, is the locale where the greatest fraction of ensemble var-
iance in latent heat fluxes is consistently attributable to ocean
initial conditions (i.e., is due to variance between microen-
sembles; Fig. 9b, which shows xOcnICs 5 s2

FLH,ocean
/s2

FLH
; note

area between pink horizontal lines, which delineates the
Southern Ocean). Furthermore, the fraction of ensemble vari-
ance in Southern Ocean latent heat fluxes attributable to
ocean initial conditions fluctuates with time similarly to the
upper Southern Ocean heat content: greatest from 1960 to
2000, weaker thereafter, and increasing again from 2050 to
2090 (cf. Figs. 9a,b). However, the fraction of ensemble vari-
ance attributable to ocean initial conditions for latent heat
fluxes is substantially smaller than for upper ocean heat con-
tent: only between 10% and 15% of the ensemble variance in
Southern Ocean latent heat fluxes, compared to 15%–25%
for upper Southern Ocean heat content, is attributable to
ocean initial conditions.

Similarly, surface temperature trends over the Southern
Ocean also exhibit significant variance due to ocean initial
conditions (Fig. 9c, which shows xOcnICs 5 s 2

dTs /dt,ocean
/s2

dTs /dt
;

note area between pink horizontal lines) because upper ocean
heat convergence impacts the ocean temperature tendency,
dTo/dt [recall Eq. (7)]. Like the ensemble variance in latent
heat fluxes described above, the variance in Southern Ocean
surface temperature trends also fluctuates with time similarly
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to the upper ocean heat content variance, and is also weaker
in magnitude.

In Fig. 10, we examine surface flux anomalies (from 558S to
the pole) over four time periods in each microensemble, cal-
culated as the difference between the microensemble mean
and the full ensemble mean [i.e., FX,k(t)2 FX(t)]. We find
systematic differences between turbulent fluxes, both latent
(FLH; Fig. 10a) and sensible (FSH; Fig. 10b), in microensem-
bles with colder than average deep ocean temperatures (mi-
croensembles 1 and 2) compared to those with warmer than
average deep ocean temperatures (microensembles 4 and 5).
When deep ocean temperatures are anomalously cold, as in
microensembles 1 and 2, both latent and sensible heat fluxes
are anomalously low relative to the full ensemble mean over
all time periods [Figs. 10a,b, dark and light blue markers;
FX;1;2(t), FX(t)]; conversely, when deep ocean temperatures
are anomalously warm, as in microensembles 4 and 5, turbu-
lent fluxes are anomalously high [Figs. 10a,b, pink and red
markers; FX;4;5(t). FX(t)]. The sign of these turbulent flux
anomalies in each microensemble is consistent with the sign
of the deep ocean temperature anomalies reported earlier
[recall uk(t)2 u(t) in Figs. 2, 5, and 6]: when warmer deep

ocean temperature anomalies advect into the upper ocean, we
find ocean heat content and turbulent heat fluxes to be higher
than the ensemble average (as in microensembles 4 and 5); on
the other hand, when cooler deep ocean temperature anoma-
lies advect into the upper ocean, we find that ocean heat con-
tent is lower than average and turbulent heat fluxes are weak
(as in microensembles 1 and 2).

Differences in Southern Ocean turbulent fluxes between
microensembles, attributable to deep ocean temperature dif-
ferences, also impact the ocean heat uptake (OHU). The rate
of deep ocean heat uptake is central to the forced transient
climate response (Boé et al. 2009; Kuhlbrodt and Gregory
2012), and the Southern Ocean is the locale where most of
this heat uptake occurs (Frölicher et al. 2015; Shi et al. 2018).
The ocean heat uptake is computed as

OHU 5 R_
SW1LW 2 FSH 2 FLH, (8)

where R_
SW1LW is the net (downward, shortwave plus long-

wave) radiative flux at the surface. In microensembles 1 and 2
where mean deep ocean temperatures are anomalously cool
compared to the ensemble mean, turbulent heat fluxes over

FIG. 9. Zonal-mean fraction of ensemble variance in (a) upper-300-m ocean heat content,
(b) latent heat flux, and (c) 30-yr surface temperature trends, attributable to variance between
microensembles (xOcnICs 5 s2

X ,ocean/s
2
X) over the full 150 years of the ensemble. Hatched areas

indicate that the fraction of ensemble variance attributable to ocean initial conditions is not sta-
tistically distinct from zero at p , 0.1 at more than 25% of the grid cells at that latitude. Dashed
horizontal pink lines at 408 and 708S delineate the Southern Ocean.
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the Southern Ocean are weaker than the ensemble mean, and
ocean heat uptake is greater than the ensemble mean over
all time periods [Fig. 10c, dark and light blue markers;
OHU1;2 (t).OHU(t)]. Similarly, in microensembles 4 and 5
where mean deep ocean temperatures are anomalously warm
compared to the ensemble mean, turbulent heat fluxes are
more vigorous than the ensemble mean, and ocean heat up-
take is weaker than the ensemble mean over all time periods
[Fig. 10c, red and pink markers; OHU4;5 (t),OHU(t)]. In
other words, persistent cool anomalies in the deep ocean tend
to augment Southern Ocean heat uptake with CO2 forcing,
while persistent warm anomalies in the deep ocean tend to
suppress Southern Ocean heat uptake.

In CanESM2, the microensemble mean ocean heat uptake
anomaly scales approximately one-to-one with the initial mi-
croensemble mean deep ocean temperature anomaly:

OHUk (t) 2 OHU(t)
Tdeep;k (t 5 1950) 2 Tdeep (t 5 1950) ; 21 W m22 K21: (9)

For example, an initial mean deep ocean temperature anom-
aly of 20.1 K, as in microensemble 1, gives rise to approxi-
mately a 0.1 W m22 mean anomaly in ocean heat uptake in
microensemble 1 over the first 100 years of the experiment
(i.e., from 1950 to 2000, and from 2000 to 2050; Fig. 10). We
note that this scaling depends on the rate at which the ocean

meridional overturning upwells anomalies from the deep
ocean, which varies substantially between global climate mod-
els (see, e.g., Behrens et al. 2016). Moreover, because deep
ocean temperature differences between microensembles de-
crease with time (recall Fig. 5), we also expect this scaling to
weaken over longer time scales.

Although it is clear that Southern Ocean heat uptake is sen-
sitive to differences in deep ocean temperature between mi-
croensembles, we note that the ensemble range (i.e., the total
ensemble spread, which is attributable to both atmospheric
microperturbations and ocean initial condition differences)
becomes substantially smaller over time relative to the forced
response. Over years 1950–2000, the ensemble range in
Southern Ocean heat uptake is of similar magnitude to the
forced change: both are approximately 0.5 W m22. Over years
2000–2050, the ensemble range in Southern Ocean heat
uptake decreases slightly to approximately 0.4 W m22, but
greenhouse gas forcing has now increased ocean heat uptake
over this region to 1.7 W m22. By years 2050–2100, the en-
semble range is only a small fraction of the forced response in
Southern Ocean heat uptake: the ensemble range is still ap-
proximately 0.4 W m22, but the forced change over the region
has increased to 3.8 W m22, so uncertainty due to internal
variability is only about 10% of the forced response. Thus, al-
though ensemble spread (due to internal variability stemming
from both macro- and microinitialization) contributes to

FIG. 10. Microensemble anomalies (in W m22) in (a) latent heat fluxes, (b) sensible heat fluxes, and (c) ocean heat
uptake, all poleward of 558S, in the CanESM2 large ensemble. We reckon both sensible and latent heat fluxes to be
positive upward, while ocean heat uptake is positive downward. Anomalies for each microensemble are computed
with respect to the mean of the full ensemble [i.e., as Xk(t)2X (t)] and are calculated over four time periods: the full
150 years of the experiment (1950–2100), from 1950 to 2000, from 2000 to 2050, and from 2050 to 2100. Over all time
periods and for all quantities, the fraction of ensemble variance due to the ocean initial state is statistically significant
at p, 0.1, with the exception of the sensible heat flux over years 2000–2050. Vertical bars indicate the standard devia-
tion within each microensemble (i.e., sX,atmos,k for the kth microensemble).
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uncertainty in Southern Ocean heat uptake over centennial
time scales, it is likely that other sources of uncertainty (in-
cluding that due to model physics and emissions scenario) are
responsible for most of the uncertainty in the forced response
over such long time scales (Hawkins and Sutton 2009). In-
deed, the intermodel variance in ocean heat uptake at year
2100 in CMIP5-participating ESMs (subject to RCP8.5 forc-
ing) is approximately 15 W m22 at 608S (Lyu et al. 2020), a
range that is over an order of magnitude larger than the total
variance in the CanESM2 ensemble.

In Fig. 11, we examine the variance in Southern Ocean heat
uptake (from 558S to the pole, as in Fig. 10c) between micro-
ensembles (s 2

OHU;ocean; blue lines) and within microensembles
(s2

OHU;atmos; purple lines). The total variance in the ocean
heat uptake appears to decrease slightly over the first several
decades, but thereafter remains relatively constant (Fig. 11a,
black line). This suggests greater ensemble variance attribut-
able to ocean initial conditions at the beginning of the experi-
ment (approximately 30% over the first 50 years; Fig. 11b),
and less ensemble variance attributable to ocean initial condi-
tions near the end of the experiment (approximately 20% over
the final 50 years). We note that the fraction of the ensemble
variance in ocean heat uptake attributable to ocean initial con-
ditions does not dwindle to zero because deep ocean tempera-
ture differences between microensembles continue to persist
even at year 2100. Given the modest rate of Southern Ocean
upwelling (of order 109 kg s21; recall Fig. 7) and the enormous
volume of the deep ocean (of order 108 km3), these deep
ocean temperature anomalies can be expected to persist for
over 103 years. As long as these deep ocean temperature
anomalies exist, we expect that they will continue to impact
surface fluxes over the Southern Ocean, albeit more modestly
with time as their magnitude declines.

4. Discussion

In this study, we have used the CanESM2 large ensemble
to answer a simple, but important, question: How much do
varying ocean initial conditions impact variance in ESM large
ensembles? To answer this, we have harnessed the macro-/
microstructure of the CanESM2 large ensemble, first of its
kind among full-complexity climate models, to separate en-
semble variance due to ocean initial conditions from that due
to atmospheric microperturbations. We find that deep ocean
potential temperature anomalies associated with different
ocean initial conditions, generated by deep ocean drift in the
preindustrial control, persist for at least 150 years following
model initialization. These anomalies primarily impact surface
climate over the Southern Ocean as they upwell to the surface
along the ascending branch of the lower cell of the ocean
meridional overturning circulation. In turn, some ensemble
variance in Southern Ocean heat content (from the surface to
300 m depth), turbulent heat fluxes, temperature trends, and
ocean heat uptake is attributable to ocean initial conditions.
In other words, using a range of ocean states to initialize a
large ensemble increases uncertainty in how the Southern
Ocean evolves, which is arguably the region that is most con-
sequential for determining the pace of climate change. Al-
though these impacts on surface climate are localized to the
Southern Ocean and modest in magnitude, they are persistent
over the full 150 years of the ensemble, and suggest that un-
certainties in Southern Ocean surface climate due to uncer-
tainties in ocean initial conditions can be expected to persist
over at least 150 years and likely longer.

Most striking is the strength of the relationship between
mean deep ocean temperature anomalies (Tdeep;k 2Tdeep)
and mean Southern Ocean heat uptake anomalies in a given
microensemble (OHUk 2OHU): we find that a 1 K anomaly

FIG. 11. Ensemble variance in ocean heat uptake poleward of 558S: (a) total ensemble vari-
ance over the full 150 years of the experiment (black line), partitioned into the variance between
microensembles ( s2

OHU;ocean; blue line) and within microensembles (s2
OHU;atmos; purple line) and

(b) fraction of the total ensemble variance between microensembles (blue line) and within mi-
croensembles (purple line).
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in deep ocean temperatures in a microensemble, relative to
the full ensemble mean, would result in a 21 W m22 anomaly
in Southern Ocean heat uptake in that microensemble relative
to full ensemble mean [recall Eq. (9)]. We expect that this re-
lationship is model dependent, as the rate of upwelling of
deep ocean temperature anomalies by the ocean meridional
overturning circulation will determine the magnitude of the
upper ocean heat content anomaly due to these deep ocean
anomalies and, therefore, their impact on surface turbulent
fluxes. Furthermore, the time scales over which deep ocean
temperature anomalies persist, and continue to impact surface
fluxes over the Southern Ocean, also depends on this same
model-dependent rate of upwelling of deep ocean anomalies:
models with a more vigorous meridional circulation will more
rapidly dissipate any deep ocean temperature anomalies,
while models with a weaker circulation will tend to have more
persistent deep ocean temperature anomalies. Nevertheless,
insofar as representation of ocean temperatures in climate
models remains imperfect (see, e.g., Pohlmann et al. 2009;
Smith et al. 2013; Yeager et al. 2018), we expect that there will
be some irreducible uncertainty in the Southern Ocean sur-
face energy budget over some time scale in all models. Such
uncertainty further increases uncertainty in the transient cli-
mate response, as Southern Ocean processes determine the
rate of deep ocean heat uptake and, therefore, the rate at
which the globe warms in response to anthropogenic green-
house gas emissions.

Our findings suggest that the Southern Ocean is the pri-
mary locale where persisting deep ocean anomalies continue
to impact the surface climate over centennial (and longer)
time scales. Previous studies have also pointed to the Southern
Ocean as being a key site where deep and intermediate-depth
ocean processes impact surface climate, through upwelling
(Lumpkin and Speer 2007; Talley 2013; Tamsitt et al. 2017) or
internal variability (Latif et al. 2013; Behrens et al. 2016;
Zhang et al. 2019). Because the Southern Ocean is a central
player in global heat and carbon uptake, which together
govern how the climate system evolves, deep and intermediate-
depth Southern Ocean processes that govern the rate of uptake
also have the potential to impact secular climate trends over
long time scales (see, e.g., Morrison et al. 2013; Marshall and
Zanna 2014; Exarchou et al. 2015).

Surprisingly, we do not find that deep ocean temperature
anomalies impact the Northern Hemisphere oceans, particu-
larly the Arctic, over such long time scales. We submit that
this is because deep ocean temperature anomalies in the Arc-
tic basin do not have a ready pathway to upwell to the surface,
as ocean density stratification is particularly strong under pe-
rennial sea ice cover (due to the presence of the cold halo-
cline; see Aagaard et al. 1981). Furthermore, deep and
intermediate convection in the North Atlantic tends to bring
atmospheric anomalies to depth (where they flow equator-
ward in the deep branch of the upper cell; Peixoto and Oort
1992; Buckley and Marshall 2016), rather than bringing deep
ocean anomalies up to the surface as occurs in the Southern
Ocean. This behavior highlights the unique features of the
Southern Ocean, particularly the upwelling branch contained
therein, which closes the oceanic meridional overturning

circulation (Marshall and Speer 2012) and transports anoma-
lies from the deep ocean to the surface.

Our analysis of the CanESM2 large ensemble corroborates
the results of Hawkins et al. (2016), who also showed that
varying ocean initial conditions increased variance in a large
ensemble, albeit in one utilizing an Earth system model of in-
termediate complexity (EMIC), not a full ESM. While Haw-
kins et al. (2016) predominantly focus on the North Atlantic,
and how initializing the model in different phases of the At-
lantic multidecadal oscillation impacts Northern Hemisphere
surface climate over multidecadal time scales, our work sug-
gests that it is in the Southern Ocean where the impact of
ocean initial conditions on ensemble variance persists over
centennial time scales. We hypothesize that this difference
may be due to the substantial multidecadal periodicity
in the strength of the Atlantic meridional overturning circula-
tion in the EMIC utilized by Hawkins et al. (2016). Because
CanESM2 does not display such regular multidecadal vari-
ability in the strength of the global overturning circulation [as
described in Behrens et al. (2016)], the impact of ocean initial
conditions in our large ensemble likely depends less on the
phase of coupled modes of variability, and more on the persis-
tence of deep ocean temperatures.

Because temperature anomalies associated with ocean ini-
tial conditions can contribute substantially to ensemble vari-
ance in surface climate, potentially over very long time scales
in the Southern Ocean as shown in this study, we suggest that
it would be prudent to consider which ocean states are used
to initialize a large ensemble. Our results indicate that an en-
semble generated from a wide sampling of ocean initial states
is necessary for generating maximum ensemble variance, if
that were the goal. This sampling may be generated by ocean
drift, as in the CanESM2 large ensemble, or through multide-
cadal or centennial time scale internal variability in a long
control run. However, the precise way to sample ocean initial
conditions in order to generate maximum, yet plausible, en-
semble variance remains unexplored. Only a few studies have
quantified internal variability in deep ocean heat content in
models and observations (see, e.g., Santer et al. 1995;
Häkkinen et al. 2013; Palter et al. 2014; Palmer et al. 2017).
Moreover, ocean drift may yield ocean states that vary greatly
over the course of a long control run (Sen Gupta et al. 2012;
Hobbs et al. 2016), but it is unclear what subset of these drift-
ing states it is most appropriate to sample from. On the other
hand, a more limited set of ocean initial states may be prefera-
ble if some aspect of the ocean state is well constrained, such
as the phase of the Atlantic multidecadal oscillation or the
Pacific decadal oscillation, for example, or the total (or regional)
ocean heat content. We suggest that the choice of ocean initial
states is an important component of ensemble design, and this
choice should reflect the goals of the ensemble.

Before concluding it is important to acknowledge that while
variance in the ocean initial state continues to generate en-
semble variance in the Southern Ocean surface energy budget
over long time scales, the impacts of different ocean initial
conditions on multidecadal and centennial time scale trends
are relatively small over the rest of the globe in the CanESM2
large ensemble. Indeed, the impact of different ocean initial
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conditions on the global mean surface temperature and pre-
cipitation is not discernible beyond the first decade following
ensemble initialization (Figs. 12a,b, respectively); even Arctic
and Antarctic sea ice area show little sensitivity to ocean ini-
tial conditions beyond the first several decades following
model initialization (Figs. 12c,d, respectively). Even over the
Southern Ocean, where ocean initial conditions continue to
impact surface fluxes over long time scales, we do not find sys-
tematic impacts of these on local atmospheric circulation fea-
tures, such as jet position, the westerly wind maximum, and
sea level pressure. We therefore conclude that because the
variance attributable to ocean initial conditions is low over
much of the upper ocean, apart from the Southern Ocean,
and because the atmosphere is highly effective at generating
variability, it is possible that centennial time scale projections
of most quantities may be robust to the choice of the ocean
initial state. We also must note that over such long time
scales, uncertainty due to ensemble spread (whether arising
from macro- or microinitialization) is small compared to the
magnitude of the forced response [as evident in Fig. 12; also
see Deser et al. (2012) and Kay et al. (2015)] and, for most
quantities, is generally smaller than other sources of uncer-
tainty (including uncertainties in model physics and future
emissions scenario; see Hawkins and Sutton 2009).

Finally, we conclude with some caveats of the analysis we
have presented here. First, our results rely on a large ensem-
ble that utilizes a single global climate model, the CanESM2.
As we discuss above, it is likely that some of our findings are
model dependent. This includes the magnitude of the rela-
tionship between deep ocean temperatures and Southern

Ocean heat uptake, and how the phasing of coupled variabil-
ity modes affects model evolution [recall differences between
the CanESM2 large ensemble and that of Hawkins et al.
(2016), as discussed above]. Furthermore, we point out that
the creators of the CanESM2 large ensemble did not en-
deavor to maximize ensemble variance by choosing a range of
ocean initial conditions from which to branch their microen-
sembles. Because of deep ocean drift in the CanESM2 prein-
dustrial control run, they sampled a range of deep ocean
potential temperature variance larger than that possible with
internal variability alone in this model, but within the range
of uncertainty in deep ocean temperatures before the modern
observational era (see Crowley et al. 2003; Abraham et al.
2013; Cheng et al. 2017; Zanna et al. 2019). Since this large en-
semble was one of convenience, rather than one of design, the
fraction of ensemble variance attributable to ocean initial con-
ditions reported here should be interpreted as neither an upper
bound nor a lower bound of this quantity. Further study will be
necessary to understand exactly how large these upper and
lower bounds in ensemble variance might be, given uncertainties
in the ocean state. Despite these caveats, we expect that as long
as there are uncertainties in reckoning the ocean state, these will
likely contribute to irreducible uncertainty for future climate
projections, especially over the Southern Ocean.
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