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ABSTRACT

The nonlinear response of a barotropic, nondivergent, spherical flow representative of the upper troposphere
(but without a tropical Hadley cell) to localized, extratropical topographic forcing is examined using high-
resolution contour surgery calculations. The response is shown to vary greatly with forcing amplitude and can
be significantly different from the linear response. At large amplitude, Rossby wave breaking occurs in the
tropics irrespective of the direction of the equatorial winds, and leads to small-scale stirring and the formation
of a ‘“‘tropical surf zone,”” which inhibits the meridional propagation of the disturbance.

1. Introduction

There have been numerous studies directed toward
understanding the influence of orography on station-
ary planetary waves in the troposphere and on the low-
frequency variability of these waves. These studies
have shown that the linear response to localized forc-
ing is a downstream wave train (e.g., Hoskins et al.
1977; Grose and Hoskins 1979; Hoskins and Karoly
1981; Webster 1981; Simmons 1982; Webster and
Holton 1982; Branstator 1983 ). The wave train prop-
agates along an arc, which is approximately a great
circle, and may cause a significant disturbance a large
distance away from the source (including antipodean
regions if the winds are westerly at the equator).
Therefore, localized forcing, and the corresponding
Rossby wave dispersion, has been proposed as a pos-
sible mechanism for observed atmospheric telecon-
nections (e.g., Frederiksen and Webster 1988 and ref-
erences therein).

For the most part, our conceptual understanding of
Rossby wave propagation over the sphere is based on
linear calculations or results from models in which non-
linear effects are weak. It is now widely recognized that
upper tropospheric waves break in the weak winds at
low latitudes, yet the impact of this highly nonlinear
process on the larger-scale wave characteristics is
poorly understood. This kind of behavior was explicitly
modeled by Held and Phillips (1990) in a study of the
interaction of a Rossby wave with the Hadley circula-
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tion. However, as far as we are aware, there has been
no comprehensive, high-resolution, study of the non-
linear characteristics of planetary wave dispersion on
the sphere in a simple setting where the fundamentals
of the problem might be better clarified. In this paper
we report on a series of high-resolution nonlinear cal-
culations of the response of a barotropic, nondivergent,
spherical flow to localized topographic forcing. In par-
ticular, we examine the characteristics of wave break-
ing in the tropics and its effect on the interhemispheric
wave propagation. The use of a barotropic model al-
lows an easy understanding of fundamental mecha-
nisms, and also permits a large number of calculations
to be performed inexpensively. Previous studies have
shown that barotropic models can be very useful in
understanding tropospheric stationary waves and at-
mospheric teleconnections (e.g., Simmons et al. 1983;
Lau and Lim 1984; Branstator 1985; Held and Kang
1987; Sardeshmukh and Hoskins 1988).

In order to resolve the details of the wave breaking,
we use the method of contour surgery (hereinafter CS;
see Dritschel 1988b, 1989), an extension of the contour
dynamics method developed by Zabusky et al. (1979).
Contour surgery is a numerical method for inviscid
flows wherein arbitrarily steep vorticity gradients can
be formed, and wherein the scales of motion can vary
over a far more extensive range than in conventional
pseudospectral modeling. Detailed comparisons be-
tween CS and pseudospectral calculations have been
made by Legras and Dritschel (1993), and it has been
shown that accurate CS calculations can be performed
using a moderate number of contours and that the dif-
ferences between the methods of solution are due to
errors in both methods. Waugh (1993) performed fur-
ther comparisons and showed that realistic CS simu-
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lations of a topographically forced, barotropic atmo-
sphere can be performed, and that the method is well
suited for examining the dynamics of the Rossby wave
breaking.

However, the method has some drawbacks that limit
the realism with which we can represent the character-
istics of atmospheric planetary waves in the tropics.
The CS method exploits the exact conservation of po-
tential vorticity and is thus incapable of incorporating
nonconservative effects such as those associated with
radiation and condensation. Probably the most impor-
tant consequence of this is our inability to include a
Hadley circulation in these calculations.' The presence
of a Hadley cell is known to have a major influence on
the tropical structure of waves propagating from mid-
latitudes (Farrell and Watterson 1985; Watterson and
Schneider 1987; Held and Phillips 1990).

Therefore, results obtained from this model cannot
be regarded as representative of the entire tropics. As
a boundary condition on our understanding of the
whole problem, however, they do show how fully non-
linear Rossby waves would behave in the absence of
the Hadley circulation. Moreover, the results should be
illustrative of how the waves behave in the upper tro-
posphere tropical ‘‘gap’’ regions where prevailing
winds are westerly and the divergent flow is weak. In-
deed, it is in these regions of upper tropospheric west-
erlies that, it has been suggested (Webster and Holton
1982), quasi-stationary Rossby waves may be able to
propagate right through the tropics. Indeed, such prop-
agation has apparently been detected (e.g., Thomas and
Webster 1994). Linear theory tells us that such prop-
agation cannot occur through easterlies (since the
waves would encounter a critical line ) nor through very
" weak westerlies (when their group velocity would be
very small). It is of interest (and a major thrust of this
paper) to ask how interhemispheric propagation is af-
fected by the occurrence of breaking. For example,
consider a linear wave subjected to very weak dissi-
pation propagating through a tropical band of weak
westerlies. At sufficiently large amplitude, the wave
will break, hence, presumably inhibiting further prop-
agation. We shall in fact show below that this does
occur and that propagation is increasingly restricted
with larger wave amplitudes.

A second consequence of our assumption of conser-
vative flow is that our results will become unrealistic
after long integration. Overturning of the breaking
waves in the nonlinear critical layer will quickly, and
inevitably, lead to local destruction of the ambient po-
tential gradient and thus create a reflector for the waves
(Haynes 1987). One effect of the Hadley cell—and of
other nonconservative processes—is to maintain the

! We shall report the results of calculations from a high-resolution
pseudospectral model, including a Hadley cell, in a future paper.
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subtropical gradient and thus to oppose the tendency
for the subtropics to become reflective (Held and Phil-
lips 1990). Our calculations, as will be shown below,
clearly demonstrate the onset of reflection late in the
integrations. Whether this is a realistic representation
of real atmospheric behavior is a moot point. For this
reason, we do not continue these integrations beyond
this stage of dynamical development.

In the next section we outline the model used, the
initial zonal flows, the localized forcing, and the
method of solution. Results for four calculations with
different basic states and forcing amplitude are then
given in section 3. These nonlinear calculations show
that (for forcing which induces a disturbance of real-
istic amplitude) there is wave breaking, small-scale
stirring in the tropics, and formation of a “‘tropical surf
zone.”’ The nonlinear response is significantly different
from that of simple linear models, and the propagation
of the disturbance can vary greatly with forcing ampli-
tude. The differences between the wave propagation in
these calculations are highlighted in section 4 by ex-
amining several diagnostics (perturbation energy den-
sity, mean disturbance position, stationary wave activ-
ity flux, and surf zone width). The most significant
differences between linear and nonlinear calculations
occur when there are equatorial westerlies. The effect
of the magnitude of these westerlies on the wave prop-
agation is investigated in section 5.

2. Model, initial conditions, and forcing

We consider the response of a inviscid, nondiver-
gent, barotropic spherical model to localized topo-
graphic forcing. The materially conserved potential
vorticity in this model is

0=V +f+F, (1)

where ¢ is the streamfunction for motion relative to the
rotating earth, f = 2() sinyp is the planetary vorticity
(€2 being the rotation rate, and ¢ the latitude), and F
is the prescribed quasi-topographic forcing function.

The numerical method of CS is used to perform high-
resolution simulations of the response to the localized
forcing. Contour surgery has been used by Polvani and
Plumb (1992) and Waugh (1993) to perform simula-
tions of a topographically forced polar vortex, and it
has been shown that realistic simulations of a topo-
graphically forced barotropic atmosphere can be per-
formed. We use the same procedure as in these refer-
ences, and only a brief description is included here.

In CS calculations the initial  is piecewise constant.
The velocity at a point X = (cosg@ COsA, cos¢ SinA,
sinp), where (p, \) is (latitude, longitude), is then
given by

1 Y
u(x) = — — Z Ok log(|x ~ x¢|)dx,
27 k=1 Cy

(2)

- “f(x) - uF(x)’
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where u; = {2 cos¢é, (&, is a unit eastward vector) is
the velocity due to the planetary vorticity, uy is the
velocity due to the topographic forcing (see below), N
is the number of contours of Q discontinuity, C, is the
boundary of a region of uniform Q, Q, is the jump in
Q across Cy, and x; is a point on C;. The material con-
servation of Q ensures that Q will remain piecewise
constant, and its evolution is then completely deter-
mined by the advection of the contours of Q disconti-
nuity.

The contours of Q discontinuity are numerically rep-
resented by a series of computational nodes, the veloc-
ity at each node is determined from (2), and the evo-
lution of the flow is determined by advecting the nodes
by this velocity. To preserve the resolution of the cal-
culations, computational nodes are continually ad-
justed, with nodes added in regions of high curvature.
To enable long time calculations, contours are discon-
nected and reconnected so as to remove filamentary
structures smaller than some prescribed cutoff scale
[ full details of the contour representation and the sur-
gery procedure are given in Dritschel (1988b, 1989)].

In all calculations performed, the initial basic state
is zonally symmetric with zonal velocity

u(p) = @, cosp + a, sin2p + a; sin2p, (3)

where the constants «; are chosen so that the winds are
representative of the upper troposphere during the
Northern Hemisphere winter. Three basic states with
the same jet structure but different equatorial winds are
shown in Fig. 1: basic state &, has weak equatorial
easterlies, basic state %', has weak equatorial wester-
lies, and basic state %", has strong equatorial westerlies.
To perform CS calculations, the continuous Q profiles
are discretized into a finite number of regions of uni-
form Q. The initial position and discontinuity in Q
across each contour are determined so as to minimize,
in a least-squares sense, the difference between the con-
tinuous and discrete Q profiles.

The topographic forcing in the calculations corre-
sponds to a circular region (with solid angle §,) of
uniform vorticity FoQT(¢) (where T(t) =1 — ™" is
a time-dependent factor that introduces the forcing
smoothly) centered at (longitude, latitude) = (g, o).
The velocity corresponding to this forcing is

us(x, t) = —0.5F QT (1)

X (1 = cosbp)(X A x0)/(1 £x°X%), (4)

where X, is the center of the forcing, and the plus (mi-
nus) sign corresponds to the velocity inside (outside)
the circular forcing region.

In all calculations presented in this paper N = 21
contours are used to represent the initial state (calcu-
lations using larger N were performed and the results
were found to be independent on N). The time step
used is 1/29 of a day, and the surgery scale below which
filamentary features are removed is § ~ 18 km.
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Fig. 1. Profiles of initial (a) potential vorticity Qy, in units of
rotation rate 2, and (b) zonal velocity u;, in m s, for basic states
&, (dashed curve), #, (solid curve), and %', (dotted curve). The
zonal velocity is given by (3) with («;, ay, a3) equal to (-5, 2.5,
32) for &,, (5, 3, 25) for #,, and (10, 3, 21) for #/,.

3. Results

We have carried out an extensive series of compu-
tations varying the amplitude, position, and form of the
forcing, and the initial basic state. In this section we
discuss the results from four representative calculations
in which only the forcing amplitude and initial basic
state are varied. The four calculations are a small am-
plitude forcing case and a large amplitude forcing case
for the basic states &, and # ,; see Table 1. Calcula-
tions with other forcing amplitudes and with basic state
W , are discussed in sections 4 and 5.

In the following subsections, the response to the lo-
calized forcing in these calculations is examined by
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TABLE 1. Parameters for calculations shown in this paper. In all
calculations the forcing corresponds to a circular region (with solid
angle 6, = 10°) of vorticity centered at (g, o) = (90°, 40°). The
forcing is turned on slowly with 7 = 2 days. The basic states #'; and
&, are shown in Fig. 1.

Calculation Basic state Amplitude F,
w05 W, 0.05
EO5 &, 0.05
W20 W, 0.20
E20 g, 0.20

plotting the Q contours from the CS calculations, and
also the perturbation streamfunction ¢* = ¢ — ¢, (¢,
is the initial zonally symmetric streamfunction). Here
¢ is calculated from the Q contours using the contour
integral expression given in Polvani and Dritschel
(1993). Figure 2 shows the initial position of the Q
contours (for basic state #";) and the circular forcing
region. The evolution of Q shows the formation of
Rossby waves, their breaking, and the generation of
small-scale structures, while the evolution of * high-
lights the propagation of the disturbance. In section 4
the propagation of the disturbance is quantified using
several diagnostics.

a. Small amplitude forcing

We first consider the case of small amplitude forcing,
and compare the results with previous linear calcula-
tions (e.g., Hoskins et al. 1977; Grose and Hoskins
1979; Hoskins and Karoly 1981).

Figures 3 show the evolution of Q and * for weak
forcing in the basic state with tropical westerlies (cal-
culation WO05). These plots show the development of
a wave system east of the forcing region (marked by a
cross). The Rossby waves do not break (i.e., no irre-
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versible deformations occur) and the response is as in
previous linear calculations: an eastward traveling
Rossby wave train is formed that has a double structure
(this can be seen more clearly in the wave activity flux
vectors; see section 4), a strong NE—-SW tilt in the
Northern Hemisphere, and propagates equatorward
{the two components travel approximately along great
circles as predicted by linear theory, e.g., Longuet-Hig-
gins (1964); Hoskins et al. (1977)]. The disturbance
crosses the equator into the antipodean region and then
around the sphere to the source region [it takes around
20 days for the disturbance to propagate around the
sphere, consistent with the results of Hoskins et al.
(1977)]. Previous studies have included dissipation
and the waves have very small amplitude by the time
they have gone around the sphere (and hence, there is
very little interference with the source region). The
quasi-steady state reached in this calculation (with no
dissipation) is therefore different from that reached in
previous calculations.

The response when the basic state has tropical east-
erlies (calculation EO05) is very different from the
above calculation. The initial response to the forcing is
again a wave system downstream of the source, but
now the Rossby waves break near the zero wind line—
to the north of the equator (see Fig. 4a). This breaking
first occurs slightly east of the forcing and then prop-
agates around the sphere to form a confined region of
breaking. The deformation of the Q contours and sub-
sequent wave breaking is in qualitative agreement with
nonlinear Rossby wave critical layer theory (e.g.,
Haynes 1987 and references therein), and the breaking
zone is centered around the critical line (see Fig. 12b
below). Note that the wave breaking in Fig. 4a would
not be observed in low-resolution calculations with dis-
sipation and diffusion. The equatorward propagation of
the disturbance in this calculation is inhibited by break-
ing zone and there is very little cross-equatorial prop-
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Fic. 2. Latitude—longitude plot of initial @ contours in the CS calculations for basic state %,
(the position of the contours is very similar for the basic states %, and &,). The shaded region

corresponds to the topographic forcing region.
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agation; see Fig. 4b. The wave breaking absorbs most
of the disturbance, although there is some suggestion
of reflection back to higher latitudes, and only small
transients propagate into the Southern Hemisphere.
Previous studies have shown that equatorial easterlies
inhibit cross-equatorial propagation (e.g., Hoskins et
al. 1977; Grose and Hoskins 1979; Hoskins and Karoly
1981; Webster and Holton 1982), but they have in-
cluded numerical dissipation in their calculations so
that waves are absorbed at the critical line and there is
no reflection. The characteristics of the breaking zone
are discussed further in the next subsection.

b. Large amplitude forcing

We now consider the response to larger amplitude
forcing. Figure 5 shows the evolution of Q and ¢* for
the calculations with the basic state with equatorial
westerlies and F, = 0.2 (calculation W20). Although
the initial response is similar to the small amplitude
case (cf. day 7 in Figs. 3b and 5b), the subsequent
response is very different. There is now Rossby wave
breaking and the response is nonlinear. As in calcula-
tion EOS, the breaking first occurs southeast of the forc-
ing region and then propagates around the sphere and
forms a breaking zone south of the forcing. As with
stratospheric planetary wave breaking forming the
well-known ‘‘surf zone’’ surrounding the polar vortex
(Mclntyre and Palmer 1983, 1984), the wave breaking
here forms a “‘tropical surf zone’” (Held and Phillips
1990). The breaking in calculation W20 is more vig-
orous than the small forcing case, and there is a large
amount of stirring with small-scale filamentary and co-
herent features generated. Note that the finescale fea-
tures in the surf zone are not seen in the streamfunction
field (cf. Figs. 5a and 5c). Previous studies have gen-
erally focused on the streamfunction or geopotential
height fields, and have therefore not been able to reveal
small-scale filaments and mixing. Calculations with
different forcing amplitudes show that the amount of
breaking and the extent of the surf zone increases with
amplitude (see section 4d). One of the main conse-
quences of the wave breaking is the weaker response
in the Southern Hemisphere (relative to that in the
Northern Hemisphere), as can be seen in Fig. Sb.
Whereas in the small amplitude (linear) case the dis-
turbance propagates across the equator (Fig. 3b), most
of the disturbance is now absorbed or reflected by the
surf zone. Therefore, although linear calculations sug-
gest that there may be significant propagation through
equatorial westerlies this may not be the case when
nonlinear effects become important.

For sufficiently large amplitude forcing to the basic
state with tropical easterlies (calculation E20), the re-
sponse is qualitatively the same as for the westerly
case; see Fig. 6. A tropical surf zone is formed that
absorbs or reflects most of the disturbance, and there is
only a small response south of this zone. The breaking
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zone in calculation E20 occurs north of that in W20,
and the cross-equatorial response in E20 is smaller.
Comparing the small and large amplitude forcing ex-
periments for the basic state &, we see that, although
the response in both cases is Rossby wave breaking and
the formation of a critical layer, the disturbance prop-
agation is different for the two experiments (cf. Figs.
4b and 6b) and the response is indeed nonlinear.

The above calculations suggest that for large ampli-
tude forcing, the response is not as sensitive to the di-
rection of the equatorial winds as in small amplitude
(linear) calculations. For large forcing, breaking occurs
in the tropics (whether or not there is an initial critical
line) and the cross-equatorial response is small; this is
quantified in the next section.

4. Diagnostics

In this section we use various diagnostics to quantify
the propagation of the disturbance in the above calcu-
lations, and also to highlight the differences between
the calculations.

a. Perturbation energy

The differences in the meridional propagation in the
above calculations can be clearly seen by considering
the latitudinal structure of the perturbation energy den-
sity E* = 1(u*? + v*?) (where (u*, v*) is the per-
turbation velocity. Figure 7 shows that the latitudinal
variation of the zonal average of the energy density
[E*] at day 35 for the four calculations shown in the
previous section ([ E*] for the small amplitude forcing
cases has been scaled by the square of the ratio of the
forcing amplitudes, that is, (0.20/0.05)% = 16). Only
in the small amplitude case with equatorial westerlies
is there substantial cross-equatorial propagation. In the
other cases, the wave breaking (and formation of a surf
zone) inhibits the interhemispheric propagation of en-
ergy, and there is a buildup of energy in the Northern
Hemisphere. The buildup of energy in the surf zone is
presumably due to accumulation of wave activity,
whereas the buildup at higher latitudes is suggestive of
reflection from the breaking region. Note that the lati-
tudinal variation of the energy density at other times
shows the same qualitative behavior, although there is
an increase in magnitude with time and some variation
in the fluctuations in the curves.

The effect of the wave breaking on interhemispheric
propagation can be seen in Fig. 8, which shows the
Northern and Southern Hemisphere perturbation en-
ergy density for a series of calculations with varying
forcing amplitude F,. As F, is increased, the amount
of wave breaking increases (see section 4d) and the
relative amount of energy in the Southern Hemisphere
decreases. Comparing results for the nonlinear calcu-
lations for the basic state #', with that predicted by
linear theory (the solid curves in Fig. 8 correspond to
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Fic. 3. Evolution of (a) potential vorticity Q, and (b) perturbation streamfunction ¢* for forcing amplitude F,, = 0.05 and basic state W
(calculation W0S). Plots are on global latitude—longitude grid, and the center of the forcing is marked by the cross. Time is in days and is

the energy density predicted by inviscid linear theory
using the values from a CS calculation with F,
= 0.025), we see that linear calculations overpredict
the propagation into the Southern Hemisphere and un-
derpredict the response in the Northern Hemisphere.

b. Angular pseudomomentum

Another method to quantify the meridional propa-
gation of the disturbance is to use the angular pseu-

domomentum to define a mean disturbance position
(Waugh 1993). Combining the invariants of area
within each contour and angular impulse, it is possible
to form the quantity (Dritschel 1988a)

¢ niownan, ()

Cy

N 1N .
P=2Pk=_'2‘2Qk
k k

which is exactly quadratic in the disturbance amplitude
(M« = zx — Zio being the displacement from the basic
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FiG. 3. (Continued) to the upper left of each plot. The contour interval for the ¢* plots is 1.25 X 106 m?s™'.

state z;o and z = sing). Here P is the angular pseudo-
momentum (MclIntyre and Shepherd 1987) for piece-
wise constant Q distributions, and is of definite sign if
all O, have the same sign and as such bounds the dis-
turbance growth (and decay) in the absence of forcing.

The normalized contribution of each contour to the
angular pseudomomentum, 2, = P,/P, gives a measure
of how each contour retains its initial wave activity.
Furthermore, it can be used to define a mean distur-
bance position

(6)

N ~
z= 2, Pizo.
k

Figure 9 shows the variation of = sin~'(z) with
time for the four representative calculations. Again we
see that the southward propagation is larger when there
is weaker forcing and when there are equatorial west-
erlies. When there is no Rossby wave breaking (cal-
culation W05), the mean disturbance position propa-
gates near to the equator, but when breaking occurs the
disturbance propagates only as far as the surf zone.

c. Wave activity flux

To investigate the two-dimensional propagation of
the disturbance we use the stationary wave activity
flux:
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FIG. 4. As in Fig. 3 except initial condition is basic state &, (calculation EOS).

Figure 10 shows the wave activity flux F, and also the
perturbation streamfunction *, at day 7 for calculation

oy oyt o
O\ Oy *6)\&,0) 7

Plumb (1985). Here F is the two-dimensional exten-
sion of the Eliassen—Palm flux (the zonal average of F
is equal to the EP flux apart from an unimportant zonal
component) and has all the same properties as an in-
dicator of wave propagation.

WO5. The plots for all four calculations are similar at day
7, and have the same characteristics as the flux for the
linear calculation in Plumb (1985). The pattern of F is
consistent with the earlier interpretation of y*, that is, the
formation of a wave train eastward of the source. The
strongest divergence of F, and therefore export of wave
activity, occurs southeast of the source.

As has already been noted, although the initial re-
sponse is similar in all calculations, there are large dif-



1 June 1994 WAUGH

ET AL. 1409

7

A\

%

56

\g

FiG. 4. (Continued)

ferences at later times. The differences can be clearly
seen from the wave activity flux. Figure 11 shows F at
day 35 for all four calculations. The plot for calculation
WOS clearly shows the propagation of wave activity
around the globe. It also shows the wave train splitting
into a double structure; a SE component and a NE com-
ponent. The NE traveling wave turns equatorward be-
fore it reaches the North Pole [consistent with linear
theory of Hoskins et al. (1977)]. The plots for the other
three calculations are very different from this calcula-
tion. Although the wave train still has a double struc-
ture, there is now very little propagation of wave activ-

ity into the Southern Hemisphere. The wave activity is
absorbed and partly reflected by the breaking zone
[there are suggestions of reflection from the tropical
breaking zone, e.g., near 20°N, 45°W in Figs. 11b, 11c,
and 11d. The two plots for F, = 0.20 are qualitatively
similar although there is propagation farther south
when there are westerlies in the tropics (as shown ear-
lier).

d. Surf zone width

To see how the width of the region of Rossby wave
breaking varies with forcing amplitude and basic state,
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FiG. 5. (a) and (b) As in Fig. 3 except F = 0.20 (calculation W20) and ¢* contour interval is 5 X 106 m? s~*.

we have performed a series of calculations with varying
amplitude and basic state. We define the surf zone by
the region where there is overturning in the PV con-
tours, that is, double-valued contours signify the onset
of irreversible deformation and breaking. From the CS
calculations we can then determine the boundary of the
surf zone to within the spacing of the initial contours.
For example, in calculation W20 the seven most north-

ern contours are single valued at day 35 but the eighth
contour is double valued (see Fig. 5a), and so the
northern boundary of the surf zone is between ¢
= 24.586° and ¢ = 19.967° (the initial position of the
seventh- and eighthmost northern contours).

Figures 12a and 12b show the variation in the surf
zone width with F, for calculations with basic state #,
and &, respectively. In both cases the width of the surf
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F1G. 5. (Continued) (¢) Evolution of the streamfunction i
(contour interval is 1 X 107 m? s™!).

zone increases with forcing amplitude. The upper
boundary increases approximately linearly whereas, for
large forcing, the lower boundary is approximately
constant. For calculations with basic state &, wave
breaking occurs for all amplitudes, and the breaking
zone is centered around the critical line (. = 10.4°).
For the basic state %, there is a critical amplitude for
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onset of breaking (which is in the range 0.06 < F,
< 0.0625), and the surf zone is centered around the
equator (where the initial westerlies are weakest).

As discussed in Polvani et al. (1989) and Polvani
and Plumb (1992), the onset of breaking is associated
with the existence of a stagnation point in the flow.
Breaking occurs when a stagnation point is coincident
with a contour. For the basic state &€, there is initially
a critical line and breaking occurs for all forcing am-
plitudes, whereas for the basic state #", there is a crit-
ical amplitude for the development of stagnation points
(and hence breaking). Using the results from a calcu-
lation with Fy = 0.025 (in which there is no breaking),
linear theory predicts that stagnation points develop for
Fy = 0.0625. This implies that wave breaking will oc-
cur when F; = 0.0625, consistent with the results from
the nonlinear calculations (see Fig. 12a). Thus, linear
theory appears to give good guidance for prediction of
when breaking will occur.

5. Magnitude of the equatorial westerlies

It has been shown that even if there is no critical line
(i.e., equatorial westerlies), wave breaking occurs if
the forcing is above a critical amplitude. We now in-
vestigate the dependence of this critical amplitude, and
also that of the interhemispheric propagation, on the
magnitude of the basic-state tropical westerlies by con-
sidering the evolution for basic state % ,. This basic
state has the same jet structure as %, (and also &) but
has stronger equatorial westerlies (10 m s ™! compared
with 5 m s !); see Fig. 1.

The results for this basic state %', are qualitatively
the same for % ;. For small amplitude forcing there is
no wave breaking, whereas for forcing above a critical
amplitude breaking occurs and a surf zone is formed.
The amount of breaking and the width of the surf zone
increase with forcing amplitude, and the wave breaking
inhibits the interhemispheric propagation.

There is, however, significant variation in the quan-
titative results. The critical amplitude for amplitude for
breaking is larger for basic state #", (F, ~ 0.085 com-
pared with Fy ~ 0.0625). The critical value is again
consistent with the formation of stagnation points as
predicted by a small amplitude calculation together
with linear theory. For the same forcing amplitude there
is less breaking and greater cross-equatorial propaga-
tion with the basic state %, than with %,. Figure 13
shows the Southern Hemisphere energy density for the
two westerly basic states from nonlinear calculations
(W . crosses, # ,: circles) and from linear theory
(W . dashed curve, # ,: solid curve). In both cases
linear theory overpredicts the cross-equatorial re-
sponse, but larger forcing (and breaking) is required
when there are stronger westerlies for the difference to
be significant. Note that the amount of breaking and the
width of surf zone for F, = 0.3 with basic state #, is
comparable with that for F, = 0.2 with %/,.
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FIG. 6. As in Fig. 5 except initial condition is basic state &, (calculation E20).

6. Discussion

The calculations in this paper show that in an invis-
cid, nondivergent, barotropic atmosphere there is a sig-
nificant variation in interhemispheric wave propagation
with the amplitude of the localized forcing. The non-

linear response for large amplitude forcing is signifi-
cantly different from that predicted by linear models.
The results from small amplitude experiments are
consistent with previous linear calculations. The re-
sponse to weak forcing is composed of Rossby wave
trains that propagate eastward (and approximately
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FiG. 7. Latitudinal structure of the zonal average of the perturba-
tion energy density [ E*] (in m? s %) at day 35 for calculations W05
(dotted curve), EO5 (dot—dashed curve), W20 (solid curve), and
E20 (dashed curve). Here, [ E* ] has been scaled by the square of the
ratio of the forcing amplitudes, i.e., (0.20/0.05)* = 16, in the small
amplitude forcing cases (W05 and E0S).

along great circles). If there are equatorial westerlies
the disturbance propagates into the other hemisphere
(and around the globe), whereas there is only a small
response in the antipodean region if there are equatorial
easterlies (and hence a critical line).

In the nonlinear regime, the occurrence of Rossby
wave breaking leads to the formation of a tropical surf
zone (the extent of which varies with the forcing am-
plitude). Within this surf zone finescale structures are
generated and small-scale stirring occurs (with material
being mixed across the extent of the surf zone). The
Rossby wave breaking occurring in the tropical surf
zone inhibits the meridional propagation of the distur-
bance and the cross-equatorial response is smaller than
that predicted by linear theory. The amplitude of the
forcing for the onset of breaking (and for nonlinearities
to become important) increases with the magnitude of
the equatorial westerlies.

To estimate which flow regime (i.e., forcing ampli-
tude) in this simple barotropic atmosphere is most rel-
evant to the real atmosphere, we compare the magni-
tude of the response in the above calculations with that
observed in the upper troposphere. The observed max-
imum [E*] in the upper troposphere for December to
February analyses is in the range 60 to 100 m? s 2 (e.g.,
Lau et al. 1981; Lau 1984). Comparison with Fig. 8
indicates that the amplitude F; = 0.2 is much closer to
the observations than F, = 0.05. Therefore, of the cal-
culations reported here, those with large amplitude
forcing (and therefore significant wave breaking even
in the case of strong tropical westerlies) will give the
best insight into the response of the atmosphere to lo-
calized forcing. It therefore seems important to con-
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FiG. 8. Hemispheric perturbation energy (m? s~2), at day 35, for
a series of calculations with various F,. A cross corresponds to a
calculation with basic state #,, and a circle to calculations with basic
state &;. In both cases the higher value for given F,, corresponds to
the Northern Hemisphere and the lower to the Southern Hemisphere.
The solid curves correspond to the energy density in the Northern
(upper curve) and Southern (lower curve) Hemisphere for basic state
# | predicted by linear theory using the values from a calculation
with Fy = 0.025.

sider the effect of wave breaking in theories of inter-
hemispheric propagation.

In the CS calculations presented the flow is non-
divergent and the only dissipative effect is that due
to the removal of some small-scale features (by
surgery). We have compared these calculations
with a similar series of experiments using a high-
resolution (T85) pseudospectral code to solve the
spherical shallow-water equations. There is very
good agreement between the two series of experi-
ments: at sufficiently high resolution the shallow-
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FiG. 9. Temporal variation of mean disturbance position p, see
(6), for the four calculations shown in Figs. 2 to 6. The curve types
for each calculation are the same as in Fig. 7.
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F1G. 10. Plot of wave activity flux vectors F, and contours of perturbation streamfunction ¢*,
at day 7 for calculation WOS (F, = 0.05 and basic state #',). The contour interval of * is 2.5 X

10°m?s~1.

water pseudospectral calculations show the same
wave breaking, formation of a surf zone, and inhib-
ited interhemispheric propagation as in the CS cal-
culations. The results presented are therefore not sen-
sitive to divergence or (small) dissipative effects.
As noted earlier, however, one important aspect of
the tropical upper troposphere that is absent from these

calculations is the Hadley circulation. Farrell and Wat-
terson (1985) and Watterson and Schneider (1987)
have shown that the meridional flow in this circulation
can change the equatorward propagation. The study of
Held and Phillips (1990) illustrates the displacement
of the surf zone off the equator so that, in regions of
strong divergent flow (and likely strong equatorial east-
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FiG. 11. Plot of wave activity flux vectors F, and contours of perturbation streamfunction #*, at day 35 for calculations (a) W05, (b)
E05, (¢) W20, and (d) E20. The scale of the flux vectors and contour interval in (a) and (b) is the same as in Fig. 10, whereas the vectors
in (c) and (d) are smaller by the square of the ratio of the forcing amplitudes (i.e., (0.20/ 0.05)2 = 16) and the contour interval of ¢* is 107
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FIG. 12. Variation of surf zone width with forcing amplitude F, for (a) basic state %', and (b) basic state &;. A circle corresponds to a
contour that remains single valued, and a cross to a contour that becomes double valued. The region between the curves (which have been

drawn by hand) corresponds to the region of breaking (surf zone).

erlies), we should expect it to be displaced northward
from those shown here. Therefore, the present results
may not be directly applicable to the tropical atmo-
sphere as a whole. However, in those parts of the trop-
ics where the Hadley circulation is weak—including
the tropical east Pacific region where the upper tropo-
spheric equatorial winds are frequently westerly—the
northward displacement should be small. We expect,
therefore, that our conclusions regarding cross-equa-
torial wave propagation through tropical westerlies
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FiG. 13. Variation of Southern Hemisphere perturbation energy

(m? 5~2), at day 35, with F, for basic states #,, and #,. A cross

corresponds to a calculation with basic state %, and a circle to
calculations with basic state % ,. The curves correspond to the energy
density predicted by linear theory using the values from calculations
with Fy = 0.025 (#',: dashed curve; # ,: solid curve).

should not be undermined by this shortcoming of the
model.
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