Supplementary material for "Decreased Northern Hemisphere Precipitation from Consecutive CO₂ Doublings Is Associated with Significant AMOC Weakening"

X. Zhang¹, D. W. Waugh², I. Mitevski³, C. Orbe^{4,5}, and L. M. Polvani^{5,6}

¹Department of Physics, University of Nevada, Reno, NV, USA.

²Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.

³Department of Geosciences, Princeton University, Princeton, NJ, USA.

⁴NASA Goddard Institute for Space Studies, New York, NY, USA.

⁵Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.

⁶Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.

E-mail: xiyuez@unr.edu

Figure S1 Time series of AMOC strength (ψ_{AMOC}), NAWH surface temperature (T_{NAWH}), and NH precipitation (P_{NH}) for individual model simulations at the critical CO2 levels. Annual-mean P_{NH} is shown in light orange lines, while the dark orange lines show 5-year running average P_{NH} . See Table 1 for models at critical CO2 levels.