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Abstract

Essays in Applied Econometrics and Labor Economics

Leonard Goff

Recent decades have seen great advances in the methods we use to understand cause

and effect in the world of work. Building on that tradition, this dissertation explores two

broad topics in econometrics as tools to address specific questions in labor economics.

The main econometric contributions are to extend identification results for research de-

signs based on bunching (Chapter 1) and those that make use of instrumental variables

(Chapters 2 and 3). The empirical questions that compel them are described below.

Chapter 1 examines the effect of overtime regulation on hours of work in the United

States, extending a recently popularized technique that uses bunching observed at kinks

in agents’ choice sets for identification. In the U.S., most workers are required to be paid

one-and-a-half times their typical rate of pay for any hours in excess of forty within a

week. While prominent and long-standing, this policy has not been meaningfully re-

formed since it was first established at the federal level in 1938. As a result, few studies

have been able to leverage causal research designs to assess its labor market impacts. I

use bunching in the distribution of weekly hours at forty—where the policy introduces

a convex “kink” in firms’ costs—to estimate this effect. To do so, I develop a framework

in which bunching at a choice-set kink is informative about causal effects under substan-

tially weaker assumptions than those maintained in existing work. This allows the effect

of the overtime policy to be partially identified without making parametric assumptions

about firms’ objective functions, or about the distribution of hours they would set in the

absence of the policy. Using an administrative dataset of weekly hours derived from pay-

roll records, I find that the bounds are informative and that covered hourly workers in the

U.S. work an average of at least half an hour less as a result, in affected weeks.

Chapter 2 turns to a still-more popular strategy in applied microeconomics: the instru-

mental variables research design. I propose a new method for estimating causal effects



when a researcher has more than one such instrument, and apply it to reassess the labor

market returns to college education. The method is motivated by the following issue.

When treatment effects are heterogeneous, it is known that instruments can be used to

identify local average treatment effects under an assumption known as “monotonicity”

(Imbens and Angrist, 1994). However, when a researcher wishes to use multiple instru-

ments together, this assumption can become quite restrictive, and empirical conclusions

may be misleading if it is violated. I propose an alternative assumption that I call “vec-

tor monotonicity”, which is quite natural in typical settings with multiple instruments. I

show that vector monotonicity leads to identification of a useful class of treatment effect

parameters, but the two-stage-least-squares estimator popular in applied work does not

consistently estimate them. I propose an alternative estimator, and apply it to the classic

question of the returns to schooling. I find that the approach based upon vector mono-

tonicity reveals new patterns of heterogeneity in the earnings effect of college education.

Chapter 3, with coauthors Ashna Arora and Jonas Hjort, considers the effects of a

worker’s first job on outcomes later in their career. This is typically a difficult question

to answer empirically, as workers entering the labor force are not randomly assigned to

employers. We make use of a unique opportunity to study this question in the context of

medical residencies in Norway. For decades, medical school graduates in Norway were

matched to residencies based on a random serial dictatorship mechanism, in which doc-

tors could choose—in an order determined by lottery—among available positions in the

country. We develop an econometric framework in which the random choice set a doctor

is presented with provides a collection of instruments for their choice of residency hospi-

tal, and hence first job as a doctor. Because we only observe choices and not a doctor’s full

preferences, this requires new methods—related to those of Chapter 2. We find persistent

effects of a doctor’s first job on earnings, specializations, and mid-career moves. We use

the estimates to assess the replacement of the serial-dictatorship by a decentralized labor

market in 2013, which we find led to a small increase in resident welfare.
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Chapter 1: Treatment Effects in Bunching Designs: The Impact of the

Federal Overtime Rule on Hours

1.1 Introduction

Many countries require premium pay for long work hours. In the U.S., this takes the

form of the “time-and-a-half” rule of the Fair Labor Standards Act (FLSA): workers must

be paid one and a half times their normal hourly wage for any hours they work in ex-

cess of 40 within a week. While some workers are exempt from the overtime rule (and

some of their employers are not covered by the FLSA), the time-and-a-half rule applies

to a majority of the U.S. workforce, including nearly all of its 82 million hourly workers

(U.S. Department of Labor, 2019). Given the prevalence of long workweeks in the U.S.,

the total number of hours paid at the overtime rate is substantial. Workers in many in-

dustries average several overtime hours per week, making overtime the largest form of

supplemental pay in the U.S. (Bishow, 2009).1

Nevertheless, only a small literature has addressed the effects of the federal overtime

rule on the U.S. labor market. This stands in marked contrast to the large literature on the

minimum wage, which was also introduced at the federal level by the FLSA in 1938. A

likely reason for this gap is that the overtime rule has varied little since then: the basic

parameters have remained throughout as time-and-a-half after 40 hours within a week.2

This lack of variation has afforded few opportunities to leverage research designs that

1Hart (2004) reports an average of 3 overtime hours per week among non-supervisory production work-
ers. See Table A.2 for new estimates by industry from my sample. From a separate representative survey
I estimate in Section 1.3 a grand average of about one overtime hour per week per worker, among all em-
ployed.

2While there are supplemental state overtime rules that vary somewhat by state (e.g. Minnesota has a 48
hour threshold), these rules bind for relatively few workers since the federal rules supersede the state rules.
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exploit policy changes over time to identify causal effects, particularly on hours worked.3

Unlike with the minimum wage, reforms to overtime policy have been rare and have left

the central parameters of the rule unchanged.

In this paper, I take a new approach to assessing the effect of the FLSA overtime rule on

hours by making use of variation within the rule itself: given a fixed hourly wage, hours

in excess of 40 within a week for a single worker are more expensive to the firm than those

below 40. Rather than attempt to explicitly control for confounding factors affecting hours

or exploit reforms to whom is covered by the rule, I leverage the sharp discontinuity in

the marginal cost of a worker-hour at 40 for identification. This methodology requires two

new ingredients that this paper adds to the existing literature: first, high resolution data

on the hours of individual workers within a single given week, allowing me to observe

the distribution of hours close to 40. I obtain this from a novel dataset of paycheck records

from a large payroll processing company that records the exact number of hours that a

worker was paid for in a given week. Second, my approach requires a way to translate

the observed hours distribution near 40 into credible causal estimates of the rule’s effect,

given reasonable assumptions about how weekly work hours are determined.

While wages change only occasionally in the data, hours are quite variable among my

sample of hourly workers, suggesting that hours are set dynamically each week with the

overtime rule generating a convex kink in pay as a function of hours. A well-known pre-

diction is that if firms set hours (at least for a subset of workers), there will be a mass

of observations located exactly at the kink at 40 hours. I show that the size of this mass

of paychecks is informative about the joint distribution of two counterfactual choices: the

number of hours the firm would choose for the worker if the worker’s normal wage rate

3A notable exception is Hamermesh and Trejo (2000), who apply a difference-in-differences approach
over the expansion of a daily overtime rule in California to include men in 1980, estimating a price elasticity
of demand for overtime hours of roughly −0.5. Costa (2000) and Johnson (2003) also consider the impact
of federal overtime regulation on hours worked, studying the phase-in of the FLSA and a supreme court
decision clarifying the eligibility of public sector workers, respectively. Quach (2020) looks at recent reforms
to eligibility criteria for exemption from the FLSA, estimating effects of the change on employment and the
incomes of salaried workers.
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applied to all hours, and the hours that the firm would choose if all were paid at the

worker’s overtime rate. This generalizes a popular research design that has used bunch-

ing at kink points to identify elasticities, which I refer to as the “bunching design”.4 The

bunching design originated in public finance to assess the labor supply effects of taxa-

tion (Saez 2010; Chetty et al. 2011), but variations have since been applied in many other

settings.5 In my context, the bunching design uncovers the effect on hours of the wage

variation induced by the FLSA overtime rule, providing an estimate of its reduced form

causal effect.

One of the main contributions of this paper is thus to extend and reinterpret the kink

bunching-design methodology, which has gained popularity with the increasing avail-

ability of administrative data—and the ubiquity of policy thresholds at which incentives

change discontinuously. Here I make four main contributions on the econometrics of the

bunching design. First, while bunching designs are typically motivated by a choice model

featuring an explicit functional form for decision-makers’ utility, I require only convexity,

both of the kink itself and agents’ possibly heterogeneous preferences. Secondly, I show

that the bunching design can allow for multiple (possibly unknown) underlying margins

of choice, yielding a single outcome variable observed to the researcher. Inference about

counterfactual choices is thus robust to a large class of choice models, though this ro-

bustness can make it difficult to isolate a single structural interpretation of the estimates.6

This is turn makes a potential outcomes framework a natural language for analyzing the

bunching design. Third, I propose a way to confront a challenge to identification in the

bunching design leveled by Blomquist and Newey (2017)—that it requires extrapolation

of observed densities into a region where they are not. To perform this extrapolation I

4This paper considers only the bunching design for kinks, and not the related method for bunching at
notches (e.g. Kleven and Waseem 2013b). Bunching can also be used to overcome endogeneity in settings
where the variable exhibiting bunching is the treatment, as recently shown by Caetano et al. (2020).

5Examples include cell phone plan pricing (Huang, 2008), fuel economy standards (Ito and Sallee, 2017),
prescription drug spending (Einav et al., 2017) and Social Security (Gelber et al., 2020).

6This provides a response to the point made by Einav et al. (2017) that alternative models calibrated from
the bunching-design can yield very different predictions about counterfactuals. I define a particular type of
counterfactual question that can be answered robustly across a class of such models.
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impose a weak non-parametric shape constraint— bi-log-concavity—that can be verified

within the support of observations and allows the researcher to place bounds on a local

average treatment effect among individuals who locate at the kink. Finally, I show that

these same restrictions are informative about policy counterfactuals, for example chang-

ing the location of the kink or how “sharp” it is.

The empirical context of overtime pay involves an additional challenge that is not typ-

ical to the bunching design: the kink occurs at a location that may have independent

salience to firms and workers. Bunching in the hours distribution at 40 may arise in part

from factors other than the FLSA rule, for example to coordinate the hours of workers

across firms. I use two strategies to estimate the amount of bunching at 40 that would

exist absent the FLSA, to deliver clean estimates of the rule’s causal effect. First, I use

the fact that when hours are paid out as holidays, sick pay, or paid-time off, they do not

count towards a week’s 40 hours. This “moves” the location of the kink in total hours

paid during weeks when a worker is paid for non-work hours. I outline assumptions un-

der which this yields the bunching that would occur absent the overtime rule. Second, I

present a strategy that assumes alternative explanations for bunching are time-invariant

to pin down the distinct contribution of the FLSA bunching at 40.

I find that the FLSA indeed has effects on hours worked, as predicted by labor demand

theory. My preferred estimate suggests that just one quarter of the bunching observed in

the sample (of hourly workers) at 40 is due to the FLSA, and employees working at least

40 hours work, on average, about 30 minutes less than they would absent the time-and-

a-half rule. While a detailed analysis of the employment effects of the FLSA is beyond

the scope of this paper, a back-of-the-envelope calculation using this estimate suggests

that FLSA regulation creates about 700,000 jobs. The implied effects are larger when I

use less conservative estimates of the contribution of the FLSA to the observed bunching,

and overall I estimate that the local wage elasticity of hours demand close to 40 falls in

the range −0.04 to −0.19. I also estimate that a reform from time-and-a-half to double
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pay would introduce further hours effects of a similar magnitude to those from the cur-

rent FLSA, and that lowering the hours threshold from 40 to 35 would nearly eliminate

bunching due to the FLSA, in the short run.

These effects speak directly to the substitutability of hours of labor between workers.

The primary justifications for overtime regulation have been to reduce excessively long

workweeks, while encouraging hours to be distributed over more workers (Ehrenberg

and Schumann, 1982). This past year has seen a renewed interest in work sharing pro-

grams, which also pair per-worker hours reductions to keeping more workers on payroll.

How well these types of policy play out in practice hinges on how easily an hour of work

can be moved from one worker to another or across time, from the perspective of the

firm. The effects of federal overtime policy provide a potentially large body of relevant

evidence for this question. My results suggest that hours demand is relatively inelastic

and that hours cannot be easily so reallocated. The estimates are also relevant to ongoing

efforts to expand coverage of the FLSA overtime rule (by increasing the earnings thresh-

old at which some salaried workers are exempt), which has resulted in one very recent

major reform.7

The structure of the paper is as follows. Section 1.2 lays out a motivating conceptual

framework that draws on the existing theory and empirical literature on overtime. Section

1.3 introduces the payroll data I use in the empirical analysis. In Section 1.4 I describe the

empirical strategy, with Appendix A.1 developing some of the supporting formal results.

Section 3.5 applies these results to obtain estimates of effect of the FLSA overtime rule on

hours worked, as well as the effects of hypothetical reforms to the FLSA. Section 1.6 dis-

cusses the empirical findings from the standpoint of policy objectives, and 1.7 concludes.

7In particular, the salary threshold for employers to be free from overtime obligations for executive,
administrative or professional workers was increased substantially at the beginning of 2020. Quach (2020)
studies this change along with a previous attempt at an increase in 2016 that was never ultimately executed,
finding evidence that salaries are moved up to the threshold and that some workers are reclassified as
hourly, accompanied by a modest reduction in employment. He does not study effects on hours.

5



1.2 Conceptual framework

This section outlines a framework for thinking about the role of overtime policy in

determining hours, which then motivates the bunching design identification strategy of

Section 1.4. The framework is centered around two observations from the data in Sec-

tion 1.3: weekly hours vary considerably between pay periods for an individual hourly

worker, and wages tend to remain fixed with only infrequent adjustment.

I thus propose a conceptual model that views hour determination as a two stage-

process. First, workers are hired with an hourly wage set along with an anticipated num-

ber of hours they will work per week. Then, with that hourly wage fixed in the short-run,

final scheduling of hours is controlled by the firm and varies by week given fluctuation in

their demand for each worker’s labor. It is at this stage that the bunching design comes

into play, given the kink in each each week’s costs.

Wages and anticipated hours set at hiring

It is natural to expect both workers and firms to have preferences over the hours each

employee works in a given week. Workers derive utility from non-work time, and firms

may not be able to costlessly move hours between workers in production.

I bring both sides of the market together through an ex-ante “earnings-hours” posting

model, which is spelled out more fully in Appendix A.4. For simplicity, workers are here

taken to be homogeneous within the firm and all non-exempt from the FLSA. Each firm

faces a labor supply function that takes as arguments both the total weekly compensation

z it offers to each new worker, and the number of hours h they are expected to work per

week at hiring.8 The firm makes a choice of (z∗,h∗) and the corresponding employment

level given the labor supply function and their production technology.

8This labor supply function can be viewed as an equilibrium object that reflects both worker preferences
over income and leisure and the competitive environment for labor. In Supplemental Appendix A.6, I
endogenize this function in a simple extension of the imperfectly competitive Burdett and Mortensen (1998)
search model.
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While labor supply is viewed as a function over total compensation z and hours, there

is always a unique wage w associated with a particular (z,h) pair, such that h hours at

that rate yields earnings of z, given the FLSA overtime rule

ws(z,h) =
z

h+ 1(h > 40)0.5(h− 40) (1.1)

I refer to this normal hourly rate of pay w, which applies to the first 40 hours, as the

straight-time wage or simply straight wage. Assume that upon hiring, a worker’s straight-

time wage is set endogenously according to Eq. (1.1) given the firm’s chosen z∗ and h∗.

The bunching design outlined in Section 1.4 will itself only require that some straight-time

wage is agreed upon and is fixed in the short-run, a phenomenon that is indeed observed

in the data. However, assuming that hourly wages are set based on a target total earnings

z∗ will play a role in my overall evaluation of the FLSA, and helps fix ideas.

In particular, the earnings-hours posting model allows us to distinguish different views

that have been proposed on the effects of overtime policy. The first is what Trejo (1991)

calls the fixed-job view of overtime: if straight time wages are set according to (1.1), then

for a generic labor supply function the FLSA has no effect on employment, earnings, or

hours if workers are in fact ultimately paid for exactly h∗ hours each week (and the im-

plied ws(z∗,h∗) is above any applicable minimum wage). The job package (z∗,h∗) posted

by the firm is the same as the one that would exist absent the overtime rule, as the hourly

wage rate simply adjusts to fully neutralize the additional cost of overtime pay.9 Note that

the fixed-job view abstracts away from any dynamics or uncertainty, such that the hours

workers actually work is equivalent to the h∗ used to determine the straight wage.

The fixed-jobs view can be contrasted with what Trejo (1991) calls the fixed-wage view,

in which the firm faces an exogenous straight-time wage when determining hours.10 Con-

9In Appendix A.4 I give a closed form expression for (z∗,h∗) when both labor supply and production are
iso-elastic: hours and earnings are each increasing in the elasticity of labor supply with respect to earnings,
and decreasing in the magnitude of the elasticity of labor supply with respect to pay.

10Versions of this idea are considered in Brechling (1965), Rosen (1968), Ehrenberg (1971), Hamermesh
(1996), Hart (2004) and Cahuc and Zylberberg (2014).
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tinuing with a static view of labor demand, this can be captured in our earnings-hours

model by a labor supply function that reflects perfect competition on the quantityws(z,h).

In Appendix A.4 I show that in this case h∗ and z∗ are pinned down by the concavity of

production with respect to hours and the scale of fixed costs (e.g. training) that do not

depend on hours. The fixed-wage job makes the clear prediction that the FLSA will cause

a reduction in hours, and bunching at 40; Figure 1.1 depicts the intuition. In a fixed-wage

model the overall effect on employment is positive given plausible assumptions on the

substitution between labor and capital (Cahuc and Zylberberg, 2014), though the total

number of labor-hours will decrease (Hamermesh, 1996).

40

MPH = w

MPH = 1.5w

←MPH ∈ [w, 1.5w]

hours this week

la
b
or

co
st
s

Figure 1.1: With a given worker’s wages fixed at w labor costs as a function of hours have
a convex kink at h = 40, given the overtime rule. A simple model of hours choice yields
bunching when the marginal product of an hour at 40 is between w and 1.5w for a mass of
workers—see Section 1.4.1.

A small existing literature has investigated whether the fixed-job or fixed-wage model

better accords with the observed joint distribution of hourly wages and hours. Trejo (1991)

and Barkume (2010) find evidence that wages do tend to be lower among jobs with over-

time pay provisions and more overtime hours, however these estimates could be driven

by selection of lower skilled workers into covered jobs with longer hours. In Appendix

A.5, I conduct a novel empirical test of Equation (1.1) that is instead based on assuming
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that the conditional distribution of z is smooth across h = 40. Consistent with the previous

findings, I find evidence of adjustment in wages, but this adjustment is far from complete.

Since my data records hours at the individual paycheck level, this partial adjustment can

be explained by straight wages tending to remain fixed in the short run while hours vary,

as I now discuss.

Dynamic adjustment to hours by week

While the previous section considers anticipated hours and earnings at hiring, the data

reveals that the hours workers are actually paid for vary considerably from week to week.

Indeed the anticipated hours h∗ that affect a worker’s wage rate through Equation (1.1)

might place little to no constraint on the hours actually scheduled in a given week.

There are many reasons why hours may vary from week to week throughout a worker’s

tenure at the firm. As time passes, shocks to product demand or productivity can change

the number of weekly hours that would be optimal that week from the firm’s perspec-

tive. For example, if demand for the firm’s products is seasonal or volatile, it may not be

worthwhile to hire additional workers only to reduce employment later. Similarly, cross-

sectional variation in worker productivity may only become apparent to supervisors after

straight wages have been set. In this case, it might be worthwhile for the firm to ask partic-

ularly productive workers to work overtime, despite the need to pay their higher overtime

rate. Finally, workers may experience time-variation in their desire to work longer hours,

and take advantage of overtime premium pay.

I make two main assumptions regarding the choice of a worker i’s hours hit in a given

week t. The first is that hit is a flexible choice variable on the part of the firm rather than

the worker, and the second is that the firm does not contemplate alternative straight-time

wages wit depending on alternative choices for hit. In line with the second assumption, in

my sample straight-time wages do not change within worker with nearly the frequency

that hourly wages do, for my sample of hourly workers (see Table 1.3). This accords
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with the long literature on nominal wage rigidity (see e.g. Grigsby et al. 2021 for recent

evidence from payroll data). Mounting evidence that hourly wages are often standardized

among workers within a firm despite cross-sectional heterogeneity (Hjort et al., 2020), and

bunched at round numbers (Dube et al., 2020), also dovetails with this assumption.

The assumption that firms (rather than workers) set hours in a given week is compat-

ible with the earnings-hours posting model above, in which the preferences of both sides

of the market matter for the determination of an initial employment contract. It simply

supposes that the firm then retains the right to set the final schedule week-to-week given

each worker’s agreed-upon hourly wage.11 This view is supported by available survey

evidence,12 and can be rationalized on the basis of workers generally having less bargain-

ing power: if the worker and firm fail to agree on a worker’s hours, the worker’s outside

option may be unemployment while the firm’s outside option is having one less worker

or making a costly replacement (Stole and Zwiebel, 1996).

In the empirical strategy presented in Section 1.4, I maintain this assumption that in

all cases a worker’s hours are set unilaterally by their employer, which eases notation

and emphasizes the intuition behind my identification strategy. However, Appendix A.2

presents a generalization in which some fraction of workers choose their hours, along

with intermediate cases in which the firm and worker bargain over hours each week. If

some workers have complete control over their hours, the empirical approach described

in Section 1.4 will only be informative about effects of the FLSA among workers whose

hours are chosen by the firm. However, the fraction of such workers appears to be small

(see footnote 12), despite recent increases in flexible work arrangements.

11If workers are aware that the firm cannot commit to h∗ every week this may affect the labor supply
function; e.g. systematic departures from h∗ could affect equilibrium wages. I do not attempt to model this.

12For example, the 2017-2018 Job Flexibilities and Work Schedules Supplement of the American Time
Use Survey asks workers whether they have some input into their schedule, or whether their firm decides
it. Only 17% report that they have some input. In a survey of firms, about 10% report that most of their
employees have control over their shifts (Society for Human Resource Management, 2018).
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1.3 Data and descriptive patterns

The main dataset I use comes from a large payroll processing company. They provided

anonymized paychecks for the employees of 10,000 randomly sampled employers, for

all pay periods in the years 2016 and 2017. At the paycheck level, I observe the check

date, straight wage, and amount of pay and hours corresponding to itemized pay types,

including normal (“straight-time”) pay, overtime pay, sick leave, holiday pay, and paid

time off. The data also include state and industry for each employer. Finally, for the

employees, the data include age, tenure, gender, state of residence, pay frequency and

their salary if one is stored in the system.

1.3.1 Sample description

I construct a final sample based on two desiderata: i) the ability to observe hours

within a single week; and ii) a sample only of workers who are non-exempt from the

FLSA overtime rule. For the purposes of i), I keep paychecks from workers who are paid

on a weekly basis (roughly half of the workers in the sample), and condition on paychecks

that contain a record of positive hours for work, vacation, holidays, or sick leave, totaling

fewer than 80 hours in a week.13

To achieve ii) I focus on hourly workers, since nearly all workers who are paid hourly

are subject to FLSA regulation. However, while the data include a field for the employer

to input a salary, there is no guarantee that they use it. Therefore, I use a combination of

sampling restrictions to ensure I remove all non-hourly workers from the sample. First, I

drop workers that ever have a salary on file with the payroll system. Second, I only keep

workers at firms for whom some workers have a salary on file, reflecting an assumption

that employers either don’t use the feature at all or use it for all of their salaried employees.

I drop paychecks from workers for whom hours are recorded as 40 in every week in the

13This final restriction removes about 2% of the sample after the other restrictions. While a genuine 80
hour workweek is possible, I consider these observations to likely correspond to two weeks of work despite
the worker’s pay frequency being coded as weekly.
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sample,14 as it is possible that these workers are simply coded as working 40 hours despite

being paid on a salary basis. I also drop workers who never receive overtime pay.

I drop observations from California, which has a daily overtime rule that is binding

for a significant number of workers, and could confound the effects of the weekly FLSA

rule. The final sample includes 630,217 paychecks for 12,488 workers across 566 firms.

Table 1.1 shows how the final sample compares to survey data that is constructed to

be representative of the U.S. labor force. Column (1) reports variable means in the sample

used in estimation. Column (3) reports means from the Current Population Survey (CPS)

for the same years 2016–2017, among those reporting hourly employment. The “has over-

time” variable for the CPS sample indicates that the worker usually receives overtime,

tips, or commissions.15 The fourth column reports means for 2016–2017 from the National

Compensation Survey (NCS), a representative establishment-level dataset accessed on a

restricted basis from the Bureau of Labor Statistics. The NCS uses administrative data

when available, and reports typical overtime worked at the quarterly level for each job

in an establishment. Columns (3) and (4) both lack some variables, as the CPS does not

specifically ask about number of overtime hours, while the NCS lacks worker-level infor-

mation such as tenure, age and sex.

The sample I use is somewhat more male, earns lower straight-time wages, and works

more overtime than a typical U.S. worker. The NCS does not distinguish between hourly

and salaried workers, reporting only an average hourly rate that does not include over-

time pay. This effective straight-time wage thus includes many salaried workers, who

are on average paid more, likely explaining the higher value than the CPS and payroll

samples. Column (2) in Table 1.1 also reveals that my sampling restrictions can explain

why the estimation sample tilts male and has higher overtime hours than the workforce

as a whole. In particular, conditioning on workers that are paid on a weekly basis over-

14For the purposes of this drop, I count the “40 hours” event as occurring when either hours worked or
hours paid is equal to 40.

15The hourly wage variable for the CPS may mix straight-time and overtime rates, and is only present in
the outgoing rotation group sample. The tenure variable comes from the 2018 Job Tenure Supplement.
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(1) (2) (3) (4)
Estimation sample Initial sample CPS NCS

Tenure (years) 3.21 2.81 6.34 .
Age (years) 37.15 35.89 39.58 .
Female 0.23 0.46 0.50 .
Weekly hours 38.92 27.28 36.31 35.70
Has overtime (fraction of workers) 1.00 0.37 0.17 0.52
Straight-time wage 16.16 22.17 18.09 23.31
Weekly overtime hours 3.56 0.94 . 1.04
Number of workers in sample 12488 149459 63404 228773

Table 1.1: Comparison at the worker level of the sample with representative surveys. Col-
umn 1 reports means from the administrative payroll sample used in estimation, Column
2 from the Current Population Survey and Column 3 from the National Compensation
Survey). Column 2 uses a larger sample from the payroll data, before sampling restric-
tions.

samples industries that tend to have more men, and tend to pay somewhat lower wages.

Appendix A.5 compares the industry and regional distributions of the estimation sample

to the CPS.

1.3.2 Hours and wages

I turn now to the empirical inputs that I use in estimation. Figure 1.2 reports the empir-

ical distribution of weekly hours in the pooled sample of paychecks. The graphs indicate

a large mass of individuals who were paid for exactly 40 hours, amounting to about 11.6%

of the sample.16 Appendix Figure A.10 makes clear that overtime pay is present in nearly

all weekly paychecks that report more than 40 hours, in line with the assumption that the

workers in my final sample are non-exempt from the FLSA.17

Recall from the conceptual framework of Section 1.2 that firms face a kink in labor costs

within a given pay period when there is short run wage rigidity, and that this mediates

the main causal effect of the FLSA on hours worked. Table 1.3 documents that while the

hours paid in 70% of all pay checks in the final estimation sample differ from those of

16The second largest mass occurs at 32 hours, and is explained by paid-time-off, holiday, and sick pay
hours as discussed in Section 3.5.

17However, I cannot rule out that some of the overtime pay is based on voluntary firm overtime policies.

13



Figure 1.2: Empirical densities of hours worked pooling all paychecks in final estimation
sample. Sample is restricted to hourly workers receiving overtime pay at some point
(to ensure nearly all are non-exempt from FLSA, see text), and workers having hours
variation. The right panel omits the points 40 and 32 to improve visibility elsewhere. Bins
have a width of 1/8 of an hour, based on the observed granularity of hours (see Appendix
Figure A.14 for details).

the last paycheck by at least one hour, just 4% of all paychecks record a different straight-

time wage than the previous paycheck for the same worker. This figure is unchanged if

I condition on the event of an hours change. Among the roughly 22,500 average wage

change events, the average change is about a 45 cent increase. When hours change the

magnitude is about 7 hours on average (see Supplemental Figure A.15 for the distribution

of hours changes), with no average secular increase in hours over time.

Appendix Table A.5 reports a direct test of the Trejo (1991) model that straight-time

wages are related to hours according to Equation (1.1). In particular, I show that under

natural smoothness assumptions, the change in slopes of a regression function of straight

wages on hours at 40 identifies the proportion of checks around 40 that reflect the wage-

hours relationship described by Equation (1.1). This exercise suggests that about 25% of

checks near 40 hours satisfy this relationship, consistent with straight wages being ad-

justed in response to overtime pay obligations but being updated only intermittently.

I report some further details on the variation present in the data in Appendix A.5.

Appendix Table A.3 regresses hours, overtime hours, and an indicator for bunching on
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worker observables, and shows that after controlling for worker and date fixed effects

bunching and overtime hours are both predicted by recent hiring at the firm. This lends

credibility to the assumption that shocks to labor demand drive variation in hours. Ap-

pendix Table A.4 shows that overall, about 63% of variation in total hours can be explained

by worker and employer by date fixed effects. Appendix Figure A.2 documents hetero-

geneity in the prevalence of overtime pay across industry classifications. Industries with

the largest average overtime pay include Health Care and Social Assistance, Administra-

tive and Support, and Transportation and Warehousing.

Mean Std. dev. N

Indicator for hours changed from last period 0.84 0.37 630,217.00

Indicator for hours changed by at least 1 hour 0.70 0.46 630,217.00

Indicator for wage changed from last period 0.04 0.19 630,217.00

Indicator for wage changed, if hours changed 0.04 0.19 529,791.00

Difference in hours, if hours changed -0.02 10.69 529,791.00

Absolute value of hours difference, if hours changed 6.83 8.23 529,791.00

Difference in wage, if wage changed 0.45 26.46 22,501.00

Figure 1.3: Changes in hours paid or straight time wages between consecutive paychecks,
within worker.

1.4 Empirical strategy: a generalized kink bunching design

In this section I consider the firm making its week-to-week choice of hours for a given

worker, with costs a kinked function of hours as depicted in Figure 1.1. I show that under

weak assumptions, firms facing such a kink will make a choice that can be completely

characterized by choices they would make under two counterfactual linear cost schedules

that do not feature the kink, and differ with respect to a single worker’s hourly wage.

I then parlay the observable bunching at 40 hours into a statement about the joint dis-
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tribution of these counterfactuals, which can be interpreted in the language of treatment

effects. Finally, I use these treatment effects to estimate my main parameter of interest: the

average effect of the FLSA on hours.

The identification results in this section hold in a much more general setting in which

a generic decision-maker faces a kinked choice set and has convex preferences. I present

this general model in Appendix A.1, and some of the formal assumptions are given there

rather than in the main text. Throughout this section I refer to a worker i in week t as

a unit: an observation of hit for unit it is thus the hours recorded on a single paycheck.

Probability statements are to be understood with respect to the pooled distribution of such

paychecks across the sample period.

1.4.1 A benchmark model: hours chosen from marginal productivity

Let us begin with the conceptual framework introduced in Section 1.2. With the wage

fixed, the firm in week t faces a kinked cost schedule in deciding hours hit for a given

worker. If the firm chooses less than 40 hours, it will pay w = wit for each hour, where

wit is the straight-time wage.18 If the firm chooses h > 40, then it will pay 40w for the first

forty hours and 1.5w(h− 40) for the remaining hours, giving the convex shape to Figure

1.1. Let Bkit(h) = with+ .5wit1(h > 40)(h− 40) be the kinked pay schedule for unit it.

A natural view of weekly hours demand is that firms balance the cost Bkit(h) against

the value of h hours of the worker’s labor, in order to maximize profits. Consider a single

firm, and let Ft(h, h−i,t) denote production in dollars this week, where h are the hours

for worker i and h−i,t is the vector of hours for the other workers in the firm. Take F to

be strictly concave in the total hours profile of its workers h = (h, h−i,t), such that the

marginal product of an hour MPHit(h) =
∂
∂hFt(h, h−i,t) is declining as a function of h. If

firms maximize weekly profits, they will choose h < 40 when MPH equals the straight

time wage for some such value of h. This situation is depicted by the leftmost indifference

18A unit’s straight-time wage wit is fixed with respect to the choice of hours this week, but may depend
on t due to e.g. occasional or automatic periodic raises.
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curve in Figure 1.1. By concavity of production, MPH declines with h. If the MPH is

still above 1.5w at h = 40, for a worker with wage w, then tangency with the budget

constraint Bkit(h) will occur for some h > 40 where MPH(h) = 1.5w. This is depicted

by the rightmost indifference curve in Figure 1.1. If the MPH at h = 40 is between w and

1.5w, then the firm will choose to locate that worker at the corner solution h = 40.

These predictions may be summarized as follows, separating the cases based on the

marginal productivity of a worker’s hours at 40:

hit =


MPH−1

it (wit) if MPHit(40) < wit

40 if MPHit(40) ∈ [wit, 1.5wit]

MPH−1
it (1.5wit) if MPHit(40) > 1.5wit

(1.2)

Shocks to the function Ft, or to the hours h−i,t worked by i′s colleagues within the firm,

can be seen as determining which of the three types of outcome occurs in a given week.

While Equation 1.2 provides fairly general intuition, it is useful to consider a simpler

context that ignores interdependencies between workers and assumes that heterogeneity

in hours is driven by a scalar productivity parameter: Ft(h, h−i,t) = ait · f(h) where f ′ > 0

and f ′′ < 0. Then MPHit(h) = ait · f ′(h), where the function f is common across firms,

workers, and time periods. If f(h) is furthermore iso-elastic, we arrive at the canonical

bunching-design approach from the literature (Saez, 2010; Chetty et al., 2011; Kleven,

2016).19 The iso-elastic case is illustrative, and I will focus on it as a benchmark, before

generalizing. In the iso-elastic model, firm profits take the form:

πit(z,h) = ait ·
h1+ 1

ε

1 + 1
ε

− z (1.3)

where ε < 0 is common across all units it, and c are labor costs for worker i in week
19Alternatively, they may allow heterogeneous elasticities by taking the kink to be suitably “small”. My

approach allows us to relax both assumptions at the same time.
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t. Under any linear pay schedule z = wh, the profit maximizing number of hours is(
w
ait

)ε
, so ε can be interpreted as the elasticity of hours demand to the wage. Define

ηit = ait/wit, the ratio of the current productivity factor to the straight-time wage. Then,

by Equation (1.2) hours are ranked across units by their value of ηit. Namely, hit = η−εit if

ηit < 40−1/ε, hit = 1.5ε · η−εit if ηit > 1.5 · 40−1/ε, and hit = 40 if ηit falls in the intermediate

region [40−1/ε, 1.5 · 40−1/ε]. If ηit is continuously distributed over a region containing this

interval, then the observed distribution of hit will feature a point mass at 40: “bunching”

– paired with a density elsewhere.

Now consider identifying the effect of the FLSA, in the context of this iso-elastic model.

Let h0it = η−εit be the hours it would work if their employer faced the straight-time wage

rate for all hours. I will refer to the difference hit − h0it as the effect of the kink—the effect

of the FLSA on unit it when ignoring changes to workers’ straight-time wage, or comple-

mentaries between units (I account for effects on wages in Section 1.6). In the iso-elastic

model, the effect of the kink is

hit − h0it =


0 if hit < 40

40− h0it if hit = 40

hit · (1− 1.5−ε) if hit > 40

Given the value of ε, we could evaluate this effect for any paycheck recording overtime

hit > 40 using the worker’s observed hours. We could then easily estimate, for example,

the average treatment effect among paychecks having overtime hours.

Thus a natural starting place for evaluating the FLSA via the bunching design is to

estimate ε. Assume that we have access to a random sample of paychecks hit.20. If we

were willing to suppose ηit belongs to a parametric family, then the entire model could be

estimated by maximum likelihood (Bertanha et al., 2020). The method pioneered by Saez

(2010) is more local: ε is related to the observable bunching probability B = P (hit = 40).
20The empirical implementation relaxes this and only assumes independence between firms.
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Figure 1.4 depicts the intuition, which is convenient to express in terms of the log-hours

distribution.

ln 40

lnh0

↓
lnh0 − |ε| ln 1.5

↓

B

Distribution of log hours

⇐⇒

ln 40 ln 40 + δ

B

δ = |ε| ln 1.5

Density of lnh0

Figure 1.4: The left panel depicts the distribution of observed log hours ln hit in the iso-
elastic model, while the right panel depicts the underlying full density of ln h0it. The full
density is related to the observed density by “sliding” the observed density for h > 40 out
by the unknown distance δ = |ε| ln 1.5. The density of h0it is not observed in the missing
region between ln 40 and ln 40 + δ, but the area total therein must equal the observed
bunching mass B.

If the researcher unwilling to assume anything about the density of h0 in the missing

region of Figure 1.4, then the data are compatible with any finite ε < 0, a point empha-

sized by Blomquist and Newey (2017) and Bertanha et al. (2020). In particular, given the

integration constraint that B = P (ln h0it ∈ [ln 40, ln 40 + δ]), an arbitrarily small |ε| could

be rationalized by a density that spikes sufficiently high just to the right of 40, while an

arbitrarily large |ε| can be reconciled with the data by supposing that the density drops

quickly to some very small level throughout the missing region.

Standard methods from the literature use parametric assumptions to point-identify ε

in the iso-elastic model. The approach of Saez (2010) assumes that the density of h0it (not

in logs) is linear through the corresponding region [40, 40 · 1.5−ε]. The popular method of

Chetty et al. (2011) instead fits a global polynomial to the hours distribution. However,

neither of these approaches is suitable for the overtime context. The linear method of Saez
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(2010) implies monotonicity of the density in the missing region, which is unlikely to hold

given that 40 appears to be near the mode of the latent hours distribution. The method of

Chetty et al. (2011) ignores the “shift” by δ in the right panel of Figure 1.4, which would be

problematic in this setting since the slope of the density is far from zero and the bunching

at 40 is exact, rather than diffuse.

My approach instead imposes a non-parametric shape constraint: bi-log-concavity, on

the distribution of h0it. Bi-log-concavity (BLC) generalizes the familiar property of log-

concavity, and importantly allows for a peak within the missing region (Dümbgen et al.,

2017). I defer a detailed discussion of BLC to Section 1.4.3, after I generalize from the

iso-elastic model, and indeed more generally from a model in which hours are chosen on

the basis of productivity alone. The reason for this generalization is two-fold. First, its

weakens the assumptions under which the effect of the FLSA on hours can be identified.

Second, it enables a range of underlying models that might be used to rationalize the

results.

The robustness over structural models is important in the overtime context. The iso-

elastic model applied to the data described in Section 1.3 yields implausible values for

ε, when interpreted in the context of the hours production function from Equation (1.3).

Appendix A.5.4 reports estimates of the identified set of values for ε compatible with the

data and BLC of h0. The bounds are narrow and suggest a value of about ε = −0.2, when

all of the bunching observed at 40 is attributed to the FLSA.21 This value would suggest

that revenue as a function of hours is (up to an affine transformation): f(h) = −1
4h
−4, a

production function with an unreasonable degree of concavity. Note that attributing just a

portion of the observed bunching at 40 to the FLSA, as I do in Section 1.5.1 would further

reduce the estimate of ε. The more general separable model in which f(h) is arbitrary is

also not much help here, since estimating the iso-elastic model then identifies an averaged

21This estimate is from the pooled sample across all industries. Also reported Appendix A.5.4, estimation
by industry yields bounds on ε ranging from−0.26 to−0.06, which are similarly implausible as estimates of
concavity of production. The estimates are similar when applying the linear density assumption from Saez
(2010).
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local inverse elasticity of f(h). In particular: h1it − h0it = h0it (1.5ε̄it − 1) where ε̄it is a

unit-specific weighted average of the inverse elasticity of production between 1.5ηit and

ηit: ε̄it :=
∫ 1.5η−1

it

η−1
it

w(m) · ε(g(m)) · dm where ε(h) := f ′(h)
f ′′(h)h is the reciprocal of the local

elasticity of production, g(m) := (f ′)−1(m) yields the hours h at which f ′(h) = m, and

w(m) = 1/m
ln 1.5 is a positive function integrating to one.

Put simply, the observed bunching is too small to be reconciled with an iso-elastic re-

sponse in which ε parameterizes the concavity of production with respect to hours: it is

better interpreted as a reduced form elasticity of demand for hours. The next section for-

malizes this idea, by showing how identification in the bunching design generalizes to

a class of models that can include additional choice variables that may attenuate the ob-

served labor demand response to overtime pay, as well as incorporate multi-dimensional

heterogeneity.

1.4.2 Counterfactual choices in a larger class of choice models

The basic structure of what is observable in the bunching design is preserved when we

not only relax the constant-elasticity assumption, but also when we allow the firm to have

multiple choice-variables that may be responsive to the incentives created by the kink.

Additional margins of response can have the effect of diminishing the hours response

that would occur on the basis of production alone, which can explain the small elasticity

reported in the last section.

Begin by observing that in the model of the last section, units who work overtime work

the number of hours that they would work if their wage was 1.5 times their straight time

wage: c.f. Equation (1.2). This property holds quite generally. Let h1it be the hours that

would be chosen for it if their straight-time wage were instead equal to 1.5wit.22. Ap-

pendix A.1 presents a generic model of choice for the bunching design in which Equation

22Specifically, the counterfactuals h0it and h1it replace the cost schedule for this week’s hours with a linear
wage wit or 1.5wit, holding fixed both wit and the hours of other units. See Section 1.4.4 for more details.
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(1.2) can be seen as a special case of:

hit =


h0it if h0it < 40

40 if h1it ≤ 40 ≤ h0it

h1it if h1it > 40

(1.4)

This expression says that knowledge of the two counterfactual hours choices h0it and h1it

are sufficient to pin down the actual hours chosen for any given unit. The worker will

work h0it when h0it is less than 40, h1it when it is greater than 40, and be located at 40 if

and only if the two counterfactual outcomes “straddle” the kink, falling on either side.

Appendix Lemma A.1 shows that Equation 1.4 holds quite generally when an exoge-

nous change to the hours-pay schedule would cause the firm to re-optimize on a vector

x of choice variables that includes hours of work h as a component, and firm preferences

are convex in the pair (z, x), where z are this period’s wage costs. To demonstrate the

flexibility of this framework, I present some examples beyond the baseline model of the

last section. These examples are illustrative, and each could apply to a different subset of

units in the population.23

Example 1: Substitution from bonus pay

Let the firm’s choice vector be x = (h, b)′, where b ≥ 0 indicates a bonus (or other

fringe benefit) paid to the worker. Firms may find it optimal to offer bonuses to im-

prove worker satisfaction and reduce turnover. Suppose firm preferences are: π(z,h, b) =

f(h) + g(z+ b− ν(h))− z− b, where z continues to denote wage compensation this week,

z + b− ν(h) is the worker’s utility with ν(h) a convex disutility from labor h, and g(·)

increasing and concave. In this model firms will choose the surplus maximizing choice of

23Appendix A.2 discusses a further example in which the firm and worker bargain over this week’s hours.
This weekly bargaining can diminish the wage elasticity of hours since overtime pay gives the parties op-
posing incentives.
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hours hm := argmaxhf(h)− ν(h) regardless of the hourly wage, provided that the corre-

sponding optimal bonus is feasible (e.g. non-negative). Bonuses may thus fully adjust to

absorb the added costs of overtime pay, such that h0 = h1 = hm.

Example 2: Off-the-clock hours and paid breaks

Suppose firms choose a pair x = (h, o)′ with h hours worked and o hours worked “off-the-

clock”, such that y(x) = h− o are the hours for which the worker is paid. This model can

include some firms voluntarily offering paid breaks by allowing o to be negative. Eva-

sion is harder the larger o is, which we represent by firms facing a convex evasion cost

φ(o), so that firm utility is π(z,h, o) = f(h) − φ(o) − z. Note that the data observed in

our sample are of hours of work y(x) for which the worker is paid, when this differs from

h. Appendix A.1 describes how Equation 1.4 still holds, but for counterfactual values of

hours paid y = h− o rather than hours worked h. The bunching design lets us investigate

treatment effects on paid hours, without observing off-the-clock hours or break time o.

Example 3: Complementaries between workers or weeks

Suppose the firm simultaneously chooses the hours x = (h, g) of two workers according

to production that is iso-elastic in a CES aggregate of the two worker’s hours. I focus

on the hours h for the first worker (g could also denote planned hours next week for

the same worker): π(z,h, g) = a ·
(
(γhρ + gρ)1/ρ)1+ 1

ε − z, where γ > 0 reflects a relative

productivity shock for the first worker, and z are labor costs. Let g∗ denote the firm’s

optimal choice of hours for the second worker. The firm’s choice of h must maximize

π(z,h, g∗) subject to z = Bk(h), as if the firm faced a single-worker production function

of f(h) = a ·
(
(γhρ + g∗ρ)1/ρ)1+ 1

ε . This function is more elastic than the corresponding

single-worker iso-elastic production function with the same ε < 0 provided that ρ < 1 +

1/ε, since f ′′(h)h
f ′(h) = 1

ε −
1+1/ε−ρ
γ(h/g∗)ρ+1 , attenuating the response to an increase in w (with g∗
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fixed) implied by a given ε, provided sufficient complementarity.24

1.4.3 Identifying treatment effects in the bunching design

Given the definitions in the last two sections, let ∆it = h0it− h1it. This is the difference

between the firm’s choice of hours for a given worker (this week) if they were paid at their

straight-time rate for all hours, versus their overtime rate for all hours. I refer to ∆it as it’s

treatment effect, interpreting h0 and h1 as potential outcomes. A unit’s treatment effect can

be contrasted with the “effect of the kink” quantity hit − h0it introduced earlier: the effect

of the kink is −∆it for those units working overtime.25

Beyond the iso-elastic model, ∆it rather than ε is the quantity of interest in causal anal-

ysis. In the iso-elastic model ∆it = h0it · (1 − 1.5ε); this model thus delivers treatment

effects in logs: ln h0it− ln h1it = |ε| · ln 1.5 that are constant across all units (see Figure 1.4).

In general we can expect ∆it to vary across units, and a reasonable parameter of interest is

some summary statistic of ∆it. To ease notation, let k = 40 denote the location of the kink.

We can see that bunching should be in some way informative about the distribution of ∆it

by using Equation (1.4) to write the bunching probability as:

B = P (h1it ≤ k ≤ h0it) = P (h0it ∈ [k, k+ ∆it]) = P (h1it ∈ [k− ∆it, k]) (1.5)

Units bunch when either of their counterfactual outcomes lie within their individual treat-

ment effect of the kink. Note that B = F1(k)− F0(k) provided that h0it and h1it are con-

tinuously distributed, where F0 and F1 are their cumulative distribution functions.

The existing literature on the bunching design contains few positive identification re-

sults that move beyond univariate heterogeneity and explicitly allow responsiveness to

24This expression overstates the degree of attenuation, since h1 and h0 maximize f(h) above for different
values g∗, which leads to a larger gap between h0 and h1 compared with a fixed g∗ by the Le Chatelier
principle (e.g. Milgrom and Roberts, 1996). However, given ρ < 1 + 1/ε, maintaining productivity of the
second worker gives the firm enough incentive against decreasing h that h1/h0 still increases on net.

25Both of these treatment effects are “partial equilibrium” in the sense that they hold the hours worked
by units other than it fixed at their actual values. Section 1.4.4 discusses this further when evaluating the
FLSA.
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vary by individual unit. Saez (2010) and Kleven (2016) consider a “small-kink” approxi-

mation that allows one to estimate E[∆it|h0it = k], in the present notation.26 In the over-

time setting, a 50% increase in the hourly cost of labor is likely to produce large enough

effects that this approximation would be quite poor. Blomquist et al. (2021) allow multi-

dimensional heterogeneity in a labor supply model under taxation, by assuming the den-

sity of counterfactual choices at a kink is linear across tax rates. However this type of

assumption can be hard to motivate.

One type of heterogeneity that it is important to allow in the context of overtime is

some degree of non-responsiveness to the incentives introduced by the kink at 40 hours,

since 40 is a particularly salient hours choice. Let K∗it = 1 indicate a group of units such

that h0it = h1it = k. I refer to these units as “counterfactual bunchers”, since they would

locate at the kink even in the counterfactual outcome distributions. These units are not

of particular interest, but they complicate measurement of the bunching caused by kink

when there is a positive mass p := P (K∗it = 1) of counterfactual bunchers. In this section,

I treat p as known, and estimate it empirically in Section 1.5.1. Given p and the CDF F (h)

of the data, one can construct the conditional distribution for all other units (denoted by

K∗it = 0) by simply subtracting p from the observed bunching mass B and re-normalizing

the distribution, i.e. Fh|K∗=0(h) =
F (h)−p1(h≥k)

1−p .

I focus on partial identification of the average treatment effect among units who locate

at the kink and are not counterfactual bunchers, what I call the “buncher LATE”:

∆∗k = E[∆it|hit = k,K∗it = 0]

To simplify the discussion, suppose for now that there are no counterfactual bunchers, so

26In particular, the density of h0 is taken to be constant throughout the region [40, 40 + ∆it] conditional
on each value of ∆it, leading to E[∆it|h0i = 40] = B/ limh↑k f(h), with f(h) the density of observed hours
(see Appendix A.1 for a derivation in my generalized framework). The uniform density assumption is
hard to justify except in the limit that the distribution of ∆it concentrates around zero. Lemma SMALL in
Appendix C.4 makes this claim precise, while connecting the approach from Saez (2010) and Kleven (2016)
to a non-parametric treatment without point identification by Blomquist et al. (2015).
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that ∆∗k = E[∆it|hit = k]. My approach to identifying bounds on ∆∗k is based on assuming

a weakened version of rank invariance between h0 and h1:

P (F0(h0it) = F1(h1it)) = 1. (1.6)

Equation (1.6) says that increasing each unit’s wage by 50% does not change the rank of

each unit’s hours: for example, a worker at the median of the h0 distribution also has

a median value of h1. This is satisfied by models in which there is perfect positive co-

dependence between the potential outcomes, such-as the benchmark model from Section

1.4.1 with production ait · f(h). The left panel of Figure 1.6 shows an example.

Rank invariance allows us to translate statements about ∆it into statements about the

marginal distributions of h0it and h1it. In particular, under rank invariance the buncher

LATE is equal to the quantile treatment effectQ0(u)−Q1(u) averaged across all u between

F0(k) and F1(k) = F0(k) + B, with Qd the quantile function of hdit:

∆∗k =
1
B
∫ F1(k)

F0(k)
[Q0(u)−Q1(u)]du, (1.7)

so long as F0(y) and F1(y) are continuous and strictly increasing. To place bounds on the

buncher LATE, it is thus sufficient to place point-wise bounds on the quantile functions

Q0(u) and Q1(u) throughout the range u ∈ [F0(k),F1(k)], as depicted in Figure 1.5.
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Figure 1.5: Extrapolating the quantile functions for h0 and h1 (blue and orange, respec-
tively) to place bounds on the buncher LATE. The observed portions of each quantile
function are depicted by thick curves, while the unobserved portions are indicated by
thinner curves. The dashed curves represent upper and lower bounds for this unobserved
portion implied by bi-log-concavity (see text below). The buncher LATE is equal to the
area shaded in green, divided by the bunching probability B. The quantities ∆∗0 and ∆∗1
are defined in Assumption RANK below.

I obtain such bounds by assuming that both h0 and h1 have bi-log-concave distributions.

Bi-log-concavity is a non-parametric shape constraint that generalizes log-concavity, a

property of many common parametric distributions:

Definition (BLC). A distribution function F is is bi-log-concave (BLC) if both lnF and ln(1−F )

are concave functions.

If F is BLC then it admits a strictly positive density that is itself differentiable with the

locally bounded derivative: −f(h)
2

1−F (h) ≤ f ′(h) ≤ f(h)2

F (h)
(Dümbgen et al., 2017). Intuitively,

this rules out cases in which the density of either h0 or h1 ever spikes or falls too quickly

on the interior of its support, leading to non-identification of the type discussed in Section

1.4.1.27 The family of BLC distributions includes uniform and linear densities (as assumed

27Bertanha et al. (2020) propose partial identification in an iso-elastic model by specifying a Lipschitz
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by Saez 2010), as well as all globally log-concave distributions such as the normal.28 Im-

portantly, the BLC property is partially testable in the bunching design, since F0(y) is

identified for all h < k and F1(h) is identified for all h > k. Appendix Figure A.9 shows

that these observations in the data are indeed consistent with BLC. I will also refer to a

random variable as “BLC” if its distribution is BLC. For each d ∈ {0, 1}, assuming hdit is

BLC yields point-wise upper and lower bounds on the quantile function Qd(u) appearing

in Equation (1.7) that depend on Fd(k) and fd(k), with fd the density of hdit.29

Assuming that each of h0 and h1 are separately BLC thus allows me to move beyond

point-identification based on strong parametric assumptions while simultaneously ac-

commodating heterogeneous treatment effects, requiring only rank invariance. But while

rank invariance weakens the homogeneity assumptions typically made in the literature, it

is nevertheless a restrictive assumption in the overtime setting. Fortunately, a still weaker

assumption proves sufficient for the RHS of (1.7) to recover the buncher LATE:

Assumption RANK. There exist values ∆∗0 and ∆∗1 such that h0it ∈ [k, k+∆it] iff h0it ∈ [k, k+

∆∗0], and h1it ∈ [k− ∆it, k] iff h1it ∈ [k− ∆∗1, k].

Note that ∆∗0 and ∆∗1 are fixed numbers that do not vary by unit it. If treatment effects were

homogeneous with ∆it = ∆, we would have ∆∗0 = ∆∗1 = ∆, and Assumption RANK would

simply echo Equation 1.5. With heterogeneous effects however, RANK allows ranks to be

reshuffled by treatment among bunchers and on either side of the bunching region.30 For

example, suppose that a 50% increase in the wage of worker i would result in their hours

constant on the density of ln ηit. This yields global rather than local bounds on f ′.
28BLC distributions can have multiple modes however, relaxing the unimodality property of log-concave

densities (Dümbgen et al., 2017). Note that any polynomial density with real roots is a log-concave function.
29It is worth noting that under rank invariance, assuming BLC of h1 and h0 is sufficient to calculate bounds

on the treatment effect Q1(u)−Q0(u) at any quantile u ∈ [0, 1]. However, these bounds quickly widen as
one moves away from the kink in either direction. The narrowest bounds for a single rank are obtained for
a “median” buncher roughly halfway between F0(k) and F1(k) when f0(k) ≈ f1(k). However, averaging
over a larger group is more useful for meaningful ex-post evaluation of the FLSA, and reduces the sensitivity
to departures from rank invariance (see Figure A.2). The buncher LATE balances these considerations.

30Given Equation (1.4), RANK is equivalent to the rank-similarity assumption of Chernozhukov and
Hansen (2005), where the conditioning variable Vi indicates which of the three cases of Equation (1.4) hold
for the unit.
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being reduced from h0it = 50 to h1it = 45. If another worker j’s hours are instead reduced

from h0jt = 48 to h1jt = 46 under a 50% wage increase, workers i and j will switch

ranks, without violating RANK. Note also that RANK is compatible with the existence of

counterfactual bunchers p > 0.

k
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f0

kk

kh1

h0

An (h0, h1) distribution with rank invariance

k extra y ticks

Mass B

f
1

f0

kk
kh1

h0

A generic distribution satisfying RANK

Figure 1.6: The joint distribution of (h0it,h1it), comparing an example satisfying rank
invariance (left) to a case satisfying Assumption RANK (right). RANK allows the support
of the joint distribution to “fan-out” from perfect co-dependence of h0 and h1, except when
either outcome is equal to k. The large red dot in the right panel indicates a possible mass
p of counterfactual bunchers. The observable data identifies the red portions of outcome’s
marginal distribution (depicted along the bottom and right edges), as well as the total
mass B in the (shaded) south-east quadrant.

The right panel of Figure 1.6 shows an example of a distribution satisfying RANK.

When RANK is not perfectly satisfied (e.g. when the support of (h0,h1) doesn’t quite

narrow to a point at each hd = k), ∆∗k can still be interpreted as an averaged quantile

treatment effect across [F0(k),F1(k)]. Appendix Figure A.2 explains that this will then

represent a lower bound on the true buncher LATE. Appendix Figure A.3 depicts a case

in which some workers choose their hours, resulting in mass in the north-west quadrant.

Theorem 1.1 gives sharp bounds on the buncher LATE given RANK and bi-log-concavity.

It requires two further assumptions that have so far been implicit: hours can be perfectly

manipulated by firms, and firms’ preferences are convex over available choice variables.
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Appendix A.1 gives a formulation of these assumptions for more general kink settings,

and shows that bunching still has identifying power without convexity of preferences.

Assumption CHOICE. The outcomes h0it, h1it and hit reflect choices the firm would make under

counterfactual cost constraints z ≥ B(h), with B(h) given by B0it(h) = with, B1it(h) =

1.5with− 20wit, or Bkit = max{B0it(h),B1it(h)} respectively.

Assumption CONVEX. Firm choices maximize some πit(z, x), where πit is strictly quasiconcave

in (z, x) and decreasing in z. Hours h are a continuous deterministic function of x.

Note that the importance of firms being the decision-maker for a unit enters in the as-

sumption that utility π is decreasing, rather than increasing, in z. Appendix A.2 relaxes

this to allow some workers to set their hours. The second term in the definition of h1it

keeps the firm indifferent between B1 and B0 at h = 40, and is only necessary for Equa-

tion 1.4 (and the subsequent analysis) to hold when preferences π are not quasi-linear in

z.31 Since quasi-linearity with respect to costs is implied by firms maximizing profits, h1it

can be thought of as hours under the simple pay schedule 1.5with.

Theorem 1.1 (bi-log-concavity bounds on the buncher LATE). Assume CHOICE, CON-

VEX, RANK and that h0it and h1it are both bi-log-concave conditional on K∗it = 0. Then:

1. Each of F (h), F0(h) and F1(h) are continuously differentiable for h 6= k. When p > 0,

define the density fd(y) of hdit at y = k to be fd(k) = limh→k fd(h), for each d ∈ {0, 1}.

2. The buncher LATE ∆∗k ∈
[
∆Lk , ∆Uk

]
, where:

∆Lk := g(F0(k)− p, f0(k),B − p) + g (1− F1(k), f1(k),B − p)

and

∆Uk := −g(1− F0(k), f0(k), p−B)− g (F1(k)− p, f1(k), p−B)
31This reflects the well-known observation that the bunching design yields a combination of compensated

and uncompensated elasticities (Blomquist et al., 2015; Kleven, 2016).
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with g(a, b,x) = a
bx (a+ x) ln

(
1 + x

a

)
− a

b , and the bounds are sharp.

Proof. See Appendix C.4.

Let f(h) be the density of the data for h 6= k. Given p, the remaining quantities in Theorem

1.1 are identified: F0(k) = limh↑k F (h)+ p, F1(k) = F (k), f0(k) = limh↑k f(h) and f1(k) =

limh↓k f(h).32

Inspection of the expressions appearing in Theorem 1.1 reveals that the bounds become

wider the larger the net bunching probability B − p. A second-order approximation to

ln(1 + x
a ) shows that when this probability is small, ∆∗k ≈ B−p

2f0(k)
+ B−p

2f1(k)
. This delivers a

“small-bunching” approximation similar to one that has appeared in the literature (e.g.

Kleven, 2016), and corresponds to the “excess mass” quantity in Chetty et al., 2011. When

f0(k) ≈ f1(k) and p = 0, the bounds will tend to be narrower when F0(k) is closer to

(1−B)/2, i.e. the kink is close to the median of the latent hours distribution.

1.4.4 Estimating policy relevant parameters

The buncher LATE yields an internally-valid answer to a particular causal question,

among a well-defined subgroup of the population. Namely: how would hours among

bunched units be affected by a counterfactual change from linear pay at the worker’s

straight-time wage to linear pay at their overtime rate? This section discusses how I use

an estimate of this buncher LATE to both evaluate the overall ex-post effect of the FLSA on

hours, as well as forecast the impacts of hypothetical changes to the FLSA. This requires

some additional assumptions, which I continue to approach from a partial identification

perspective.

32Since the bounds depend only on the CDFs at k and data local to k, point masses elsewhere in the
distributions of h0 and h1 can be safely ignored provided that they are well-separated from the kink.
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From the buncher LATE to the ex-post hours effect of the FLSA

To consider the overall ex-post hours effect of the FLSA among covered workers, I

proceed in two steps. I first relate the buncher LATE to the average effect of introducing

the overtime kink on all units, holding fixed the distributions of counterfactual hours h0it

and h1it. Then, I allow straight-time wages to be affected by the FLSA, using the buncher

LATE again to bound the additional effect of these wage changes on hours.

To motivate this strategy, let us first define the parameter of interest to be the difference

in average weekly hours with and without the FLSA: θ := E[hit] − E∗[h∗it], where h∗it

indicates the hours unit it would work absent the FLSA, and the second expectation E∗

is over the population of observational units of workers that would exist in the no-FLSA

counterfactual–but would be eligible were it introduced.33 I assume that the hours among

workers who are hired because of the FLSA are not systematically different from those

who would have existed anyways, so that we may rewrite θ as an average over individual-

level effects in the actual population given the FLSA: θ = E[hit − h∗it].

Next, I decompose this average effect as:

θ = E[hit(wit, h−i,t)− h0it(w
∗
it, h∗−i,t)] = E[hit(wit, h−i,t)− h0it(wit, h−i,t)︸ ︷︷ ︸

“effect of the kink”

]

+E[h0it(wit, h−i,t)− h0it(w
∗
it, h−i,t)︸ ︷︷ ︸

“wage effects”

] +E[h0it(w
∗
it, h−i,t)− h0it(w

∗
it, h∗−i,t)︸ ︷︷ ︸

“interdependencies”

], (1.8)

where the notation makes explicit the dependence of h and h0 on the worker’s straight-

time wage wit, and possibly the hours h−i of other workers in their firm. In the notation of

the last section: hit = hit(wit, h−i,t), h0it = h0it(wit, h−i,t) and h1it = h1it(wit, h−i,t); since

pay is linear in hours in the no-FLSA counterfactual h∗it = h0it(w∗it, h∗−i,t).

The first term in Equation (1.8) reflects the “effect of the kink” quantity hit − h0it ex-

33Since the FLSA may itself change the population of workers who are covered by it (for instance, by en-
couraging the hiring of new covered workers), I first define θ as this difference in two population quantities.
Note that h∗it in this section differs from the “anticipated” hours quantity h∗ in Section 1.2.
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amined in Section 1.4.1, and is the primary object of interest. The second term reflects that

straight-time wages wit may differ from those that workers would face without the FLSA,

denoted by w∗it. The third term is zero when each worker’s hours are chosen to solve a

separate optimization problem, as in the benchmark model from Section 1.4.1 with lin-

early separable production. More generally however, it will capture interdependencies in

hours across units, for instance due to non-separability in production. In Appendix A.3

I provide evidence that such effects do not play a large role in θ, and I do not attempt to

account for them explicitly in estimation.

Turning first to the “effect of the kink” term, note that with straight-wages and the

hours of other units fixed, the kink only has direct effects on those units working at least

k = 40 hours:

hit − h0it =


0 if hit < k

k− h0it if hit = k

−∆it if hit > k

(1.9)

and thus E[hit − h0it] = B ·E[k− h0it|hit = k]− P (hit > k)E[∆it|hit > k]. To identify this

quantity we must extrapolate from the buncher LATE to obtain an estimate of E[∆it|hit >

k], the average effect for units who work overtime. To do this, I assume that ∆it of units

working more than 40 hours are at least as large on average as those who work 40, but that

the (reduced-form) elasticity of their response is no greater than that of the bunchers. The

logic is that assuming a constant percentage change between h0 and h1 over units would

imply responses that grow in proportion to h1, eventually becoming implausibly large.

On the other hand, it would be an underestimate to assume high-hours workers, say at 60

hours, have the same effect in levels h0 − h1 as those closer to 40.34 To put bounds on the

average effect of the kink among bunchers E[k − h0it|hit = k], I use the bi-log-concavity

assumptions from Section 1.4.3. Details are provided in Supplemental Appendix A.8.

34In the benchmark model, constant treatment effects in levels corresponds to exponential production:
f(h) = γ(1− e−h/γ) where γ > 0 and h0it − h1it = γ ln(1.5) for all units.
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The “wage effects” term in Equation (1.8) arises because the straight-time wages ob-

served in the data may reflect some adjustment to the FLSA, as we would expect on the

basis of the conceptual framework in Section 1.2. While the “effect of the kink” term is

expected to be negative, this second term will be positive if FLSA causes a reduction in

the straight-time wages set at hiring on the basis of expected hours. However, both terms

ultimately depend on the same thing: responsiveness of hours to the cost of an hour of

work. I thus use the buncher LATE to compute an approximate upper bound on wage

effects by assuming that all straight-time wages are adjusted according to Equation (1.1)

with anticipated hours approximated by hit, and an iso-elastic response. A lower bound

on the “wage effects” term is zero. Supplemental Appendix A.8 gives the explicit formu-

las and provides a visual depiction of these definitions. Section 3.5 also reports results

with and without this wage effect. The size of the wage effect E[h0it − h∗0it] is appreciable

but still small in comparison with E[hit − h0it]. This is because the average percentage

wage change according to Equation (1.1) is fairly small near 40, where most of the mass is.

Forecasting the effects of policy changes

Apart from ex-post evaluation of the overtime rule, policymakers may also be inter-

ested in predicting what would happen if the parameters of overtime regulation were

modified. Reforms that have been discussed in the U.S. include decreasing “standard

hours” k at which overtime pay begins from 40 hours to 35 hours,35 or increasing the over-

time premium from time-and-a-half to “double-time” (Brown and Hamermesh, 2019).

I begin by considering changes to standard hours k. For now, I hold the distributions

of h0 and h1 fixed across the policy change, and return to changes to the latent hours

distributions at the end of this section. Inspection of Equation 1.4 reveals that as the kink

is moved upwards, say from k = 40 hours to k′ = 44 hours, some workers who were

previously bunching at k now work h0it hours: namely those for whom h0it ∈ [k, k′]. By

35Several countries have implemented changes to standard hours; Brown and Hamermesh (2019) pro-
vides a review of the evidence.
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the same token, some individuals with values of h1it ∈ [k, k′] now bunch at k′. Some

individuals who were bunching at k may now bunch at k′—namely those workers for

whom h1it ≤ k and h0it ≥ k′. I assume that the mass of counterfactual bunchers p remains

at k = 40 after the shift.36 In the case of a reduction in overtime hours, say to k′ = 35 this

logic is reversed: some workers now work h1it ∈ [k′, k], while workers with h0it ∈ [k′, k]

now bunch at k′. Figure 1.8 depicts both of these cases.
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Figure 1.7: The left panel depicts a shift of the kink point downwards from k to k′, while
right panel depicts a shift of the kink point upwards. See text for details.

Quantitatively assessing a change to double-time pay requires us to move beyond the

two counterfactual choices h0it and h1it: hours that would be worked under straight-wage

and time-and-a-half. Let hit(ρ) be the hours that it would work if their employer faced

a linear pay schedule at rate ρ · wit (with both the straight-wage wit and hours of other

units fixed at their realized levels). In this notation, h0it = hit(1) and h0it = hit(1.5). Now

consider a new overtime policy in which a premium pay factor of ρ1 is required for hours

in excess of k, e.g. ρ1 = 2 for a “double-time” policy. Let h[k,ρ1]
it denote realized hours

36It is conceivable that some or all counterfactual bunchers locate at 40 because it is the FLSA threshold,
while still being non-responsive to the incentives introduced there by the kink. In this case, we might
imagine that they would all coordinate on k′ after the change. The effects here should thus be seen as
short-run effects before that occurs.
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under this overtime policy, and let B[k,ρ1] := P (h
[k,ρ1]
it = k) the observable bunching that

would occur.

Theorem 1.2 allows me to discuss the effects of small changes to k or ρ1. Results for the

effect of changing standard hours k make use of an explicit assumption that firm prefer-

ences are quasi-linear with respect to costs:

Assumption SEPARABLE. πit(z, x) is additively separable and linear in z.

I continue to assume that counterfactual bunchers K∗it = 1 stay at k∗ := 40, regardless of ρ

and k. Let p(k) = p · 1(k = k∗) denote the possible mass of counterfactual bunchers as a

function of k.

Theorem 1.2 (marginal comparative statics in the bunching design). Under Assumptions

CHOICE, CONVEX, SEPARABLE and SMOOTH:

1. ∂k
{
B[k,ρ1] − p(k)

}
= f1(k)− f0(k)

2. ∂kE[h
[k,ρ1]
it ] = B[k,ρ1] − p(k)

3. ∂ρ1E[h
[k,ρ1]
it ] = −

∫∞
k fρ1(h)E

[
dhit(ρ1)
dρ

∣∣∣ hit(ρ1) = h
]
dh

Proof. See Appendix A.1.

Assumption SMOOTH is a set of regularity conditions which imply that hit(ρ) admits a

density fρ(h) for all ρ – see Appendix A.1 for details. Theorem 1.2 also makes use of a

stronger version of CHOICE that applies to all ρ, described therein.

Beginning from the actual FLSA policy of k = 40, ρ1 = 1.5, the RHS of the first two

objects above are point identified from the data, provided that p is known. Item 1 says that

if the location of the kink is changed marginally, the bunching probability will change ac-

cording to the difference between the densities of h1i and h0i at k∗, which are in turn equal

to the left and right limits of the observed density f(h) at the kink. This result is intuitive:

given continuity of each potential outcome’s density, a small increase in k will result in a
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mass proportional to f1(k) being “swept in” to the mass point at the kink, while a mass

proportional to f0(k) is left behind. Item 2 aggregates this change in bunching with the

changes to non-bunchers as k is increased. The f0(k) and f1(k) terms from the change

in bunching end up being canceled, and the first- order effect of changing k is simply to

transport the mass of inframarginal bunchers to the new value of k.37 Making use of Theo-

rem 1.2 for a discrete policy change like reducing standard hours to 35 requires integrating

across the actual range of hypothesized policy variation. We lose point identification, but

can use bi-log-concavity of the marginal distributions of h0 and h1 to retain bounds, as

depicted by Figure 1.8.

Now consider the effect of moving from time-and-a-half to double time on average

hours worked, in light of item 3. This scenario, similar to ex-post evaluation of the effect

of the kink, requires making assumptions about the response of individuals who may

locate far from the kink, and for whom the buncher LATE is less directly informative.

Note that integrating item 3 over ρ we can write the average effect on hours from a move

to double-time in terms of local average elasticities of response:

E[h
[k,ρ1]
it − h[k,ρ̄1]

it ] =
∫ ρ̄1

ρ1
d ln ρ

∫ ∞
k

fρ(h)h ·E
[
d ln hit(ρ)
d ln ρ

∣∣∣∣ hit(ρ) = h

]
dh

Recall from the iso-elastic model that when the elasticity d lnhit(ρ)
d ln ρ = dhit(ρ)

dρ
ρ

hit(ρ)
is constant

across ρ and across units, it is partially identified. Just as an iso-elastic response is likely

to overstate responsiveness at large hit(ρ), I argue it is likely to understate responsiveness

to larger values of ρ, thus yielding a lower bound on the effect of moving to double-

time. For an upper bound on the magnitude of the effect, I assume rather that in levels

E[hit(ρ1) − hit(ρ̄1)|h1it > k] is at least as large as E[h0it − h1it|h1it > k], and that the

increase in bunching from a change of ρ1 to ρ̄1 is as large as the increase from ρ0 to ρ1. I

provide additional details in Supplemental Appendix A.8.

37Intuitively, in the limit of a small change in k bunchers who would choose exactly k under one of the
two cost functions B0 or B1 cease to “bunch” as k moves to some k′ > k, but they also do not change their
realized value of h since the counterfactual hours choice that characterizes their new choice is equal to k.
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In these calculations, I have held fixed the distributions of h0 and h1, which can be seen

as describing the short-run before adjustment to straight-time wages or other factors that

influence these latent hours distributions. In the empirical implementation I account for

possible changes to straight wages when considering the average effects of policy changes

on hours, as we saw with the ex-post effect of the FLSA. The effect of such corrections for

the impact of changing k on the bunching probability is discussed in Section 1.6.

1.5 Implementation and Results

This section implements the empirical strategy described in the last section with the

sample of administrative payroll data described in Section 1.3.

1.5.1 Identifying counterfactual bunching at 40 hours

Section 1.2 has argued that with wages fixed, the overtime kink should lead to bunch-

ing at 40 hours a week, while Section 1.4 has shown that this bunching is useful in identi-

fying treatment effects and the impact of policy changes. However, there are other reasons

to expect bunching at 40 hours. For one, 40 may be considered a status-quo choice by firms

and/or workers, and it may be chosen even when it is not cost minimizing for the firm. It

can also be important for firms to synchronize hours across workers, and thus have them

coordinate on some number h∗ of hours. Finally, for any salaried workers who were not

successfully removed from the sample, firms may record the number of hours in a pay

period as 40 even as actual hours worked vary.

In terms of the empirical strategy from Section A.1.2, all of these alternative explana-

tions manifest in the same way: a point mass p at 40 in the distribution of hours that would

occur even if workers were paid their straight-time wages for all hours. In the notation

introduced in Section 1.4.3, these “counterfactual bunchers” are demarcated by K∗it = 1;

I refer to the K∗it = 0 individuals who also locate at the kink as “active bunchers”. The

mass of active bunchers is B− p. Theorem 1.1 shows that we can still partially identify the
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buncher LATE in the presence of counterfactual bunchers, so long as we know how many

of the total bunchers are active and how many are counterfactual.

I leverage two strategies to provide plausible estimates for the mass of counterfactual

bunchers p. My preferred estimate uses of the fact that when an employee is paid for hours

that are not actually worked—including sick time, paid time off (PTO) and holidays—

these hours do not contribute to the 40 hour overtime threshold of the FLSA. For example,

if a worker applies PTO to miss a six hour shift, then they are not required to be paid

overtime premium until they reach 46 total paid hours in that week, corresponding to 40

hours worked. These non-work hours thus shift the position of the kink in paid-hours.

The identifying assumption that I rely on is that individuals who still work 40 hours

a week, even when they are paid for a positive number of non-work hours, are all active

bunchers, and would not locate at forty hours in the counterfactuals h0it and h1it. This

assumption reflects the idea that alternative reasons for bunching at 40 hours besides the

overtime kink operate at the level of hours paid, rather than hours worked. Let nit in-

dicate non-worked hours for worker i in week t. Specifically, I make the following two

assumptions:

1. P (hit = 40|nit > 0) = P (hit = 40 and K∗it = 0|nit > 0)

2. P (hit = 40 and K∗it = 0|nit > 0) = P (hit = 40 and K∗it = 0|nit = 0)

The first item states that all of the individuals who locate at the kink, despite having a

positive number of non-work hours are indeed active bunchers. I thus know the mass of

active bunchers in the nit > 0 conditional distribution of hours. The second item says that

the nit > 0 distribution is representative of the unconditional distribution, in the sense that

the conditional mass of active bunchers does not vary based on whether non-work hours

are positive or zero. Together, these two assumptions imply that P (K∗it = 0 and hit =

40) = P (hit = 40|ηit > 0) and hence that p = P (K∗it = 1 and hit = 40) = B − P (hit =

40|ηit > 0).
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I focus on paid time off as nit because it is generally planned in advance, and has

somewhat idiosyncratic timing. By contrast sick pay is often unanticipated, so the firm

may not be able to re-optimize total hours within a week in which a worker calls in sick.

Holiday pay is known in advance, holidays are unlikely to be representative in terms of

product demand and other factors important for hours determination, threatening the

second assumption.

Figure 1.8 shows the conditional distribution of hours paid for work when the pay-

check contains a positive number of PTO hours (nit > 0). The figure reveals that when

moving from the unconditional (left panel) to positive-PTO conditional (right panel) dis-

tribution, most of the point mass at 40 hours moves away, largely concentrating now

at 32 hours (corresponding to the PTO covering a single eight hour shift). Of the to-

tal bunching of B ≈ 11.6% in the unconditional distribution, I estimate that only about

P (hit = 40|nit > 0) ≈ 2.7% are active bunchers, leaving p ≈ 8.9%. Roughly three quarters

of the individuals at 40 hours are counterfactual rather than active bunchers.

Figure 1.8: The right panel shows a histogram of hours worked when paid time off hours
are positive. The left panel shows the unconditional distribution. Bin width is 1/8 hour.

As a secondary strategy, I estimate an upper bound for p by using the assumption that

the potential outcomes of counterfactual bunchers are relatively immobile over time. The

idea is that counterfactual bunchers have behavioral or administrative reasons for being at

40 hours, rather than 40 hours maximizing short run profits. I assume that these external
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considerations are fairly static over time, preventing latent hours h0it from changing much

between adjacent pay periods. In particular, assume that in a given period t nearly all of

the counterfactual bunchers are also non-movers from t− 1, i.e.

p = P (h0it = 40) ≈ P (h0it = h0it−1 = 40) ≤ P (hit = hi,t−1 = 40)

where the inequality follows from h0it = 40 =⇒ hit = 40 by Lemma A.1. The probability

P (hit = hi,t−1 = 40) can be directly estimated from the data, yielding p ≤ 6%.

1.5.2 Estimation and inference

Estimating bounds on the buncher LATE requires estimates of the CDF and density

of hours worked, and in particular right and left limits of these objects at the kink. I use

the local polynomial density estimator of Cattaneo, Jansson and Ma (2020) (CJM), which

is well suited to estimating a CDF and its derivatives at boundary points. I work with the

pooled distribution of paychecks over the full study period. The CJM estimator provides

a smoothed estimate of the left limit of the CDF and density at k as:

(F̂−(k), f̂−(k)) = argmin
(b1,b2)

∑
i:hit<k

(Fn(hit)− b1 − b2hit)2 ·K
(
hit − k
h

)
(1.10)

where Fn(y) = 1
n ∑it 1(hit ≤ y) is the empirical CDF function, K(·) is a kernel function,

and h is a bandwidth. I use a triangular kernel, and choose h as follows: first, I use CJM’s

mean-squared error minimizing bandwidth selector to produce a bandwidth choice using

the data on either side of k = 40 (for the left and right limits, respectively). I then average

the two bandwidths, and use this as the bandwidth in the final calculation of both the right

and left limits, to mitigate any dependence of the estimates on a differential bandwidth

choice for each side. In the full sample, the bandwidth chosen by this procedure is about

1.7 hours, and is somewhat larger for subsamples that condition on a single industry.

To construct confidence intervals for parameters that are partially identified (e.g. the
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buncher LATE), I use the adaptive critical values proposed by Imbens and Manski (2004)

and Stoye (2009) that are valid for the underlying parameter. In all cases, estimators of

bounds or point identified quantities are functions of inputs that are
√
n-asymptotically

normal.38 To easily incorporate sampling uncertainty in both (F̂−(k), f̂−(k), F̂+(k), f̂+(k))

and in p̂, I estimate the variances by a cluster non-parametric bootstrap that resamples at

the firm level. This allows arbitrary autocorrelation in hours across pay periods for a

single worker, and between workers within a firm. All standard errors use 500 bootstrap

replications.

1.5.3 Results of the bunching estimator

Table 1.2 reports treatment effect estimates h0it − h1it, in a sample that pools across all

industries, when p is either assumed zero or estimated by one of the two methods de-

scribed in Section 1.5.1. The first row yields an estimate of the net bunching probability

B− p, while the second row reports the bounds on the buncher LATEE[h0it−h1it|hit = k]

based on bi-log-concavity. Within a fixed estimate of p, the bounds on the buncher LATE

are quite informative: the upper and lower bounds are always close to each other and pre-

cisely estimated. Appendix A.5 reports estimates based on alternative shape constraints

and assumptions about effect heterogeneity, which deliver similar results.39

The PTO-based estimate of p provides the most conservative treatment effect estimates,

attributing roughly one quarter of the observed bunching to active rather than counter-

factual bunchers. Nevertheless, this estimate still yields a highly statistically significant

buncher LATE of about 2/3 of an hour, or 40 minutes. This estimate says that individuals

who in fact work 40 hours given the overtime kink in a given pay period would work

38For the effect of changing the kink point, I censor CDF estimates at zero and one. In principle, this could
undermine asymptotic normality, but these constraints are not typically binding so I ignore this issue.

39In particular, I present a point estimate based on Appendix Proposition A.1, which assumes that treat-
ment effects are constant and that the density is linear in the missing region, as well as results under a
weaker assumption that the density is monotonic in the missing region. Monotonicity is not likely to hold
in the overtime context, since the kink appears to be located at the mode of both the h0 and h1 distributions.
Nevertheless, the bounds based on monotonicity do not deliver vastly different results.
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about 40 minutes more that week in a world in which they were paid their straight-time

wage for all hours, compared with a world in which they were paid 1.5 times this wage

for all hours. On the other side of the spectrum, if all of the observed bunching mass is

attributed to active bunchers, corresponding to p = 0, then the estimated buncher LATE

suggests a difference of at least 2.6 hours. The next section expresses these estimates as

elasticities, by making the bi-log-concavity assumption on the distribution of log hours

rather than hours.40 In Appendix Table A.5 I report estimates of the buncher LATE for

each of the largest industries in the sample, and also present estimates as a function of the

assumed mass p of counterfactual bunchers at 40 hours.

p=0 p from non-changers p from PTO

Net bunching: 0.116 0.057 0.027

[0.112, 0.120] [0.055, 0.058] [0.024, 0.030]

Buncher LATE [2.614, 3.054] [1.324, 1.435] [0.640, 0.666]

[2.493, 3.205] [1.264, 1.501] [0.574, 0.736]

———————–

Num observations 630217 630217 630217

Num clusters 566 566 566

Table 1.2: Estimates of net bunching B− p and the buncher LATE: ∆∗k = E[h0it− h1it|hit =
k,K∗it = 0], across various strategies to estimate counterfactual bunching p = P (K∗it =
1). Unit of analysis is a paycheck, and 95% bootstrap confidence intervals (in gray) are
clustered by firm.

40Appendix Table A.11 also shows estimates based on constant treatment effects in logs and monotonicity
or linear interpolation.
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1.5.4 Estimates of policy effects

I now use estimates of the buncher LATE to estimate the overall causal effect of the

FLSA overtime rule, as well as simulate changes based on modifying standard hours or

the premium pay factor. Table 1.3 reports an estimate of the buncher LATE expressed as a

reduced form elasticity,41 which I use as an input in these calculations. The next two rows

report bounds on E[hit − h∗it] and E[hit − h∗it|h1it ≥ 40,K∗it = 0], respectively. The first of

these is the overall ex-post effect of the FLSA on hours, averaged over both workers and

pay periods, while the second conditions on paychecks for which the FLSA premium has

a direct effect (those reporting at least 40 hours aside from counterfactual bunchers). The

final row reports an estimate of the effect of moving to double-time pay, also including a

correction term to account for possible wage changes. I provide details of the calculations

in Supplemental Appendix A.8.

Taking the PTO-based estimate of p as a lower bound on responsiveness, the esti-

mates suggest that FLSA eligible workers work at least 1/5 of an hour less in any given

week than they would absent overtime regulation: about one third the magnitude of the

buncher LATE in levels. When I focus on those eligible workers that are directly affected

in a given week, the figure is about twice as high: roughly 30 minutes. I estimate that a

move to double-time pay would introduce a further reduction that may be comparable to

the existing overall ex-post effect, but with substantially wider bounds. These estimates

include the effects of possible adjustments to straight-time wages, which tend to attenuate

the effects of the policy change. Appendix Table A.12 replicates Table 1.3 neglecting these

wage adjustments, which might be viewed as a short-run response to the FLSA before

wages have time to adjust.

Figure 1.9 breaks down estimates of the ex-post effect of the kink by major industry,

revealing considerable heterogeneity between industries. The estimates suggest that the

41 This is ∆̂∗k/(40 ln(1.5)) where ∆̂k is the estimate of the buncher LATE presented in Table 1.2, which
is numerically equivalent to the elasticity implied by the buncher LATE in logs E[ln h0it − ln h1it|hit =
k,K∗it = 0]/(ln 1.5) estimated under assumption that ln h0 and ln h1 are BLC.
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p=0 p from non-changers p from PTO

Buncher LATE as elasticity [-0.188,-0.161] [-0.088,-0.082] [-0.041,-0.039]
[-0.198,-0.154] [-0.093,-0.078] [-0.045,-0.035]

———————–
Average effect of FLSA on hours [-1.466, -1.026] [-0.727, -0.486] [-0.347, -0.227]

[-1.535, -0.977] [-0.762, -0.463] [-0.384, -0.203]
———————–
Avg. effect among directly affected [-2.620, -1.833] [-1.453, -0.972] [-0.738, -0.483]

[-2.733, -1.750] [-1.518, -0.929] [-0.812, -0.434]
———————–
Double-time, average effect on hours [-2.604, -0.569] [-1.239, -0.314] [-0.580, -0.159]

[-2.707, -0.547] [-1.285, -0.300] [-0.638, -0.143]

Table 1.3: Estimates of the buncher LATE expressed as an elasticity, the average ex-post
effect of the FLSAE[hit−h∗it],41 the effect among directly affected unitsE[hit−h∗it|hit ≥ k]
and predicted effects of a change to double-time. 95% bootstrap confidence intervals in
gray, clustered by firm.

industries Real Estate & Rental and Leasing as well as Wholesale Trade see the highest

average reduction in hours. The least-affected industries are Health Care and Social As-

sistance and Professional Scientific and Technical, with the average worker working just

about 6 minutes less per week. Appendix Figure A.8 compares the hours distribution

for Real Estate & Rental and Leasing with the distribution for of Professional Scientific

and Technical, showing that the difference in their effects can be explained by B − p being

larger for Real Estate & Rental and Leasing, while the density of hours close to the kink

is smaller. Appendix Table A.6 reports numerical values as well as estimates based on

assuming all of the bunching is due to the FLSA. Appendix A.5 reports estimates broken

down by gender, finding that the FLSA has considerably higher effects on the hours of

men.

Figure 1.10 looks at the effect of changing the threshold for overtime hours k from

40 to alternative values k′. The left panel reports estimates of the identified bounds on

B[k′,ρ1] as well as point-wise 95% confidence intervals (gray) across values of k′ between

35 and 45, for each of the three approaches to estimating p. In all cases, the upper bound
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Figure 1.9: 95% confidence intervals for the effect of the FLSA overtime rule on hours by
industry, using PTO-based estimates of p for each. Dots are point estimates of the upper
and lower bounds. The number to the right of each range is the point estimate of the net
bunching B − p for that industry.

on bunching approaches zero as k′ is moved farther from 40. This is sensible if the h0

and h1 distributions are roughly unimodal with modes around 40: straddling of potential

outcomes becomes less and less likely as one moves away from where most of the mass

is. Appendix A.11 shows these bounds as k′ ranges all the way from 0 to 80, for the p = 0

case. Since these estimates do not account for adjustment to straight-time wages, they

should be viewed as short-run responses.

When p is estimated using PTO or non-changers between periods, we see that the

upper bound of the identified set for B[k′,ρ1] in fact reaches zero quite quickly. Moving

standard errors to k′ = 35 is predicted to completely eliminate bunching due to the over-
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time kink in the short run, before any adjustment to latent hours (e.g. through changes to

straight-time wages). The right panel of Figure 1.10 shows estimates for the average effect

on hours of changing k, inclusive of wage effects (see Appendix C.4 for details). Increases

to k cause an increase in hours, as overtime policy becomes less stringent, and reductions

to k reduce hours. The actual size of these effects ais not well-identified for changes larger

than a couple of hours, however the range of statistically significant effects depends on p.

Even for the preferred estimate of p from PTO, increasing the overtime threshold as high

as 43 hours is estimated to increase average working hours by an amount distinguishable

from zero.

1.6 Implications of the estimates for overtime policy

The estimates from the preceding section suggest that FLSA regulation indeed has real

effects on hours worked, in line with labor demand theory when wages do not fully ad-

just to absorb the added cost of overtime hours. When averaged over affected workers

and across pay periods, I find that hourly workers in my sample work at least 30 minutes

less per week than they would without the overtime rule. A less conservative estimate

of the bunching caused by the FLSA suggests the effect is between 1 and 1.5 hours. My

preferred estimate of about half an hour is broadly comparable to the few causal estimates

that exist in the literature, including Hamermesh and Trejo (2000) who assess the effects of

expanding California’s daily overtime rule to cover men in 1980, and Brown and Hamer-

mesh (2019) who use the erosion of the real value of FLSA exemption thresholds over the

last several decades.42 By contrast, my estimates carry the strengths of an approach to

identification that does not require a natural experiment, and use much more recent data.

From the perspective of a typical worker, a decrease in working hours of 30 minutes

42Hamermesh and Trejo (2000) and Brown and Hamermesh (2019) report estimates of −0.5 and −0.18 for
the elasticity of overtime hours with respect to the overtime rate. My preferred estimate of −0.04 for the
buncher LATE as an elasticity is the elasticity of total hours, including the first 40. An elasticity of overtime
hours can be computed by multiplying this by the ratio of mean hours to mean overtime hours in the
sample, resulting in an estimate of roughly −0.45.
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Bunching at new kink Average effect on hours

Figure 1.10: Bounds for the bunching that would exist at standard hours k if it were
changed from 40 (left panel), as well as for the impact on average hours (right panel).
Bounds of the effect on hours are clipped to the interval [−0.5, 0.5] for visibility. Pointwise
bootstrapped 95% confidence intervals, cluster bootstrapped by firm, are shaded gray.
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per week may seem modest, but the overall effect of the policy could be quite large. The

data suggest that at least about 3% and as many as about 11% of workers’ hours are ad-

justed to the threshold introduced by the policy, indicating that the policy may have sig-

nificant distortionary impacts. But the policy may also have quite substantial effects on

unemployment. While a full assessment of the employment effects of the FLSA overtime

rule is beyond the scope of this paper, the hours effects estimated here can be used to

construct some back-of-the-envelope calculations.

If the average FLSA eligible worker works approximately 1/3 of an hour less per week

because of the rule, hours per worker are reduced by just under 1% on average. If we

ignore scale effects of the overtime rule on the total number of labor hours in FLSA-

eligible jobs, this would suggest that employment among such jobs is 1% higher than

it would be without the overtime premium. This serves as an upper bound, since over-

all hours worked may decrease due to overtime regulation. Hamermesh (1996) proposes

a simple adjustment, based on assuming a value for the rate at which firms substitute

labor for capital based on their relative prices, and the possibility of offsetting labor sup-

ply effects. In particular, the adjustment assumes the percentage change in employment

is ∆ lnE|EH − η · ∆ lnLC · η
α−η where η is a constant-output demand elasticity for labor

(rather than capital), α is a labor supply elasticity, and ∆ lnLC is the percentage change in

total labor costs from the introduction of the FLSA. Here ∆ lnE|EH is the quantity implied

by my estimates: the percentage change in employment that would occur were the total

number of worker-hours EH unchanged.

Using plausible values from Hamermesh (1996) for the remaining parameters yields

0.17 percentage points for the substitution term η ·∆ lnLC · η
α−η , suggesting that the effect

of the FLSA is attenuated from roughly 0.87 percentage points to about a 0.70 percentage

point net increase in employment. This would represent about 700,000 jobs, assuming 100

million FLSA eligible workers. A reasonable range of parameter values rules out negative
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overall employment effects from the FLSA.43 I can also put an overall upper bound on

the size of employment effects, by attributing all of the bunching at 40 to the FLSA and

assuming the total number of worker-hours is not reduced at all. By this estimate the

FLSA increases employment by at most 3 million jobs, or 3% among covered workers.

This paper has also considered the likely effects of adjusting the two parameters that

characterize the FLSA overtime rule: standard hours and the overtime premium factor.

The effect of moving to double-pay for overtime is not as precisely identified as the ex-

post effect of the FLSA, but estimates suggest an average additional effect on hours that

is at least as large as the effect of the current FLSA regulation. I also find that moving

time-and-a-half overtime pay to begin at 35 rather than 40 hours would nearly eliminate

bunching due to the FLSA, given workers’ current wages.44 While my short run predic-

tion under this policy counterfactual assumes away changes to straight-time wages, the

reduction in bunching is likely to remain after allowing such adjustment over time. With

35 already to the left of the mode of the latent hours distributions h0i and h1i, it would

become even further from the mode as these distributions move rightward due to lower

wages. Moving the overtime premium away from the mode of the distribution of these

latent hours choices may thus lead to efficiency benefits that are persistent over time.

1.7 Conclusion

This paper has analyzed the effects of U.S. overtime policy on hours worked by adapt-

ing the bunching-design method to address itself to questions of causal inference. While

structural models of choice can help interpret estimates that use bunching at a kink, I

have shown that the basic identifying power of the bunching design is robust to a variety

of underlying choice models and functional form assumptions. Across such choices, the

43These “best-guess” values are η = −0.3, α = 0.1, and ∆ lnLC calibrated assuming 80% of labor costs
come from wages with overtime representing 2% of total hours. Generating a negative overall employment
response by assuming higher substitution to capital requires η = −1.25, well outside of empirical estimates.

44Estimates of the average hours effect for changes to standard hours are consistent with estimates by
Costa (2000), that hours fell by 0.2-0.4 on average during the phased introduction of the FLSA in which
standard hours declined by 2 hours in 1939 and 1940.
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identified parameter of interest is an appropriately-defined average treatment effect be-

tween two counterfactual choices, making the method useful for reduced-form program

evaluation. This also opens the door to applying the bunching design in a broader variety

of contexts, beyond those in which the researcher is prepared to posit a parametric model

of decision-makers’ preferences.

By leveraging these insights with a new payroll dataset recording exact weekly hours

paid at the individual level, I estimate that U.S. workers subject to the FLSA indeed work

shorter hours due to the overtime rule, which may lead to substantial employment ef-

fects. Given the large amount of within-worker variation in hours observed in the data,

the modest size of the FLSA effects estimated in this paper suggest that firms do face

significant incentives to maintain longer working hours, countervailing against the ones

introduced by policies intended to reduce them.
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Chapter 2: A Vector Monotonicity Assumption for Multiple Instruments

2.1 Introduction

The local average treatment effects (LATE) framework introduced by Imbens and An-

grist (1994) allows for causal inference with arbitrary heterogeneity in treatment effects,

but in doing so imposes an important form of homogeneity on selection behavior. This ho-

mogeneity comes through the LATE monotonicity assumption, which is often quite natural

to make when the researcher has a single instrumental variable at their disposal. However

with multiple instruments, this traditional monotonicity assumption can become hard to

justify—a point that has recently been emphasized by Mogstad et al. (2020b).

A natural question is whether causal effects are still identified when monotonicity

holds on an instrument-by-instrument basis, what I call vector monotonicity. Vector mono-

tonicity (VM) captures the notion that each instrument has an impact on treatment uptake

in a direction that is common across units (and typically known ex-ante by the researcher).

For example, two instruments for college enrollment might be: i) proximity to a college;

and ii) affordability of nearby colleges. It is reasonable to assume that each instrument

induces some individuals towards going to college, while discouraging none. This con-

trasts with traditional LATE monotonicity, which as I describe below requires that either

proximity or affordability effectively dominates in selection behavior for all units.

In this paper I provide a simple approach to estimating causal effects under vector

monotonicity. I first show that in a setting with a binary treatment and any number of

binary instruments satisfying VM, average treatment effects can be point identified for

subgroups of the population that satisfy a certain condition. The condition is met by, for

example, the group of all units that move into treatment when any fixed subset of the
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instruments are switched “on”. As special cases, this includes for example those units

that respond to a movement of a single particular instrument, or those units that have any

variation whatsoever in counterfactual treatment status given the available instruments.

I show how general discrete instruments can be accommodated by re-expressing them

as a larger number of binary instruments, while preserving vector monotonicity. I then

propose a simple two-step estimator for the identified causal parameters. The estimator is

scalable, involving the same computational burden as 2SLS despite the rapid proliferation

of possible selection patterns compatible with VM as the number of instruments increases.

To appreciate the sense in which traditional LATE monotonicity is restrictive with mul-

tiple instruments, consider the two instruments for college mentioned above, with each

coded as a binary variable (“far”/“close” and “cheap”/“expensive”). LATE monotonicity

says that a counterfactual change to the proximity and/or tuition instruments can either

move some students into college attendance, or some students out, but not both. In par-

ticular, this requires that all units who would go to college when it is far but cheap would

also go to college if it was close and expensive, or that the reverse is true. We would gen-

erally expect this implication to fail if individuals are heterogeneous in how much each of

the instruments “matters” to them: for example, if some students are primarily sensitive

to distance and others are primarily sensitive to tuition. Vector monotonicity instead says

something quite natural in this context: proximity to a college weakly encourages college

attendance, regardless of price, and lower tuition weakly encourages college attendance,

regardless of distance.

In a set of papers developed concurrently with this one, Mogstad, Torgovitsky and

Walters (2019; 2020a; 2020b) (henceforth MTW) underline the above difficulty for LATE

monotonicity with multiple instruments, and introduce a weaker assumption of partial

monotonicity (PM). PM is similar to VM but allows the direction of “compliance” for each

instrument to depend on the values of the other instruments: for instance, college prox-

imity could encourage attendance when nearby colleges are cheap but discourage atten-
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dance when they are expensive. Such reversals are empirically testable, and VM is thus

not stronger in practice than PM but may be falsified in a given empirical setting.1 Given

a desired target parameter, Mogstad et al. (2020a) develop a marginal treatment effect

approach to identification under PM, in which partial identification is the generic case

(though parametric assumptions or continuous instruments may aid in obtaining point

identification). The present paper takes the reverse approach: in settings where VM

holds, what causal parameters are point identified without requiring any additional as-

sumptions? I establish that such a class of causal parameters indeed exists, and contains

easily interpretable and policy-relevant treatment effect parameters. Further, I argue that

VM typically holds given PM, making these identification results empirically relevant.

The estimator proposed in this paper can be seen as an alternative to two-stage-least-

squares (2SLS), which has been the typical method to make use of multiple instruments in

applied work. 2SLS is known to identify a convex combination of local average treatment

effects under the standard LATE assumptions provided that the first stage recovers the

propensity score function, but this implication does not hold under VM or PM. By con-

trast, my estimator is guaranteed to be consistent for the particular chosen parameter of

interest. MTW derive additional testable conditions which are sufficient for the 2SLS esti-

mand to deliver a convex combination of treatment effects under PM, though the number

of conditions to be verified generally grows combinatorially with the number of instru-

ments. In the Supplemental Material,2 I consider two special cases in which linear 2SLS

will uncover averages of causal effects under VM with binary instruments. A sufficient

condition for one of the special cases – that the instruments are independent – is straight-

forward to test empirically. The other special case assumes that each unit is responsive

to the value of one instrument only, and is quite restrictive. My main identification result

eliminates the need to rely on such additional assumptions.

1Nevertheless, VM has additional identifying power: when it holds a larger class of parameters are point
identified compared with when PM alone holds. See Proposition 2.9.

2Supplemental Material is available here: http://www.columbia.edu/~ltg2111/resources/vm_
externalappendix.pdf.
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A growing literature has considered extensions to the basic LATE model of Imbens and

Angrist (1994), but has typically not emphasized the distinction between separate instru-

ments, when more than one is available. Natural analogs of LATE monotonicity have been

studied for treatments that are discrete (Angrist and Imbens, 1995), continuous (Angrist et

al., 2000), or unordered (Heckman and Pinto, 2018). Other papers have considered identi-

fication under various violations of LATE monotonicity. In the case of a binary treatment,

Gautier and Hoderlein (2011), Lewbel and Yang (2016) and Gautier (2020) consider vari-

ous explicit selection models, while Chaisemartin (2017) shows that a weaker notion than

monotonicity can be sufficient to give a causal interpretation to LATE estimands.3 Lee

and Salanié (2018) relax monotonicity in a setting with multivalued treatment and contin-

uous instruments, generalizing results from the local instrumental variables approach of

Heckman and Vytlacil (2005). With discrete instruments, Lee and Salanié (2020) show that

a notion of particular instrument values “targeting” particular values of a multivalued

treatment carries additional identifying power.

In Section 2.2 I discuss the basic setup and definitions. I compare vector monotonicity

to the traditional monotonicity assumption and MTW’s proposal of partial monotonic-

ity, and discuss examples in the context of a simple choice model. In Section 2.3, I show

that like conventional monotonicity, VM partitions the population into well-defined “re-

sponse groups” that can coexist in arbitrary proportions. I characterize these groups in a

setting with any number of binary instruments, nesting a description from MTW of the

two-instrument case. In Section 2.4 I use this taxonomy to demonstrate identification of a

family of causal parameters, and Section 2.5 proposes corresponding estimators. Section

2.6 reports results from an application to the labor market returns to schooling. In appen-

dices, I consider a generalization of the identification result that relaxes an assumption

of rectangular support among the instruments, consider identification with covariates,

3LATE monotonicity is also generally not assumed by nonseparable triangular models with endogeneity
(e.g. Imbens and Newey 2009, Torgovitsky 2015, D’Haultfœuille and Février 2015, Gunsilius 2020, Feng
2020), which typically impose some version of monotonicity in unobserved heterogeneity.
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and additional results regarding the proposed estimator, including a data-driven regular-

ization procedure to improve its performance in small samples. In online Supplemental

Material, I also consider some special cases in which linear 2SLS identifies a convex com-

bination of treatment effects under VM, and provide additional examples pertaining to the

main text, including a second empirical application to the labor supply effects of family

size.

2.2 Setup

Here I fix notation and formalize the basic setup in which a researcher has multiple

instrumental variables for a single binary treatment. Within this framework, I contrast the

three alternative notions of monotonicity mentioned in the introduction.

Consider a setting with a binary treatment variable D, scalar outcome variable Y , and

vector Z = (Z1 . . . ZJ ) of J instrumental variables that can take values in set Z ⊆ (Z1 ×

Z2 × · · · × ZJ ), where Zj is the set of values that instrument Zj can take.4

Definition 2.1 (potential outcomes and treatments). Let Di(z) denote the treatment status

of unit i when their vector of instrumental variables takes value z ∈ Z , and Yi(d, z) the realization

of the outcome variable that would occur with treatment status d ∈ {0, 1} and instrument value

z ∈ Z .

The following assumption states that the available instrumental variables are valid:

Assumption 1 (exclusion and independence). a) Yi(d, z) = Yi(d) for all z′ ∈ Z, d ∈ {0, 1};

and b)

(Yi(1),Yi(0), {Di(z)}z∈Z) ⊥ (Z1i, . . . ,ZJi)

The first part of Assumption 1 states that the instruments are “excludable” from the out-

come function in the sense that potential outcomes do not depend on them once treatment

4Z may be a strict subset of (Z1 ×Z2 × · · · × ZJ ) when certain combinations of instrument values are
ruled out on conceptual grounds, e.g. Z1 indicates a mothers’ first two births being girls and Z2 indicates
them both being boys.
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status is fixed. The second part of Assumption 1 states that the instruments are indepen-

dent of potential outcomes and potential treatments. In practice, it is common to maintain

a version of this independence assumption that holds only conditional on a set of ob-

served covariates. For ease of exposition, I implicitly condition on any such covariates

throughout, then consider incorporating them explicitly in Appendix B.2 and in the em-

pirical application

2.2.1 Notions of monotonicity

It is well-known that when treatment effects are heterogeneous, Assumption 1 alone

is not sufficient for instrument variation to identify treatment effects. The seminal LATE

model of Imbens and Angrist (1994) introduces the additional assumption of monotonic-

ity:

Assumption IAM (traditional LATE monotonicity). For all z, z′ ∈ Z : Di(z) ≥ Di(z′) for

all i or Di(z) ≤ Di(z′) for all i.

I follow the terminology of MTW and henceforth refer to this as Assumption IAM, or

“Imbens and Angrist monotonicity”. As pointed out by Heckman et al. (2006), IAM can

be thought of as a type of uniformity assumption: it states that flows of selection into

treatment between z in z′ move only in one direction, whichever direction that is.5

The proposed assumption of vector monotonicity captures monotonicity as the notion

that “increasing” the value of any instrument weakly encourages (or discourages) all units

to take treatment, regardless of the values of the other instruments:

Assumption 2 (vector monotonicity). There exists an ordering≥j on Zj for each j ∈ {1 . . . J}

such that for all z, z′ ∈ Z , if z ≥ z′ component-wise according to the {≥j}, then Di(z) ≥ Di(z′)

for all i.

5Note that the two instances of “for all i” appearing in IAM can be replaced by “almost surely”, without
affecting identification results. The definitions given for VM and PM can also be slightly weakened in this
way.
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Vector monotonicity is referred to as “actual monotonicity” by Mogstad et al. (2020b),

when each ≥j is the standard ordering on real numbers. Mountjoy (2019) imposes a ver-

sion of VM in a case with a multivalued treatment and continuous instruments.

The partial monotonicity assumption introduced by MTW is weaker than both IAM

and VM. Let (zj , z−j) denote a vector composed of zj ∈ Zj and z−j ∈ Z−j , where Z−j
indicates the set of values that the vector of all instruments but Zj can take.

Assumption PM (partial monotonicity). For each j ∈ {1 . . . J}, zj , z′j ∈ Zj , and z−j ∈

Z−j such that (zj , z−j) ∈ Z and (z′j , z−j) ∈ Z , either Di(zj , z−j) ≥ Di(z′j , z−j) for all i or

Di(zj , z−j) ≤ Di(z′j , z−j) for all i.

Note that under partial monotonicity, there will be a weak ordering on the points inZj , for

any fixed choice of j and z−j . The crucial restriction made by vector monotonicity beyond

partial monotonicity is that under VM, this ordering must be the same across all values of

z−j ∈ Z−j for a given j. Partial monotonicity allows, for instance, a situation in which

college proximity encourages attendance when nearby colleges are cheap but discourages

attendance when they are expensive—while VM could not.

An alternative characterization of VM makes this relationship to PM more explicit.

Call Z connected when for any two z, z′ ∈ Z there exists a sequence of vectors z1, . . . , zm

with z1 = z, zm = z′ and each zm and zm−1 differing on only one component, and such

that zm ∈ Z for all m.6

Proposition 2.1. LetZ be connected. Then VM holds iff for each j ∈ {1 . . . J} there is an ordering

≥j on Zj such that for all i: Di(zj , z−j) ≥ Di(z′j , z−j) when zj ≥j z′j , for all z−j ∈ Z−j such

that both (zj , z−j) and (z′j , z−j) are in Z .

Proof. See Appendix B.4.

6This rules out cases where Z is disjoint with respect to such chains of single-instrument switches, for
example in a case of two binary instruments if Z consists only of the points (0, 0) and (1, 1). With this Z ,
PM and VM are both vacuous.
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The additional restriction made by VM over PM is empirically testable, by inspecting the

propensity score function:

Proposition 2.2. Suppose PM and Assumption 1 hold, and Z is connected. Then VM holds if

and only if E[Di|Zi = z] is component-wise monotonic in z, for some fixed ordering �j on each

Zj .

Proof. See Appendix B.4.

By contrast, PM is compatible with any propensity score function. Note that if Assump-

tion 1 holds conditional on covariates Xi, Proposition 2.2 also need only hold with respect

to the conditional propensity score E[Di|Zi = z,Xi = x] (see Section 2.6).

Since IAM implies PM, it follows as a corollary to Proposition 2.2 that if IAM and

Assumption 1 hold and E[Di|Zi = z] is component-wise monotonic in z, then VM holds.

This establishes that if a researcher has verified that the propensity score function is mono-

tonic, VM becomes a strictly weaker assumption than IAM. The relationship among As-

sumptions IAM, VM and PM is depicted graphically in Figure 2.1.

Examples of the points (a)-(e) in Figure 2.1 can be made more concrete by considering

a setting of two binary instruments Z = {0, 1}× {0, 1}, with an explicit selection model of

the form:

Di(z1, z2) = 1(β0i + β1iz1 + β2iz2 + β3iz1z2 ≥ 0) (2.1)

where βi = (β0i, β1i, β2i, β3i)′ ⊥ Zi (Assumption 1). Given the binary treatments, this

model is general enough to capture all possible selection functions Di(z).

Equation (2.1) could capture a utility maximization model in which individuals trade

off an incentive β1iz1 + β2iz2 + β3iz1z2 produced by the instruments against a net cost

−β0i of treatment. Table 2.1 discusses restrictions on the support of the components of

βi that illustrate each of the points (a)-(e) in Figure 2.1. In all examples, the cost β0i can

be heterogeneous across individuals, but examples (c)-(e) represent threshold crossing
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VM IAM

PM

(a) (b)(d)

(c)

(e)

VM=PM

IAM

Without restriction on the propensity score When propensity score is monotonic

Figure 2.1: Left panel shows ex-ante comparison of Imbens & Angrist monotonicity (IAM),
vector monotonicity (VM), and partial monotonicity (PM) before the propensity score
function is known. Right panel depicts the relationship when the propensity score is
component-wise monotonic: PM and VM become identical, with IAM a special case. Ex-
amples for points (a)-(e) are discussed in Table 2.1.

models in which heterogeneity in Di(z) is not linearly separable from z. This is similar to

a setup considered by MTW, with a slightly different notation.

Now consider the plausibility of the above cases in the returns to schooling example,

with “cheap" and “close" the 1 states of Z1 and Z2, respectively. In a utility maximization

model β0i might denote the net benefit of attending college when it is far and expensive.

If college then became either cheap or close, it is natural to expect this to only increase

the net benefit of college, incenting some individuals into enrolling while discouraging

none. This motivates making the restrictions β1i ≥ 0 and β2i ≥ 0. If we then imagine

changing to (cheap, close) from either (expensive, close) or (cheap, far), it’s reasonable

to again assume that all students would move weakly towards college, unless there are

individuals for whom the interaction coefficient β3i is sufficiently strong and negative.7

7It is possible to imagine scenarios in which this could happen: for example, suppose there exist students
who do not want to live with their parents during college, and feel that they will have to if attending a
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Case Example of support restriction on β’s Implied restrictions on selection
(a) β1,β2,β3 homogeneous; 0 ≤ β1 ≤ β2, β3 = 0 Di(0, 0) ≤ Di(1, 0) ≤ Di(0, 1) ≤ Di(1, 1)
(b) β1,β2,β3 homogeneous; −β2 ≤ β3 ≤ −β1 ≤ 0 Di(0, 0) ≤ Di(1, 0) ≤ Di(1, 1) ≤ Di(0, 1)

(c) β2i ≥ β1i ≥ 0,−β2i ≤ β3i ≤ −β1i for all i
Di(0, 0) ≤ Di(0, 1); Di(0, 0) ≤ Di(1, 0);
Di(1, 0) ≤ Di(1, 1); Di(1, 1) ≤ Di(0, 1)

(d)
β3i = 0,β1i ≥ 0,β2i ≥ 0 for all i

P (β2i < −β0i ≤ β1i) > 0, P (β1i < −β0i ≤ β2i) > 0
Di(0, 0) ≤ Di(0, 1) ≤ Di(1, 1);
Di(0, 0) ≤ Di(1, 0) ≤ Di(1, 1)

e) a neighborhood of the zero vector inR4 none

Table 2.1: Illustrative examples of each of the cases (a)-(e) in the random coefficients selec-
tion model Eq. (2.1).

Finally, note that a sufficient condition for the restriction from PM to VM is the exis-

tence of groups that are sensitive to that instrument alone. For example, suppose Alice

only cares about proximity, and Bob only cares about tuition, with:

Dalice(z1, z2) = 1(z2 = close) and Dbob(z1, z2) = 1(z1 = cheap)

Partial monotonicity then requires that the directions of of response that Alice and Bob

exhibit (selecting into college based on lower distance and lower tuition, respectively)

hold (weakly) for all other units in the population, which then implies VM.8 Further, the

existence of both Alice and Bob imply that IAM is violated.

It is also illustrative to consider an example of this sufficient condition failing to hold.

MTW offer an example where PM holds without VM, in which we consider a population

of families having two or more kids (following Angrist and Evans 1998), and take as two

binary instruments for having a third child indicators for the sex of the first and second

child. If selection into a third child is driven uniformly by considerations of having at

least one child of each sex, then no parents would respond solely to the sex of one of the

college near their parents’ home. Accordingly, some such students might go to college only when it is cheap
and far. Note that in this case, PM would then require that there be no other individuals in the population
that go to college only if it is both cheap and close. The Supplemental Material provides a taxonomy of such
cases that break VM but not PM, as point (c) does, with two binary instruments.

8That is, Dalice(1, z2) > Dalice(0, z2) for all z2 ∈ Z2 implies through PM that Di(1, z2) ≥ Di(0, z2) for all
z2 ∈ Z2 and i, and similarly Bob implies that Di(z1, 1) ≥ Di(z1, 0) for all z1 ∈ Z1 and i.
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first two children alone. This violates VM since whether or not the first child being female

encourages or discourages treatment depends on the sex of the second child (and vice

versa). However, I note that the instruments in this example can be recoded such that VM

holds given the same assumptions about underlying selection behavior (see Supplemental

Material for an example).

2.3 Characterizing complier groups under vector monotonicity

In this section I show that the assumption of vector monotonicity partitions the pop-

ulation of interest into a set of well-defined groups that generalize the familiar taxonomy

of always-takers, never-takers, and compliers from the case of a single binary instrument.

Providing a characterization of the groups will be necessary to state the main identifica-

tion result in Section 2.4.

To simplify notation, let us define a random variable Gi corresponding to an individ-

ual’s entire vector of counterfactual treatments {Di(z)}z∈Z . For example, with a single

binary instrument Gi = always-taker indicates that Di(0) = Di(1) = 1. We refer to Gi as

unit i’s “response group”, using a term from Lee and Salanié (2020).9 Response groups

partition individuals in the population based on upon their selection behavior over all

counterfactual values of the instruments. We will see that all response groups–save for

two–correspond to “compliers” of some kind.

Let G be the support of Gi. We can think of VM as a restriction on which response

groups are allowed in the population, or equivalently a restriction on G. As a final bit of

notation, we will denote as Dg(z) the potential treatments function Di(z) that is common

to all units sharing a value g of Gi.

9Heckman and Pinto (2018) refer to such groups as response-types or strata.
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2.3.1 With two binary instruments

We first turn to the simplest case of two binary instruments, in which G can be seen to

contain six distinct response groups.

Normalize the instrument value labeled “1” for each instrument to be the direction

in which potential treatments are increasing. Table 2.2 describes the six response groups

that can occur under VM with two binary instruments, with names introduced for each by

MTW. A Z1 complier, for example, goes to college if and only if college is cheap, regardless

of whether it is close. A Z2 complier, in our example, would go to college if and only if

college is close, regardless of whether it is cheap. A reluctant complier is “reluctant” in

the sense that they require college to be both cheap and close to attend, while an eager

complier goes to college so long as it is either cheap or close. Never and always takers are

defined in the same way as they are under IAM: maxz∈Z Di(z) = 0 and minz∈Z Di(z) = 1,

respectively.

Name Di(0, 0) Di(0, 1) Di(1, 0) Di(1, 1)
never takers N N N N

always takers T T T T
Z1 compliers N N T T
Z2 compliers N T N T

eager compliers N T T T
reluctant compliers N N N T

Table 2.2: The six response groups under VM with two binary instruments.

A natural question is whether the sizes pg := P (Gi = g) of the six groups in Ta-

ble 2.2 can be detected empirically. In general, only two of them are point identified.

Let P (z) := E[Di|Zi = z] = ∑g∈G pgDg(z) be the propensity score function, where

the second equality follows from Assumption 1. From the definitions in Table 2.2, it

is clear that pn.t = 1− P (1, 1) and pa.t. = P (0, 0). For the others, we can identify cer-

tain linear combinations of the group occupancies, e.g. P (1, 0)− P (0, 0) = pZ1 + peager,

P (0, 1)− P (0, 0) = pZ2 + peager, and P (1, 1)− P (0, 1) = pZ1 + preluctant. This allows us to
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bound each of the four remaining group sizes, given that each must be positive. For exam-

ple, {P (1, 0)− P (0, 0)} − {P (1, 1)− P (0, 1)} ≤ peager ≤ min{P (0, 1) − P (0, 0),P (1, 0) −

P (0, 0)}. The point identified linear combinations are in fact special cases of the general

identification results developed later in Section 2.4.1 (see Corollary 2.2 to Theorem 2.1).

2.3.2 With multiple binary instruments

Now we see how the two-instrument case generalizes to a case where the researcher

has any number of binary instruments. While the overall number of response groups

explodes combinatorially, we can still keep track of the various groups in a systematic

way.

Let there be J binary instruments Z1 . . . ZJ . I focus on the baseline case in which the

space of conceivable instrument values is rectangular: Z = {0, 1}J (see Supplemental

Material for some alternatives). We wish to characterize the subset of the 22J possible

mappings between vectors of instrument values and treatment that satisfy VM, where

we continue to normalize the “1” state for each Zj to be the direction in which potential

treatments are weakly increasing.10 The number of such response groupsGi is equal to the

number of isotone boolean functions on J variables, which I denote as DedJ . The DedJ

follow the so-called Dedekind sequence, for which Kisielewicz (1988) derives an analytical

expression.11

One group that always satisfies VM are those units for whom Di(z) = 0 for all values

z ∈ Z : so-called never-takers. Each of the other groups can be associated with a collection

of minimal combinations of instruments that are sufficient for that unit to take treatment.
10This “up” value for each instrument will be taken in our results to be known ex ante. In practice,

this might follow from a maintained natural hypothesis, such as that lower price encourages rather than
discourages college attendance. However, the directions are also empirically identified from the propensity
score function (see Proposition 2.2).

11The first six numbers in the Dedekind sequence are 3, 6, 20, 168, 7581, 7828354 (only 8 have been eval-
uated numerically). While the Dedekind numbers explode quite rapidly, they still do so much more
slowly than the total number 22J of boolean functions of J variables. For example while 3/4 = 75%
of conceivable response groups for J = 1 satisfy VM, only 20/256 ≈ 7.8% do for J = 3, and just
7581/4294967296 ≈ 1.7 ∗ 10−4 do for J = 5. The “bite” of VM increases with J , in the sense that it rules out
a larger and larger fraction of conceivable selection patterns.
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For example, in a setting with three instruments, one response group would be the units

that take treatment if either Z1 = 1, or if Z2 = Z3 = 1. By vector monotonicity, then, any

unit in this group must also take treatment if Z1 = Z2 = Z3 = 1. However, another group

of units might take treatment only if Z1 = Z2 = Z3 = 1. This group is more “reluctant”

than the former. The group of always-takers are the least “reluctant”: they require no

instruments to equal one in order for them to take treatment.

By this logic, we can associate response groups (aside from never-takers) with families

F of subsets S ⊆ {1 . . . J} of the instrument labels. However, we need only consider fam-

ilies for which no element S of the family is a subset of some other S′: so-called Sperner

families (see e.g. Kleitman and Milner 1973). Families that are not Sperner would be re-

dundant under VM, since in the example above S′ could be dropped without affecting the

implied selection function Di(z).

Definition 2.2 (response group for a Sperner family). For any Sperner family F , let g(F )

denote the response group in which units take treatment if and only ifs zj = 1 for all j in S, for at

least one S in F. Denote the Sperner family associated with a response group g as F (g).

All together, the response groups satisfying VM with J binary instruments are as follows:

the never-takers group, along with DedJ − 1 further groups g(F ) corresponding to each

of the distinct Sperner families F of instrument labels.

In the simplest example of the above, when J = 1, vector monotonicity coincides

with PM and IAM, and the Sperner families corresponding to this single instrument are

simply the null set and the singleton {1}: corresponding to always-takers and compliers,

respectively. Together with never-takers, we have the familiar three groups from LATE

analysis with a single binary instrument.

For J = 2, the five groups (aside from never takers) described in the previous section
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map to Sperner families as follows:

F name of GF

∅ “always takers”

{1} “Z1 compliers”

{2} “Z2 compliers”

{1}, {2} “eager compliers”

{1, 2} “reluctant compliers”

The rapidly expanding richness of selection behavior compatible with VM can be seen

with J = 3, where there are 19 Sperner families, each indicated within bold brackets:

{{{∅}}},{{{1}}},{{{2}}},{{{3}}},

{{{1, 2}}},{{{1, 3}}},{{{2, 3}}},{{{1, 2, 3}}},

{{{{1}, {2}}}},{{{{2}, {3}}}},{{{{1}, {3}}}},{{{{1}, {2}, {3}}}},

{{{{1, 2}, {3}}}},{{{{1, 3}, {2}}}},{{{{2, 3}, {1}}}},

{{{{1, 2}, {1, 3}}}},{{{{1, 2}, {2, 3}}}},{{{{1, 3}, {2, 3}}}},

{{{{1, 2}, {1, 3}, {2, 3}}}}

For instance, an individual withGi corresponding to {{{{1, 2}, {1, 3}, {2, 3}}}} takes treatment

so long as any two instruments take the one value.

A central feature of the identification analysis will be that the selection functions cor-

responding to the various response groups are not all linearly independent from one

another. Only 2J such functions can be independent (though DedJ is strictly larger for

J > 1), since any function of binary variables can be written as a polynomial in them. Let
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Gc := G/{a.t.,n.t.} denote the set of DedJ − 2 response groups compatible with Assump-

tion VM that are not never-takers or always takers. All of the groups in Gc can be thought

of as generalized “compliers” of some kind: units that vary treatment uptake in some way

across possible instrument values.

A natural basis for the set of selection functions {Dg(z)}g∈Gc can be formed by consid-

ering functions that are products over a single subset of the instruments

zS := ∏
j∈S

zj = 1 (zj = 1 for all j in S)

where S ⊆ {1 . . . J},S 6= ∅.12 For a given set S, zS yields the selection function Dg(S)(z) of

the response group g(S) corresponding to the Sperner family consisting only of the set S.

I refer to such response groups g(S) as simple.

For J = 2, the selection functions for the simple response groups are:

DZ1(z) = z1 DZ2(z) = z2 Dreluctant(z) = z1z2

The selection function for the remaining group, eager compliers, can be obtained as:

Deager(z) = z1 + z2 − z1z2 = DZ1(z) +DZ2(z)−Dreluctant(z)

We can express this linear dependency by the matrix MJ in the system:



DZ1(z)

DZ2(z)

Dreluctant(z)

Deager(z)


=



1 0 0

0 1 0

0 0 1

1 1 −1


︸ ︷︷ ︸

:=M2


DZ1(z)

DZ2(z)

Dreluctant(z)

 (2.2)

12Note that a similar construction plays a central role in Lee and Salanié, 2018.
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For general J , we define the matrix MJ from the analogous system of equations:

{Dg(F )(z)}F : g(F )∈Gc = MJ{Dg(S)(z)}S⊆{1...J},S 6=∅

for all z ∈ Z . The rows of matrix MJ are indexed by Sperner families (corresponding to

the groups in Gc), and the columns by the simple Sperner families for non-null S. The

entries of MJ are given by the following expression:13

Proposition 2.3. [MJ ]F ,S′ = ∑f∈s(F ,S′)(−1)|f |+1 where s(F ,S′) :=
{
f ⊆ F :

(⋃
S∈f S

)
= S′

}
.

Proof. See Appendix B.4.

2.3.3 Vector monotonicity with discrete instruments

More generally, when the researcher has discrete instrumental variables that satisfy

vector monotonicity, they can be re-expressed as a larger number of binary instruments in

a way that preserves vector monotonicity. By introducing a binary instrument for every

value but one of each discrete instrument, the analysis can be extended to this much more

general setting:

Proposition 2.4. Let Z1 be a discrete variable with M ordered points of support z1 < z2 <

· · · < zM , and Z2 . . . ZJ be other instrumental variables. Let Z̃mi := 1(Z1i ≥ zm). If the

vector Z = (Z1, . . . ZJ ) satisfies Assumption VM on a connected Z then so does the vector

(Z̃2, . . . , Z̃M ,Z2, . . . ZJ ).

Proof. See Appendix B.4.

Applying Proposition 2.4 iteratively offers a fairly general recipe for mapping the instru-

ments available in a given empirical setting into the framework of binary instruments.

Note that the mapping in Proposition 2.3.3 introduces restrictions on Z for the result-

ing binary instruments, since for example we could not have both Z̃2i = 1 and Z̃1i = 0. As

13The matrix M3, which has D3 − 2 = 18 rows and 23 − 1 = 7 columns is given explicitly in the Supple-
mental Material.
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a result, not all of the response groups introduced in Section 2.3.2 are necessary to account

for, since the possible patterns of instrument variation pool some into equivalent groups.

While in the next section I assume full binary instrument support for the baseline results,

Appendix B.1 provides the necessary generalizations to make use of Proposition 2.4.

2.4 Parameters of interest and identification

In this section I define and characterize a class of causal parameters, and show that

they are point identified under vector monotonicity and a full-support condition on the

instruments. This section maintains a setup of J binary instruments with Z = {0, 1}J

unless otherwise specified.

2.4.1 Main identification result

My identification analysis considers conditional averages of potential outcomes: for

d ∈ {0, 1} and an arbitrary function f , let

θfdc := E[f(Yi(d))|Ci = 1]

where Ci = c(Gi,Zi) is a function c : G ×Z → {0, 1} of individual i’s response group and

their realization of the instruments. Intuitively, the event Ci = 1 will indicate that unit

i belongs to a certain subgroup of generalized “compliers”. Most of the discussion will

center on the class of average treatment effect parameters:

∆c := E[Yi(1)− Yi(0)|Ci = 1] = θy1
c − θy0

c

with f(y) = y the identity function. Treatment effect parameters having the form of ∆c are

familiar both from the LATE (Imbens and Angrist, 1994) and marginal treatment effects

(Heckman and Vytlacil, 2005) literatures. For instance, with a single binary instrument the

LATE sets c(g, z) = 1(g = complier), independent of z.
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The main result is that identification of is possible under VM for certain choices of the

function c(g, z). In particular, it will require a condition that I call “Property M”:

Definition 2.3 (Property M). The function c(g, z) satisfies Property M if for all z ∈ Z : c(a.t., z) =

c(n.t., z) = 0, while for every g ∈ Gc:

c(g, z) = ∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S · c(g(S), z)

where the matrix MJ is defined in Proposition 2.3. I’ll also say that θfdc or ∆c “satisfies

Property M” if its underlying function c(g, z) does. Intuition for Property M is provided

after the statement of the identification result, and an equivalent characterization of Prop-

erty M and leading examples are given in Section 2.4.2.

Causal parameters that satisfy Property M are identified under VM with binary instru-

ments, provided the instruments provide sufficient independent variation in treatment

uptake. This holds when the binary instruments have full (rectangular) support:

Assumption 3 (full support). P (Zi = z) > 0 for all z ∈ {0, 1}J

Assumption 3 is stronger than is necessary but simplifies presentation – Appendix B.1

presents a generalization.

An alternative expression of Assumption 3 is useful for writing the identification result

explicitly. For an arbitrary ordering of the k := 2J − 1 non-empty subsets S ⊆ {1 . . . J},

define the random vector Γi = (ZS1i . . . ZSki)
′ from products of the Zji for j within each

subset S. That is, each element of Γi indicates the treatment status of a particular simple

response group, given Zi. Let Σ be the covariance matrix of Γi.

Lemma 2.1. Assumption 3 holds if and only if Σ has full rank.

Proof. See Appendix B.4.

Lemma 2.1 reveals that full support of the instruments is equivalent to there being inde-

pendent variation in treatment takeup among all of the simple response groups.
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We may now state the main result:

Theorem 2.1. Under Assumptions 1-3 (independence & exclusion, VM, and full support), for

any c satisfying Property M and any measurable function f(Y ) for each d ∈ {0, 1}:

θfdc = (−1)d+1E[f(Yi)h(Zi)1(Di = d)]

E[h(Zi)Di]
,

provided that P (Ci = 1) > 0, where h(Zi) = λ′Σ−1(Γi −E[Γi]) and

λ = (E[c(g(S1),Zi)], . . .E[c(g(Sk),Zi)])′

Proof. See Appendix B.4.

It follows immediately from Theorem 2.1 that conditional average treatment effects

∆c = E[Yi(1)− Yi(0)|Ci = 1] satisfying Property M are identified as:

∆c = E[h(Zi)Yi]/E[h(Zi)Di]

Note that as the numerator of ∆c depends on Zi and Yi only and the denominator depends

on Zi andDi only, identification of ∆c would hold in a “split-sample” setting where Yi and

Di are not necessarily linked in the same dataset.

We can also re-express the empirical estimand for ∆c delivered by Theorem 2.1 in a

more illuminating form, directly in terms of conditional expectation functions of each of

Yi and Di on the instruments:

Corollary 2.1. Under the Assumptions of Theorem 2.1:

∆c =
∑z∈Z

(
∑S⊆{1...J},S 6=∅ λSAS,z

)
E[Yi|Zi = z]

∑z∈Z

(
∑S⊆{1...J},S 6=∅ λSAS,z

)
E[Di|Zi = z]

where λS is as defined in Theorem 2.1 and AS,z = ∑ f⊆z0
(z1∪f)=S

(−1)|f |, with (z1, z0) a partition of
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the indices j ∈ {1 . . . J} that take a value of zero or one in z, respectively.

Proof. See Appendix B.4. The proof of Lemma 2.1 gives the explicit form of A for J =

2.

Intuition for Theorem 2.1

The basic logic behind Theorem 2.1 can be appreciated by focusing on the average

treatment effect parameters ∆c, and observing that by Assumption 1 and the law of iter-

ated expectations they can be written as a weighted average over response-group specific

average treatment effects ∆g := E[Yi(1)− Yi(0)|Gi = g]:

∆c = ∑
g∈G

{
P (Gi = g)E[c(g,Zi)]

E[c(Gi,Zi)]

}
· ∆g (2.3)

where the weights are each proportional to the quantity E[c(g,Zi)]. Now consider a gen-

eral type of “2SLS-like” estimand, in which a single scalar instrument h(Zi) is constructed

from the vector of instruments Zi according to some function h, and then used in a simple

linear IV regression.14

Proposition 2.5. Under Assumption 1 (exclusion and independence):

Cov(Yi,h(Zi))
Cov(Di,h(Zi))

= ∑
g∈G

P (Gi = g) ·Cov(Dg(Zi),h(Zi))
∑g′∈G P (Gi = g′) ·Cov(Dg′(Zi),h(Zi))

· ∆g

Proof. See the Supplemental Material for direct proof of this form.

Proposition 2.5 reveals that such 2SLS-like estimands also uncover a weighted average of

the ∆g, where the weight placed on each response group g is governed by the covariance

between Dg(Zi) and h(Zi).

Comparing Equation (2.3) with Equation 2.3, we see that a 2SLS-like estimand can

identify ∆c if the function h is chosen in such a way that Cov(Dg(Zi),h(Zi)) = E[c(g,Zi)]
14Special cases include two stage least squares: h(z) = E[Di|Zi = z], and Wald estimands: h(z) =

1(Zi=z)
P (Zi=z)

− 1(Zi=z
′)

P (Zi=z′)
.

72



for all the response groups g. However, since the covariance operator is linear, the linear

dependencies examined in Section 2.3.2 translate into a set of linear restrictions among

these weights, captured by the matrix MJ . Property M guarantees that the vector of

E[c(g(F ),Zi)] across Sperner families F belongs to the column-space of the matrix MJ ,

whatever the distribution of Zi. What remains to secure identification is then simply to

tune the covariances for the simple response groups, which is achieved by the construc-

tion of h(Zi) in Theorem 2.1.

The role of Property M in Theorem 2.1 can be thought of as emerging from there be-

ing under VM more response groups in Gc than there are independent pairs of points in

the support of the instruments. By contrast, under IAM with J binary instruments both

are generally equal to 2J − 1, and it is possible to identify the average treatment effect

∆g′ := E[Yi(1) − Yi(0)|Gi = g′] within any single such response group g′ (and hence

also obtain any desired convex combination of the ∆g′). However, under VM the corre-

sponding choice c(g, z) = 1(g = g′) fails to satisfy Property M, and we will not be able

to identify the ∆g individually in general.15 The first requirement in Property M of zero

weight on always-takers or never-takers on the other hand is familiar from analysis based

on IAM.16

2.4.2 Examples from the family of identified parameters

While Property M introduced in Section 2.4 itself is somewhat abstract, the following

result shows that it is equivalent to c(g, z) being equal to a sum of selection functions

Dg(z) for all response groups g.

15We can see this in a simple example with J = 2 and g = Z1 complier. In this case Property M would
require that c(eager complier, z) = c(Z1 complier, z) + c(Z2 complier, z)− c(reluctant complier, z), i.e. that
0 = 1 + 0− 1, cf Eq. (2.2).

16Note that E[c(g,Zi)] = 0 would also be necessary for any additional groups g for whom, given the
distribution of Zi, there is no actual variation in treatment status. In the baseline analysis, such additional
groups will be ruled out by Assumption 3.
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Proposition 2.6. A function c : G ×Z → {0, 1} satisfies Property M if and only if

c(g, z) =
K

∑
k=1
{Dg(uk(z))−Dg(lk(z))}

for some K ≤ J/2, where uk(·) and lk(·) are functions Z → Z such that uk(z) ≥ lk(z)

component-wise while lk(z) ≥ uk+1(z) component-wise, for all k and z ∈ Z .

Proof. See Appendix B.4.

Proposition 2.6 yields a natural interpretation of average treatment effects that satisfy

Property M, which is that they can be written as

∆c = E

[
Yi(1)− Yi(0)

∣∣∣∣∣ K⋃
k=1
{Di(uk(Zi)) > Di(lk(Zi))}

]
(2.4)

for some functions uk and lk having the properties stated in Proposition 2.6.17 From Equa-

tion 2.4 we see that the types of complier groups that identified parameters can condition

on are groups of individuals that are responsive to any of a set of K instrument transi-

tions that each induce only one-way flows into treatment. This feature is in fact common to

both IAM and VM. Indeed, identified parameters can also be written in this form under

IAM (as well as its generalization to Heckman and Pinto (2018)’s concept of unordered

monotonicity–see the proof Proposition 2.6 for a discussion).

While the form of Equation 2.4 is somewhat familiar from LATE results under IAM,

the additional structure of VM yields new causal parameters that bear economically inter-

esting interpretations. The remainder of this section continues to focus on average treat-

ment effects ∆c, though θfdc parameters can be defined for the analogous groups. Table 2.3

presents some leading examples of ∆c that satisfy Property M, as can be seen by applying

Proposition 2.6. All of the cases presented in Table 2.3 admit the form of Equation (2.4)

with a single term (K = 1), given in the third column.

17This expression is obtained by substituting Ci = c(Gi,Zi), and noting that ∑K
k=1 Di(uk(Zi)) −

Di(lk(Zi)) equals one if and only if Di(uk(Zi)) > Di(lk(Zi)) for some k.
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Parameter c(g, z) Proposition 2.6 form
ACL 1(g ∈ Gc) Dg(1, 1 . . . 1)−Dg(0, 0 . . . 0)
SLATEJ Dg((1 . . . 1), z−J )−Dg((0 . . . 0), z−J )) "
SLATTJ Dg(z) · (Dg((1 . . . 1), z−J )−Dg((0 . . . 0), z−J ))) Dg(z)−Dg((0 . . . 0), z−J )
SLATUJ (1−Dg(z)) · (Dg((1 . . . 1), z−J )−Dg((0 . . . 0), z−J ))) Dg((1 . . . 1), z−J )−Dg(z)
PTEj(z∗−j) Dg(1, z∗−j)−Dg(0, z∗−j)) "

Table 2.3: Leading parameters of interest satisfying Property M, including: the all-
compliers LATE, set LATEs, set LATEs on the treated, set LATEs on the untreated, and
partial treatment effects (see text for details).

I call the first item in Table 2.3 the “all-compliers LATE” (ACL), which is the aver-

age treatment effect among all units who are not always-takers or never-takers. This is

the largest subgroup of the population for which treatment effects can be generally point

identified from instrument variation.18 With two instruments, the ACL averages over all

units who are Z1, Z2, eager or reluctant compliers. In the returns to schooling example,

we can equivalently describe the ACL as the average treatment effect among individuals

who would go to college were it close and cheap, but would not were it far and expensive.

On the other end of the spectrum, the final row of Table 2.3 gives the most disaggre-

gated type of parameter satisfying Property M, what might be called a partial treatment

effect PTEj(z∗−j). This is the average treatment effect among individuals that move into

treatment when a single instrument j is shifted from zero to one, while the other instru-

ment values are held fixed at some explicit vector of values z∗−j . An example is the aver-

age treatment effect among individuals who go to college if it is close and cheap, but not

if it is far and cheap. Ultimately, all ∆c satisfying Property M can be written as convex

combinations of such partial treatment effects though the number could be quite large

(see Supplemental Material for an explicit expression). However, the PTEs still combine

response groups: the example above for instance combines proximity compliers with re-

luctant compliers.

18We may of course still be able to say something about treatment effects for never-takers and always-
takers given additional restrictions (see e.g. Section 2.4.3 for bounds on the unconditional ATE when poten-
tial outcomes are bounded).
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The remaining parameters in Table 2.3 constitute a middle ground between the gran-

ular PTE’s and the very broad averaging of the ACL. For example, the ACL is a special

case of what I call a set local average treatment effect, or SLATEJ , which captures the aver-

age treatment effect among units that move into treatment when all instruments in some

fixed set J are changed from 0 to 1, with the other instruments not in J fixed at their

realized values. The ACL is a special case in which this set is all of the instruments:

J = {1, 2, . . . J}. When J contains just one instrument index, SLATE recovers treatment

effects among those who would “comply” with variation in that single instrument. For

example, SLATE{2} is the average treatment effect among individuals who don’t go to

college if it is far, but do if it is close. This parameter may be of interest to policymakers

considering whether to expand a community college to a new campus, for example. The

group of individuals included in SLATE{2} are Z2 compliers, eager compliers with high

tuition rates (Z1i = 0), and reluctant compliers with low tuition rates (Z1i = 1).19

For a discrete instrumental variable mapped to multiple binary instruments by Propo-

sition 2.4, the LATE among units moved into treatment between any two of its values will

also be an example of a SLATE. For example, if Z1 has support z1 < z2 < z3 < z4, the

average treatment effect among individuals for which Di(z4,Z−1,i) > Di(z2,Z−1,i) corre-

sponds to SLATEJ with J = {Z̃3, Z̃4}. SLATE thus allows the practitioner to flexibly

condition upon response to individual or joint variation in the instruments.

The treatment effect parameters SLATTJ and SLATUJ in the final two rows of Table

2.3 are similar to SLATEJ but additionally condition on units’ realized treatment status.

For example SLATT{1,2} with our two instruments averages over individuals who do go

to college, but wouldn’t have were it far and expensive.20 SLATT and SLATU can also be

19Note that a single-instrument SLATE like SLATE{2} does not generally correspond to using Z2 alone
as an instrument, since this latter estimand does not control for variation in Z1 that is correlated with Z2. If
on the other hand the instruments are independent of one another, using 2SLS may be justified, as I show
in the Supplemental Material.

20Note that with a single binary instrument, SLATT{1} coincides with ACL = SLATE{1}, as E[Yi(1)−
Yi(0)|Di = 1,Gi = complier] = E[Yi(1) − Yi(0)|Zi = 1, complier] = E[Yi(1) − Yi(0)|complier], using
Assumption 1. However, when the group Gc consists of more than one group, the “all-compliers” version
of SLATT generally differs from ACL.
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used to construct bounds on the average treatment effect among the treated or untreated,

when potential outcomes are bounded, following logic for the ATE given in Section 2.4.3.

To construct some further examples of identified parameters from the ones mentioned

in Table 2.3, one could make use of a closure property of the set of ∆c that satisfy Property

M. Let C denote the set of c : G ×Z → {0, 1} that satisfy Property M, and let ca(g, z) and

cb(g, z) be two functions in C. Then it is straightforward to show that ca(g, z)− cb(g, z) ∈ C

if and only if cb(g, z) ≤ ca(g, z) for all z ∈ Z, g ∈ Gc.21 We can use this observation to

generate parameters that condition on the “complement” of the complier group for ∆cb

within the larger complier group for ∆ca . For example, with J = 2:

E[∆i|Gi ∈ Gc − {Di(1,Z2i)−Di(0,Z2i)}]

yields the average treatment effect among individuals who are counted in the ACL but

not in SLATE{1}. These individuals would not respond to a counterfactual reduction in

college tuition alone, but would respond if both instruments were shifted in concert.

2.4.3 Further results on identification

This section outlines some further results related to identification under VM. I begin

with several observations that strengthen or extend the reach of Theorem 2.1.

Consequences and extensions of Theorem 2.1

1) The size of the relevant complier sub-population is identified: The argument used in Theorem

2.1 can be leveraged to show that the proportion of relevant “compliers” associated with

any causal parameter satisfying Property M is also identified, and is the denominator of

the associated estimand:

21This follows from linearity and the definition of Property M, while cb(g, z) ≤ ca(g, z) is necessary for
the image of the new function to remain {0, 1}.

77



Corollary 2.2 to Theorem 2.1. Make Assumptions 1-3. For any c that satisfies Property M,

P (Ci = 1) is identified as E[h(Zi)Di], where h(z) is as given in Theorem 2.1.

Proof. See Appendix B.4.

2) Property M as a necessary condition. Property M was introduced in this section as part of

a set of sufficient conditions for identification of ∆c. One can show that, loosely speaking,

any identified ∆c must satisfy Property M. In this sense, Property M is also a necessary

condition for identification. The simplest form of this result I express in terms of so-called

“IV-like estimands” introduced by Mogstad et al. (2018), which are any cross moment

E[s(Di,Zi)Yi] between Yi and a function of treatment and instruments. Let PDZ denote

the joint distribution of D and Z, which is identified. Then:

Proposition 2.7. Suppose ∆c is identified by a finite set of IV-like estimands and PDZ , provided

that Assumptions 1-3 hold and P (Ci = 1) > 0. Then ∆c satisfies Property M.

Proof. See Appendix B.4.

The result can be strengthened given regularity conditions on the support of potential

outcomes:

Proposition 2.8. Suppose that the support of each potential outcome conditional on Gi = g is

independent of all g ∈ Gc for which P (Gi = g) > 0, and that the density (or p.m.f.) of each Yi(d)

is uniformly bounded and separated from zero over that support, conditional on each such Gi = g.

Then if ∆c is point identified from the distribution of (Yi,Di,Zi) whenever Assumptions 1-3 hold

and P (Ci = 1) > 0, ∆c must satisfy Property M.

Proof. See Supplemental Material.

3) PM alone does not lead to identification. We can demonstrate that the assumption of vec-

tor monotonicity does have identifying power in Theorem 2.1, above and beyond that of

partial monotonicity. For the J = 2 case, it is possible to see by explicit enumeration of

the possible response groups that Theorem 2.1 cannot hold under PM only:
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Proposition 2.9. When J = 2, if PM holds but neither VM nor IAM hold, the ACL is not point

identified from knowledge of any set of IV-like estimands and PDZ .

Proof. See Appendix B.4.

4) Linear dependency among the instruments: Assumption 3 is stronger than is strictly nec-

essary for identification, since linear dependencies between products of the instruments

may not pose a problem if the corresponding “weights” in ∆c do not need be tuned in-

dependently from one another. In Appendix B.1, I give a version of Assumption 3 and

generalization of the identification theorem that can accommodate instrument support re-

strictions and/or non-rectangular Z (for instance after applying Proposition 2.4).

5) Conditional distributions of the potential outcomes By choosing f(Y ) = 1(Y ≤ y) in The-

orem 2.1 for some value y in the support of Yi, we can identify the CDF of each potential

outcome at y conditional on Ci = 1 as: FY (d)|C=1(y) = (−1)d+1E[h(Zi)1(Di=d)1(Yi≤y)]
E[h(Zi)Di]

(note

that unlike identification of ∆c this requires observing (Yi,Zi,Di) all in the same sample).

This allows for the identification of Ci = 1 conditional quantile treatment effects, bounds

on the distribution of treatment effects (Fan and Park, 2010), or distributional treatment

effects: FY (1)|C=1(y)− FY (0)|C=1(y) as E[h(Zi)1(Yi≤y)]
E[h(Zi)Di]

.

6) Covariates. If Assumption 1 holds only conditional on a set of covariates X , and As-

sumption 3 also holds conditionally, then Theorem 2.1 can be taken to hold within a co-

variate cell Xi = x. In Appendix B.2, I describe how covariates can be accommodated

nonparametrically, or parametrically as implemented in Section 2.6.
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Identification of the ACL from a single Wald ratio

The population estimand corresponding to the all-compliers LATE takes on a particu-

larly simple form. In particular, the ACL is equal to the following single Wald ratio:

ρZ̄,z :=
E[Yi|Zi = Z̄]−E[Yi|Zi = Z]
E[Di|Zi = Z̄]−E[Di|Zi = Z]

(2.5)

where Z̄ = (1, 1, . . . 1)′ and Z = (0, 0, . . . 0)′, provided that P (Zi = Z̄) > 0 and P (Zi =

Z) > 0, and the denominator is non-zero.22 This can be seen by applying the law of

iterated expectations over response groups, or using Theorem 2.1. That ρZ̄,z is equivalent

to the expression given for ACL by Theorem 2.1 is not obvious, but this can be shown by

applying Corollary 2.1 and using properties of the matrix A.23

Thus the ACL is identified by a remarkably simple quantity: one can restrict the pop-

ulation to Zi ∈ {Z, Z̄} and use 1(Zi = Z̄) as a single instrument. However, Theorem

2.1 yields identification of a much larger class of parameters than ACL alone, which are

not generally equal to a single Wald ratio. Furthermore, as we will see in Section 2.5, the

alternative form of Theorem 2.1 suggests a means of improving estimation of the ACL.

In particular, when the number of sample observations in Z and Z̄ is not large, the Wald

ratio ρZ̄,Z may be difficult to estimate precisely, and the sample analog of Eq. (2.5) can be

expected to perform poorly. A regularization procedure based on the expression for ∆c

from Theorem 2.1 can be helpful in such cases, as shown in Appendix B.3.

Identified sets for ATE, ATT, and ATU

One drawback of the identification results presented is that since parameters like ∆c

satisfying Property M exclude never-takers and always-takers by assumption, their defi-

nition always depends upon the set of instruments available. This is not ideal unless the

22 An analogous result holds under IAM as well with finite instruments, where in that case we take any
Z̄ ∈ argmaxzE[Di|Zi = z] and Z ∈ argminzE[Di|Zi = z], and define Gc := {g ∈ G : E[Dg(Zi)] ∈ (0, 1)}.

23In particular the identity ∑f⊆S(−1)|f | = 0 for any S 6= ∅ annihilates all but two of the components of
(0,λ′)′A.
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complier subpopulation is directly of interest.

When Yi has bounded support, the parameters identified by Theorem 2.1 can be used

to generate sharp worst-case bounds in the spirit of Manski (1990) for the unconditional

average treatment effect (ATE), average treatment effect on the treated (ATT), and aver-

age treatment effect on the untreated (ATU). Here I show this for the ATE to illustrate –

identified sets for the ATT and ATU can be constructed by analogous steps. Suppose that

Yi(d) ∈ [Y, Ȳ ] with probability one, for each d ∈ {0, 1}. Then bounds for the ATE can be

constructed by noting that:

1. ATE := E[Yi(1)− Yi(0)] = pa∆a + pn∆n + (1− pt − pa)ACL

2. pn∆n ∈ [Y · pn −E[Yi(1−Di)|Zi = Z̄], Ȳ · pn −E[Yi(1−Di)|Zi = Z̄]]

3. pa∆a ∈ [E[YiDi|Zi = Z]− pa · Ȳ ,E[YiDi|Zi = Z]− pa · Y ]

where pa := P (Gi = a.t.) = E[Di|Zi = Z] and pn := P (Gi = n.t.) = E[1−Di|Zi = Z̄].

Note that under the bounded support condition the ATE can be partially identified

whenever its conditional analog is identified for some subgroup of the population, and the

size of that subgroup is also identified. Using variation in all of the instruments, as the

ACL does, for the conditioning event leads to the narrowest possible such bounds.

2.5 Estimation

This section proposes a natural two-step estimator for the family of identified causal

parameters introduced in Section 2.4, focusing on the conditional average treatment ef-

fects ∆c. Appendix B.3 discusses its limiting distribution, which is asymptotically normal.

Theorem 2.1 establishes that ∆c satisfying Property M are equal to a ratio of two pop-

ulation expectations – thus a natural plug-in estimator simply replaces these with their

sample counterparts, provided h(Zi) is a strong enough instrument to avoid any weak

identification issues.
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Following h(Zi) = λ′Σ−1(Γi − E[Γi]) from Theorem 2.1, define Ĥ = nΓ̃(Γ̃′Γ̃)−1λ̂,

where Γ̃ is a n × k design matrix with entries Γ̃il = ZSli − 1
n ∑n

j=1 ZSlj , where Sl is the

lth subset according to some arbitrary ordering of the k := 2J − 1 non-empty subsets

S ⊆ {1 . . . J}. Note that the rows of Γ̃ correspond to observations of the vector Γi intro-

duced in Section 2.4.1, de-meaned with respect to the sample mean. The vector λ̂ is a

sample estimator of λ = (E[c(g(S1),Zi)], . . .E[c(g(Sk),Zi)])′, given explicitly below for

our leading examples.

Given the vector Ĥ as defined above, consider ρ̂ = (Ĥ ′D)−1(Ĥ ′Y ), where Y and D

are n× 1 vectors of observations of Yi and Di, respectively. Noticing that for any vector

V ∈ R
n, (Γ̃′Γ̃)−1Γ̃′V is the sample linear projection coefficient vector of V on the de-

meaned sample vectors ofZSi, we can re-express it by the Frisch-Waugh-Lovell theorem as

(0,λ′)(Γ′Γ)−1Γ′V , where Γ adds a column of ones and skips the demeaning. The estimator

can now be written as ρ̂ = ρ̂(λ̂) where

ρ̂(λ) =
(
(0,λ′)(Γ′Γ)−1Γ′D

)−1
(0,λ′)(Γ′Γ)−1Γ′Y (2.6)

Assume existence of (Γ′Γ)−1 in finite sample, and note that its population analog exists

as a consequence of Assumption 3. When Assumption 3 does not hold but identifica-

tion is still possible (see Appendix B.1), the matrices Γ̃ and Γ may be defined in the same

way but using only sets S within a smaller collection F . For example, when using con-

struction of Proposition 2.4 that maps discrete to binary instruments, F can be taken to

include all sets of the final binary instruments that do not contain distinct Z̃ from the

same original discrete instrument. In all cases, let F index the elements of Γi, where

F = {S ⊆ {1, 2, . . . J},S 6= ∅} in the baseline setting.

Comparison with 2SLS: Note that the estimator ρ̂(λ) in Equation 2.6 is very similar in form

to a “fully-saturated” 2SLS estimator that includes an indicator for each value of Zi ∈ Z in
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the first stage. Indeed, that estimator is ρ̂2sls =
(
D′Γ(Γ′Γ)−1Γ′D

)−1
D′Γ(Γ′Γ)−1Γ′Y .24 The

key difference is that rather than aggregating over linear projection coefficients (Γ′Γ)−1Γ′V

for V ∈ {D,Y } using the weights D′Γ (which are governed asymptotically by the statis-

tical distribution of Di and Zi), ρ̂(λ) uses weights (0,λ′), chosen to match the desired

parameter of interest. Relative to 2SLS, ρ̂(λ) can be thought of as sacrificing some statisti-

cal efficiency in order to guarantee that it recovers a well-defined causal parameter under

VM. In Section B.3.1 I discuss regaining some of that lost efficiency through regulariza-

tion, which is borne out in the simulation in Appendix B.3. It bears emphasizing that with

a large number of instruments, ρ̂ is no more “expensive” than 2SLS, both involve comput-

ing a pair of linear projections with the same number of terms. This is despite the fact that

the richness of possible selection behavior is more complex under VM than under IAM,

scaling as DedJ rather than 2J .

Under regularity conditions (see Theorem B.1 in Appendix B.3), we will have that for any

λ̂
p→ λ ∈ R|F|:

ρ̂(λ̂)
p→ ∑
g∈Gc

P (Gi = g)[MJλ]g
∑g′∈Gc P (Gi = g′)[MJλ]g′

· ∆g

Matching the RHS of the above to particular estimands ∆c that satisfy Property M is

achieved by choosing λ̂. Table 2.4 gives natural sample estimators for ACL, SLATE,

SLATT, SLATU and PTE that are consistent. Note that in the case of the ACL λ̂ does

not depend on the data and thus no “first-step” is necessary in estimation.

Regularization: Consider the ACL, and recall from Section 2.4.3 that it is equal to a single

Wald ratio. A natural alternative Wald estimator of the ACL is thus:

ρ̂Z̄,Z :=
Ê[Yi|Zi = Z̄]− Ê[Yi|Zi = z]
Ê[Di|Zi = Z̄]− Ê[Di|Zi = z]

(2.7)

where recall that under Assumption 3 Z̄ = (1, 1, 1, . . . , 1)′ or Z = (0, 0, 0, . . . , 0)′. It turns

24The proof of Corollary 2.1 gives the basis transformation from a design matrix of indicators to Γ, which
cancels in ρ̂2sls.
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Parameter Estimator λ̂ of population λ
ACL (1, 1, . . . 1)′
SLATEJ λ̂S = 1(J ∩ S 6= ∅)P̂ (ZS−J ,i = 1)
SLATTJ λ̂S = 1(J ∩ S 6= ∅)P̂ (ZS,i = 1)
SLATUJ λ̂S = 1(J ∩ S 6= ∅)P̂ (ZS−J ,i(1−ZJ ,i) = 1)
PTEj(z∗−j) λ̂S = 1(z∗−j,1 ∪ j = S)

Table 2.4: Estimators λ̂ for the leading parameters of interest. S −J denotes the set dif-
ference {j : j ∈ S, j /∈ J } and z∗−j,1 denotes the set of instruments that are equal to one in
z∗−j .

out that ρ̂Z̄,Z and ρ̂((1, 1, . . . 1)′) in Equation 2.6 are in fact numerically equivalent in finite

sample.25 In situations where there is non-zero but small support on the points Z̄ and

Z, we may thus expect that ρ̂((1, 1, . . . 1)′) may perform quite poorly as an estimator of

ACL in small samples, since it effectively ignores all of the data for which Zi /∈ {Z, Z̄}.

This issue is mentioned by Frölich (2007) in the context of IAM, in which case ρ̂Z̄,Z is

also consistent for the ACL with finite Z (see footnote 22). Appendix B.3 develops and

investigates the performance of a data-driven regularization procedure to ameliorate this

problem, while also showing asymptotic normality of the estimator with or without such

regularization. Appendix B.3 also reports a simulation study that shows the regularization

procedure can indeed be helpful in practice.

2.6 Revisiting the returns to college

In this section I apply the results to study the labor market returns to college. In the

past, this literature has based IV methods on either an assumption of homogeneous treat-

ment effects, or the traditional IAM notion of monotonicity. Using the methods developed

in this paper valid under VM, I find evidence of heterogeneous treatment effects across

response groups, although statistical precision is an issue due to the small sample. This

25To see this, note that the vector H of Hi solves the system of equations Γ′Hi = (1 . . . 1)′. Among vectors
that are in the column space of Γ, H is the unique such solution, given that the design matrix Γ has full
column rank. One can readily verify that Γ′H = (1, 1, . . . 1) with the choiceHi =

1(Zi=(1...1))
P̂ (Zi=(0...0)) −

1(Zi=(0...0))
P̂ (Zi=(0...0)) ,

and that this H = Γη with η = (1/P̂ (Zi = (1 . . . 1)), 0, . . . 0,−1/P̂ (Zi = (0 . . . 0))).
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complements existing results that find evidence of heterogeneity, but are based upon IAM

– a less plausible assumption in this context. For different choice of the instruments than

I use, MTW present a test of IAM in this empirical setting and find evidence that it does

not hold. In the Supplemental Material, I also present a second empirical application of

my methods to the effects of children on labor supply.

2.6.1 Sample and implementation details

I use the dataset from Carneiro, Heckman and Vytlacil (2011) (henceforth CHV) con-

structed from the 1979 National Longitudinal Survey of Youth. The sample consists of

1,747 white males in the U.S., first interviewed in 1979 at ages that ranged from 14 to 22,

and then again annually. The outcome of interest Yi is the log of individual i’s wage in

1991, and treatment Di = 1 indicates i attended at least some college. As in CHV, treat-

ment effects are expressed in roughly per-year equivalents by dividing by four.

CHV consider four separate instruments for schooling. In a baseline setup, I use the

two binary instruments from our running example: tuition and proximity. A second setup

then adds the remaining two instruments, which capture local labor market conditions

when a student is in high school. The first two instruments are defined as follows: Z2i = 1

indicates the presence of a public college in i’s county of residence at age 14, while Z1i = 1

indicates that average tuition rates local to i’s residence around age 17 falls below the

sample median, which corresponds to about $2,170 in 1993 dollars. This represents one

particular choice of how the underlying continuous instrument from CHV can be dis-

cretized into a binary variable, but note that the methods in this paper could also be used

with tuition recast as a discrete variable with a rich set of tuition levels. The Supplemental

Material reports the distribution of the underlying tuition variable, whose definition is

described further in CHV.

While VM is a natural assumption for the tuition and proximity instruments, a con-

ditional version of instrument validity is more plausible than Assumption 1. Following
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CHV, I assume:

{(Yi(1),Yi(0),Gi) ⊥ Zi} |Xi (2.8)

where Xi is a vector of observed covariates unaffected by treatment. Conditioning on Xi

can help control for unobserved heterogeneity that may be correlated with location during

teenage years. Appendix B.2 considers extensions of the basic identification and estima-

tion results to include such covariates. The main result of the Appendix is that while con-

ditional average treatment effects ∆c(x) := E[Yi(1)− Yi(0)|Ci = c,Xi = x] can be iden-

tified for each x in the support of Xi, the unconditional ∆c turns out to be simpler to es-

timate, particularly when the two conditional expectation functions E[Yi|Zi = z,Xi = x]

and E[Di|Zi = z,Xi = x] are additively separable between z and x. In this case, the

only change required to the estimator presented in Section 2.5 is to “control” semipara-

metrically for Xi in the linear projections of Yi and Di onto the instruments. In particular,

when

E[Yi|Zi = z,Xi = x] = y(z) +w(x) and E[Di|Zi = z,Xi = x] = d(z) + v(x)

for some functions y,w, d and v, then a causal parameter ∆c can be estimated as:

∆̂c =
∑z∈Z

(
∑S⊆{1...J},S 6=∅ λ̂SAS,z

)
ŷ(z)

∑z∈Z

(
∑S⊆{1...J},S 6=∅ λ̂SAS,z

)
d̂(z)

(2.9)

where the matrix A is defined in Corollary 2.1 to Theorem 2.1, the estimators λ̂S are as

given in Section 2.5, and ŷ(z) and d̂(z) are consistent estimators of the functions y(z) and

d(z). Note that as the vector Γi contains a full set of interactions between the binary instru-

ments, both y(z) and d(z) are automatically linear in Γi. If the functions w(x) and v(x) are

taken to also be linear in x, Equation 2.9 can be reduced to a simple generalization of the

estimator from Section 2.5: ∆̂c =
(
(0, λ̂′)(Γ′MXΓ)−1Γ′MXD

)−1
(0, λ̂′)(Γ′MXΓ)−1Γ′MXY

whereMX is a projection onto the orthogonal complement of the design matrix of Xi. I
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follow this strategy, computing standard errors by applying the delta method to the sys-

tem of regression equations (one each for Di and Yi, along with a regression on a constant

for each component of λ̂), allowing for heteroscedasticity and cross-correlation between

the equations.26

I follow CHV and use as control variables a student’s corrected Armed Forces Qual-

ification Test score, mother’s years of education, number of siblings, “permanent” local

earnings in county of residence at 17, mother’s years of education, number of siblings,

“permanent” unemployment in county of residence at 17, earnings in county of residence

in 1991, and unemployment in state of residence in 1991, along with an indicator for urban

residence at 17, and cohort dummies. The definition and construction of these variables

is described in CHV. Also following CHV, squares of the continuous control variables are

included in Xi, relaxing the assumption of strict linearity in each. The above variables

represent the union of variables that CHV use in their first stage and outcome equation,

with one exception: I drop years of experience in 1991 since it may itself be affected by

schooling, as MTW do as well in their empirical application. In the two instrument setup,

I also add to Xi the two “unused” instruments from CHV and their squares: long-run lo-

cal earnings in county of residence at 17 and long run permanent unemployment in state

of residence at 17.

2.6.2 Results from baseline setup with two instruments

The left panel of Table 2.5 reports a cross tabulation of the two instruments. As noted,

the observations are relatively evenly distributed across the four cells. The instruments

are positively correlated, with a Pearson correlation coefficient of about 0.13.

The right panel of Table 2.5 reports the conditional propensity score functionE[Di|Zi =

z,Xi = x] estimated as described above and averaged over the empirical distribution of

26Note that while Appendix B.3 Theorem B.1 provides a variance expression for ρ̂λ̂, this does not cover
the case with covariates, so I do not implement an estimator based upon it here. Also, as the distribution
of Zi is fairly well balanced across the four cells of Z , I do not implement the regularization procedure
proposed in Appendix B.3.
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Distribution of the instruments

Z2=“close”

Z1=“cheap”

0 1
0 469 401
1 361 516

Mean fitted propensity scores

Z2

Z1

far close
expensive 0.451 0.509
cheap 0.487 0.530

Table 2.5: Left: number of observations having each pair of values of the instruments,
with total sample size N = 1, 747. Right: fitted propensity scores estimated by linear
regression, evaluated at the sample mean of the Xi variables.

Xi (in practice, evaluated at the mean of Xi). This allows us to take the (expensive, far)

cell 45.1% as an estimate of the overall proportion of never-takers in the population, while

the share of never-takers is estimated to be 47.0%. The remaining roughly 8% of the pop-

ulation are generalized “compliers” consisting of the tuition (Z1), proximity (Z2), eager

and reluctant compliers. From the table we can also see that P (Di(expensive, close,x) >

Di(expensive, far,x)) ≈ 5.7%, and P (Di(cheap, far,x) > Di(expensive, far,x)) ≈ 3.6%.

Combining these figures and the response group definitions from Section 2.3, we see that

between 1.5% and 3.6% of the population are eager compliers, while no more than 2.1%

are reluctant compliers. Similarly, no more than 3.6% are tuition compliers, and between

2.1% and 5.7% are proximity compliers. Overall, the data are compatible with a roughly

even split between the four groups, but it is also possible that proximity compliers account

for more than half of all generalized compliers.

We now turn to treatment effect estimates. Figure 2.2 reports estimates of several of

the parameters introduced in Section 2.4, alongside fully-saturated 2SLS for comparison.

Consider first the all- compliers LATE (ACL): the point estimate of 0.14 indicates that

having attended a year of college increases 1991 wages of all compliers by roughly 14% on

average. This estimate is within the range of roughly−0.1 to 0.3 of the marginal treatment

effect (MTE) function estimated by CHV under the assumption of IAM, and is similar to

their point estimate of the average treatment on the treated under a parametric normal
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Figure 2.2: Estimates of various causal parameters identified under VM with two instru-
ments, alongside fully-saturated 2SLS for comparison. Bars indicate 95% confidence in-
tervals, and “Group Size” refers to the identified quantity P (Ci = 1) for each parameter

selection model. The 2SLS estimate from Figure 2.2 yields a similar value at 0.12. Note

that given the limited sample size none of the estimates are quite significant at even the

90% level. I thus focus discussion on the point estimates for the sake of illustration with

this important caveat.

The point estimates from the remaining rows in Figure 2.2 suggest that the ACL aggre-

gates over substantial heterogeneity in the population. For example, the distance SLATE

suggests that a year of college has no average effect on the wages of individuals who

move into treatment if and only if a college is nearby, given local affordability. Recall that

this group includes proximity compliers, eager compliers for whom college is expensive,

and reluctant compliers for whom it is cheap. On the other hand, the SLATE for tuition

is about three times as large as the ACL. These results are suggestive that the average

treatment effect among tuition compliers is larger than it is among proximity compliers,

however the sign of the difference is not identified.27 Note finally that the point estimates

27In the Supplemental Material I show in the J = 2 case that if ∆g and corresponding group size pg is
known for one group g ∈ Gc ex- ante, then the remaining three group specific treatment effects and group
sizes can be identified.

89



for SLATU and SLATT suggest that among the compliers averaged over by the ACL,

those who in fact go to college have greater treatment effects on average than those who

do not, which is consistent with some students selecting on the basis of their future gains.

2.6.3 Results with all four instruments

I now add the additional two instruments from CHV, to increase comparability and

emphasize the scalability of the proposed methods to multiple instruments.

Accordingly, we let Z3i indicate that local earnings in i’s county of residence at 17 is

below the sample median, and Z4i indicates that unemployment in i’s state of residence

at 17 is above the sample 25% percentile. This threshold is chosen as it yields a stronger

first stage as compared with the median. The two local labor market variables and their

squares are removed from the vector of controls Xi. Vector monotonicity implies that

the propensity score is component-wise monotonic in the four instruments, implying 32

linear inequalities among first stage coefficients. Although not reported here, t-statistics

are positive for all but six of these hypotheses, and none is rejected at the 10% level.

Figure 2.3: Estimates of various causal parameters identified under VM with all four in-
struments, alongside fully-saturated 2SLS for comparison. Bars indicate 95% confidence
intervals, and “Group Size” refers to the identified quantity P (Ci = 1) for each parameter.
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Table 2.3 shows that the ACL is not appreciably changed from the case with only two

instruments, and we again have that the tuition SLATE is much larger and the proxim-

ity SLATE close to zero. The SLATE for low local wages occupies an intermediate value,

while the SLATE for high unemployment is estimated to be negative (suggesting that

more schooling reduces wages), but with a much larger standard error. The unemploy-

ment SLATE is so imprecisely estimated in part because its corresponding complier group

is the smallest of the estimands considered: with just 2% of the population.

To compare these results more directly with CHV, recall that the marginal treatment

effect function (e.g. Heckman and Vytlacil 2005) is defined as

MTE(u,x) := E[Yi(1)− Yi(0)|Ui = u,Xi = x]

where Ui is a uniformly distributed heterogeneity parameter that can be thought of as

a proclivity against treatment in the selection model Di(z,x) = 1(P (z,x) ≥ Ui), with

P (z,x) := E[Di|Zi = z,Xi = x] the propensity score function. CHV estimate the MTE

function evaluated at the mean of x to decrease monotonically with u over the unit in-

terval. For each instrument Zj , call i a “j-responder” if Di(1,Z−j,i,Xi) > Di(0,Z−j,i,Xi).

In the context of a model in which both IAM and VM hold, the estimates in Figure 2.3

coupled with CHV would thus suggest that tuition responders tend to have the lowest

unobserved costs Ui, followed by wage responders, then proximity responders, and then

unemployment responders. However, while IAM effectively “flattens” variation in any

of the instruments into variation in the scalar parameter P (Zi,Xi), VM allows flows into

treatment to depend in an essential way on which instrument is manipulated when IAM

fails. The estimands in Figure 2.3 are directly relevant to hypothetical policies which vary

that instrument alone.

The results in Figure 2.3 can also be compared with estimates reported by Mogstad

et al. (2020b) that are calculated by 2SLS. While their empirical application focuses on the

interpretation of 2SLS under PM or VM, we have seen that in this particular setting 2SLS
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tends to yield numerical estimates that are close to the ACL. Similarly, the SLATEs for the

proximity and low local wage instruments in Figure 2.3 align roughly with 2SLS specifi-

cations in MTW in which a single instrument is excluded in the second stage. However

this similarity will not hold in all contexts, underlying the importance of methods such as

those presented in this paper or in Mogstad et al. (2020a). Appendix B.3 provides simu-

lates a data generating process for example in which 2SLS lies outside of the convex hull

of treatment effects in the population.

Finally, observe that in this four instrument setup, there are in principle 167 underlying

response groups aside from always- and never-takers, and that together these comprise

17.4% of the population (cf. 7.8% for the four such groups with two instruments). Nev-

ertheless, computing the treatment effect estimates involves regressions with at most 16

terms in addition to the controls, keeping implementation manageable. Note that while

the standard errors for the 2SLS estimate are only slightly smaller than for the ACL, this

is sufficient for significance at the 95% level even in this small sample. This in part re-

flects the fact 2SLS weighs across the groups to minimize variance rather than pin down

a specific target parameter.

2.7 Conclusion

In both observational and experimental settings, it is natural to expect individuals to

vary both in their treatment effects and in how they select into treatment. This latter

type of heterogeneity is likely to be particularly pronounced when a researcher is using

multiple instrumental variables for a single binary treatment. This paper has shown that

causal inference with heterogeneous treatment effects is possible in such settings under

a simple restriction on selection that is often motivated by economic theory: what I call

vector monotonicity.

In particular, I have defined and characterized a class of interpretable causal param-

eters that can be point identified under vector monotonicity with discrete instruments,
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and proposed an estimator that is similar in construction to the familiar method of two

stage least squares (2SLS). While the convenience of implementing the two estimators

scales similarly with the number of instruments, 2SLS is not guaranteed to recover an in-

terpretable causal parameter under vector monotonicity (though it may in special cases).

By contrast, the estimator I propose is always targets a particular well-defined causal pa-

rameter. In an application to the labor market returns to college education, I find that

estimates based on vector monotonicity suggest that underlying groups in the population

that exhibit different selection behavior also have highly heterogeneous treatment effects.
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Chapter 3: The Career Impact of First Jobs: Evidence and Labor Market

Design Lessons from Randomized Choice Sets

3.1 Introduction

An individual’s first job may have important consequences for her career trajectory.

This view—common among researchers—appears widely held also among those entering

the labor market. New job-seekers may therefore put weight on the expected impact of

different jobs on their trajectories when choosing a first job to pursue. Policy, on the other

hand—whether centralized mechanisms allocating doctors, teachers, and other groups of

workers serving the public to first jobs1, or the rules and regulations that influence ini-

tial worker-job matches in the decentralized labor market—is typically designed without

accounting for expected “first job effects” (FJEs).

If FJEs are non-negligible in magnitude and heterogeneous across types of workers,

then FJE-responsive policy design could in principle be used to increase welfare. How-

ever, even in such a scenario, whether alternative policies actually affect initial worker-job

matches—and hence realized FJEs—differentially is an empirical question. Unusual types

of data and variation are necessary for researchers to be able to identify FJEs and gradu-

ates’ and policymakers’ actual and ideal response. To estimate the causal, long-term effect

of an individual’s first job, random variation in her match, holding all else constant, is

needed. To estimate how individuals’ distribution of FJEs across jobs influence their job

search choices, causal estimates of the long-term effect of each type of job for each type of

1The following is an incomplete list of countries that use centralized mechanisms to assign workers in
some (in some of the countries, almost all) public service occupations to first jobs: Australia, Bangladesh,
Bhutan, Botswana, Canada, Denmark, France, Ghana, India, Iran, Ireland, Israel, Italy, Japan, Malaysia,
Malta, Nepal, Norway, Pakistan, Philipines, Saudi Arabia, Senegal, Singapore, South Africa, South Korea,
Taiwan, Tanzania, Uganda, U.K., USA.
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individual—and knowledge of individuals’ choice set when entering the labor market—

are needed.

In this paper we take advantage of Norway’s 1997-2013 allocation of doctors’ first

job—their residency—through a Random Serial Dictatorship (RSD) mechanism2, and the

replacement of the RSD with decentralized job-finding in 2013, to overcome these chal-

lenges. We first estimate the consequences for earnings, place of residence, and specializa-

tion in the long-term of each type of job characteristic separately for men and women. We

do this by exploiting RSD-generated random, individual level variation in new doctors’

choice sets over first jobs. In the last part of the paper, we use a 2013 policy change—which

replaced the the RSD system with a regular, decentralized job market for new doctors—to

assess how total worker welfare, initial worker-job matches, and the associated realized

FJEs, differ in a market system relative to RSD.

The unique suitability of doctors’ residencies in Norway for studying FJEs is due to

the combination of choice sets over jobs being assigned randomly, and the unusually high

quality of the registry data available on the universe of Norwegian workers. While our

quantitative results may not generalize to other occupations, it is worth noting that (i) the

differences between the possible pathways a doctor’s career can take share many features

with those in other occupations3, and (ii) the literature generally finds that highly skilled

workers are least affected by temporary career shocks (von Wachter and Bender, 2006;

Oreopoulos et al., 2012). Most likely our results thus represent a lower bound on FJEs and

the associated responses in other occupations.

This paper contributes to the literature on how temporary shocks to a worker’s em-

ployment status affects her career trajectory. Existing studies have convincingly and care-

2A Random Serial Dictatorship mechanism starts with a lottery. The person who draws number 1 then
chooses her preferred object freely among all available options. After that, the person who draws number 2
chooses among the remaining objects, and so on.

3For example, doctors’ jobs are located in many different parts of a country; there is considerable disper-
sion in employer size and "quality" (which is highly correlated with doctors’ earned income); and there are
ample opportunities for doctors to undertake horizontal specialization (choice of medical field) as well as
vertical specialization (e.g. becoming a specialist as opposed to a General Practitioner).
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fully documented the consequences of job displacement (see, among many others, von

Wachter and Bender, 2006; Sullivan and von Wachter, 2009; Bender et al., 2009; von

Wachter, 2020); exposure to high unemployment rates later in life (Coile et al., 2012); re-

gional labor demand composition (Arellano-Bover, 2020); and, most closely related to this

paper, graduating in a weak labor market (Oyer, 2006; Oyer, 2008; Genda et al., 2010;

Kahn, 2010; Heisz et al., 2012). These influential studies have shown how cohort and

group-level labor market shocks affect individual workers’ trajectories.

In addition to taking advantage of an explicit randomization for identification, this pa-

per to our knowledge provides among the first causal evidence on the career consequences

of individual level shocks to a graduate’s first job.4 The distinction is essential because co-

hort level studies may not be informative about the career consequences of individual

level labor market shocks, which are ubiquitous. When the cohort or group an individual

belongs to is hit, for example, by a recession or a mass layoff, then the individual’s peers

are also affected. Peers’ exposure to the shock could adversely affect the trajectory of the

individual in question (if for example she now faces more competition for current jobs)

or benefit her (if for example she’s now competing against less employable other workers

for future jobs).5

To leverage the RSD to estimate first job effects, we develop an instrumental variables

(IV) approach that explicitly allows for the effect of beginning one’s career at a given

employer to vary by individual. This setting extends beyond standard results in the treat-

ment effects literature, as a worker’s first job “treatment” is the identity of their first-job

employer. We thus contribute to a recent literature that extends IV research designs to

unordered, multivalued treatment variables (Lee2018a; Heckman and Pinto, 2018; Lee

4To our knowledge, the only existing causal evidence on the long-term effects of individual level shocks
to first jobs comes from Angrist (1990)’s seminal study of the Vietnam draft. He shows that being drafted
lowered earnings by 15 percent long after the veterans’ service ended (see also Angrist, 1998; Angrist
and Chen, 2011). Staiger, 2021 use job openings at the employer of young worker’s parents to generate
individual-level variation in early job opportunities.

5Ruhm, 2000 shows that mortality tends to improve during recessions, while Sullivan and Wachter, 2009
show that own job displacements increase mortality for U.S. workers.
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and Salanié, 2020). Furthermore, relative to recent work that has used other centralized

assignment mechanisms for causal inference (Abdulkadiroğlu et al., 2017; Kirkeboen et

al., 2017), we do not observe workers preference orderings over outcomes of the match-

ing mechanism. We show that first job effects can still be partially identified, by making

use of the observation that variation in mean outcomes across choice sets is informative

about heterogeneity in the counterfactual outcomes for a given employer across workers

of different unobserved preference types. This builds upon a recent linear programming

approach to IV analysis (Mogstad et al., 2018; Kamat, 2020), as well as a recent literature

on causal inference with a collection of distinct instrumental variables (Mogstad et al.,

2020a; Goff, 2020).

With estimates of FJEs in hand, our final contribution is to assess the impact of the 2013

reform to a decentralized labor market on the welfare of workers. To do so, we decompose

preferences over employers into a component that is due to first job effects and another

that is due to the “amenity value” workers of a given type associate with employers of

a given type,6. This leverages lottery draws as a reduced form measure of preferences,

coupled with a high-level assumption on the distribution of preferences in the lottery. We

show how realized first job effects, amenity values, and overall worker welfare differ, for

each group and in total, in a decentralized labor market compared to the RSD system, by

examing how wib by examining how worker-employer matches changed after 2013.

The paper is organized as follows. In Section 3.2 we discuss background on the setting

and institutional setup. In Section 3.3 we present the datasets used in our empirical anal-

ysis. In Section 3.4 we lay out our instrumental variables strategy to estimating first job

effects, and present results in Section 3.5. Section 3.6 then applies these results to inves-

tigate worker preferences and evaluate the reform to a decentralized labor market from

those workers’ perspective.

6This paper is of course not the first to recognize that workers care about non-income job characteris-
tics and may choose occupations and employers partly based on those preferences. Recently, for example,
Sorkin (2018) showed evidence of compensating differentials revealed in workers’ job-to-job transitions in
the U.S.
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3.2 Setting

3.2.1 The Random Serial Dictatorship mechanism for Norwegian doctors

The “turnus” (roster) system that was used to match medical graduates with residency

positions in Norway from 1954 to 2013 was a Random Serial Dictatorship (RSD) mecha-

nism. Theorists have shown that, among other important properties, the RSD is incentive-

compatible, inducing participants to reveal their true preferences (Abdulkadiroğlu and

Sönmez, 1998).

Equitable access to primary healthcare across regions was the main motivation behind

the use of a lottery system in Norway. Like other countries, Norway had had trouble

filling doctor vacancies in rural areas, and the RSD mechanism was expected to distribute

the best doctors more equally across space.7 In addition, the mechanism appealed to

policymakers because it was perceived to be fair to the participating medical graduates.8

First, graduating students would enter a lottery, either in February or in August, and

be assigned a random draw number. Next, the student with the lowest draw number

would choose freely between all available positions. Then, the student with the sec-

ond lowest draw number would choose from the remaining residency positions. This

would continue until the student with the highest draw number remained, who would

take whichever spot was available.9

Three categories of new doctors received special treatment: couples, who were allowed

to draw a shared lottery draw number and to choose residencies simultaneously; doctors

with children; and doctors with maternity or health issues. The latter two categories were

allowed to choose between positions deemed especially suitable for them before the lot-

7Such considerations have been studied in the context of the US National Medical Residency Matching
Program, see e.g. (e.g. Roth, 1984; Roth, 1986).

8The government also wished to incentivize doctors to work in rural locations in other ways. For in-
stance, doctors who agreed to intern at hospitals in the largely rural counties of Sogn og Fjordande and
Finnmark could skip the lottery entirely.

9If the number of students exceeded the number of residency positions, the unassigned students would
get priority in the next lottery.
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tery took place. Since these three types of doctors were not subject to randomization via

the lottery, we exclude them from our analysis.

In the late 2000s, the system began to concern the government, because of the growth of

the number of applicants and the rise in proportion of students from foreign universities.10

The number of medical graduates participating in the lottery would routinely exceed the

number of training positions available. As a result, it became increasingly difficult for the

government to guarantee a six-month maximum waiting time to obtain a residency. In

2013, the Norwegian Health Minister replaced the lottery system with direct qualification

after six years of medical school. Medical graduates now apply to residencies directly, as

in a regular labor market, and hospital trusts are responsible for selection and recruitment.

3.2.2 Doctors in Norway 1993-2017

This section profiles doctors that worked in Norway during the study period; we go

through the data we use in detail in Section 3.3. Medical students in Norway begin their

studies in the Fall or Spring semester, and usually take ten semesters to graduate. Starting

in the 1950s, the Norwegian government mandated an eighteen month residency period,

after which medical school graduates could become fully licensed physicians and practice

independently. The first twelve months were to be spent at a hospital, while the remaining

six months were to be spent as a General Practitioner (i.e. one who works in Primary Care)

within the same county.11

Table C.1 summarizes a range of socioeconomic information on doctors including age,

proportion born abroad, proportion that studied abroad, family size, field of specializa-

tion and income and assets. The last two columns summarize this information separately

for men and women. Women comprise over 40 percent of doctors, and tend to be over-

represented in fields like gynecology and psychiatry. Male doctors are older and tend to

10Norway was compelled by its participation in the EU common labor market system to accept any Eu-
ropean medical graduate who could pass a Norwegian language test into the system.

11The last six months could be spent at an institution that was disjoint from the hospital of the first twelve
months.
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be over-represented in fields like surgery and internal medicine. A fifth of all doctors were

born abroad, of which an overwhelming proportion are citizens of Denmark and Sweden.

Finally, recorded income, asset and debt holdings are higher on average for male doctors.

There are 30 basic medical specialties, and specialization is usually in the form of train-

ing on the job.12 The average length of time required to complete a specialty is five years,

but it can take longer with large variations between the specialties. Figure C.4 indicates

that there appear to be substantial returns to specializing—job retention rates are higher

for specialists, and the salary bump from specialization increases with age.

3.2.3 Hospitals in Norway 1993-2017

The employer-employee database contains information on all registered employers

that employ doctors in Norway.13 Figure C.5 depicts the steady growth in both the num-

ber of hospitals and average hospital size (number of doctors employed) since 1995.

Hospitals vary across multiple dimensions. Table C.1 summarizes information on

salaries, geographical remoteness, number of doctors and other medical staff, proportion

of specialists, as well as the presence of fifteen distinct specialist fields. Most hospitals

in Norway are located in urban municipalities; on average, municipalities with hospitals

have only 10 per cent of their population living in rural areas. This is noteworthy because

the average municipality in Norway had 49 percent of its population living in rural areas.

3.3 Data

We combine information on lottery outcomes with Norwegian administrative data

from 1993 to 2017. We obtained information on lottery draw numbers for all lottery

participants who were assigned a residency position during 1993-2013 from the Norwe-

gian Registration Authority for Health Personnel (SAFH). This information was linked

12The Norwegian Medical Association evaluates whether the candidate has met the requirements to be-
come a specialist. Specialist titles are formally awarded by the Health Directorate.

13We define hospitals as employers that hire at least 10 doctors. These account for around 80 per cent of
doctor employment.
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with the employer-employee registry to match medical graduates to their residency hos-

pitals, as well as employer information in the years following the residency. This data

was then linked to administrative registers provided by Statistics Norway, a rich longitu-

dinal database that includes information on medical graduates’ socioeconomic informa-

tion (sex, age, marital status, educational attainment, specialization, income, and gross

wealth), geographical identifiers and year-end asset holdings and liabilities (such as real

estate, stock holdings, etc) for each year. These data have several valuable attributes.

There is no attrition from the sample, and most components of income and wealth are

third-party reported without any top or bottom coding.

The final dataset tracks the career path of each graduate, starting with her lottery num-

ber and choice of residency hospital. After excluding people belonging to special lottery

categories and hospitals with missing information, we end up with a sample of about 9000

individuals and 55 hospitals, which participate in 34 lotteries from 1996 to 2012.14 Figure

C.6 displays the number of individuals and hospitals that participated in each lottery. Fig-

ure C.7 splits participants by gender and by birth location. It is evident that there is an

increase in the proportion of women and foreign students over time. Most foreign doctors

are citizens of the European Economic Area (EEA).

We observe employment outcomes for all doctors up until the year 2017. This allows

us to track doctors who graduated in the earliest lotteries (during the 1990s) for over

fifteen years, while participants in the last few lotteries (in the 2010s) can only be tracked

for a few years. Data from the 2013-2017 period is used to analyze the last cohorts in

the lottery system, as well as to observe hospital matches after the 2013 reform. Figure

C.8 displays the distribution of the number of times doctors are observed in the years

following their residencies. Our sample consists of roughly 4500 individuals five years

after their residency, but less than a quarter of these are observed 10 years down the line.

We construct the choice set of hospitals faced by each lottery participant using her lot-

14Data is missing for the lottery in January 1998.
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tery number and the residency hospitals chosen in that lottery. We know that if a hospital

h was chosen by someone with a higher (worse) lottery number than individual i, i must

have been given the option of choosing h as well (since hospitals cannot reject applicants).

Assuming that no residency spots were left unfilled,15 we can thus impute the choice sets

Ci that were offered to each lottery participant. Most medical graduates have a sizable

number of residency options to choose from, as displayed in Figure C.8.

3.4 Identification of first job effects

In this section we describe how we use these RSD-generated choice sets to generate

instruments for a doctor’s residency hospital. To abstract somewhat from our specific

context, we will typically refer to “workers” choosing a first-job “employer”, rather than

“doctors” choosing a residency “hospital”.

The basic intuition behind our approach is that randomization of the RSD lottery en-

sures that each worker’s choice set is is independent of her observable and unobservable

characteristics. At the same time, this choice set affects that worker’s realized first-job,

which is constrained to be within the randomly assigned choice set. This allows us to use

the RSD lottery to construct instruments for first job effects (FJEs) that are both exogenous

and relevant.

We work in three steps. First, we show in subsection 3.4.2 that FJEs are identified in

the RSD without any substantive assumptions on workers’ selection behavior—but that

this strategy requires conditions on the support of the data that do not hold in our context.

We then show in subsection 3.4.3 that FJEs can be identified under weaker conditions on

the support of the data—but that this strategy requires strong assumptions on workers’

selection patterns. This culminates in subsection 3.4.4, which simultaneously relaxes both

assumptions at the expense of yielding bounds rather than a point identification result.

15This assumption is reasonable, in part because excess demand was one of the reasons for replacing the
turnus system after 2013.
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3.4.0 Notation

We begin by establishing some notation that will be used throughout this section. Let

h denote employers,H the set of all employers, and i workers in population I. Let Yi(h, c)

be the potential outcome (e.g. earnings four years later) of worker i if their first job is at

employer h, and their choice set from the lottery was c. We assume that choice sets do not

effect outcomes except through a doctor’s first job employer, that is: Yi(h, c) = Yi(h) for

all i ∈ I, h ∈ H, and c ⊆ H. Since choice sets play the role of instruments, this constitutes

the standard IV exclusion restriction in our context.

Let Ci ⊆ H be a worker’s realized choice set, and Hi their realized choice from Ci. Let

n be the number of workers and J = |H| the number of employers. Let Li ∈ {1 . . . 34}

be an identifier for the lottery among the 34 between 1996 and 2013 in which worker i

was allocated their first job. LetRi ∈ {1, 2, . . . } denote worker i’s random place-in-line in

their lottery, and let Ri = FR|L=Li(Ri) be this lottery draw normalized to the unit interval

within each lottery.

We will assume that each worker has a complete preference relation over hospitals,

and is indifferent between no two hospitals. We denote by h �i h′ if i prefers h to h′,

and let �i alone denote i’s entire preference relation over H. For any choice set c ⊆ H

denote the most-preferred h ∈ c according to � as H�(c), and write Hi(c) = H�i(c) for

shorthand. Note that θi is isomorphic to the vector {Hi(c)}c⊆H. Similarly, let Yi be defined

in isomorphism with the vector {Yi(h)}h∈H.

We will often treat �i and Ci as random variables, although a realization of each is a

set and a relation on a set, respectively. However, in light of the isomorphism mentioned

above, we can view each preference relation�i as element of Z2J , with integers indicating

the index of Hi(c) for each c ⊆ H. Similarly, we can also view any choice set Ci as an

element of {0, 1}×J , with each component indicating the presence or absence of a hospital

h ∈ H.
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3.4.1 Exogeneity of choice sets

The randomization of each lottery ensures that Ri is independent of potential out-

comes Yi(h, c), conditional on lottery Li (we will sometimes use the term “cohort” inter-

changeably). However, with a finite number of workers participating in the lottery, it does

not immediately follow that a worker i’s probability distribution over possible choice sets

Ci is perfectly independent of her characteristics.16 Rather, any two workers having the

same preferences � will receive a Ci drawn from the same probability distribution within

a cohort (Abdulkadiroğlu et al. 2017). Thus choice sets are independent of potential out-

comes, conditional on preferences (and lottery). Since preferences are unobserved in our

data, we cannot directly control for them.

Let us partition the population of workers into a set of groups g ∈ G on the basis

of observable demographic variables Gi. These groups will play a central role in our

analysis, allowing us to examine observable heterogeneity in first-job effects. We will

assume that after conditioning on instance of the lottery and a value of g, choice-sets are

as good as randomly assigned:

Assumption 3.1 (independence of choice sets).

{(Yi,�i) ⊥ Ci} | (Gi,Li)

One instance in which Assumption 1 would follow directly from randomization of the

lottery is if preferences were perfectly homogeneous within each value of g, e.g. all

Norwegian men have the same ranking over employers.17 In this case, Assumption 3.1

echoes Proposition 1 of Abdulkadiroğlu et al. (2017) and first-job effects could be assessed

16 To see this, consider a small economy in which there are two workers and two employers, each with
one spot available. Worker 1 prefers employer A to B, and Worker 2 prefers B to A. Worker A then has a
50% chance of having Ci = {A,B} (if she goes first in the lottery), and a 50% chance of having Ci = {A} (if
B chooses first). By contrast, Worker B has a 50% chance of having Ci = {A,B} and a 50% chance of having
Ci = {B}. The probability distribution over choice sets facing worker i depends on the preferences of each
worker except for i.

17We can formalize randomization of the lottery as the statement that {Ri ⊥ (Yi,�i,Gi)}|Li.
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without the use of instrumental variables. Indeed, such preference homogeneity along

with Assumption would imply that conditional on Gi, a worker’s actual choice of first-

job Hi is exogenous, since then �i has a degenerate distribution conditional on Gi and

Hi = H�i(Ci).

However, we will not maintain the strong assumption that available observable prox-

ies are sufficient to control for unobserved preferences�i. Rather, we offer a second justifi-

cation for Assumption 3.1. When the number of workers is “large” in comparison with the

number of employers, independence will hold approximately even when there is hetero-

geneity in preferences within groups. As described formally in Appendix C.2, the actual

set of n workers is viewed as a sample from an underlying continuum of workers, with

each employer accounting for a fixed proportion of the available jobs. In this “continuum

economy”, choice sets are random unconditionally. The IV estimators we use are then con-

sistent along an asymptotic sequence in which n→∞with the share of jobs belonging to

each employer fixed. In Appendix C.2 we provide evidence that this asymptotic approxi-

mation is a good one in our context, by simulating the lottery many times with a number

of workers and employers chosen to match our dataset, and plausible heterogeneity in

preferences.

3.4.2 Choice sets as instruments

As a parameter of interest, we are interested in the quantity

µgh := E[Yi(h)|Gi = g]

for an individual employer h and demographic group g. The parameter µgh is the average

counterfactual outcome that would occur for a worker in group g if their first job were at

employer h, and µgh′ − µgh is the average effect of “moving” workers in g from employer

h to employer h′. Note that µgh generally differs from the observable E[Yi|Hi = h,Gi =

g] = E[Yi(h)|Hi = h,Gi = g], which unlike µgh further conditions on the worker’s en-
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dogenous choice of employer h. Given that randomization of choice sets holds only when

conditioning on lottery Li = `, we also define a lottery-specific analog of µgh that will be

useful as an intermediate quantity:

µgh` := E[Yi(h)|Gi = g,Li = `]

With Assumption 3.1 in hand, we seek to use features of a worker’s choice set Ci to

construct instruments for the causal effect µgh of her first job. Assuming that a worker will

always choose some employer from their choice-set, we can in principle identify first job

effects µgh without placing any further restrictions on selection. The following Proposition

is a consequence of Theorem 1 in (Goff, 2020); however it admits of a very simple proof

that we present here.

Proposition 3.1 (impractical identification). Make Assumption 3.1. If for a given h, `: P (Ci =

{h}|Gi = g,Li = `) > 0, then

µgh` = E[Yi|Ci = {h},Gi = g,Li = `]

provided that ∀i, Hi({h}) 6= ∅.

Proof. Given thatHi ∈ Ci andHi = Hi(Ci) 6= ∅, we must haveHi = hwheneverCi = {h},

so: E[Yi|Ci = {h},Gi = g] = E[Yi(h)|Ci = {h},Gi = g] = µgh, where the last equality

follows from Assumption 3.1.

Proposition 3.1 shows that if there is some probability that each singleton {h} emerges

as a worker’s choice set, then the µgh are identified. This requires us to assume that the

worker will choose each h over no employer (all hospitals are preferred to the relevant

outside option), but requires no other assumptions on workers’ choices. For instance, it

does not require us to assume that worker’s choose rationally, according to well-defined

preferences.
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In practice however, the event Ci = {h} is unlikely to occur for popular employers

h, and even for an unpopular h it will only occur at most for the last few workers in a

given lottery. As a result, Proposition 3.1 is not directly useful in estimation. In the next

section, we thus consider a more practical route to identification under a restriction on

heterogeneity, before returning to the general case in a partial identification framework in

Section 3.4.4.

3.4.3 Identification with a restriction on treatment effect heterogeneity

The discussion of the last section has shown that first job effects µhg are identified

even with complete heterogeneity of treatment effects, provided that there is a positive

probability that some workers will face a choice-set containing only the single employer

h. In practice, this result is not immediately useful given our moderately sized sample.

To make estimation tractable, we first impose the following restriction on treatment

effect heterogeneity (cf. Kolesar 2015):

Assumption 3.2 (limited selection on gains). For any h0,h1,h, c, g, the quantity:

E[Yi(h1)− Yi(h0)|Hi = h,Ci = c,Gi = g,Li = `]

depends only on h1, h0, and g.

Assumption 3.2 states that for any pair of employers h0 and h1, the contrast Yi(h1)−Yi(h0)

is not correlated with actual employer choice Hi within a group and lottery. This rules out

selection on unobserved heterogeneity in gains within group and choice set—what Heck-

man et al. (2006) call essential heterogeneity. Assumption 3.2 also requires that treatment

effects are not correlated with lottery/cohort, however this can be relaxed. However, As-

sumption 3.2 is strictly weaker than assuming treatment effects are homogenous within

each group. It still allows sorting on levels, that is that workers choosing Hi = h have a

different average value of Yi(h) than those who do not.
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To see this, it is illustrative to write potential outcomes in the two-way-fixed-effects

form:

Yi(h) = αi + βGih + uih (3.1)

where αi := Yi(h0) with h0 a fixed reference employer, βgh := E[Yi(h)− Yi(h0)|Gi = g]

and uih := {Yi(h)− Yi(h0)} −E[Yi(h)− Yi(h0)|Gi]. Assumption 3.2 implies that idiosyn-

cratic gains uih are (conditionally) mean independent of first-job choice: E[uih|Hi,Gi =

g,Li = `] = 0, but not that Hi is in any way uncorrelated with the “worker-effects” αi.18

To operationalize the use of choice sets of instruments, it will be convenient to rep-

resent a choice set as a vector of indicators Zhi for the presence of each employer h in

Ci, where Zhi = 1(h ∈ Ci). A realization of Ci is equivalent to a realization of the full

vector Zi := (Z1i,Z2i . . . ZJi)
′, for some arbitrary ordering of the employers. Similarly,

let Di be a vector of Dhi := 1(Hi = h) across all employers h. Again, the random vec-

tor Di encodes exactly the same information as Hi. For any group g and lottery `, let

Σgl = E[ZiD′i|Gi = g,Li = `].

Assumption 3.3 (relevance). Σgl has full rank for each g ∈ G and ` ∈ L.

Assumption 3.3 imposes the standard IV relevance condition that the J instruments have

independent predictive power for the J treatments h ∈ H, and that this holds within each

(g, `) cell.

For any group g, collect the µgh over all the employers into a vector µg. Proposition 3.2

shows that the assumptions given are sufficient to identify this full set of first job effects

for each group:

Proposition 3.2 (identification of FJEs). Make Assumptions 3.1, 3.2 and 3.3. Then for each

g ∈ G and any `:

µg = Σ−1
gl E[ZiYi|Gi = g,Li = `]

18Note that E[uih|Hi, g, `] = 0 is not sufficient for identification given observations of (Y ,H) alone, on
account of the unobserved αi. Unlike “AKM” settings in which the αi can be differenced out by workers
moving between firms (cf. Abowd et al. 1999), a worker by definition has only one actual first-job Hi,
yielding the single cross-section of observed earnings: Yi = αi + βGiHi + ui where ui := uiHi .
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Proof. See Appendix C.4.

Note that based on Proposition 3.2, the vector µg is in fact over-identified: in principle

it can be estimated using the data from any single cohort `. Indeed, the implication of

Assumption 3.2 that treatment effects Yi(h) − Yi(h0) are mean independent of Li could

be relaxed to identify FJEs that vary by cohort. However, in practice, it is desirable to

pool across lotteries given our limited sample size. The proof of Proposition 3.2 shows

that µg can be estimated from a sample that pools across Li but conditions on Gi = g by

two stage least squares (2SLS) with the inclusion of cohort fixed effects, which pick up

E[Yi(h0)|Gi = g,Li = `] across the lotteries `.

3.4.4 Partial identification with essential heterogeneity

While the results of the last section yield a straightforward route to identification of

FJEs based on random choice set variation, the required assumption that workers do not

sort into first jobs on the basis of their idiosyncratic FJE’s is restrictive. For instance, when

the outcome variable is earnings, it is incompatible with a Roy-type selection model in

which there are worker × employer match effects and workers choose in part on the basis

of earnings. Or, if the outcome of interest is mobility after residency, we must believe that

workers are not more likely to move away from their residency locations if they ended up

in a location that they preferred less during the lottery.

To accommodate violations of Assumption 3.2—essential heterogeneity—we develop a

partial identification approach based upon the observation that the instruments provide a

system of moment conditions that are linear in the FJEs µgh. This builds upon an existing

literature that maps IV identification into a linear programming problem (Mogstad et al.

2018; Kamat 2020).

Let Dhi(c) be an indicator for whether worker i would choose first-job employer h

given choice set c, i.e. Dhi(c) = 1(Hi(c) = h), and recall the notation ofDhi as an indicator

for i actually choosing h, i.e. Dhi = Dhi(Ci). Note that Dhi(c) only depends on i through
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i’s preference relation �i, and we may instead index the function D by � rather than i.

For ease of notation let Xi = (Gi,Li) be a vector composed of demographic group g and

lottery `. For any h and z, consider the observable quantity E[YiDhi|Ci = c,Xi = x].

By the law of iterated expectations and Assumption 3.1:

E[YiDhi|Ci = c,Xi = x] = ∑
�
P�|x ·E[YiDhi| �i=�,Ci = c,Xi = x]

= ∑
�
P�|x ·E[Yi(h)Dh�(c)| �i=�,Ci = c,Xi = x]

= ∑
�
Dh�(c) · {P�|x · µ�h|x} (3.2)

where P�|x := P (�i=� |Xi = x) and µ�h|x := E[Yi(h)| �i=�,Xi = x] is the aver-

age counterfactual outcome that would occur for a worker with preference relation �

if their first job were at employer h. The above expression reveals that the observable

E[YiDhi|Ci = c,Xi = x] identifies a linear combination of the µ�h|x over all preferences �

under which h is the best choice for the fixed choice set c. Note that a linear combination

of the P�|x alone with the same weights is also identified by removing Yi from Eq. (3.2):

E[Dhi|Ci = c,Xi = x] = ∑
�
Dh�(c) · P�|x (3.3)

As an example, consider an instance of the lottery in which there three choice sets

occur: {1, 2, 3} {1, 2} and {1}, and we are interested in the FJE of h = 2. The coefficients

in the system of linear equations (3.2) or (3.3) can be summarized by Table 3.1. In this

�i
1 � 2 � 3 1 � 3 � 2 2 � 1 � 3 2 � 3 � 1 3 � 1 � 2 3 � 2 � 1

{1, 2, 3} 0 0 1 1 0 0
Ci {1, 2} 0 0 1 1 0 1
{1} 0 0 0 0 0 0

Bh
� {1} {1, 3} ∅ ∅ {1, 3} {3}

Table 3.1: Example response matrix Dhi(c) with three employers and one lottery.

example J := |H| = 3, and the 6 columns of Table 3.1 represent the J ! distinct preference
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orderings over employers. The first three rows represent the three choice sets observed in

the lottery, where first employer 3 becomes unavailable, then employer 2, and for workers

with the lowest lottery numbers only employer 1 remains. The entries {0, 1} indicate the

value of Dh�(c) for each row and column pair, forming what Heckman and Pinto (2018)

call the response matrix of the model.

The last row of Table 3.1 summarizes the set of employers that are preferred to h ac-

cording to the preference relation � for that column, which we denote as Bh
� := {h′ ∈

H : h′ � h}. Note that any two columns sharing a value of Bh
� have an identical response

Dh�(c) for all choice sets c. This is because the event that a worker with preferences �

chooses h only depends on whether h is their most-preferred employer in c, and not what

the relative ordering is between the other available employers c/h. In particular, i will

choose h if and only if h ∈ c and their “better-than-h” set Bh
i := Bh

�i does not intersect the

choice set c, i.e. Dhi(c) = 1(h ∈ c and Bh
i ∩ c = ∅).

We can thus coarsen the columns of Table 3.1 to combine all preferences � that share a

value of Bh
�, by rewriting Equation (3.2) as:

E[YiDhi|Ci = c,Xi = x] = ∑
B⊆H/h

1(h ∈ c and B ∩ c = ∅) · {PBh|x · µBh|x} (3.4)

where PBh|x := P (Bh
i = B|Xi = x) = ∑�:Bh�=B

P�|x and µBh|x = ∑�:Bh�=B
P�|x · µ�|x.

Equation (3.3) can be similarly rewritten as a summation over the Bh rather than �.

Bh
i

∅ {1} {3} {1, 3}
{1, 2, 3} 1 0 0 0

Ci {1, 2} 1 0 1 0
{1} 0 0 0 0

jh`i 1 0 2 0

Table 3.2: Response matrix from Table 3.1 written in terms of better-than-h sets Bh
i ; h = 2.
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The value of moving from a summation over preferences to a summation over better-than-

h sets Bh is that rather than a system of J ! unknowns P�|x · µ�h|x for each x we now have

a system in 2J−1 unknowns PB|x · µBh|x for each x. In the example of Tables 3.1 and 3.2

this only reduces the number of columns from 3! = 6 to 22 = 4; however the gain quickly

becomes dramatic for J > 3.

Note that there is still redundancy in the columns of Table 3.2: workers who prefer only

employer 1 to employer 2 have the same response as workers who prefer both employers

1 and 3 to employer 2, for all choice sets c ∈ supp{Ci}. This is because the choice sets

supp{Ci} have a nesting property arising from the sequential nature of the RSD: once an

employer’s position has been filled, it never re-enters the choice sets of doctors choosing

later in the lottery. This leads to a close connection with Heckman and Pinto (2018), who

generalize the notion of “monotonicity” from Angrist and Imbens, 1994 to treatments that

take on multiple unordered values.

To appreciate this connection, we introduce some further notation. For a given instance

` of the lottery, label the choice sets as C1` ⊃ C2` ⊃ · · · ⊃ CJ`,`, where J` is the number of

employers in lottery `. Let Jh` be the last set along this sequence that contains employer

h. Selection behavior Dhi(c) towards employer h within a single lottery ` can now be

characterized by just Jh` + 1 distinct groups. The reason is that if Dhi(Cj`) = 1 then it

must be that Dhi(Cj′`) = 1 for all j ≤ j′ ≤ jh` (if h is chosen from a larger set, it must

be chosen from any smaller subset that still contains h). Thus we can infer Dhi(c) for all

c ∈ supp{Ci|Li = `} from the lowest value of j such that Dhi(Cj`) = 1: call this Jh`i . If

alternatively Dhi(CJh`
, `) = 0, i.e. i does not choose h even in the smallest choice set in

which it appears, then we can call i an “h-never-taker” in lottery `, and write jh`i = 0. The

final row in Table 3.2 lists the value of jh`i = 0 corresponding to each Bh
i . Note that while

there are 22 = 4 better-than-h sets in this example, there are just Jh` + 1 = 3 distinct values

of jh`i .

The analysis from the preceding paragraph reveals that within each lottery `, selec-
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tion behavior satisfies what Heckman and Pinto, 2018 call unordered monotonicity: for each

h ∈ H, there exists an ordering on the points in c ∈ supp{Ci|Li = `} such that Dhi(c) is

weakly increasing along that order.19 Heckman and Pinto, 2018 provide point identifica-

tion results under unordered monotonicity with discrete instruments: in particular their

results imply that

E[Yi(h)|i is not an h-never-taker,Xi = x] (3.5)

is point identified.20 In particular, it is equal to
E[YiDhi|Ci=Cjh

`
,`,Xi=x]−E[YiDhi|Ci=C1,`,Xi=x]

E[Dhi|Ci=Cjh
`

,`,Xi=x]−E[Dhi|Ci=C1,`,Xi=x]
,

where ` is the lottery indicator appearing in Xi = x. Indeed, it is also easily shown that

the mean of Yi(h) can be further disaggregated within each of the jh` individual complier

groups (that occur with positive probability), by considering adjacent values of j in the

above ratio.

However parameter (3.5) is by itself not sufficient to identify µgh, as it does not capture

Yi(h) among workers who would never choose h from any choice set present in their

lottery. The proportion of such h-never-takers within a given (`,h) pair can be quite large,

leading to wide bounds even if we assume E[Yi(h)|i is an h-never-taker,Xi = x] belongs

to some bounded set [Y L,Y U ].

By contrast, the approach of Table 3.2 based on better-than-h sets keeps the jthi = 0

group disaggregated into those workers with different better-than-h sets—{1} and {1, 3}

in the example—in a way that is consistent across different lotteries ` (unlike the un-

ordered monotonicity approach, in which the meaning of the jthi groups depend on lot-

tery). This allows us to combine the identifying information of Equation (3.4) across mul-

tiple lotteries, that have different sequences of choice sets. In the following example, for

19When viewed across all possible choice-sets c ⊆ H, Dhi(c) is increasing according to a partial order
on the c, which depends on h. In particular Dhi(c) ≥ Dhi(c

′) whenever c/h ⊆ c′/h and h ∈ c if h ∈ c′.
This generalizes the notions of “partial” and “vector” monotonicity analyzed by (Goff, 2020; Mogstad et al.,
2020a) to the unordered-treatment case.

20Lee and Salanié (2020) also consider identification under unordered monotonicity with discrete instru-
ments. They introduce the concept of particular instrument values targeting particular treatments h in such a
setting. In their language, we can say that our choice sets C1` to Cjh` ,` strictly target employer h (interpreting
the event h /∈ Ci as endowing h with so low a utility to worker i that they would never choose it).
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instance, employer 4 offers jobs only in lottery ` = 2, and the order in which vacancies are

filled differs in the two years:

Ci Bh
i

∅ {1} {3} {4} {1, 3} {1, 4} {3, 4} {1, 3, 4}
{1, 2, 3} 1 0 0 1 0 0 0 0

` = 1 {1, 2} 1 0 1 1 0 0 1 0
{1} 0 0 0 0 0 0 0 0

jh,1
i 1 0 2 1 0 2 1 0

{1, 2, 3, 4} 1 0 0 0 0 0 0 0

` = 2 {2, 3, 4} 1 1 0 0 0 0 0 0
{2, 3} 1 1 0 0 0 1 0 0
{2} 1 1 1 0 1 1 1 1

jh,2
i 1 2 4 0 4 3 4 4

Table 3.3: Response matrix across two lotteries, withH = {1, 2, 3, 4} and h = 2.

To make efficient use of our data spanning multiple lotteries, we assume that both first

job effects and group sizes are stable across lotteries:

Assumption 3.4 (stability). Neither µBh|x nor PBh|x depends on the ` component of x (for all

h ∈ H, B ⊆ H and g ∈ G)

Note that Assumption 3.4 does not nest Assumption 3.2, which only requires FJE differ-

ences to be stable over lotteries.21 Assumption 3.4 implies that we can write FJEs and

group sizes for a given better-than-h set introduced earlier (µgh|x and PBh|x) simply as

µB|g and PB|g, depending only on demographic group g and not on lottery `.

With Assumption 3.4 in mind, we now turn to the formal identification analysis. We

also make explicit the assumption that workers’ choices are made rationally:

21Recall that we include lottery fixed effects in the strategy from Section 3.4.3 to absorb the dependence
of E[Yi(h0)|Gi = g,Li = `] on `). On the other hand, Assumption 3.4 allows selection on gains, so nei-
ther Assumption 3.4 nor Assumption 3.2 nest each other, but emphasize different relaxations of identifying
assumptions.
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Assumption 3.5 (rationality). Each worker i has a preference relation �i over H without indif-

ferences, such that Hi(c) = {h ∈ H : h �i h′, ∀h′ ∈ H,h′ 6= h}

Note that Assumption 3.5 ensures that the better-than-h sets Bh
i are always well-defined.

We return to a discussion of Assumption 3.5 below.

Recall that our parameters of interest are the µgh = E[Yi(h)|Gi = g] for each h and g,

and note that under Assumption 3.4 this can be written as

µgh = ∑
B⊆H/h

QBh|g

where we defineQBh|g := PBh|g ·µBh|g. Note thatQBh|g is precisely the quantity appearing

in the summand of each of the linear restrictions (3.4), with the known coefficients 1(h ∈

c and B ∩ c = ∅). Thus our identification problem involves a linear optimization problem

over the QBh|g, involving a set of linear constraints on them. Proposition 3.3 below makes

this precise.

Before stating the result, we introduce one final assumption: that the µBh|g are uni-

formly bounded by known constants Y L and Y U :

Assumption 3.6 (boundedness). Y L ≤ µBh|g ≤ Y H (for all h ∈ H, g ∈ G, B ⊆ H/h)

Assumption 3.6 is useful because the data will give no direct information about µBh|g for

a given B if P (Hi = h|Bh
i = B,Gi = g) = 0.22 Thus, depending on the support of the

choice sets Ci, even partial identification of µgh may require such a auxiliary assumptions,

with boundedness being the simplest example. Note that a simple sufficient condition for

Assumption 3.6 is that Y L ≤ Yi(h) ≤ Y H for all doctors i and employers h, that is the

bounds hold individually rather than on average.

22In particular, this is most likely to happen for B = H/h, for which a doctor will only choose h if their
choice set consists only of h. Ci = {h} does in fact occur in the example of Table 3.3, and thus every column
of the table has at least one entry of 1.
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Since QBh|g = PBh|g · µBh|g, Assumption 3.6 implies that:

Y LPBh|g −QBh|g ≤ 0 and Y UPBh|g −QBh|g ≥ 0 for each B ⊆ H/h (3.6)

Fix a g and h. Letting Q be a vector of the QBh|g across all B ⊆ H/h, and similarly P for

the PBh|g, we denote byM the set of all (Q, P) pairs such that (3.6) holds and that:

∑
B⊆H/h

PBh|g = 1 and PBh|g ≥ 0 for each B ⊆ H/h (3.7)

We may now characterize the identified set of µgh as an optimization problem overM:

Proposition 3.3. Under Assumptions 3.1,3.4, 3.5 and 3.6, µgh ∈ [θLgh, θUgh], where

θLgh := min
(Q,P)∈M

∑
B⊆H/h

QBh|g and θUgh := max
(Q,P)∈M

∑
B⊆H/h

QBh|g

subject to the following restrictions:

∑
B⊆H/h

1(h ∈ c and B ∩ c = ∅) ·QBh|g = E[YiDhi|Ci = c,Gi = g,Li = `] (3.8)

∑
B⊆H/h

1(h ∈ c and B ∩ c = ∅) · PBh|g = E[Dhi|Ci = c,Gi = g,Li = `] (3.9)

for each ` ∈ L and c ∈ supp{Ci|Li = `}.

Comparison with Mogstad et al. (2018) and Kamat (2020):

Proposition 3.3 is closely related to recent results in Mogstad et al. (2018) and Kamat

(2020), who also express IV estimands of solutions to a linear programming problem.

Mogstad et al. (2018) develops an approach to identi fying treatment effect parameters

that depend on marginal counterfactual means of the form E[Yi(d)|Ui = u], in the clas-

sic LATE setting in which a binary treatment is driven by a separable threshold crossing

model: Di(z) = 1(p(z) ≥ Ui). In their case, the latent groups correspond to the values
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of Ui, which is uniformly distributed on the unit interval. This avoids the need for a dis-

tinction between the vectors Q and P, which must be both optimized over in our setting,

since the analog of PBh|g for the is simply a uniform measure on [0, 1].

Similar to us, Kamat (2020) also optimizes over latent group probabilities jointly with

outcomes. However, they make use of a discrete outcome variable to optimize directly

over the full joint distribution of potential outcomes and potential treatments. This keeps

the constraints and objective functions linear in parameters without a need to introducethe

final set of inequality constraints (3.6). They also consider a richer class of parameters of

interest, taking the form ∑B⊆H/hwB ·QBh|g/ ∑B⊆H/hwB · PBh|g. This introduces a non-

linear objective function, which they handle by introducing an additional variable and

re-paramaterizing the problem.

Remark: Note that point identification obtains in Proposition 3.3 if ∑H/hQBh|g = (1, 1, . . . , 1)′Q

can take on just a single value subject to restrictions (3.8), (3.9) and (Q, P) ∈M. This holds

for example whenever the vector (1, 1, . . . , 1)′ lies in the column space of the response ma-

trix depicted in Tables 3.2 and 3.3, describing the coefficients appearing in expansion (3.8).

This yields an alternative way to understand the point identification result of Proposition

3.1; whenever P (Ci = {h}|Gi = g) > 0, the rows corresponding to this choice set in the

response matrix are composed of all ones.

Estimation and Inference:

Given our finite sample of data {(Yi,Hi,Ci,Gi,Li)}i=1...n, the endpoints of the identi-

fed set Θgh = [θLgh, θUgh] could be consistently estimated by solving the linear program of

Proposition 3.3 upon replacing the expectations appearing in (3.8) and (3.9) with their fi-

nite sample analogs En, e.g. En[Yi] = 1
n ∑n

i=1 Yi. Note however that the resulting interval

estimate Θ̂gh = [θ̂Lgh, θ̂Ugh] may be empty even if the the model is correctly specified. For

example, in the data we sometimes observe cases where En[Dhi|Ci = c,Gi = g,Li = `] >
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En[Dhi|Ci = c′,Gi = g,Li = `] where c′ is a strict subset of c (and both of which contain

h). On its face, this appears to be evidence against the joint hypothesis of choice-set inde-

pendence (Assumption 3.1) and utility maximization on the part of workers. However, it

is also not at all unlikely when the events (Ci = c ∩ Li = `) and (Ci = c′ ∩ Li = `) have

only a few observations each, as is often the case in our data.

For the above reason, we solve a relaxation of the linear programs in Proposition 3.3

to obtain point estimates for θLgh and θUgh, which also forms the basis for our approach to

constructing confidence intervals for the underlying parameter µgh. Firstly, we pool data

across lotteries `, replacing moments like En[Dhi|Ci = c,Gi = g,Li = `] by En[Dhi|Ci =

c,Gi = g], and similarly for the moments of YiDhi. This is justified under Assumption 3.4,

which implies by (3.4) and the law of iterated expectations that:23

E[YiDhi|Ci = c,Gi = g] = ∑
B⊆H/h

1(h ∈ c and B ∩ c = ∅) · {PBh|g · µBh|g} (3.10)

An analogous expression holds for Eq. (3.3) with the lottery conditioning removed.

Secondly, we do not require the moment conditions to be satisfied exactly in sample.

Define the quantities:

sYhcg =

(
∑

B⊆H/h
1(h ∈ c and B ∩ c = ∅) ·QBh|g −En[YiDhi|Ci = c,Gi = g]

)
(3.11)

sDhcg =

(
∑

B⊆H/h
1(h ∈ c and B ∩ c = ∅) · PBh|g −En[Dhi|Ci = c,Gi = g]

)
(3.12)

which measure the deviation of a given (Q, P) pair from the identifying restrictions (3.8)

and (3.9). Let s be a vector of all of the sVhcg over V ∈ {Y ,D}, c and g. Similarly to Mogstad

et al. (2018), we consider the smallest deviation s attainable, in an L1 norm-sense. In

23Note that (3.10) is the same expression we would arrive at after assuming choice-sets exogeneity without
conditioning on lottery. However Assumption 3.4 coupled with Assumption 3.1 as stated is still slightly
weaker, as it e.g. only requires that the response-group specific conditional means of Yi(h)–rather than their
full distributions–do not depend on Li.
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particular, let

Tn := min
(Q,P)∈M

s

(
∑̀
∈L

∑
B⊆H/h

∑
V ∈{Y ,D}

aVhcg ·
∣∣∣sVhcg∣∣∣

)

subject to (3.11) and (3.12) for each c ∈ supp{Ci|Li = `} and ` ∈ L, and where we in-

troduce a set of positive scaling coefficients a. We set the scaling coefficients as aDhcg =√
ncg/V arn(Dhi|Gi = g) and aYhcg =

√
ncg/V arn(YiDhi|Gi = g), where ncg is the number

of observations for which Ci = c and Gi = g.24

Given Tn, now estimate θLgh as

θ̂Lgh := min
(Q,P)∈M

s

∑
B⊆H/h

QBh|g s.t.

(
∑̀
∈L

∑
B⊆H/h

∑
V ∈{Y ,D}

aVhcg ·
∣∣∣sVhcg∣∣∣

)
≤ Tn + κn

(3.13)

Equation (3.13) finds the smallest value of µgh among the (Q, P) that are “closest” to sat-

isfying the identifying restrictions (3.8) and (3.9) in finite sample. The tuning parameter

κn broadens the notion of “closest” such (Q, P), and must converge to zero with n for

consistency. We report estimates with κn = 0 and κn = Tn/10. The estimate θ̂Ugh is defined

analogously to Eq. (3.13) but with the min operator replaced by a max.

Although the absolute value function is not linear, the objective function defining Tn

can be reformulated by adding an additional variable for each component of s and repa-

rameterizing the problem slightly. In particular, one can replace each instance of s by

p− n, and add constraints a ≥ 0, b ≥ 0 to the problem. The simplex algorithm (standard

for solving linear programs) will then ensure that these correspond to positive and neg-

ative parts of s: p = max(s, 0) and n = max(−s, 0), with respect to which the absolute

value of s is the linear function |s| = p+ n. We use this strategy to compute θ̂Lgh using the

mixed integer linear programming package lpSolveAPI in R, for each g,h first computing

Tn and then evaluating Eq. (3.13).

24The goal of this choice is to normalize the sampling variance of each sVhcg to unity. However, we cannot
divide by the conditional sample variance specific to each choice set, because Dhi has no variation within
some choice sets in which h appears (since no employees in fact choose h). Thus, V arn(Dhi|Ci = c,Gi = g)
and V arn(YiDhi|Ci = c,Gi = g) would be zero.
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Let us now turn to building confidence intervals for the parameter µgh. To test the null

hypothesis that H0 : θ = θ0 against the alternative H1 : θ 6= θ0 for a generic value θ0 ∈ R

we use a test statistic that augments Tn to enforce the null hypothesis, i.e.

Tn(θ0) := min
(Q,P)∈M

s

(
∑̀
∈L

∑
B⊆H/h

∑
V ∈{Y ,D}

aVhcg ·
∣∣∣sVhcg∣∣∣

)
s.t. ∑

B⊆H/h
QBh|g = θ0

(3.14)

and restrictions (3.11) and (3.12) for each c ∈ supp{Ci|Li = `} and ` ∈ L. The statistic

Tn(θ0) can be interpreted as measuring the minimum weighted deviation from constraints

(3.8) and (3.9) that is necessary for a (Q, P) pair to deliver that value of θ0.

We construct confidence intervals by comparing Tn(θ0) to a critical value and collecting

those values for which we fail to reject, i.e. Cn = {θ ∈ R : Tn(θ0} ≤ ĉ}, where ĉ is a critical

value estimated from the data. In particular, construct a collection of {T ∗bn(θ0)}b=1...B by

non-parametric bootstrap, and compute ĉ as the 1−α quantile of the T ∗bn(θ0) for α = 0.05.

Each T ∗bn(θ0) replaces the moments in (3.11) and (3.12) with bootstrap analogues E∗b and

re-centers with respect to the “full-sample” estimates, for example:

s∗Dbhcg` = ∑
B⊆H/h

1(h ∈ c and B ∩ c = ∅) · (PBh|g − P 0
BH|g)

− (E∗l [Dhi|Ci = c,Gi = g,Li = `]−En[Dhi|Ci = c,Gi = g,Li = `])

where P 0
BH|g denotes the optimizer from (3.14), and s∗Ybhcg` is defined analogously. We re-

peat this entire exercise over a grid of θ0 between the values Y L and Y U from Assumption

3.6, and report the maximum and mininum value along that grid for which we fail to

reject.

This approach to inference is close to that of Kamat, 2020, who uses a quadratic objec-

tive function of the form s′Ω−1s = ||Ω−1/2s||2 rather than ||Ω−1/2s||1, where in our case

Ω−1/2 is a diagonal matrix defined by the a coefficients. We use the L1 norm in order

to keep all quantities computable by linear-programming algorithms, which are faster to
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solve than quadratic programs (computational limitations loom large for us, as we discuss

in the next section). Kamat, 2020 also uses subsampling rather than bootstrap to compute

the critical values ĉ, on the basis of results from Kalouptsidi et al., 2020. We choose boot-

strap to avoid the need to choose the subset size, which represents an additional tuning

parameter. Our setting is also related to methods that treat inference under partial identi-

fication in moment equality/inequality models (Chernozhukov et al., 2007; Andrews and

Soares, 2010; Chernozhukov et al., 2013), as well as specification tests for random utility

models (Kitamura and Stoye, 2018; Smeulders et al., 2021).

Implementation:

In implementing the above methods in our data, we face very real constraints on com-

putational tractability (as well as statistical power). Workers choose among 55 employ-

ers in our final sample, with a typical lottery including most of these employers. With

|H| = 55, the vectors Q and P would each contain about 2× 10−16 entries, which is clearly

infeasible from a computational standpoint.25

For this reason, we group the employers (hospitals) into a manageable categories, and

ignore the distinction between hospitals within a category. We define the categories on

the basis of employers’ overall desirability, as evidenced by the average lottery number

Ri among workers who choose it in the RSD, across the study period (recall that Ri is

normalized to the unit interval within each lottery). We find that |H| = 10 is about the

largest linear program the software will support, yielding roughly 8000 parameters to

be optimized over. However for ease of interpretation, we for now use just four cate-

gories. Categories 1-3 are defined by terciles of the distribution of r̄h across hospitals,

where r̄h := En[Ri|Hi = h]. To have a well-defined reference group, we for Category

4 use the hospitals in the remote counties of Finnmark and Sogn og Fjordane, the most

25Assuming one byte for each entry, simply storing the constraint matrix for the linear program requires
about 2 gigabytes for |H| = 20, 2 terabytes for |H| = 30, 2 petabyes for |H| = 40, and so on.
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remote regions of northern and western Norway.26 Table 3.4 reports some observable

characteristics of the categories: for example the lower category numbers tend to be larger

and more urban.

Grouping the employers together in this way embodies a substantive assumption: to

make use of the methods of this section we must be willing to assume that workers are in-

different between hospitals within a single category.27 A failure of this assumption could

explain deviations from the model of the type we previously attributed to sampling vari-

ation: e.g. workers being more likely to choose a Category 2 hospital when Ci = {1, 2, 3}

than when Ci = {2, 3}.28 One could explore alternative data-driven ways to define the

categories: for example to minimize a statistic like Tn over such choices. An alternative

approach may be retain the full set of |H| = 55 employers but find some efficient way

select among the 254 columns of the response matrix depicted in Table 3.2.29 Indeed, only

1, 802 distinct choice sets Ci ever occur across the study period, a tiny fraction of those

that are conceptually possible. As a result, the column rank of the response matrix can

at most be 1, 802, which is within our maximum manageable number of columns from a

computational standpoint.

3.5 Results

This section presents estimates of first job effects obtained by the methods presented

in Section 3.4. Throughout, we let the “employers” h correspond to the four Categories

26First jobs at employers in these regions are very unappealing to most graduates. Because of this, the
government in some years introduced special incentives for residents in Finnmark and Sogn og Fjordane.
Despite this, the large majority of candidates that chose employers in these regions drew very high (poor)
lottery numbers and therefore had unappealing choice sets. Hospitals in these regions are excluded from
the definition of Categories 1-3.

27This distinguishes our categories from the related notion of a filtered treatment introduced by Lee and
Salanié (2020). In the latter case, agents select according to their preferences over a fine set of treatment
states, and the researcher observes only coarsened categories of that choice.

28Since the order at which hospitals are removed from the available set via the RSD may change year
to year, this could happen if doctors tend to prefer the best Category 3 hospitals to the worst Category
2 hospitals, and the best Category 2 hospitals tend to be gone from the RSD before the last hospitals in
Category 1 are.

29A related idea is pursued in Smeulders et al., 2021.
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of hospitals defined above. The first four columns of Table 3.4 report some characteristics

of these groups. For simplicity, we also focus throughout this section on just two demo-

graphic groups g of workers: male and female.

3.5.1 Results of the point-identification approach with limited selection on gains

Recall that Proposition 3.2 shows that FJEs are point identified under an assumption

of no selection on unobserved gains. The final column of Table 3.4 presents estimates

based on this result, where the outcome Yi is chosen to represent earned income four years

after a doctor’s residency (five years after graduation). The gap of four years chosen to

maximize the number of workers that can be included, but later drafts will consider FJEs

across various time horizons. To increase power, we first report FJEs that furthermore do

not condition on gender, i.e. unconditional counterfactual meansE[Yi(h)] rather than µgh.

Differences in E[Yi(h)] across residency hospitals h reveal that the location of one’s

residency affects their earnings after they’ve moved on to their post-residency position. We

estimate that, relative to Category 4 employers, a first job in the most-in-demand employer

category raises annual earnings five years post-graduation by about $28,000, in 2020. The

corresponding estimates for categories 3 and 2 are $38,000 and (an insignificant) $16,000.

Category Avg. Draw # Hospitals Avg. Emp. Proportion Urban Earnings FJE diff.

1 0.17 17 1634 0.82 28.21*
(14.64)

2 0.44 17 1457 0.65 16.03
(13.00)

3 0.73 16 453 0.50 37.70**
(18.99)

4 0.89 5 502 0.20 -

Table 3.4: FJEs measure the impact of a first job in each category on earnings 5 years post-
graduation, in thousands of 2020 USD. First stage F-statistics for Category 1, 2, and 3 are
322.65, 327.44, and 102.40. N = 9, 049. Robust standard errors in parentheses. *** p<0.01
** p<0.05 * p<0.10.

However, statistical significance of the differences µgh − µg4 disappears when we esti-

mate FJEs µgh = E[Yi(h)|Gi = g] separately by gender. However the point estimates re-
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veal an annual earnings gap five years out of at least $20, 000 between men and women—

about 13%—across first employers. Appendix Figure C.9 plots the µgh against average

realized earnings E[Yi|Hi = h,Gi = g], as a rough indication of the extent of the endo-

geneity that the IV approach is correcting for. See also Table 3.8 of Section 3.6 for the point

estimates.

3.5.2 Results of the general partial identification approach

We now turn to the partial identification approach from Section 3.4.4 that relaxes the

assumption of no selection on gains within gender g. Continuing with the earnings out-

come variable, Table 3.5 reports estimates of the identified set [θLgh, θUgh] and confidence

intervals for µgh. We set Y L at 10 thousand dollars in 2020 USD, and Y U at $300, 000

(about 2% of the sample is outside of this range in either direction). For all of our outcome

variables, the 95% confidence interval Cn takes a grid of 20 values of θ0 across the range

[Y L,Y U ], and uses 200 bootstrap replications.

g h [θ̂Lgh, θ̂Ugh] Cn
(category) κn = 0 κn = 10% (95% CI)

W
om

en

1 152.49 152.49 129.71 157.91 61.58 190.53
2 90.93 90.93 89.06 96.31 61.58 138.95
3 133.31 133.31 130.71 134.12 35.79 164.74
4 146.47 146.47 133.35 158.06 - -

M
en

1 187.64 187.64 151.65 192.78 61.58 216.32
2 201.10 201.10 85.10 216.76 - -
3 148.61 148.61 132.98 151.38 61.58 216.32
4 116.71 116.71 110.79 119.26 35.79 190.53

Table 3.5: First job effects µgh = E[Yi(h)|Gi = g] for earned income four years post resi-
dency, in thousands of 2020 USD. Average earnings across the sample are about $150, 000.
Table reports estimates of the identified set [θLgh, θUgh] and 95% confidence intervals for
µgh.(“-” indicates that Cn = ∅).

As Table 3.5 shows, the κn = 0 point estimates of θLgh and θUgh in all cases suggest

point identification, i.e. θ̂Lgh = θ̂Lgh. However, this point identification is “spurious”, as
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there can be a unique (Q, P) that minimizes the sample statistic Tn even when there is

no unique (Q, P) setting it to zero in the population. We thus treat the slightly “nudged”

estimates with κn = Tn/10 as preferred. Recall that these seek the largest and smallest

values of µgh compatible with a Tn within 10% of of its minimum value. Overall, the

results suggest that Category 1 hospitals cause doctors’ earnings to be highest, especially

for women. Note that confidence intervals are missing for women in Category 4 and for

men in Category 2. In these cases, the null hypothesis not accepted for any θ0 between

Y L and YU . This suggests that the model is rejected in these cases, and warrants further

investigation. In the other cases, the confidence intervals are also quite wide, so we focus

subsequent attention on the point estimates with κn = Tn/10 in this section.

In Table 3.6, the outcome variable Yi is whether a doctor ever specializes during their

career (Appendix Table C.3 reports results for the number of specializations). This outcome

variable is bounded by definition, where Y L = 0 and Y U = 1. The results suggest that

working at a Category 4 hospital causes the greatest rates of specialization.

g h [θ̂Lgh, θ̂Ugh] Cn
(category) κn = 0 κn = 10% (95% CI)

W
om

en

1 0.50 0.50 0.49 0.64 0.21 1.00
2 0.50 0.50 0.50 0.56 0.26 1.00
3 0.63 0.63 0.62 0.64 0.37 1.00
4 0.71 0.73 0.71 0.86 0.11 1.00

M
en

1 0.58 0.58 0.50 0.68 0.21 1.00
2 0.50 0.50 0.49 0.66 0.21 1.00
3 0.83 0.83 0.83 0.87 0.26 1.00
4 1.00 1.00 1.00 1.00 0.16 1.00

Table 3.6: First job effects µgh = E[Yi(h)|Gi = g] for whether doctor ever specializes
during their career. Overall, about 55% of doctors specialize. Table reports estimates of
the identified set [θLgh, θUgh] and 95% confidence intervals for µgh.

Table 3.7 takes the outcome of interest to be whether the doctor ever moves municipali-

ties, starting with their residency year. Looking at the preferred estimates (κn = Tn/10 col-

umn), µgh is increasing in Category number for both men and women. This is as expected,

125



since lower Category numbers correspond to hospitals that tend to be more sought-after,

and thus doctors are more likely to want to stay there longer term.

g h [θ̂Lgh, θ̂Ugh] Cn
(category) κn = 0 κn = 10% (95% CI)

W
om

en
1 0.07 0.07 0.07 0.13 0.05 0.74
2 0.17 0.17 0.17 0.20 0.05 1.00
3 0.14 0.14 0.14 0.16 0.05 1.00
4 0.16 0.16 0.16 0.25 0.05 1.00

M
en

1 0.33 0.33 0.33 0.38 0.05 1.00
2 0.33 0.33 0.33 0.44 0.05 1.00
3 0.46 0.51 0.36 0.58 0.05 1.00
4 0.50 0.50 0.50 0.55 0.05 1.00

Table 3.7: First job effects µgh = E[Yi(h)|Gi = g] for whether doctor ever changes mu-
nicipalities after residency. About 13% of doctors in fact move, across the sample. Table
reports estimates of the identified set [θLgh, θUgh] and 95% confidence intervals for µgh.

3.6 Using the FJEs to assess the consequences of decentralization

The last section has presented estimates of first job effects on earnings—among other

outcomes variables–based on data from the era in which residencies were allocated by the

random serial dictatorship mechanism. We now combine these estimates with data from

after the replacement of the RSD with a decentralized labor market in 2013, to understand

this reform from the perspective of workers.

Recall that in the RSD era, choice sets were allocated to workers independently of

their preferences and potential outcomes. In the market era by contrast, the opportuni-

ties available to a worker are likely to be highly correlated with her unobserved ability

and preferences. Thus, the reform may have affected average outcomes within each de-

mographic group, by changing the distribution of choice sets the workers in that group

face and hence their actual employer matches. Given that we observe the distribution

of demographic group ×employer matches in both periods, we can calculate the implied

welfare changes across groups given a suitable measure of welfare.
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We do this by assuming a particular aggregate relationship in the RSD period between

a worker’s indirect utility at her chosen employer and her lottery number. Given our

FJE estimates from the last section, we further decompose this utility into an earnings

component and an “amenity” component, allowing us to track changes in both across the

reform. To keep the analysis simple, we use FJE estimates based on the point-identification

approach from Section 3.4.3, again focusing on the four employer categories described in

Section 3.4.4.

3.6.1 Estimating first-job amenity values

The first step of our approach is to define an average “amenity” value for each em-

ployer category h. To this end, we take preferences of workers defined over the employer

categories h to have the form:

Ui(h) = µGih +AGih + ηhi (3.15)

where µgh is the first job effect of category h for group g,Agh captures the average “amenity”

value of employer category h, and E[ηhi|Gi = g] = 0 for each h and g.30 The term

µgh + Agh represents a systematic component of utility for employer h among members

of group g, while ηhi captures variation in utility arising from individual heterogeneity

in preferences. This specification allows “typical” preferences to differ flexibly between

genders through the AGih, and higher moments of ηih beyond the mean may also depend

upon Gi (e.g. if men or women have greater variability in preferences).

The form of Equation (3.15) embodies three substantive assumptions. The first is that

preferences can be defined at the level of employer categories rather than individual em-

ployers, which we require for reasons of statistical power in estimation of µg. The second

30Equation 3.15 can be obtained from a general additive-in-FJEs form: Ui(h) = µGih + εih with some
generic εih if we define Agh = E[εhi|Gi = g] and ηhi := εih −AGih. Note that Equation (3.15) also nests
the canonical conditional logit model (McFadden, 1974), when ηih = λ · (uih −E[uih]) with uih distributed
across h as independent extreme value random variables for all i, and λ a scale parameter.

127



is quasi-linearity in these first-job-effects, which allows us to separate amenities addi-

tively from FJEs. Finally, we take workers to anticipate the mean earnings within their

group at a given employer, rather than knowing what their exact outcome will be, so that

µGih = E[Yi(h)|Gi] appears in utility rather than Yi(h) itself. This is consistent with As-

sumption 3.2, while ηih can still be correlated with Yi(h) (thus creating endogeneity in

FJEs). Both Agh and the distribution of η are taken to be static over the years in which the

RSD system was in place.

While the quasi-linearity assumption pins down a unique scale for utility (such that it

is measured in dollars), we are also free to fix a location normalization for each i. For an

arbitrary fixed employer category h0, we may define Ui(h0) = 0 for all i. This yields the

following interpretation for amenities at any other employer: Agh is the average amount

in excess of their expected earnings µgh at h that workers in group g would be willing to

pay to move from h0 to h. If group g tends to prefer h to h0 and would be willing to give

up part of their earnings to stay at h, then Agh ∈ [−µgh, 0]. In practice, we choose h0 to

represent Category 4, the hospitals in Finnmark and Sogn og Fjordane.

Let vgh := µgh + Agh denote the total systematic component of utility. Define rgh :=

E[Ri|Hi = h,Gi = g], where recall that Ri is worker i’s random lottery number draw,

normalized to the unit interval within each lottery. We make the following assumption:

Assumption 3.7. rgh = αg − β · vgh for some β > 0 and αg.

Assumption 3.7 formalizes, in a specific way, the intuition that the average lottery number

among workers choosing employer h is a proxy for their aggregate preference vgh for that

employer. If two employers share a value of rgh (for some g), but differ in their FJEs µgh,

then the difference in amenities at the two employers must offset this difference. This

intuition supports assuming that rgh = φg(vgh, ·) for some decreasing, possibly non-linear

function φg that itself depends on all of the other vhg, the distribution of (ηih,Gi), and

the number of slots available for each h in each run of the lottery. But even parametric

assumptions on the ηhi (such as the logit model) do not appear to readily imply reduced-
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form expressions for φg. Assumption 3.7 reflects the simplest functional form assumption

that can reasonably fit the data.31

Our goal is to use Assumption 3.7 along with the estimated FJE’s and observable rgh to

pin down the αg and β, and hence the amenities Agh. Given the four employer categories,

two demographic groups, and utility normalization that implies Agh0 = −µgh0 for each g,

Assumption 3.7 involves 9 unknowns (six Agh, two αg, and β), from 8 equations. Thus,

one more restriction is needed for identification. Figure 3.1 plots the estimated µgh against

the rgh, which we use to motivate an eighth restriction.

Observe that Assumption 3.7 implies that for any employer category h 6= h0, we can

net out the αg and β parameters to write:

∆rfh
∆rmh

=
∆Afh + ∆µfh
∆Amh + ∆µmh

(3.16)

where for any quantity X , ∆Xhg denotes the difference between employer categories h

and h0: ∆Xgh := Xgh−Xgh0 . Comparing categories 1 and 4 in Figure 3.1, we observe that

both ∆rg1 and ∆µg1 are nearly identical across genders g ∈ {f ,m}. By Equation (3.16),

this suggests that ∆Am1 ≈ ∆Af1, regardless of the values of β and αg.32 We thus assume

that ∆Am1 = ∆Af1 exactly as a reasonable ninth equation, allowing us to point identify

all parameters. Intuitively, this restriction says that men and women exhibit the same

willingness to pay—in excess of the earnings difference—for the mostly large, urban em-

ployers in Category 1, compared with the smaller, rural employers in Category 4. Given

αg and β we can extract each amenity value Agh, as described in the caption of Figure 3.1.

31In particular, the group-specific intercept αg allows us to reconcile the data with reasonable values of β;
although women have significantly lower FJEs for all h, they tend to have similar rgh to men. This is natural:
in the limit of a constant earnings gap µmh = µfh + δ and no differences in amenities across genders, we
would expect that rfh = rmh, which requires αm = αf + βδ. We note however that linearity in Assumption
3.7 can only hold as an approximation for some range of vgh, since Ri only has support on the unit interval.
In practice, our rgh range between 0.34 and 0.75.

32In principle, ∆Am1 and ∆Af1 could still be arbitrarily far apart, but the values of the parameters in
Assumption 3.7 required to sustain such differences then imply unreasonable values of ∆Ag1. We calculated
the ∆Am1 implied by Equation (3.16) as a function of ∆Af1 for ∆Af1 ∈ [$10, 000, $200, 000]. The maximum
relative difference (∆Am1 − ∆Af1)/∆Af1 is about 2.5% (which occurs for the smallest ∆Af1 in that range).
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Figure 3.1: Employer amenity values, based on earnings first job effects (thousands 2020
USD) and the average lottery number at which each employer is chosen. The line for each
demographic group g yields the systematic component of utility µgh + Agh, indicating
worker’s average willingness to pay to move from Category 4, as a function of average
lottery number. Amenities Agh are weakly negative for all categories (with magnitudes
depicted by vertical dotted lines), reflecting that workers would give up only part of their
income to stay at their employer rather than Catgeory 4.

3.6.2 The effects of decentralization

Estimates of amenities Agh now allow us to construct the systematic component of

utility at each employer µgh +Agh for each group h (in dollar terms), in turn allowing us

to approximate average welfare given the new distribution of workers over employers in

the post-reform period. And given that we know µgh and Agh separately, we can decom-

pose this change into changes in earnings and changes in the amenity value of realized

employer matches.

Specifically, let Pgh := P (Hi = h|Gi = g) be the match probability for group g at

employer h, in the pre-reform period, and let P̃gh be the corresponding probability in the
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post-reform period. The change in total welfare for group g can be calculated as

∑
h

(Pgh − P̃gh)(µgh +Agh)

and this change can further be decomposed as a change in earnings ∑h(Pgh − P̃gh) · µgh
and an amenity value ∑h(Pgh − P̃gh) · Agh. In addition to assuming first job effects µgh

and average amenity values Agh are stable over time, these calculations consider welfare

as captured by these systematic components of utility only. Table 3.8 reports the results.

Distribution of Workers (%)

Employer FJEs Amenity Pre-Reform (RSD) Post-Reform
Category By Gender Values Women Men Women Men

1 W: 145.07 W: -68.55 33.89 33.43 36.89 39.22
M: 170.71 M: -94.87

2 W: 126.38 W: -81.11 37.85 35.38 37.62 34.05
M: 174.83 M: -128.38

3 W: 150.61 W: -131.41 22.49 24.50 19.31 20.94
M: 182.04 M: -165.59

4 W: 122.89 W: -122.89 5.77 6.70 6.18 5.79
M: 149.22 M: -149.22

Average Predicted Earnings (5 Years Out) 137.96 173.50 137.74 173.24
Average Post-Reform Difference -0.22 -0.26

Average Predicted Amenity Values -90.57 -127.69 -88.77 -124.24
Average Post-Reform Difference 1.80 3.45

Total Change in Welfare (Per Worker) 1.58 3.19

Workers 9,049 9,049 4,855 4,194 1,781 1,122

Table 3.8: FJEs measure earnings five year post graduation (four years post residency).
Earnings and amenity values in thousands of 2020 USD. Pre/post-reform total welfareg =
∑h prob(h|g)(µgh +Agh) where prob(h|g) = columns 6-7/8-9.

The second column of Table 3.8 reports the earnings FJEs µgh (also plotted in Figure 3.1)

while the third column reports amenitie values Agh. Amenities fall in the range [−µgh, 0],
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indicating that workers would give up some fraction of the earnings at their chosen em-

ployer to remain there instead of moving to Category 4. The Agh are generally increas-

ing (decreasing in magnitude) in category popularity while earnings FJEs exhibit a flatter

trend. Workers’ combined surplus falls at nearly identical rates between men and women

as a function of average lottery draw.

Overall, both men and women lose with regards to earnings FJEs, while gaining—to a

greater extent—in employer amenities, with the post-reform distribution of workers over

employers. The net effect of the decentralized labor market on worker welfare is positive

but not large, representing about 4.71% of the pre-reform average of vgh. Men gain more

than women in employer amenities. We conclude that, in the setting we study, first jobs

affect workers’ long-run career trajectories; they do so differentially for men and women;

and “market design” policy can affect the aggregate realized effects of workers’ first jobs.
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Appendix A: Supplements to Chapter 1

A.1 Identification in a generalized bunching design

This section develops the formal results used in the paper. While the FLSA will provide

a running example throughout, I largely abstract from the overtime context to emphasize

the wide applicability of the results. To facilitate comparison with the existing literature on

bunching at kinks – which has mostly considered cross-sectional data – I throughout this

section suppress time indices and use the single index i to refer to each unit of observation

(a paycheck in the overtime case).

Further, the “running variable” of the bunching design is denoted throughout this

section by Y rather than h. This is done to emphasize the link to the treatment effects

literature, while allowing a distinction that can is in some cases necessary (e.g. a model

where hours of pay for work differ from actual hours of work).

A.1.1 A generalized bunching-design model

Consider decision-makers i who choose a point (z, x) in some space X ⊆ Rd+1 where

z is a scalar and x a vector of d components, subject to a constraint of the form:

z ≥ max{B0i(x),B1i(x)} (A.1)

We require that B0i(x) and B1i(x) are continuous and weakly convex functions of the

vector x, and that there exist continuous scalar functions yi(x) and a scalar k such that:

B0i(x) > B1i(x) whenever yi(x) < k and B0i(x) < B1i(x) whenever yi(x) > k
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The value k is taken to be common to all units i, and is assumed to be known by the

researcher.1 In the overtime setting, yi(x) represents the hours of work for which a worker

is paid in a given week, and k = 40. Let Xi be i’s realized outcome of x, and Yi = yi(Xi).

I assume that Yi is observed by the econometrician, but not that Xi is.

In a typical example, the functions B0i, B1i will represent a schedule of some kind of

“cost” as a function of the choice vector x, with two regimes of costs that are separated by

the condition yi(x) = k, characterizing the locus of points at which the two cost functions

cross. Let Bki(x) := max{B0i(x),B1i(x)}. Budget constraints like Eq. z ≥ Bki(x) are

typically “kinked” because while the function Bki(x) is continuous, it will generally be

non-differentiable at the x for which yi(x) = k.2 While the functions B0, B1 and y can all

depend on i, I will often suppress this dependency for clarity of notation.

In the most common cases from the literature, x is assumed to be the scalar yi(x) = x,

i.e. there is no distinction between the “kink variable” y and underlying choice variables

x. For example, the seminal bunching design papers Saez (2010) and Chetty et al. (2011)

considered progressive taxation with z being tax liability (or credits), both y = x corre-

sponding to taxable income, and B0 and B1 linear tax functions on either side of a thresh-

old y between two adjacent tax/benefit brackets. However, even when the functions B0

andB1 only depend on x through yi(x), the bunching design is compatible with models in

which multiple margins of choice respond to the incentives provided by the kink.3 In fact,

the econometrician may be agnostic as to even what the full set of components of x are,

with y(·), B0(·) or B1(·) depending only on various subsets of them. The next section will

1This comes at little cost of generality since with heterogeneous ki this could be subsumed as a constant
into the function yi(x), so long as the ki are observed by the researcher.

2In particular, the subgradient of max{B0i(x),B1i(x)}will depend on whether one approaches from the
yi(x) > k or the yi(x) < k side. For example with a scalar x and linear B0 and B1, the derivative of Bki(x)
discontinuously rises when yi(x) = k.

3An example from the literature in which a distinction between y and x cannot be avoided is Best et al.
(2015). These authors study firms in Pakistan, who pay either a tax on output or a tax on profit, whichever
is higher. The two tax schedules cross when the ratio of profits to output crosses a certain threshold that is
pinned down by the two respective tax rates. In this case, the variable y depends both on production and on
reported costs, leading to two margins of response to the kink: one from choosing the scale of production
and the other from choosing whether and how much to misreport costs.
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discuss how the bunching design allows us to conduct causal inference on the variable Yi,

but not directly on the underlying choice variables Xi.

In the overtime context, z corresponds to the cost of a single-worker’s labor in a single

week, and:

B0i(y) := wity and B1i(y) := 1.5wiy− 20wi (A.2)

The functions B0 and B1 are depicted in Figure A.1 for a single worker with wage wi = w.

B0 describes a setting in which the worker is paid at their straight-time wage w for all

hours, regardless of whether they work more or less than 40. B1 describes a setting in

which the worker is instead paid at their overtime rate 1.5w for all hours, but the firm is

given a subsidy that keeps them indifferent between the two cost schedules at y = 40.

With these definitions, we can see that the actual labor cost to the firm of any number of

hours h is Bki(y) := max{B0i(y),B1i(y)} for worker i.

40

40w

B0 (y)

y

co
st

40

40w

B1 (y)

y

co
st

Figure A.1: Definition of counterfactual cost functions B0 and B1 that firms could have
faced, absent the overtime kink. Dashed lines show the rest of actual cost function in
comparison to the counterfactual as a solid line.

A.1.2 Potential outcomes as counterfactual choices

To introduce a notion of treatment effects in the bunching design, I define a pair of

potential outcomes as what would occur if the decision-maker faced either of the functions

146



B0 or B1 globally, without the kink:

Definition (potential outcomes). Let Y0i be the value of yi(x) that would occur for agent i if

they faced the constraint z ≥ B0(x), and let Y1i be the value that would occur under the constraint

z ≥ B1(x).

The above definition requires outcomes y and costs z to be definable at the individual

level, but does not require the no-interference condition of the stable unit treatment values

assumption (SUTVA). Nevertheless, the interpretation of the treatment effects identified

by the bunching design is most straightforward when SUTVA holds. This assumption is

standard in the bunching design, though it may be a restrictive one in overtime context

where a single firm chooses the hours of multiple workers.4 I discuss this further in the

overtime setting in Section 1.4.4 and Appendix A.3.

To relate these counterfactual outcomes to choices of the decision-maker, we make

explicit the assumption that they control the value of yi(x). For any function B let YBi

be the outcome that would occur under the choice constraint z ≥ B(x), with Y0i and Y1i

shorthands for YB0ii and YB0ii, respectively.5

Assumption CHOICE (perfect manipulation of y). For any function B(x), YBi = yi(xBi),

where (zBi, xBi) is the choice that i would make under the constraint z ≥ B(x).

Assumption CHOICE rules out for example optimization error, which could limit the

decision-maker’s ability to exactly manipulate values of x and hence y. It also takes for

granted that counterfactual choices are unique, and rules out some kinds of extensive mar-

gin effects in which a decision-maker would not choose any value of Y at all under B1 or

B0. Assumption CHOICE may be relaxed somewhat while still allowing for meaningful

causal inference, but I maintain this assumption throughout (however the decision-maker

4However I note that SUTVA issues could also occur in canonical bunching designs: for example if
spouses choose their labor supply jointly, the introduction of a tax kink may cause one spouse to increase
labor supply while the other decreases theirs.

5Note that in this notation Assumption CHOICE implies that the actual outcome Yi observed by the
econometrician is equal to YBkii.
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need not always be the firm only; see Appendix A.2). Note that CHOICE here differs from

the version given in the main text in that it applies to all functions B, not just B0, B1 and

Bk (this is useful for Theorem 1.2).

The central behavioral assumption that allows us to reason about the counterfactuals

Y0 and Y1 is that decision-makers have convex preferences over (c, x) and dislike costs z:

Assumption CONVEX (strictly convex preferences, monotonic in z). For each agent i

and function B(x), choice is (zBi, xBi) = argmaxz,x{ui(z, x) : z ≥ B(x)} where ui(z, x) is

continuous and strictly quasi-concave in (z, x), and strictly decreasing in z.

Note that in the overtime setting with firms choosing hours, ui(z, x) corresponds to the

firm’s profit function π as a function of the hours of a particular worker (in a particular

period), and costs this week for that worker.

A weaker assumption than convexity that will still have identifying power is simply

that agents’ choices do not violate the weak axiom of revealed preference:

Assumption WARP (rationalizable choices). Consider two budget functions B and B′ and

any agent i. If their choice under B′ is feasible under B, i.e. zB′i ≥ B(xB′i), then (zBi, xBi) =

(zB′i, xB′i).

I make the stronger assumption CONVEX for most of the identification results, but As-

sumption WARP still allows a version of many of them in which equalities become weak

inequalities, indicating a degree of robustness with respect to departures from convexity.

Note that the monotonicity assumption in CONVEX implies that choices will always sat-

isfy z = B(x), i.e. agents’ choices will lay on their cost functions (despite Eq. A.1 being an

inequality, indicating “free-disposal”).

In the overtime application, the potential outcomes Y0i and Y1i are the hours that the

firm would choose, respectively, in a situation a) in which there was no overtime premium

and the firm always had to pay wi for each hour; and b) a situation in which the firm

were to pay 1.5wi for all hours of labor, but receive a subsidy of 20wi that keeps the firm
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indifferent between B0 and B1 when h = 40 (cf. Eq. A.2). When firm preferences are

quasilinear with respect to wage costs, the choice of hours Y1 will be the same as what the

firm would have chosen without the subsidy of 20w.

Further notes on the general model

I conclude this section with some further remarks on the generality of Eq. (A.1) given

the above assumptions. The first is that the budget functions B0 and B1 can depend on a

subset of the variables that enter into the function for y, and vice versa. In the former case,

this is because the only restriction on the Bdi(x) for d ∈ {0, 1} is that they are continuous

and weakly convex in all components of x; thus, having zero dependence on a component

of x is permissible. This is of particular interest because while the variables entering into

the budget functions are generally known from the empirical context generating the kink,

the model can allow additional choice variables to enter into the threshold-crossing vari-

able y, that may not even be known to the econometrician. Section 1.4.2 provides some

examples of this in the overtime setting.

Suppose that Bdi(x) = Bdi(x̄), where x̄ is a sub-vector of the first m components of

x, but yi(x) is still a function of all m+ l components of x. The values of the remaining

l components affect the decision-maker’s optimizing choice of y, because they affect the

value of y and hence which regime ofBdi the decision-maker’s choice is in. Thus, observed

bunching in y can reflect a response along any of these l additional margins, even though

they correspond to variables that are unobserved are even unknown to the researcher.

This can complicate identification of specific structural elasticities, but does not challenge

the credibility of causal inference about y.

A.1.3 Observables in the kink bunching design

Lemma A.1 outlines the core consequence of convexity of preferences for the relation-

ship between observed Yi and the potential outcomes introduced in the last section:
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Lemma A.1 (realized choices as truncated potential outcomes). Under Assumptions CON-

VEX and CHOICE:

Yi =


Y0i if Y0i < k

k if Y1i ≤ k ≤ Y0i

Y1i if Y1i > k

Proof. See Appendix C.4.

Lemma A.1 says that the pair of counterfactual outcomes (Y0i,Y1i) is sufficient to pin

down actual choice Yi, which can in fact can be seen as an observation of one or the other

potential outcome depending on how they relate to the kink point k. When the Y0i poten-

tial outcome is greater than k but the Y1i potential outcome is below – when the potential

outcomes “straddle” the kink – the agent will locate choose the corner solution of locating

exactly the kink.6

Lemma A.1 differs from existing approaches to the bunching design in a basic way

by expressing the condition for locating at Yi = k in terms of the counterfactual choices

Y0i and Y1i, rather than primitives of the underlying utility functions ui(c, x). The typical

approach in the literature has been to assume a particular parametric functional form for

ui(c, x), then derive an expression for B in terms of such parameters (typically an elastic-

ity parameter). Instead, I treat the underlying utility function ui(c, x) as an intermediate

step, only requiring the nonparametric restrictions of convexity and monotonicity. By ex-

pressing the bunching event in terms of the “reduced-form” quantity yi(x), we need only

believe that there exists an underlying model of utility satisfying CONVEX, and do not

need to know its form explicitly.

Consider a random sample of observations of Yi. Under i.i.d. sampling of Yi, the

distribution F (y) of Yi is identified. Let B := P (Yi = k) be the observable probability that

the agent chooses to locate exactly at Y = k. By Lemma A.1, this is equal to the probability

6The opposite situation of Y0i ≤ k ≤ Y1i, what we might call “reverse straddling”, is ruled out by WARP
when it occurs by at least one strict inequality.
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of the event Y1i ≤ k ≤ Y0i. With convex preferences, a point mass B > 0 in the distribution

of Yi occurs when the straddling event occurs with positive probability.

Let ∆i = Y0i − Y1i. This can be thought of as the treatment effect of a counterfactual

change from the choice set under B1 to the choice set under B0. The straddling event can

be expressed in terms of ∆i as Y0i ∈ [k, k+ ∆i]. This forms the basic link between the

observable quantity B and treatment effects. Proposition A.1 states the general result.

Theorem A.1 (relation between bunching and straddling). a) Under CONVEX and CHOICE:

B = P (Y0i ∈ [k, k+ ∆i]); b) under WARP and CHOICE: B ≤ P (Y0i ∈ [k, k+ ∆i]).

Proof. See Appendix C.4.

Let F1(y) = P (Y0i ≤ y) be the distribution function of the random variable Y0, and F1(y)

the distribution function of Y1. From Lemma A.1 it follows immediately that F0(y) = F (y)

for all y < k, and F1(y) = F (y) for Y > k. Thus observations of Yi are also informative

about the marginal distributions of Y0i and Y1i. A weaker version of this also holds under

WARP rather than CONVEX:

Corollary (identification of truncated densities). Suppose that F0 and F1 are continuously

differentiable with derivatives f0 and f1, and that F admits a derivative function f(y) for y 6= k.

Under WARP and CHOICE: f0(y) ≤ f(y) for y < k and f0(k) ≤ limy↑k f(y), while f1(y) ≤

f(y) for y > k and f1(k) ≤ limy↓k f(y), with equalities under CONVEX.

Proof. See Appendix C.4.

Discussion of treatment effects vs. structural parameters:

The treatment effects ∆i are “reduced form” in the sense that when the decision-maker

has multiple margins of response x to the incentives introduced by the kink, these may be

bundled together in the treatment effect ∆i. This clarifies a limitation sometimes levied

against the bunching design, while also revealing a perhaps under-appreciated strength.

On the one hand, it is not always clear “which elasticity” is elicited by bunching at a kink,
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complicating efforts to identify a elasticity parameter having a firm structural interpreta-

tion.

On the other hand, the bunching design can be useful for ex-post policy evaluation

and even forecasting effects of small policy changes (as described in Section 1.4.4), with-

out committing to a tightly parameterized underlying model of choice. The “trick” of

Lemma A.1 is to express the observable data in terms of counterfactual choices, rather

than of primitives of the utility function. The econometrician need not even know the full

vector x of choice variables underlying agents’ value of y, they simply need to believe that

preferences are convex in them, and verify that B0 and B1 are convex in a subset of them.

This greatly increases the robustness of the method to potential misspecification of the

underlying choice model. Appendix A.1 further elucidates some of these issues through

an example from the literature.

A.1.4 The buncher LATE when Assumption RANK fails

This section picks up from the discussion in Section 1.4.3, which introduces the buncher

LATE ∆∗k parameter and Assumption RANK, but continues with the notation of this Ap-

pendix. When RANK fails (and p = 0 for simplicity), the bounds from Theorem 1.1 are

still valid for the averaged quantile treatment effect:

1
B
∫ F1(k)

F0(k)
Q0(u)−Q1(u) = E[Y0i|Y0i ∈ [k, k+ ∆∗0]]−E[Y1i|Y1i ∈ [k− ∆∗1, k]] (A.3)

under BLC of Y0 and Y1, where we define ∆∗0 := Q0(F1(k))−Q1(F1(k)) = Q0(F1(k))− k

and ∆∗1 := Q0(F0(k)) −Q1(F0(k)) = k −Q1(F0(k)). This can be seen to yield a lower

bound on the buncher LATE, as described in Figure A.2 below.
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Figure A.2: When Assumption RANK fails, the average E[Y0i|Y0i ∈ [k, k + ∆∗0]] will in-
clude the mass in the region S0, who are not bunchers (blue, NE lines) but will be missing
the mass in the region A0 (green, NW lines) who are. This causes an under-estimate of the
desired quantity E[Y0i|Y1i ≤ k ≤ Y0i]. Similarly, E[Y1i|Y1i ∈ [k − ∆∗1, k]] will include the
mass in the region S1, who are not bunchers but will be missing the mass in A1, who are.
This causes an over-estimate of the desired quantity E[Y1i|Y1i ≤ k ≤ Y0i].

A.1.5 Policy changes in the bunching-design

Consider a bunching design in which the cost functions B0 and B1 can be viewed as

members of family Bi(x; ρ, k) parameterized by a continuum of scalars ρ and k, where

B0i(x) = Bi(x; ρ0, k∗) and B1i(x) = Bi(x; ρ1, k∗) for some ρ1 > ρ0 and value k∗ of k. In

the overtime setting ρ represents a wage-scaling factor, with ρ = 1 for straight-time and

ρ = 1.5 for overtime:

Bi(y; ρ, k) = ρwiy− kwi(ρ− 1) (A.4)

where work hours y may continue to be a function y(x) of a vector of choice variables to

the firm. Here ρ represents an arbitrary wage-scaling factor, while k controls the size of a
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lump-sum subsidy that keeps Bi(k; ρ, k) invariant across ρ.

Assume that ρ takes values in a convex subset of R containing ρ0 and ρ1, and that for

any k and ρ′ > ρ the cost functions Bi(x; ρ, k) and Bi(x; ρ′, k) satisfy the conditions of

the bunching design framework from Section 1.4, with the function yi(x) fixed across all

such values. That is, Bi(x; ρ′, k) > Bi(x; ρ, k) iff yi(x) > k with equality when yi(x) = k,

the functions Bi(·; ρ, k) are weakly convex and continuous, and yi(·) is continuous. It is

readily verified that Equation (A.4) satisfies these requirements with yi(h) = h.7

For any value of ρ, let Yi(ρ, k) be agent i’s realized value of yi(x) when a choice of (z, x)

is made under the constraint c ≥ Bi(x; ρ, k). A natural restriction in the overtime setting

that is that the function Yi(ρ, k) does not depend on k, and some of the results below will

require this. A sufficient condition for Yi(ρ, k) = Yi(ρ) is a family of cost functions that

are linearly separable in k, as we have in Equation (A.4), along with quasi-linearity of

preferences:

Assumption SEPARABLE (invariance of potential outcomes with respect to k). For all

i, ρ and k, Bi(x; ρ, k) is additively separable between k and x (e.g. bi(x, ρ) + φi(ρ, k) for some

functions bi and φi), and for all i ui(z, x) can be chosen to be additively separable and linear in z.

Quasilinearity of preferences is a property of profit-maximizing firms when c represents

a cost, thus it is a natural assumption in the overtime setting. However, additive sepa-

rability of B(x; ρ, k) in k may be context specific: in the example from Best et al. (2015)

described in Appendix A.1, quasi-linearity of preferences is not sufficient since the cost

functions are not additively separable in k. To maintain clarity of exposition, I will keep

k implicit in Yi(ρ) throughout the foregoing discussion, but the proofs make it clear when

SEPARABLE is being used.

Below I state two intermediate results that allow us to derive expressions for the effects

of marginal changes to ρ1 or k on hours. Lemma A.2 generalizes an existing result from

7As an alternative example, I construct in Appendix A.1 functions Bi(x; ρ, k) for the bunching design
setting from Best et al. (2015). In that case, ρ parameterizes a smooth transition between an output and a
profit tax, where k enters into the rate applied to the tax base for that value of ρ.
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Blomquist et al. (2021), and makes use of a regularity condition I introduce in the proof

as Assumption SMOOTH.8 Counterfactual bunchers K∗i = 1 are assumed to stay at k∗,

regardless of ρ and k. Let p(k) = p · 1(k = k∗) denote the possible counterfactual mass

at the kink as a function of k. Let fρ(y) be the density of Yi(ρ), which exists by SMOOTH

and is defined for y = k∗ as a limit (see proof).

Lemma A.2 (bunching from marginal responsiveness). Assume CHOICE, SMOOTH and

WARP. Then:

B − p(k) ≤
∫ ρ1

ρ0
fρ(k)E

[
−dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

with equality under CONVEX.

Proof. See Appendix C.4.

Lemma A.2 is particularly useful when combined with a result from Kasy (2017), which

considers how the distribution of a generic outcome variable changes as heterogeneous

units flow to different values of that variable in response to marginal policy changes.

Lemma A.3 (flows under a small change to ρ). Under SMOOTH:

∂ρfρ(y) = ∂y

{
fρ(y)E

[
−dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = y,K∗i = 0
]}

Proof. See Appendix C.4.

The intuition behind Lemma A.3 comes from fluid dynamics. When ρ changes, a mass of

units will “flow” out of a small neighborhood around any y, and this mass is proportional

to the density at y and to the average rate at which units move in response to the change.

When the magnitude of this net flow varies with y, the change to ρ will lead to a change

in the density there.

8Blomquist et al. (2021) derive the special case of Lemma A.2 with CONVEX and p = 0, in the context of
a more restricted model of labor supply under taxation. I establish it here for the general bunching design
model where in particular, the Yi(ρ) may depend on an underlying vector x which are not observed by the
econometrician. I also use different regularity conditions.
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With ρ0 fixed at some value, let us index observed Yi and bunching B with the su-

perscript [k, ρ1] when they occur in a kinked policy environment with cost functions

Bi(·; ρ0, k) and Bi(·; ρ1, k). Lemmas A.2 and A.3 together imply Theorem 1.2, which I

repeat here:

Theorem 2 (marginal comparative statics in the bunching design). Under Assumptions

CHOICE, CONVEX, SMOOTH, and SEPARABLE:

1. ∂k
{
B[k,ρ1] − p(k)

}
= f1(k)− f0(k)

2. ∂kE[Y
[k,ρ1]
i ] = B[k,ρ1] − p(k)

3. ∂ρ1E[Y
[k,ρ1]
i ] = −

∫∞
k fρ1(y)E

[
dYi(ρ1)
dρ

∣∣∣ Yi(ρ1) = y
]
dy

Proof. See Appendix C.4.

Assumption SEPARABLE is only necessary for Items 1-2 in Theorem 1.2, Item 3 holds

without it and with ∂Yi(ρ,k)
∂ρ replacing dYi(ρ)

dρ .

A.1.6 Identification results for existing bunching-design approaches

This section shows how three seminal approaches to the bunching design from the

literature can be recast in the framework of Section A.1. Throughout this section, I as-

sume that Y0 and Y1 admit a density everywhere so there is no counterfactual bunch-

ing at the kink. However, the results in this section can still be applied given a known

p = P (Y0i = Y1i = k) by trimming this from the observed bunching and re-normalizing

the distribution F (y), as described in Section 1.4.3.

Parametric approaches with constant treatment effects

To generalize the notion of constant treatment effects ∆i = ∆, let us for any strictly

increasing and differentiable transformation G(·) define for each unit i:

δGi := G(Y0i)−G(Y1i)
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For example, with G equal to the logarithm function, ∆Gi becomes proportional to a re-

duced form elasticity measuring the percentage change in yi(x) when moving from con-

straint B1i to B0i. This notion of treatment effects facilitates comparison with existing

work, because familiar models predict that while ∆i is heterogeneous δGi is homogeneous

when G is the natural logarithm function. For simplicity of notation, let us denote δGi by

δi when G is the natural logarithm. In particular, in the simplest case of a bunching design

in which B0 and B1 are linear functions of y with slopes ρ0 and ρ1 respectively, if utility

follows the iso-elastic quasi-linear form of Equation (1.3), we have that

δi = δ := |ε| · ln(ρ1/ρ0)

for all units i.

Note that under CHOICE and CONVEX the result of Lemma A.1 holds with G(·) ap-

plied to each of Yi, Y0i, and Y1i since it is strictly increasing, and thus when ∆Gi is homoge-

neous for some G we have that

B = P
(
G(Y0i) ∈

[
G(k),G(k) + δG

])

by Proposition A.1. We can also identify the density functions fG0 of G(Y0i) and fG1 of

G(Y1i) to the left and right of G(k), respectively. Given that the function G(·) is strictly

increasing, we may also write the bunching condition as

B = P (Y0i ∈ [k, k+ ∆]) where ∆ = G−1
(
G(k) + δG

)
− k (A.5)

which defines a pseudo-parameter ∆ that plays the same role as ∆ would in a setup in

which we assume a constant treatment effects in levels ∆i = ∆. For example, the constant

elasticity model motivates G = ln and hence ∆ = k(eδ − 1). Note that if ∆ can be pinned

down, it will also be possible to identify δ. Nevertheless, it will be important to keep track
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of the function G when δGi is assumed homogeneous, since for example this implies that

fG0 (G(k) + δ) = fG1 (G(k)) but not that f0(k+ ∆) = f1(k).

Recall from Section A.1.2 that when ∆i is homogeneous and f0(y) is locally uniform in

the missing region [k, k+ ∆], we have that

∆ = B/f0(k) (A.6)

and thus with constant effects in logs δi = δ, we can identify δ as ln (1 + B/{kf0(k)}).

Taking the approximation ln(1+x) ≈ x and defining ε = ln((1− τ0)/(1− τ1))δ = − ln(1−

(τ1 − τ0)/(1− τ0))δ motivated by the iso-elastic model, we obtain ε ≈ (τ1 − τ0)/(1− τ0) ·

B/{kf0(k)}, c.f. Equations (1)-(2) in Kleven (2016).

This represents the simplest and most basic point identification result for the bunching

design, and might be motivated by the idea that the kink is small, and a smooth density

is locally uniform. Equation A.7 generalizes naturally to a setting with heterogeneous

treatment effects, as we shall see in the next section. 9 However, the uniform density as-

sumption/approximation underlying Equation A.6 may be hard to motivate in empirical

settings where the kink is not small (e.g. τ0 6≈ τ1), and the density away from the kink

does not appear to be uniform. Thus Saez (2010) instead assumes that f(y) is linear in the

missing region [k, k + ∆]. We can phrase his identification result as a special case of the

following:

Proposition A.1 (identification by linear interpolation, à la Saez 2010). If δGi = δG for

someG, F1(y) and F0(y) are continuously differentiable, and f0(y) is linear on the interval [k, k+
9Note that the same “small-kink” approximation might be used to motivate instead the expression:

δG = B/fG0 (k) = G′(k) · B/f0(k), (A.7)

which is evidently inconsistent with Equation (A.6) whenG′(k) 6= 1. This illustrates the point that assuming
f0(y) is constant on the region [k, k+∆] is not the same as assuming that fG0 (y) is constant on [G(k),G(k) +
δG] when G is non-linear.
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∆], then with CONVEX, CHOICE:

B =
1
2
(
G−1 (G(k) + δ)− k

) {
lim
y↑k

f(y) +
G′(G−1 (G(k) + δ))

G′(k)
lim
y↓k

f(y)

}

Proof. See Section A.8.

In particular, if we assume the iso-elastic utility model Equation (1.3) then we have:

B =
∆
2

{
lim
y↑k

f(y) +
k

k+ ∆
lim
y↓k

f(y)

}
=
k

2

((
ρ0
ρ1

)ε
− 1
)(

lim
y↑k

f(y) +

(
ρ0
ρ1

)−ε
lim
y↓k

f(y)

)
(A.8)

which can be solved for ε by the quadratic formula, and serves as the main estimating

equation from Saez (2010). Thus the empirical approach of that paper be seen as apply-

ing a result justified in a much more general model than the iso-elastic utility function

assumed therein.10

While Proposition A.1 constitutes a straightforward solution to the identification prob-

lem, the linearity assumption may like uniformity be falsified by visual inspection. For

example, if we believe that f0(y) is continuously differentiable and treatment effects in lev-

els are homogeneous (i.e. G is the identity function), then the linear interpolation used by

Proposition A.1 cannot hold unless limy↓k f
′(y) = limy↑k f

′(y). Otherwise, f0 would have

to have a kink at one of the endpoints of the missing region. This limitation of Proposition

A.1 can be seen as a result of the fact that it only uses information about f0(y) at two points

and ignores it everywhere else. A more popular approach, following Chetty et al. (2011),

is to use a global polynomial approximation to f0(y), which interpolates f0(y) inwards

from both directions across the missing region of unknown width ∆. This technique has

the added advantage of accommodating diffuse bunching, for which the relevant B is the

“excess-mass” around k rather than a perfect point mass at k.

10Note that if we had instead assumed that fG0 (y) is linear (on the interval [G(k),G(k) + δG]), then we
simply replace f(y) by fG(y) in the above and let G be the identity function, which can be readily solved
for δG with the simpler expression δG = B/ 1

2
{

limy↑k fG(y) + limy↓k fG(y)
}

.
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When bunching is exact, as in the overtime setting, the polynomial approach can be

seen as a special case of the following result:

Proposition A.2 (identification from global parametric fit, à la Chetty et al. 2011). Sup-

pose f0(y) exists and belongs to a parametric family g(y; θ), where f0(y) = g(y; θ0) for some

θ0 ∈ Θ, and that δGi = δG for some G and CONVEX and CHOICE hold. Then, provided that

1. g(y; θ) is an analytic function of y on the interval [k, k+ ∆] for all θ ∈ Θ, and

2. g(y; θ0) > 0 for all y ∈ [k, k+ ∆],

∆ is identified as ∆(θ0), where for any θ, ∆(θ) is the unique ∆ such that B =
∫ k+∆
k g(y; θ)dy, and

θ0 satisfies

f(y) =


g(y; θ0) y < k

g(y+ ∆(θ0); θ0) y > k

(A.9)

Proof. See Section A.8.

The standard approach of fitting a high-order polynomial to f0(y) can satisfy the assump-

tions of Proposition A.2, since polynomial functions are analytic everywhere. Proposition

A.2 yields an identification result that can justify an estimation approach similar to one

often made in the literature, based on Chetty et al. (2011).11 However, it requires tak-

ing seriously the idea that f0(y) = g(y; θ0), treating the approach as parametric rather

than as a series approximation to a nonparametric density f0(y). This assumption is very

strong. Indeed, assuming that g(y; θ0) follows a polynomial exactly has even more iden-

tifying power than is exploited by Proposition A.2. In particular, if we also have that

f1(y) = g(y; θ1) then we could use data on either side of the kink to identify by θ0 and θ1,

which would allow identification of the average treatment effect with complete treatment

effect heterogeneity.

11The technique proposed by Chetty et al. (2011) in fact ignores the shift term ∆(θ) in Equation (A.9), a
limitation discussed by Kleven (2016). A more robust estimation procedure for parametric bunching designs
could be based on iterating on Equation (A.9) after updating ∆(θ), until convergence. I do not pursue this
in the present paper.
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A uniform density or “small-kink” approximation

Another argument found in the literature (e.g. Saez 2010 and Kleven and Waseem

(2013a)) is to allow heterogeneous treatment effects under a uniform density approxima-

tion. If a kink is very small, then this might be justified as an approximation by saying that

∆i must be small for all individuals, then invoking smoothness assumptions on f(∆, y)

(see the corollary to Proposition A.3 below). My results in Section 1.4 move beyond the

need to approximate the kink as small, however I show here how an analog of this result

can be stated in my generalized bunching design framework. The result will make use of

the following Lemma, which states that treatment effects must be positive at the kink:

Lemma POS (positive treatment effect at the kink). Under WARP and CHOICE, P (∆i ≥

0|Y0i = k) = P (∆i ≥ 0|Y1i = k) = 1.

Proof. Suppose Y0i = k and ∆i < 0, so that Y1i > k. The proof of Proposition A.1 shows

that if Y0i ≤ k then Yi = Y0i, so we must have that Yi = k. However it also shows that

Y1i ≥ k implies that Yi = Y1i, so Yi > k, a contradiction. An analogous argument holds

when Y1i = k.

Proposition A.3 (identification of a LATE under uniform density approximation). Let ∆i

and Y0i admit a joint density f(∆, y) that is continuous in y at y = k. For each value of ∆ with

support: assume that f(∆,Y0) = f(∆, k) for all Y0 in the region [k, k+ ∆]. Under Assumptions

WARP and CHOICE

E [∆i|Y0i = k] ≥ B
limy↑k f(y)

,

with equality under CONVEX.
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Proof. Note that

B ≤ P (Y0i ∈ [k, k+ ∆i]) =
∫ ∞

0
d∆
∫ k+∆

k
dy · f(∆, y) =

∫ ∞
0

f(∆, k)∆d∆

= f0(k)P (∆i ≥ 0|Y0i = k)E [∆|Y0i = k, ∆ ≥ 0]

≤ lim
y↑k

f(y) ·E [∆|Y0i = k]

using Lemma POS in the last step. The inequalities are equalities under CONVEX.

Analogous assumptions on the joint distribution of ∆i and Y1i would justify replacing

limy↑k f(y) with limy↑k f(y) in Proposition A.3. Lemma SMALL in Appendix C.4 formal-

izes the idea that the uniform density approximation from Proposition A.3 becomes exact

in the limit of a “small” kink.

A.2 Incorporating workers that set their own hours

This section considers the robustness of the empirical strategy from Section 1.4 to a case

where some workers are able to choose their own hours. In this case, a simple extension of

the model leads to the bounds on the buncher LATE remaining valid, but it is only directly

informative about the effects of the FLSA among workers who have their hours chosen by

the firm. In this section I follow the notation from the main text where hit indicate the

hours of worker i in week t.

Suppose that some workers are able to choose their hours each week without restric-

tion (“worker-choosers"), and that for the remaining workers (“firm-choosers”) their em-

ployers set their hours. In general we can allow who chooses hours for a given worker to

depend on the period, so let Wit = 1 indicate that i is a worker-chooser in period t. Ad-

ditionally, we continue to allow conterfactual bunchers for whom counterfactual hours

satisfy h0it = h1it = 40, regardless of who chooses them. This setup is general enough

to also allow a stylized bargaining-inspired model in which choices maximize a weighted
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sum of quasilinear worker and firm utilities.12

I replace Assumption CONVEX from Section 1.4 allow agents to either dislike pay

(firm-choosers), or like pay (worker-choosers):

Assumption CONVEX* (convex preferences, monotonic in either direction). For each

i, t and function B(x), choice is (cBi, xBi) = argmaxc,x{ui(c, x) : c ≥ B(x)} where ui(c, x) is

continuous and strictly quasi-concave in (c, x), and

• strictly increasing in c, if Wit = 1

• strictly decreasing in c, if Wit = 0

In this generalized model, bunching is prima-facie evidence that firm-choosers exist,

because there is no prediction of bunching among worker-choosers provided that poten-

tial outcomes are continuously distributed (by contrast, k is a “hole” in the worker-chooser

hours distribution). Indeed under regularity conditions all of the data local to 40 are from

firm-choosers (and counterfactual bunchers). To make this claim precise, we assume that

for worker-choosers hours are the only margin of response (i.e. their utility depends on x

only thought y(x)), and let IC0it(y) and IC1it(y) be the worker’s indifference curves pass-

ing through h0it and h1it, respectively. I assume these indifference curves are twice Lips-

chitz differentiable, with Mit := supy max{|IC ′′0it(y)|, |IC ′′1it(y)|}, where the supremum is

taken over the support of hours, and IC ′′ indicates second derivatives.

12In particular, suppose that for any pay schedule B(h):

h = argmax
h

β (f(h)− c) + (1− β)(c− ν(h)) with c = B(h) (A.10)

where f(h)− c is firm profits with concave production f , c− ν(h) is worker utility with a convex disutility
of labor ν(h), and β ∈ [0, 1] governs the weight of each party in the negotiation (this corresponds to Nash
bargaining in which outside options are strictly inferior to all h for both parties, and utility is log-linear in
c). Rearranging the maximand of Equation (A.10) as (1− 2β)c+ {βf(h)− (1− β)ν(h)}, we can observe
that this setting delivers outcomes as-if chosen by a single agent with quasi-concave preferences, as βf(h)−
(1− β)ν(h) is concave. For Assumption CONVEX from Section 1.4 to hold with the assumed direction of
monotonicity in costs c, we would require that β > 1/2 for all worker-firm pairs: informally, that firms have
more say than workers do in determining hours. However CONVEX* holds regardless of the distribution of
β over worker-firm pairs. If βit < 1/2, paycheck it will look exactly like a worker-chooser, and if βit > 1/2
paycheck it will look exactly like a firm-chooser.
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Proposition A.4. Suppose that the joint distribution of h0it and h1it admits a continuous density

conditional on K∗it = 0, and that for any worker-chooser IC0it and IC1it are differentiable with

Mit/wit having bounded support. Then, under CHOICE and CONVEX*:

• P (hit = k and K∗it = 0) = P (h1it ≤ k ≤ h0it and K∗it = 0 and Wit = 0)

• limh↑k f(h) = P (Wit = 0) limh↑k f0|W=0(h)

• limh↓k f(h) = P (Wit = 0) limh↓k f1|W=0(h)

Proof. Omitted for brevity.

The first bullet of Proposition A.4 says that all active bunchers are also firm-choosers,

and have potential outcomes that straddle the kink. The second and third bullets state

that the density of the data as hours approach 40 from either direction is composed only

of worker-choosers. This result on density limits requires the stated regularity condition,

which prevents worker indifference curves from becoming too close to themselves featur-

ing a kink (plus a requirement that straight-time wages wit be bounded away from zero).

Given the first item in Proposition A.4, the buncher LATE introduced in Section 1.4

only includes firm-choosers:

E[h0it − h1it|hit − 40,K∗it = 0] = E[h0it − h1it|hit − 40,K∗it = 0,Wit = 0]

Accordingly, I assume rank invariance among the firm-chooser population only:

Assumption RANK* (near rank invariance and counterfactual bunchers). The following

are true:

(a) P (h0it = k) = P (h1it = k) = p

(b) Y = k iff h0 ∈ [k, k+∆∗0] and W = 0 iff h1 ∈ [k−∆∗1, k] and W = 0, for some ∆∗0, .1cm∆∗1
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where p continues to denote P (K∗it = 1).

We may now state a version of Theorem 2 that conditions all quantities on W = 0,

provided that we assume bi-log concavity of h0 and h1 conditional on W = 0 and K = 0.

Theorem 1* (bi-log-concavity bounds on the buncher LATE, with worker-choosers). As-

sume CHOICE, CONVEX* and RANK* hold. If both h0it and h1it are bi-log concave conditional

on the event (Wit = 0 and K∗it = 0), then:

E[h0it − h1it|hit = k,K∗it = 0] ∈
[
∆Lk , ∆Uk

]

where

∆Lk = g(F0|W=0,K∗=0(k), f0|W=0,K∗=0(k),B∗) + g(1− F1|W=0,K∗=0(k), f1|W=0,K∗=0(k),B∗)

and

∆Uk = −g(1− F0|W=0,K∗=0(k), f0|W=0,K∗=0(k),−B∗)− g(F1|W=0,K∗=0(k), f1|W=0,K∗=0(k),−B∗)

where B∗ = P (hit = k|Wit = 0,K∗it = 0) and

g(a, b,x) = a

bx
(a+ x) ln

(
1 + x

a

)
− a

b

The bounds are sharp.

Proof. Omitted for brevity.

Theorem 1* does not immediately yield identification of the buncher-LATE bounds ∆Lk

and ∆Uk , as we need to estimate each of the arguments to the function g. Using that the

function g is homogenous of degree one, the bounds can be rewritten in terms of p, the

identified quantities B, P (Wit = 0) limy↑k f0|W=0(y) and P (Wit = 0) limy↑k f1|W=0(y), as
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well as the two probabilities P (hit < 40 and Wit =) and P (hit > 40 and Wit = 0) (see

proof for details).

k
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kk

kh1
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A distribution with worker-choosers

Figure A.3: The joint distribution of (h0it,h1it), for a distribution including worker-
choosers and satisfying assumption RANK*, cf. Figure 1.6. See text for description.

Figure A.3 depicts an example of a joint distribution of (h0,h1) that includes worker-

choosers and satisfies Assumption RANK*. The x-axis is h0, and the y-axis is h1, with

the solid lines indicating 40 hours and the dotted diagonal line depicting h1 = h0. The

dots show a hypothetical joint-distribution of the potential outcomes, with the (red) cloud

south of the 45-degree line being firm-choosers, and the (green and blue) cloud above

being worker-choosers. Green x’s indicate worker-choosers who choose their value of h0,

while blue circles indicate worker-choosers who choose their value of h1. The orange dot

at (40, 40) represents a mass of counterfactual bunchers.

Observed to the the econometrician is the point mass at 40 as well as the truncated
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marginal distributions depicted at the bottom and the right of the figure, respectively. The

observable P (hit ≤ h) for h < 40 doesn’t exactly identify P (h0it ≤ h) because some green

x’s are missing – these are worker-choosers for whom h1 > 40 > h0 and choose to work

overtime at their h1 value. Thus they show up in the data at h > 40 even thoug they

have h0 < 40. Similarly, some blue circles are missing from the data above 40 – these are

worker-choosers for whom h1 > 40 > h0 and choose to work their h0 value, not working

overtime. The probabilities P (hit < 40 and Wit =) and P (hit > 40 and Wit = 0) can thus

only be estimated with some error, with the size of the error depending on the mass of

worker-choosers in the northwest quadrant of Figure A.3. However, this has little impact

on the results.13

Two further caveats of Theorem 1* are worth mentioning here. First, an evaluation

of the FLSA would ideally account for worker-choosers (who are working longer hours

as a result of the policy) when averaging treatment effects. However, the proportion of

worker-choosers and the size of their hours increases are not identified. Using the buncher

LATE to estimate the overall ex-post effect of the FLSA – as described in Section 1.4.4 –

may overstate its overall average net hours reduction. Secondly, note that we can no

longer directly verify the bi-log concavity assumption of h0 for h < k, and of h1 for h > k,

by looking at the data. The reason is that the observed data is a mixture of the firm-chooser

and worker-chooser distributions, while our BLC assumption regards the subgroup of

firm-choosers. If the proportion of worker-choosers is small, then these caveats should

have only a minor impact on the interpretation of the results. The first problem is difficult

to avoid: estimating the overall effect of the FLSA based on a subset of firm-choosers is

inevitably going to miss the fact that overtime pay increases hours for some workers.

13The components of the bounds ∆Lk = L0 + L1 and ∆Uk = −U0− U1 are not sensitive to the values of
the CDF inputs F0|W=0,K∗=0(k) and F1|W=0,K∗=0(k), as can be verified numerically (details available upon
request). Intuitively, ∆Lk and ∆Uk mostly depend on the density estimates and the size of the bunching mass.

167



A.3 Interdependencies among hours within the firm

In this section I consider the impact that interdependencies among the hours of dif-

ferent units may have on the estimates, reflected in the third term of Equation (1.8) from

Section 1.4.4. I develop some structure to guide our intuition of this term, and then present

some empirical evidence that it is likely to be small.

The basic issue is as follows: when a single firm chooses hours jointly among mulitple

units—either across different workers or across multiple weeks, or both—this term may

be nonzero and contribute to the overall effect of the FLSA. This can be thought of as a

violation of the stable unit treatment value assumption (SUTVA) in assessing the overall

average impact of the FLSA on hours, the effect of which is captured in the third term of

Equation (1.8).

To simplify the notation, I’ll assume that such SUTVA violations may occur across

workers within a firm in a single week, suppressing the time index t and focusing on a

single firm. As in Section 1.4.4 let h−i denote the vector of actual (observed) hours for

all workers aside from i within i′s firm. These hours are chosen according to the kinked

cost schedule introduced by the FLSA. Let h0i(·) denote the hours that the firm would

choose for worker i if they had to pay i′ straight-wage wi for all of i’s hours, as a function

of the hours profile of the other workers in the firm (suppressing dependence on straight-

wages in this section). Define h1i(·) analogously with 1.5wi. In this notation, the potential

outcomes from Section 1.4 are h0i = h0i(h−i) and h1i = h1i(h−i). As in Section 1.4.4 let

(h∗i , h∗−i) denote the hours profile that would occur absent the FLSA, so that the average

ex-post effect of the FLSA is E[hi − h∗i ].

For concreteness, we may consider the model introduced in the beginning of Sec-

tion 1.4 in which hours are chosen to maximize profits with a joint-production function

F (h). In this case we have that (hi, h−i) = argmax
{
F (h)−∑j Bkj(hj)

}
, where the sum

is across workers j in the firm and Bkj(h) := wjh + .5wj1(h > 40)(h − 40). Similarly

(h∗i , h∗−i) = argmax
{
F (h)−∑j wjhj

}
(where for the moment we ignore changes in wj).
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Whether h0i(h−i) is smaller or larger than h∗i (with a fixed set of employees) will depend

upon whether i’s hours are complements or substitutes in production with those of each

of their colleagues, and with what strength. It is natural to expect that both cases occur.

Consider for example a production function in which workers are divided into groups

θ1 . . . θM corresponding to different occupations, and:

F (h) =
M

∏
m=1

(
( ∑
i∈θm

ai · hρmi )1/ρm

)αm
(A.11)

where ai is an individual productivity parameter for worker i. The hours of workers

within an occupation enter as a CES aggregate with substitution parameter ρm, which

then combine in a Cobb-Douglas form across occupations with exponents αm. The hours

of two workers i and j belonging to different occupations are always complements in

production, i.e. ∂hiF (h) is increasing in hj . When i and j belong to the same occupation

θm, it can be shown that worker i and j’s hours are substitutes—i.e. ∂hiF (h) is decreasing

in hj—when αm ≤ ρm.

Thus both substitution and complementarity in hours can plausibly coexist within a

firm, and it is difficult to sign theoretically the contribution of interdependencies to θ.

Given that occupations or tasks are not observed in the data, it is also difficult to obtain

direct evidence with the aid of structural assumptions like Eq. (A.11). I therefore turn to

an indirect empirical test of whether these effects are likely to play a significant role in θ.

Figure A.4 shows that in weeks when a worker receives a positive number of sick-pay

hours, their individual hours worked for that week decline by about 8 hours on average.

Yet I fail to find evidence of a corresponding change in the hours of others in the same

firm. This suggests that short term variation in the hours of a worker’s colleagues does

not tend to translate into contemporaneous changes in their own (for example, if the firm

were dividing a fixed number of hours across workers).

Table A.1 shows another piece of evidence: that my overall effect estimates are similar
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between small, medium, and large firms. If firms were to compensate for overtime hours

reductions by “giving” some hours to similar workers who would otherwise be working

less than 40, for instance, then we would expect this to play a larger role in firms where

there are a large number of substitutable workers–causing a bias that increases with firm

size. I cannot reject that my strategy estimates the same parameter value across the three

firm size categories, in my preferred specification of estimating p using variation in PTO.

p=0 p from PTO

Bunching Effect of the kink Net Bunching Effect of the kink

Small firms 0.198 [-1.525, -1.455] 0.027 [-0.231, -0.171]

[0.189, 0.208] [-1.676, -1.299] [0.023, 0.031] [-0.274, -0.139]

Medium firms 0.103 [-1.123, -0.786] 0.030 [-0.337, -0.224]

[0.095, 0.110] [-1.237, -0.710] [0.025, 0.035] [-0.407, -0.178]

Large firms 0.050 [-0.768, -0.468] 0.024 [-0.371, -0.224]

[0.047, 0.054] [-0.861, -0.414] [0.021, 0.028] [-0.444, -0.180]

Table A.1: Estimates of the ex-post effect of the kink by firm size. “Small” firms have
between 1 and 25 workers in my estimation sample, “Medium” have 26 to 50, and “Large”
have more than 50. Note that the estimated net bunching caused by the FLSA is similar
across firm sizes (right), despite the raw bunching observed in the data differing by firm
size category.
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Figure A.4: Event study coefficients βj and 95% confidence intervals across an instance
of a worker receiving pay for non-work hours (either sick pay, holiday pay, or paid time
off–‘PTO’). Equation is yit = µt + λi + ∑10

j=−3 βjDit,j + uit, where Dit,j = 1 if worker i
in week t has a positive number of a given type of non-work hours j weeks ago (after a
period of at least three weeks in which they did not), λi are worker fixed effects, and µt are
calendar week effects. Rows correspond to choices of the non-work pay type: either sick,
holiday, PTO. Columns indicate choices of the outcome yit. “Colleague hours worked”
sums the hours of work in t across all workers other than i in i’s firm. The timing of
holiday and PTO hours appears to be correlated across workers, leading to a decrease
in the working hours of i’s colleagues in weeks in which i takes either holiday or PTO
pay (center-right and bottom-right graphs). However I cannot reject that colleague work
hours are unrelated to an instance of sick pay: before, during and after it occurs (top-
right). Since i’s hours of work reduce by about 8 hours on average during an instance
of sick pay (top-center), this suggests that there is no contemporaneous reallocation of i’s
forgone work hours to their colleagues.
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A.4 A simple model of wages and “typical” hours

Each firm faces a labor supply curve N(z,h), indicating the labor force N it can main-

tain if it offers total compensation z to each of its workers, when they are each expected to

work h hours per week. The firm chooses a pair (z∗,h∗) based on the cost-minimization

problem:

min
z,h,K,N

N · (z + ψ) + rK s.t. F (Ne(h),K) ≥ Q and N ≤ N(z,h) (A.12)

where the labor supply function is increasing in z while decreasing in h, e(h) represents

the "effective labor" from a single worker working h hours, and ψ represents non-wage

costs per worker. The quantity ψ can include for example recruitment effort and train-

ing costs, administrative overhead and benefits that do not depend on h. Concavity of

e(h) captures declining productivity at longer hours, for example from fatigue or morale

effects. The function F maps total effective labor Ne(h) and capital into level of output

or revenue that is required to meet a target Q, and r is the cost of capital. For simplicity,

workers within a firm are here identical and all covered by the FLSA.

To understand the properties of the solution to Equation (A.12), let us examine two

illustrative special cases.

Special case 1: an exogenous competitive straight-time wage

Much of the literature on hours determination has taken the hourly wage as a fixed

input to the choice of hours, and assumed that at that wage the firm can hire any num-

ber of workers, regardless of hours. This can be motivated as a special case of Equation

(A.12) in which there is perfect competition on the straight-time wage, i.e. N(z,h) =

N̄1(ws(z,h) ≥ w) for some large number N̄ and wage w exogenous to the firm. Then
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Equation (A.12) reduces to:

min
N ,h,K

N · (hw+ 1(h > 40)(w/2)(h− 40) + ψ) + rK s.t. F (Ne(h),K) ≥ Q (A.13)

By limiting the scope of labor supply effects in the firm’s decision, Equation (A.13) is well-

suited to illustrating the competing forces that shape hours choice on the production side:

namely the fixed costs ψ and the concavity of e(h). Were ψ equal to zero with e(h) strictly

concave globally, a firm solving Equation (A.13) would always find it cheaper to produce

a given level of output with more workers working less hours each. On the other hand,

were ψ positive and e weakly convex, it would always be cheapest to hire a single worker

to work all of the firm’s hours. In general, fixed costs and declining hours productivity

introduce a tradeoff that leads to an interior solution for hours.14

Equation (A.13) introduces a kink into the firm’s costs as a function of hours, much

as short-run wage rigidity does in my dynamic analysis. However, the assumption that

the firm can demand any number of hours at a set straight-time wage rate is harder to

defend when thinking about firms long-run expectations, a point emphasized by Lewis

(1969). Equilibrium considerations will also tend to run against the independence of

hourly wages and hours - a mechanism explored in Supplemental Appendix A.6.

Special case 2: iso-elastic functional forms

By placing some functional form restrictions on Equation (A.12), we can obtain a

closed-form expression for (z∗,h∗). In particular, when labor supply and e(h) are iso-

elastic, production is separable between capital and labor and linear in the latter, and

firms set the output target Q to maximize profits, Proposition A.5 characterizes the firm’s

choice of earnings and hours:

14In the fixed-wage special case, these two forces along with the wage are in fact sufficient to pin down
hours, which do not depend on the production function F or the chosen output level Q. See e.g. Cahuc and
Zylberberg (2014) for the case in which e(h) is iso-elastic.
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Proposition A.5. When i) e(h) = e0hη and N(z,h) = N0zβzhβh ; ii)F (L,K) = L+ φ(K) for

some function φ; and iii) Q is chosen to maximize profits, the (z∗,h∗) that solve Equation (A.12)

are:

h∗ =

[
ψ

e0
· β

β − η

]1/η

and z∗ = ψ · βz
βz + 1

η

β − η

where β := |βh|
βz+1 , provided that ψ > 0, η ∈ (0, β), βh < 0 and βz > 0. Hours and compensation

are both decreasing in |βh| and increasing in βz.

Proof. Omitted for brevity.

The proposition shows that the hours chosen depend on labor supply via β = |βh|
1+βz , which

gages how elastic labor supply is with respect to hours compared with earnings. The more

sensitive labor supply is to a marginal increase in hours as compared with compensation,

the higher β will be and lower the optimal number of hours. The proof of Proposition

A.5 also shows that unlike Special case 1 of perfect competition on the straight-time wage,

whenN(z,h) is differentiable the general model can support an interior solution for hours

even without fixed costs ψ = 0.

Note: Broadly speaking, the function N(z,h) might be viewed as an equilibrium object

that reflects both worker preferences over income and leisure and the competitive envi-

ronment for labor. Thus it is conceivable that equilibrium forces lead to a labor supply

function like that of the fixed-wage model, in which the the FLSA has an effect on the

hours set at hiring. In Supplemental Appendix A.6, I show that the prediction of the fixed-

job model that the FLSA has litte to no effect on h∗ or z∗ is robust to embedding Equation

(A.12) into an extension of the Burdett and Mortensen (1998) model of equilibrium with

on-the-job search.15 In the context of the search model, the only effect of the overtime rule

on the distribution of h∗ is mediated through the minimum wage, which rules out some

of the (z∗,h∗) pairs that would occur in the unregulated equilibrium. In a numerical cal-

15This remains true even in the perfectly competitive limit of the model, the basic reason being that work-
ers choose to accept jobs on the basis of their known total earnings z∗, rather than the straight-time wage.
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ibration, this effect is quite small, suggesting that equilibrium effects play only a minor

role in how the FLSA overtime rule impacts anticipated hours or straight-time wages.

A.5 Additional empirical results

A.5.1 A test of the Trejo (1991) model of straight-time wage adjustment

Another way to assess the role of wage rigidity is to test directly whether straight-time

wages and hours are plausibly related according to Equation (1.1). To do this by sup-

posing that some proportion of all paychecks reflect a wage that is determined from the

worker’s total earnings zit according to Equation (1.1), while the others have wages set in

some other way. We indicate those paychecks for which the wage is actively adjusted to

this period’s hours as Ait = 1, and let q(h) = P (Ait = 1|hit = h). This nests an extreme

version of the fixed-job model of Trejo (1991), in which q(h) = 1 for all h.

By the law of iterated expectations and some algebra we have that:

E [lnwit|hit = h] = q(h) {E [ln(wit)|hit = h,Ait = 0]− ln (h+ 0.5(h− 40)1(h ≥ 40))}

− (1− q(h))E [lnwit|hit = h,Ait = 1]

The second term above introduces a kink in the conditional expectation of log wages with

respect to hours. IfE [ln zit|hit = h,Ait = 0],E [lnwit|hit = h,Ait = 1] and q(h) are all con-

tinuously differentiable in h, then the magnitude of this kink identifies q(40), the propor-

tion of active wage responders local to h = 40:16

lim
h↓40

d

dh
E [lnwit|hit = h]− lim

h↑40

d

dh
E [lnwit|hit = h] = −1

2 ·
q(40)

40

Figure A.5 reports the results of fitting separate local linear functions to the CEF of log

16These continuous differentiability assumptions are reasonable, if wage setting according to Equation
(1.1) is the only force introducing non-smoothness in the relationship between wages and hours.
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wages on either side of h = 40. We can reject the hypothesis that the fixed-job model

applies to all employees at all times. However, the data appear to be consistent with a

proportion q(40) of about 0.25 of all paychecks close to 40 hours reflecting an hours/wage

relationship according to Equation (1.1). This is consistent with straight wages being up-

dated intermittently to reflect expected or anticipated hours, which vary in practice be-

tween pay periods.

Figure A.5: A kinked-CEF test of the fixed-jobs model presented in Trejo (1991). Regres-
sion lines fit on each side with a uniform kernel within 25 hours of the 40.
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A.5.2 Further characteristics of the sample

Figure A.6: Industry distribution of estimation sample versus the Current Population Sur-
vey sample described in Section 1.3.

Figure A.7: Geographical distribution of estimation sample versus the Current Population
Survey sample described in Section 1.3.
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Industry Avg. OT hours OT % hours OT % pay Industry share

Accommodation and Food Services 2.37 0.06 0.11 0.08

Administrative and Support 5.69 0.13 0.18 0.08

Agriculture, Forestry, Fishing and Hunting 3.76 0.11 0.15 0.00

Arts, Entertainment, and Recreation 3.87 0.10 0.13 0.00

Construction 3.09 0.07 0.10 0.20

Educational Services 1.83 0.05 0.07 0.00

Finance and Insurance 0.31 0.00 0.01 0.00

Health Care and Social Assistance 4.59 0.12 0.12 0.02

Information 1.67 0.04 0.06 0.00

Manufacturing 3.37 0.08 0.11 0.18

Mining 2.26 0.07 0.12 0.00

Other Services 2.61 0.06 0.09 0.02

Professional, Scientific, and Technical Services 2.91 0.07 0.10 0.06

Public Administration 2.36 0.05 0.08 0.00

Real Estate and Rental and Leasing 2.85 0.07 0.09 0.02

Retail Trade 2.83 0.07 0.10 0.08

Transportation and Warehousing 5.24 0.12 0.17 0.04

Utilities 3.80 0.08 0.11 0.00

Wholesale Trade 5.15 0.11 0.14 0.10

Total Sample 3.55 0.08 0.12 0.98

Table A.2: Overtime prevalence by industry in the sample, including average number of
OT hours per weekly paycheck, % OT hours among hours worked, % pay for hours work
going to OT, and industry share of total hours in sample.
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(1) (2) (3) (4) (5)

Work hours=40 OT hours Total work hours Work hours=40 OT hours

Tenure 0.000400 0.0515 0.0796

(0.95) (3.95) (3.31)

Age 0.000690 0.00266 0.0250

(3.82) (0.74) (3.25)

Female 0.0140 -1.322 -1.943

(2.08) (-9.07) (-6.08)

Minimum wage worker 0.00121 -1.687 -5.352

(0.29) (-2.39) (-4.08)

Firm just hired -0.00572 0.553

(-2.95) (5.78)

Date FE Yes Yes Yes Yes Yes

Employer FE Yes Yes Yes

Worker FE Yes Yes

Observations 499619 499619 499619 628449 628449

R squared 0.229 0.264 0.260 0.387 0.515

t statistics in parentheses

Table A.3: Columns (1)-(3) regress hours-related outcome variables on worker character-
istics, with fixed effects for the date and employer. Standard errors clustered by firm.
Columns (4)-(5) show that bunching and overtime hours among incumbent workers are
both responsive to new workers being hired within a firm, even controlling for worker
and day fixed effects. “Firm just hired” indicates that at least one new worker appears
in payroll at the firm this week, and the new workers are dropped from the regression.
“Minimum wage worker” indicates that the worker’s straight-time wage is at or below
the maximum minimum wage in their state of residence for the quarter. Tenure and age
are measured in years, and age is missing for some workers.
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(1) (2) (3)

Total work hours Total work hours Total work hours

R squared 0.366 0.499 0.626

Date FE Yes

Worker FE Yes Yes

Employer x date FE Yes Yes

Observations 621011 628449 620854

t statistics in parentheses

Table A.4: Decomposing variation in total hours. Worker fixed effects and employer by
day fixed effects explain about 63% of the variation in total hours.
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A.5.3 Additional treatment effect estimates and figures

p=0 p from PTO

Bunching Buncher LATE Net Bunching Buncher LATE

Accommodation and Food Services 0.036 [0.937, 0.988] 0.036 [0.937, 0.988]

(N=69427) [0.029, 0.044] [0.734, 1.212] [0.029, 0.044] [0.734, 1.212]

Administrative and Support 0.062 [1.625, 1.771] 0.009 [0.251, 0.255]

(N=49829) [0.051, 0.074] [1.313, 2.136] [0.005, 0.013] [0.143, 0.365]

Construction 0.139 [2.759, 3.326] 0.029 [0.612, 0.638]

(N=136815) [0.128, 0.149] [2.341, 3.854] [0.022, 0.035] [0.442, 0.821]

Health Care and Social Assistance 0.051 [1.412, 1.522] 0.005 [0.146, 0.147]

(N=13951) [0.034, 0.069] [0.570, 2.450] [0.000, 0.010] [-0.052, 0.348]

Manufacturing 0.137 [2.098, 2.521] 0.018 [0.307, 0.316]

(N=112555) [0.126, 0.148] [1.894, 2.785] [0.016, 0.021] [0.255, 0.370]

Other Services 0.160 [1.804, 2.240] 0.037 [0.452, 0.478]

(N=19263) [0.132, 0.188] [1.243, 2.996] [0.024, 0.049] [0.256, 0.693]

Professional, Scientific, Technical 0.136 [2.281, 2.737] 0.010 [0.178, 0.180]

(N=47705) [0.117, 0.155] [1.862, 3.297] [0.003, 0.016] [0.060, 0.302]

Real Estate and Rental and Leasing 0.187 [3.477, 4.478] 0.097 [1.920, 2.215]

(N=13498) [0.141, 0.234] [2.432, 6.053] [0.060, 0.135] [1.065, 3.316]

Retail Trade 0.129 [3.694, 4.399] 0.032 [0.969, 1.016]

(N=56403) [0.112, 0.146] [2.447, 5.935] [0.024, 0.040] [0.550, 1.463]

Transportation and Warehousing 0.091 [2.230, 2.530] 0.015 [0.400, 0.409]

(N=25926) [0.070, 0.111] [1.754, 3.127] [0.009, 0.022] [0.216, 0.602]

Wholesale Trade 0.126 [2.751, 3.299] 0.046 [1.068, 1.149]

(N=66678) [0.110, 0.141] [2.321, 3.848] [0.037, 0.055] [0.765, 1.490]

All Industries 0.116 [2.614, 3.054] 0.027 [0.640, 0.666]

(N=630217) [0.112, 0.121] [2.483, 3.217] [0.024, 0.029] [0.571, 0.740]

Table A.5: Estimates of the buncher LATE by industry, based on p = 0 (left) or p estimated
from paid time off (right). Estimates are reported only for industries having at least 10,000
observations. 95% bootstrap confidence intervals in gray, clustered by firm.

181



p=0 p from PTO

Bunching Effect of the kink Net Bunching Effect of the kink
Accommodation and Food Services 0.036 [-0.368, -0.248] 0.036 [-0.368, -0.248]
(N=69427) [0.029, 0.044] [-0.450, -0.192] [0.029, 0.044] [-0.450, -0.192]
Administrative and Support 0.062 [-1.190, -0.681] 0.009 [-0.178, -0.101]
(N=49829) [0.051, 0.074] [-1.424, -0.548] [0.005, 0.013] [-0.256, -0.057]
Construction 0.139 [-1.550, -1.121] 0.029 [-0.330, -0.219]
(N=136815) [0.128, 0.149] [-1.771, -0.944] [0.022, 0.035] [-0.422, -0.157]
Health Care and Social Assistance 0.051 [-0.633, -0.320] 0.005 [-0.065, -0.030]
(N=13951) [0.034, 0.069] [-1.020, -0.129] [0.000, 0.010] [-0.155, 0.012]
Manufacturing 0.137 [-1.167, -0.850] 0.018 [-0.162, -0.110]
(N=112555) [0.126, 0.148] [-1.282, -0.766] [0.016, 0.021] [-0.192, -0.090]
Other Services 0.160 [-0.977, -0.811] 0.037 [-0.235, -0.176]
(N=19263) [0.132, 0.188] [-1.300, -0.538] [0.024, 0.049] [-0.345, -0.095]
Professional, Scientific, Technical 0.136 [-1.192, -0.959] 0.010 [-0.090, -0.063]
(N=47705) [0.117, 0.155] [-1.411, -0.767] [0.003, 0.016] [-0.150, -0.021]
Real Estate and Rental and Leasing 0.187 [-1.766, -1.466] 0.097 [-0.954, -0.725]
(N=13498) [0.141, 0.234] [-2.303, -1.002] [0.060, 0.135] [-1.378, -0.392]
Retail Trade 0.129 [-1.685, -1.342] 0.032 [-0.434, -0.308]
(N=56403) [0.112, 0.146] [-2.274, -0.908] [0.024, 0.040] [-0.626, -0.175]
Transportation and Warehousing 0.091 [-1.590, -0.998] 0.015 [-0.274, -0.166]
(N=25926) [0.070, 0.111] [-1.935, -0.783] [0.009, 0.022] [-0.406, -0.086]
Wholesale Trade 0.126 [-2.122, -1.297] 0.046 [-0.776, -0.476]
(N=66678) [0.110, 0.141] [-2.474, -1.088] [0.037, 0.055] [-1.016, -0.333]
All Industries 0.116 [-1.466, -1.026] 0.027 [-0.347, -0.227]
(N=630217) [0.112, 0.121] [-1.542, -0.972] [0.024, 0.029] [-0.386, -0.202]

Table A.6: Estimates of the hours effect of the FLSA by industry, based on p = 0 (left) or
p estimated from paid time off (right). Estimates are reported only for industries having
at least 10,000 observations. 95% bootstrap confidence intervals in gray, clustered by firm.
In the case of Accommodation and Food Services, P (hit = 40|ηit > 0) > B, so I take the
PTO-based estimate to be p = 0.

Table A.7: Hours distribution by gender, conditional on different than 40 for visibility
(size of point mass at 40 can be read from Figures A.8 and A.9).
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p=0 p from non-changers p from PTO

Net bunching: 0.090 0.044 0.011

[0.083, 0.098] [0.041, 0.048] [0.009, 0.012]

Buncher LATE [1.507, 1.709] [0.763, 0.814] [0.187, 0.190]

[1.387, 1.855] [0.706, 0.877] [0.150, 0.227]

Buncher LATE as elasticity [0.093, 0.105] [0.047, 0.050] [0.012, 0.012]

[0.086, 0.114] [0.044, 0.054] [0.009, 0.014]

Average effect of kink on hours [-0.633, -0.489] [-0.319, -0.231] [-0.078, -0.054]

[-0.688, -0.446] [-0.343, -0.213] [-0.094, -0.043]

———————–

Num observations 147953 147953 147953

Num clusters 352 352 352

Table A.8: Hours distribution and results of the bunching estimator among women.
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p=0 p from non-changers p from PTO

Net bunching: 0.124 0.060 0.031

[0.119, 0.129] [0.058, 0.063] [0.028, 0.034]

Buncher LATE [3.074, 3.635] [1.560, 1.701] [0.828, 0.868]

[2.777, 3.991] [1.407, 1.869] [0.717, 0.986]

Buncher LATE as elasticity [0.190, 0.224] [0.096, 0.105] [0.051, 0.053]

[0.171, 0.246] [0.087, 0.115] [0.044, 0.061]

Average effect of kink on hours [-1.867, -1.271] [-0.921, -0.604] [-0.482, -0.311]

[-2.060, -1.149] [-1.015, -0.545] [-0.549, -0.269]

———————–

Num observations 482264 482264 482264

Num clusters 524 524 524

Table A.9: Hours distribution and results of the bunching estimator among men.
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p=0 p from non-changers p from PTO

Net bunching: 0.114 0.055 0.027

[0.109, 0.118] [0.054, 0.057] [0.024, 0.029]

Treatment effect

———————–

Linear interpolation 2.621 1.276 0.614

[2.418, 2.825] [1.178, 1.374] [0.541, 0.686]

Monotonicity bounds [2.320, 3.014] [1.129, 1.467] [0.543, 0.705]

[2.140, 3.201] [1.034, 1.550] [0.485, 0.775]

BLC buncher LATE [2.463, 2.706] [1.247, 1.309] [0.612, 0.627]

[2.311, 2.876] [1.171, 1.389] [0.547, 0.695]

———————–

Num observations 643720 643720 643720

Num clusters 567 567 567

Table A.10: Treatment effects in levels with comparison to alternative shape constraints.
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p=0 p from non-changers p from PTO

Net bunching: 0.114 0.055 0.027

[0.109, 0.118] [0.054, 0.057] [0.024, 0.029]

Treatment effect

———————–

Linear interpolation 0.162 0.079 0.038

[0.150, 0.175] [0.073, 0.085] [0.033, 0.042]

Monotonicity bounds [0.143, 0.186] [0.070, 0.090] [0.033, 0.043]

[0.132, 0.197] [0.064, 0.096] [0.030, 0.048]

BLC buncher LATE [0.152, 0.167] [0.077, 0.081] [0.038, 0.039]

[0.142, 0.177] [0.072, 0.086] [0.034, 0.043]

———————–

Num observations 643720 643720 643720

Num clusters 567 567 567

Table A.11: Treatment effects as elasticities with comparison to alternative shape con-
straints.
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p=0 p from non-changers p from PTO

Buncher LATE as elasticity [0.161, 0.188] [0.082, 0.088] [0.039, 0.041]

[0.153, 0.198] [0.077, 0.093] [0.035, 0.046]

———————–

Average effect of FLSA on hours [-1.466, -1.329] [-0.727, -0.629] [-0.347, -0.294]

[-1.541, -1.260] [-0.769, -0.593] [-0.385, -0.262]

———————–

Avg. effect among directly affected [-2.620, -2.375] [-1.453, -1.258] [-0.738, -0.624]

[-2.743, -2.259] [-1.532, -1.189] [-0.814, -0.560]

———————–

Double-time, average effect on hours [-2.604, -0.950] [-1.239, -0.492] [-0.580, -0.241]

[-2.716, -0.904] [-1.293, -0.464] [-0.639, -0.215]

Table A.12: Estimates of policy effects (replicating Table 1.3) ignoring the potential effects
of changes to straight-time wages.

187



Figure A.8: Hours distribution for an industry with a low treatment effect (left), and a
high one (right). Both industries exhibit a comparable amount of raw bunching (14% and
19% respectively, see Table A.6). In Professional, Scientific, and Technical Services, much
more of the observable bunching is estimated to be counterfactual bunching, using the
PTO-based method. Furthermore, the density of hours is higher just to the right of 40,
meaning that the remaining bunching can be explained by a very small responsiveness of
hours to the FLSA.

Figure A.9: Validating the assumption of bi-log-concavity away from the kink. The left
panel plots estimates of lnF0(h) and ln(1 − F0(h)) for h < 40, based on the empirical
CDF of observed hours worked. Similarly the right panel plots estimates of lnF1(h) and
ln(1− F1(h)) for h > k, where I’ve conditioned the sample on Yi < 80. Bi-log-concavity
requires that the four functions plotted be concave globally.
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Figure A.10: Histogram of hours worked pooling all paychecks in sample, with one hour
bins. Blue mass in the stacks indicate that the paycheck included no overtime pay, while
red indicates that the paycheck does include overtime pay.

Figure A.11: Estimates of the bunching and average effect on hours were k changed to
any value from 0 to 80, assuming p = 0. Bounds are not informative far from 40.
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Figure A.12: Treatment effect estimates as a function of assumed counterfactual bunching
p at 40, pooling across industries. Confidence intervals depicted here are 95% intervals for
each of the bounds separately.

Figure A.13: Treatment effect estimates as a function of p, by each of the largest major
industries.

A.5.4 Estimates from the iso-elastic model

This section estimates bounds on ε from the iso-elastic model under the assumption

that the distribution of h0it = η−εit is bi-log-concave.
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If h0it is BLC, bounds on ε can be deduced from the fact that

F0(40 · 1.5−ε) = F0(40) + B = P (hit ≤ 40)

where F0(h) := P (h0it ≤ h) and the RHS of the above is observable in the data. 40 · 1.5−ε

is the location of this “marginal buncher” in the h0 distribution. In particular,

ε = − ln(Q0(F0(40) + B)/40)/(ln(1.5))

where Q0 := F−1
0 is guaranteed to exist by BLC (Dümbgen et al., 2017). In particular:

ε ∈

 ln
(

1− 1−F0(40)
40f(40) ln

(
1− B

1−F0(40)

))
− ln(1.5) ,

ln
(

1 + F0(40)
40f(40) ln

(
1 + B

F0(40)

))
− ln(1.5)


where F0(k) = limh↑40 F (h) and f0(k) = limh↑40 f(h) are identified from the data. The

bounds on ε estimated in this way are ε ∈ [−.210,−.167] in the full sample.

Since BLC is preserved when the random variable is multiplied by a scalar, BLC of h0it

implies BLC of h1it := η−εit · 1.5ε as well. This implication can be checked in the data to the

right of 40, since η−εit · 1.5ε is observed there. BLC of h1it implies a second set of bounds on

ε, because:

F1(40 · 1.5ε) = F1(40)−B = P (hit < 40)

and the RHS is again observable in the data, where F1(h) := P (h1it ≤ h). Here 40 · 1.5ε is

the location of a second “marginal buncher” – for which h0 = 40 – in the h1 distribution.

Now we have:

ε ∈

 ln
(

1 + F1(40)
40f1(40) ln

(
1− B

F1(40)

))
ln(1.5) ,

ln
(

1− 1−F1(40)
40f1(40) ln

(
1 + B

1−F1(40)

))
ln(1.5)


where F1(k) = F (k) and f1(k) := limh↓40 f(h) are identified from the data. Empirically,
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these bounds are estimated as ε ∈ [−.179,−.141]. Taking the intersection of these bounds

with the range ε ∈ [−.210,−.168] estimated previously, we have that ε ∈ [−.179,−.168].17

The identified set is reduced from a length of .043 to .012, a factor of nearly 4.

Table A.13 reports estimates broken down by industry, as well as estimates that allow

counterfactual bunching at the kink to be estimated from PTO (see Section 3.5).

17Note that this interval differs slightly from the identified set of the buncher LATE as elasticity for p = 0
in Table 1.3. The latter quantity averages the effect in levels over bunchers and rescales: 1

40 ln(1.5)E[h0it(1−
1.5ε)|hit = 40], but the two are approximately equal under 1.5ε ≈ 1 + .5ε and ln(1.5) ≈ .5.
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p=0 p from PTO

Bunching Elasticity Net Bunching Elasticity

Accommodation and Food Services 0.036 [-0.059, -0.060] 0.036 [-0.059, -0.060]

(N=69427) [0.029, 0.044] [-0.073, -0.073] [0.029, 0.044] [-0.073, -0.073]

Administrative and Support 0.062 [-0.102, -0.106] 0.009 [-0.014, -0.017]

(N=49829) [0.051, 0.074] [-0.125, -0.125] [0.005, 0.013] [-0.020, -0.020]

Construction 0.139 [-0.190, -0.180] 0.029 [-0.034, -0.043]

(N=136815) [0.128, 0.149] [-0.218, -0.218] [0.022, 0.035] [-0.043, -0.043]

Health Care and Social Assistance 0.051 [-0.085, -0.095] 0.005 [-0.008, -0.010]

(N=13951) [0.034, 0.069] [-0.135, -0.135] [0.000, 0.010] [-0.018, -0.018]

Manufacturing 0.137 [-0.158, -0.127] 0.018 [-0.018, -0.020]

(N=112555) [0.126, 0.148] [-0.177, -0.177] [0.016, 0.021] [-0.022, -0.022]

Other Services 0.160 [-0.120, -0.123] 0.037 [-0.024, -0.033]

(N=19263) [0.132, 0.188] [-0.167, -0.167] [0.024, 0.049] [-0.034, -0.034]

Professional, Scientific, Technical 0.136 [-0.140, -0.160] 0.010 [-0.009, -0.013]

(N=47705) [0.117, 0.155] [-0.175, -0.175] [0.003, 0.016] [-0.014, -0.014]

Real Estate and Rental and Leasing 0.187 [-0.250, -0.230] 0.097 [-0.115, -0.133]

(N=13498) [0.141, 0.234] [-0.355, -0.355] [0.060, 0.135] [-0.177, -0.177]

Retail Trade 0.129 [-0.256, -0.238] 0.032 [-0.055, -0.066]

(N=56403) [0.112, 0.146] [-0.359, -0.359] [0.024, 0.040] [-0.084, -0.084]

Transportation and Warehousing 0.091 [-0.124, -0.161] 0.015 [-0.019, -0.031]

(N=25926) [0.070, 0.111] [-0.167, -0.167] [0.009, 0.022] [-0.029, -0.029]

Wholesale Trade 0.126 [-0.212, -0.163] 0.046 [-0.067, -0.068]

(N=66678) [0.110, 0.141] [-0.248, -0.248] [0.037, 0.055] [-0.088, -0.088]

All Industries 0.116 [-0.179, -0.168] 0.027 [-0.037, -0.043]

(N=630217) [0.112, 0.121] [-0.190, -0.190] [0.024, 0.029] [-0.041, -0.041]

Table A.13: Estimates of ε in the iso-elastic model based on assuming h0it = η−εit is bi-log-
concave, by industry. 95% bootstrap confidence intervals in gray brackets, clustered by
firm.
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Figure A.14: Distribution of the largest integer m = 1 . . . 10 that maximizes the proportion
of worker i’s paychecks for which hours are divisible by m. This can be thought of as the
granularity of hours reporting for worker i.

Figure A.15: Distribution of changes in total hours between subsequent pay periods (trun-
cated at -20 and 20).

A.6 An equilibrium search model of hours and wages

A.6.1 The model

I focus on a minimal extension of Burdett and Mortensen (1998) that takes firms to be

homogeneous in their technology and workers to be homogeneous in their tastes over the

tradeoff between income and working hours. Let there be a large number Nw of workers
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and large number Nf of firms, and define m = Nw/Nf .18 Formally, we model this as a

continuum of workers with massm, and continuum of firms with unit mass. Firms choose

a value of pay z and hours h to apply to all of their workers. Each period, there is an exoge-

nous probability λ that any given worker receives a job offer, drawn uniformly from the

set of all firms. Employed workers accept a job offer when they receive an earnings-hours

package that they prefer to the one they currently hold, where preferences are captured

by a utility function u(z,h) taken to be homogeneous across workers and strictly qua-

siconcave, where uz > 0 and uh < 0. If a worker is not currently employed, they leave

unemployment for a job offer if u(z,h) ≥ u(b, 0), where b represents a reservation earnings

level required to incent a worker to enter employment. Workers leave the labor market

with probability δ each period, and an equal number enters the non-employed labor force.

Before we turn to earnings-hours posting decision of firms, we can already derive sev-

eral relationships that must hold for the earnings-hours distribution in a steady state equi-

librium. First note that the share unemployed v of the workforce must be v = δ
δ+λ , since

mass m(1− v)δ enters unemployment each period, and mλv leaves (we take for granted

here that firms only post job offers that are preferred to unemployment, which will indeed

be a feature of the actual equilibrium). Let’s say that job (z,h) is “inferior” to (z′,h′) when

u(z,h) ≤ u(z′,h′). Let PZH be the firm-level distribution over offers (Zj ,Hj), and define

F (z,h) := PZH(u(Zj ,Hj) ≤ u(z,h)) (A.14)

to be the fraction of firms offering inferior job packages to (z,h). The separation rate

of workers at a firm choosing (z,h) is thus: s(z,h) = δ + λ(1− F (z,h)). To derive the

recruitment of new workers to a given firm each period, we define the related quantity

G(z,h) – the fraction of employed workers that are at inferior firms to (z,h). In a steady

18Here we largely follow the notation of the presentation of the Burdett & Mortensen model by Manning
(2003).
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state, note that G(z,h) must satisfy

m(1− v) ·G(z,h)(δ + λ(1− F (z,h))︸ ︷︷ ︸
mass of workers leaving set of inferior firms

= mvλF (z,h)︸ ︷︷ ︸
mass of workers entering set of inferior firms

since the number of workers at firms inferior to (z,h) is assumed to stay constant. To get

the RHS of the above, note that workers only enter the set of firms inferior to (z,h) from

unemployment, and not from firms that they prefer. This expression allows us to obtain

the recruitment function R(z,h) to a firm offering (z,h). Recruits will come from inferior

firms and from unemployment, so that

R(z,h) = λm ((1− v)G(z,h) + v)

= λmv

(
λF (z,h)

δ + λ(1− F (z,h)) + 1
)

= m

(
δλ

δ + λ(1− F (z,h))

)

Combining with the separation rate, we can derive the steady-state labor supply function

facing each firm:

N(z,h) = R(z,h)/s(z,h) = mδλ

(δ + λ(1− F (z,h))2 (A.15)

Eq. (A.15) is analogous to the baseline Burdett and Mortensen model, with the quantity

F (z,h) playing the role of the firm-level CDF of wages in the baseline model.

Now we turn to how the form of F (z,h) in general equilibrium. We take the profits of

firms to be

π(z,h) = N(z,h)(p(h)− z) = mδλ · p(h)− z
(δ + λ(1− F (z,h))2 (A.16)

where the function p(h) corresponds to e(h)− ψ, with e(h) being a weakly concave and

increasing “effective labor” function with e(0) = 0, and z recurring non-wage costs per
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worker. To simplify some of the exposition, we will emphasize the simplest case of p(h) =

p · h, such that worker hours are perfectly substitutable across workers.

In equilibrium, the identical firms each playing a best response to F (z,h), and thus all

choices of (z,h) in the support of PZH must yield the same level of profits π∗. This gives

an expression for F (z,h) over all (z,h) in the support of PZH , in terms of π∗:

F (z,h) = 1 + δ

λ
−
√
mδ

λ
· p(h)− z

π∗
(A.17)

where we subtract the positive square root since the negative square root cannot deliver

a real number less than or equal to unity for F (z,h). Note that Eq. (A.17) only needs to

hold at (z,h) that are actually chosen by firms in equilibrium

It follows from Eqs. (A.17) and (A.15) that we can rank firms in equilibrium by F (z,h)

and by size according to the quantity z − p(h). Note that since Eq. (A.15) is continuously

differentiable in (z,h), we can rule out mass points in PZH by an argument paralleling that

in Burdett and Mortensen (1998). Suppose PZH(z,h) = δ > 0 for some (z,h). Then any

firm located at (z,h) and earning positive profits could increase their profits further by

offering a sufficiently small increase in compensation (or reduction in hours, or a combi-

nation of both). Since F (z + δz,h) = F (z,h) + δ to first order, there exists a small enough

δz such that π(z + δt,h) > π(z,h) by Eq. (A.16).

To fully characterize the equilibrium PZH , we begin by arguing that for a strictly qua-

siconcave utility function u, workers cannot be indifferent between more than two points

that (z,h) share a value of z − p(h). This implies that offers in the support of PZH lie

along a one dimensional path throughR2. Consider for example the case of perfect hours

substitutability: p(h) = ph, and imagine moving continuously along a line that that keeps

z − ph constant from a given point (z,h) in the support of PZH . Since F (z,h) is constant

along this line, we must have from the definition of F (z,h) that either utility is constant

or that PZH has no additional mass along the line. However, we cannot be moving along

an indifference curve, as strict convexity of preferences implies that the marginal rate
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of substitution between compensation and hours can equal p (or more generally p′(h),

which is non-increasing) at no more than a single point for a single level of utility. Thus,

PZH puts a positive density on at most one point along each isoquant of z − p(h), and

must have positive density on each isoquant within some connected interval. Given this,

we can parametrize the points in support of PZH by a single scalar t ∈ [0, 1], such that

supp(PZH) = {(z(t),h(t))}t∈[0,1] and t = F (z(t),h(t)).

h∗

b

z∗

hours h

co
m
p
en
sa
ti
on

z

ICb

F (z, h) = 1

z = ph

F (z, h) = 0

A

B

Figure A.16: The support of the equilibrium distribution of compensation-hours offers
(z,h) lies along the arrowed (blue) curve AB. Figure shows the case of perfect hours
substitutability p(h) = ph. Plain curve ICb is the indifference curve passing through the
unemployment point (b, 0). The least desirable firm in the economy lies at the pair (z∗,h∗),
labeled by A, where ICb has a slope of p. The other points chosen by firms are found by
beginning at point A and moving in the direction of higher utility, while maintaining a
marginal rate of substitution of p between hours and earnings. This path intersects the
line of solutions to F (z,h) = 1 given Eq. (A.17) at point B. Note that this line still lies
below the zero profit line z = ph, as firms make positive profit. Curve AB shown for a
general non-quasilinear, non-homothetic utility function (see text for details).

Now observe that each (z(t),h(t)) must pick out the point along its respective isoquant

of z − p(h) which delivers the highest utility to workers, i.e.:

(z(t),h(t)) = argmaxz,hu(z,h) s.t. z − p(h) = F−1(t)
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whereF−1(t) = F (z(t),h(t)), viewed as a function of t. Suppose instead that u(z(t),h(t)) <

max(z,h):z−p(h)=F−1(t) u(z,h). Then any firm located at (z(t),h(t)) could profitably deviate

to the argmax while keeping profits per worker constant but increasing their labor supply

by attracting workers from (z(t),h(t)). The first order condition for this problem implies

that (z(t),h(t)) maintains a marginal rate of substitution of p′(h(t)) (p in the baseline case)

between compensation and hours at all t, while the slope of the path (z(t),h(t)) can be

derived from the implicit function theorem:

z′(t)

h′(t)
= −uhh(z,h) + p′′(h)uz(z,h) + p′(h)uzh(z,h)

p′(h)uzz(z,h) + uzh(z,h)

∣∣∣∣
(z,h)=(z(t),h(t))

The curveAB shown in Figure A.16 depicts the path {(z(t),h(t))}t∈[0,1] for a case in which

preferences are neither homothetic nor quasilinear, for example: u(z,h) = z1−γ
1−γ − β h

1+1/ε

1+1/ε .

If preferences were instead homothetic then AB would be a straight line pointing to the

north-west from A. This will be the case in the numerical calibration, in which we take

preferences to follow the Stone-Geary functional form.19 If preferences were quasilinear

in income (for example the above with γ = 0), then AB would be a vertical line rising

from point A and there would be no hours dispersion in equilibrium.

To pin down the initial point A, we note that it must lie on the indifference curve

passing through the unemployment point (b, 0), labeled as ICb in Figure A.16. If it were

to the northwest of the ICb curve, a firm located there could increase profits by offering a

lower value of z − p(h), since given that F (z(0),h(0)) = 0 their steady state labor supply

already only recruits from unemployment. However, they cannot offer a pair that lies

to the southeast of ICb, since they could never attract workers from unemployment to

have positive employment. We assume that the marginal rate of substitution between

compensation and hours is less than p′(0) at (z,h) = (b, 0) (such that there are gains from

19A CES generalization of Stone-Geary preferences would also result in a straight line AB: u(z,h) =
[θ(z− γz)λ+ (1− θ)(γh− h)λ]1/λ. It is also possible to obtain a non-linear path AB while maintaining con-
stant elasticity of substitution between earnings and leisure. The work of Sato (1975) on production func-

tions suggests utility functions satisfying uz(z,h)
uh(z,h) =

(
z−γz
h−γh

) 1
1−λ

φ (u(c,h)) where φ is any positive function.
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trade) and increases continuously with h, eventually passing p′(h) at some point h∗. This

point is unique given strict quasiconcavity of u(·). Then, let z∗ be the earnings value such

that workers are indifferent between (z∗,h∗) and unemployment (b, 0), which represents

a reservation level of utility required to enter employment.

Finally, we can also express F (z,h) as a function of (z∗,h∗) = (z(0),h(0)) in order

to derive an expression for the F (z,h) = 1 line, representing the most desired firms in

equilibrium. Using that π∗ = π(z∗,h∗), we can rewrite Equation (A.17) as:

F (z,h) = λ+ δ

λ
·
[

1−
√

p(h)− z
p(h∗)− z∗

]

The firms at point B in Figure A.16 thus solve z− p(h) =
(

δ
δ+λ

)2
(z∗− p(h∗)). Equilibrium

profits are

π∗ = m(p(h∗)− z∗) · λ/δ

(1 + λ/δ)2

Note that in equilibrium, there exists dispersion not only in both earnings and in hours

(provided preferences are not quasi-linear), but also in effective hourly wages, as the ratio

z(t)/h(t) is also strictly increasing with t. Note that π∗ goes to zero in the limit that

λ/δ →∞. In this limit dispersion over hours, earnings, and hourly earnings all disappear

as the line AB collapses to a single point on the zero profit line z = p(h).20

A.6.2 Effects of FLSA policies

Now consider the introduction of a minimum wage, which introduces a floor on the

hourly wage w := y/h. We assume that the point (z∗,h∗) does not satisfy the minimum

wage, so that the minimum wage binds and rules out part of the unregulated support of

PZH . The left panel of Figure A.17 depicts the resulting equilibrium, in which the initial

20Note that there is no contradiction here as the argument that point A must be on ICb relies on
F (z(0),h(0)) = 0, which is implied by no mass points in PZH , in turn implied by firms making positive
profit.

200



point (z(0),h(0)) moves to the point markedA′, at which the marginal rate of substitution

between compensation and hours is p′(h), but the compensation-hours pair just meets the

minimum wage. This compresses the distribution PZH compared with the unregulated

equilibrium from Figure A.16, which now follows a subset of the original path AB. In

a stochastic dominance sense, all jobs see a reduction in hours and an increase in total

compensation (and hence a compounded effect on hourly wages) when a minimum wage

is introduced or increased.
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Figure A.17: Left panel shows the support of the equilibrium distribution of
compensation-hours offers (z,h) under a binding minimum wage. The compensation
hours pairs that do meet w are indicated by the shaded region. The lowest-wage offer
in the economy moves from point A in the unregulated equilibrium to the point A′ on
the minimum wage line z = wh at which the marginal rate of substitution between com-
pensation and hours equals p. This is equal to the point at which curve AB from Figure
A.16 crosses the minimum wage line. Curve A′B traces the remainder of curve AB. The
compensation-hours offers are thus more compressed and the new distribution of earn-
ings stochastically dominates the distribution from the unregulated equilibrium, while the
opposite is true of hours. Right panel shows how this effect is augmented when overtime
premium pay for hours in excess of 40 is required, and A′ lies at greater than 40 hours. In
this case the support of PZH begins at point A′′, which lies on the kinked minimum wage
function w(h).

The right panel of Figure A.17 shows how equilibrium is further affected if in addition

to a binding minimum wage, premium pay is required at a higher minimum wage 1.5w

for hours in excess of 40, provided that the point A′ lies at an hours value that is greater
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than 40. In this case, (z(0),h(0)) will lie at point A′′, at which the marginal rate of substi-

tution between compensation and hours is equal to h′, and compensation is equal to the

minimum-compensation function under both the minimum wage and overtime policies:

w(h) := wh+ 1(h > 40)(h− 40)w/2.

A.6.3 Calibration

To allow wealth effects in worker utility while facilitating calibration based on existing

empirical studies, we assume worker utility is Stone-Geary:

u(z,h) = β log(z − γz) + (1− β) log(γh − h)

This simple specification allows a closed form solution to the path (z(t),h(t)), given by

the following Proposition. Using this result, we calibrate the model to consider the effects

of FLSA policies on earnings and hours.

Proposition. Under Stone-Geary preferences and linear production p(h) = ph− z, the equilib-

rium offer distribution is a uniform distribution over {(z(t),h(t))}t∈[0,1], where:

z(t)
h(t)

 =


pβγh + (1− β)γz − βz − β

(
1− t

1+ δ
λ

)2
· (ph(0)− z − z(0))

βγh +
1−β
p (γz + z) + (1−β)

p

(
1− t

1+ δ
λ

)2
· (ph(0)− z − z(0))


The initial point (z(0),h(0)) is

1. h(0) = γh −
(
(b−γc)(1−β)

pβ

)β
γ1−β
h and z(0) = z∗ = γz +

(
pβγh
1−β

)1−β
((b− γc)(1− β))β

in the unregulated equilibrium

2. h(0) = ( pβ
1−βγh + γz)(w− pβ

1−β )
−1 and z(0) = wh(0) with a binding minimum wage of w

(binding in the sense that z∗ < wh∗)

3. h(0) = ( pβ
1−βγh+ γz+ 20w)(1.5w− pβ

1−β )
−1 and z(0) = 1.5wh(0)−20w with a minimum
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wage of w and time-and-a-half overtime pay after 40 hours, if the expression for h(0) in item

2. is greater than 40

Moments with respect to the worker distribution can be evaluated for any measurable function

φ(z,h) as:

Eworkers[φ(Zi,Hi)] =

(
1 + λ

δ

) ∫ 1

0
φ(z(t),h(t)) ·

(
1 + λ

δ
(1− t)

)−2
dt

We calibrate the model focusing on a lower-wage labor market where productivity is

a constant p = $15. We allow non-wage costs of z = $100 a week, with the value based on

estimates of benefit costs in the low-wage labor market.21 We take b = $250 correspond-

ing to unemployment benefits that can be accrued at zero weekly hours of work.22. We

calibrate the factor λ/δ using estimates from Manning (2003) using the proportion of re-

cruits from unemployment. Using Manning’s estimates from the US in 1990 of about 55%

of recruits coming from unemployment, this implies a value of λ/δ ≈ 3 in the baseline

Burdett and Mortensen model.

To calibrate the preference parameters, we first pin down β from estimates of the

marginal propensity to reduce earnings after random lottery wins (Imbens et al. 2001;

Cesarini et al. 2017). Both of these studies report a value in the neighborhood of β = 0.85.

We take a value of γz = $200 as the level of consumption at which the marginal will-

ingness to work is infinite, and take γh = 50 hours of work per week. We choose this

value according to a rule-of-thumb as the average hours among full-time workers in the

US (42.5), divided by β.23 The value of γh plays a central role in setting the location of

the hours distribution that we focus on. Again, the model should be interpreted as for a

21Specifically, I take a benefit cost of $2.43 per hour worked for the 10th percentile of wages in 2019: BLS
ECEC, multiplied by the average weekly hours worked of 42.5 from the 2018 CPS summary, which results
in 102.425 ≈ 100.

22We use the UI replacement rate for single adults 2 months after unemployment from the OECD. Taking
this for individuals at 2/3 of average income (the lowest available in this table), and then use a BLS figure
for average income at the 10% percentile of 22, 880 , we have b ≈ $22, 880 · 0.6/52.25 = $263

23 Cesarini et al. (2017) point out that when γc and no-unearned income, optimal hours choice is βγh. By
comparison, these authors calibrate γh to be about 35 hours in the Swedish labor market.
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specific homogeneous labor market, which we take here to be full-time low wage workers

in the US. We ignore taxation in the calibration.

Given these values, we can compute moments of functions of the joint distribution of

compensation and hours using the Proposition and numerical evaluation of the integrals.

Table A.14 reports worker-level means of hours, weekly compensation, and the hourly

wage z/h, as well as employment and profits per worker averaged across the firm distri-

bution. In the unregulated equilibrium, the lowest-compensated workers work about 49

hours a week earning about $300, while the highest-compensated workers work about 46

hours and earn more than $550. This equates to a more than doubling of the hourly wage,

which is about $6 for the t = 0 workers and over $12 for the t = 1 workers. For each of the

first three variables, the mean is much closer to the t = 1 value than the t = 0 value, which

follows from the higher-t firms having more employees. The convexity of the labor sup-

ply function across values of t is apparent from the firm size row: the largest firm is about

16 times as large as the smallest, while the average firm size is four times larger than the

t = 0 firms. The final row reports weekly profits per worker: the average worker captures

more than half of the employer surplus for the t = 0 worker, whose weekly compensation

is comparable to the employer’s profit for that worker.

Unregulated equilibrium w = 7.25 w = 7.25
& OT

w = 12
& OT

t=0 t=1 mean mean mean mean
weekly hours 48.85 45.71 46.34 46.18 46.11 45.51

weekly earnings 297.36 564.68 511.22 524.31 530.93 581.78
hourly wage 6.09 12.35 11.06 11.37 11.53 12.78

firm size / smallest 1.00 16.00 4.00 4.00 4.00 4.00
weekly profit per worker 335.46 20.97 146.76 119.81 106.18 1.49

Table A.14: Results from the calibration. The parameter t ∈ [0, 1] indicates firm rank in
desirability from the perspective of workers. Means for weekly hours, weekly earnings,
and hourly wages are computed with respect to the worker distribution, while firm size
and profits per worker is averaged with respect to the firm distribution.

The third column of Table A.14 adds a minimum wage set at the current federal rate of

$7.25. This provides a small increase of about 30 cents to the average hourly wage, which
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now begins at $7.25 for t = 0 rather than $6.06. Note that the minimum wage provides

spillovers by reallocating firm mass up the entire wage ladder, beyond the mechanical

effect of increasing the wages of those previously below 7.25. Average hours worked are

decreased slightly due to the minimum wage, by about ten minutes per week. As this

effect is mediated by a wealth effect in labor supply, we can expect it to be small unless

worker preferences deviate significantly from quasi-linearity with respect to income. With

β = .85, this effect is reasonably modest but non-negligible. In the fourth column, we

see that the combination of the minimum wage and overtime premium has little effect

beyond the direct effect of the minimum wage: hourly earnings increase another 15 cents

and hours worked go down by another 0.07. Finally, we see that increasing the minimum

wage to $12 has much larger effects: adding another dollar to average wages and reducing

working time by a bit more than half an hour per week. Given the fixed costs assumed in

this calibration, a $12 minimum wage causes employers to run on extremely thin margins

for these workers (who have $15 an hour productivity). However, note that in this model

a minimum wage causes neither an increase nor decrease in aggregate non-employment,

as this is governed in the steady state only by λ/δ. Thus, the average absolute firm size is

unchanged across the policy environments.

A.7 Main Proofs

A.7.1 Proof of Lemma A.1

For any convex budget function B(x), (zBi, xBi) = argmaxz,x {ui(z, x) s.t. z ≥ B(x)}

exists and is unique since it maximizes the strictly quasi-concave function ui(z, x) over

the convex domain {(z, x) : z ≥ B(x)}. Furthermore, by monotonicity of u(z, x) in z we

may substitute in the constraint z = B(x) and write

xBi = argmaxxui(B(x), x)
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Consider any x 6= xBi, and let x̃ = θx + (1− θ)x∗ where x∗ = xBi and θ ∈ (0, 1). Since

B(x) is convex in x and ui(z, x) is weakly decreasing in z:

ui(B(x̃), x̃) ≥ ui(θB(x)+ (1− θ)B(x∗), x̃) > min{ui(B(x), x),ui(B(x∗), x∗)} = ui(B(x), x)

(A.18)

where I have used strict quasi-concavity of ui(z, x) in the second step, and that x∗ is a max-

imizer in the third. This result implies that for any x 6= x∗, if one draws a line between x

and x∗, the function ui(B(x), x) is strictly increasing as one moves towards x∗. When x is

a scalar, this argument is used by Blomquist et al. (2015) (see Lemma A2 therein) to show

that ui(B(x), x) is strictly increasing to the left of x∗, and strictly decreasing to the right

of x∗. Note that for any (binding) linear budget constraint B(x), the result holds without

monotonicity of ui(z, x) in z. This is useful for Theorem 2* in which some workers choose

their hours.

Let X0i = {x : yi(x) ≤ k} and X1i = {x : yi(x) ≥ k}. For any function B, let uBi(x) =

ui(B(x), x), and note that

uBki(x) =


uB0i(x) if x ∈ X0i

uB1i(x) if x ∈ X1i

Let xki be the unique maximizer of uBki(x), where Yi = yi(xki). Suppose that Yi < k.

By continuity of yi(x), X0i is a closed set and xki belongs to the interior of X0i. Suppose

furthermore that Y0i 6= Yi, with x0i the maximizer of uB0i(x). If this were the case, then

there would exist a point x̃ ∈ X0i along the line from x0i to xki. By Eq. (A.18) with

B = Bk, we must have uBki(x̃) > uBki(x0i). Since uB0i(x) = uBki(x) in X0i this means that

uB0i(x̃) > uB0i(x0i), contradicting the premise that x0i maximizes uB0i(x). Figure A.18

depicts the logic visually. Thus, Yi < k implies Yi = Y0i. We can similarly show that Yi > k

implies Yi = Y1i. Taking the contrapositive of each of these, we have that Y1i ≤ k ≤ Y0i
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x1

x2

is X0 := {x : y(x) ≤ k}

is X1 := {x : y(x) ≥ k}

x∗
k
•

Suppose Y = y(x∗
k) < k

=⇒ x∗
k ∈ int(X0)

x∗
0
•

Y0 6= Y =⇒ x∗
0 6= x∗

k

uBk
(x)

uB0(x)

On X0, B0(x) = Bk(x)

and thus uB0
(x) = uBk

(x) in X0

Figure A.18: Depiction of the step establishing (Y < k) =⇒ (Y = Y0) in the proof
of Lemma A.1. In this example z = (x1,x2) and y(x) = x1 + x2. We suppress indices
i for clarity. Proof is by contradiction. If Y0 6= Y , then x∗k 6= x∗0, where x∗k and x∗0 are the
unique maximizers of uBk(x) and uB0(x), respectively. By Equation A.18, we have that the
function uB0(x), depicted heuristically as a solid black curve, is strictly increasing as one
moves along the dotted line from x∗k towards x∗0. Similarly, the function uB0(x), depicted
as a solid blue curve, is strictly increasing as one moves in the opposite direction along the
same line, from x∗0 towards z∗k. By the assumption that Y < k, then using continuity of y(x)
it must be the case that x∗k lies in the interior of X0, the set of x’s that make y(x) ≤ k. This
means that there is some interval of the dotted line that is withinX0 (regardless of whether
z∗0 is also within X0, or it is not, as depicted). On this interval, the functions B0 and Bk are
equal, and thus so must be the functions uBk and uB0 . Since the same function cannot be
both strictly increasing and strictly decreasing, we have obtained a contradiction.

implies that Yi = k.

It is easily demonstrated under WARP alone (see the proof of Theorem A.1 below) that

Y0i ≤ k implies that Yi = Y0i and that Y1i ≥ k implies that Yi = Y1i. Note that together

these imply that Y0i < k ≤ Y1i and Y0i ≤ k < Y1i are both impossible (since we would

then have both that Yi < k and Yi ≥ k or that both that Yi ≤ k and Yi > k). Thus,

we can summarize the relationship between observable Yi and potential outcomes in the
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remaining three cases as:

Yi =


Y0i if Y0i < k

k if Y1i ≤ k ≤ Y0i

Y1i if Y1i > k

A.7.2 Proof of Theorem A.1

We first prove the statement in b). If Y0i ≤ k, then by CHOICE xB0 is in X0, where

X0 is defined in the proof of Lemma A.1. Since Bk(x) = B0(x) for all x ∈ X0, it follows

that zB0i ≥ Bk(xB0i), i.e. Y0i is feasible under Bk. Note that Bki(x) ≥ B0i(x) for all

x. By WARP then (zBki, xBki) = (zB0i, xB0i). Thus Yi = yi(xBk) = yi(xB0) = Y0i. So

Y0i ≤ k =⇒ Yi = Y0i. As an implication we have that Y0i < k =⇒ Yi < k.

By the same logic we can show that Y1i ≥ k =⇒ Yi = Y1i and thusly that Y1i > k =⇒

Yi > k. Taking the contrapositives, we see that Yi = k ⇐⇒ Yi ≤ k & Yi ≥ k implies

Y1i ≤ k and Y0i ≥ k. Thus Yi = k implies Y1i ≤ k ≤ Y0i and hence B ≤ P (Y1i ≤ k ≤ Y0i).

This holds under CONVEX or WARP since CONVEX implies WARP. However under

CONVEX we also have from Lemma A.1 that Y1i ≤ k ≤ Y0i implies Yi = k, and thus

B ≥ P (Y1i ≤ k ≤ Y0i). Together we have that both B ≤ P (Y1i ≤ k ≤ Y0i) and B ≥ P (Y1i ≤

k ≤ Y0i) and hence B = P (Y1i ≤ k ≤ Y0i) under CONVEX.

A.7.3 Proof of the Corollary to Theorem A.1

In the proof of Theorem A.1 I showed that under WARP and CHOICE, Y0i ≤ k =⇒

Yi = Y0i. Thus, for any δ > 0 and y < k: Y0i ∈ [y − δ, y] implies that Yi ∈ [y − δ, y] and

hence P (Y0i ∈ [y − δ, y])− P (Yi ∈ [y − δ, y]) is negative. This implies that f0(y)− f(y) =

limδ↓0
P (Y0i∈[y−δ,y])−P (Yi∈[y−δ,y])

δ ≤ 0, i.e. that f(y) ≥ f0(y). An analogous argument holds

for Y1, where we consider the event Y1i ∈ [y, y + δ] any y > k. Under CONVEX instead of

WARP, the inequalities are all equalities, by Lemma A.1.
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A.7.4 Proof of Theorem 1.1

By Theorem 1 of Dümbgen et al. (2017): for d ∈ {0, 1} and any t, bi-log concavity implies

that:

1− (1− Fd|K∗=0(k))e
−

fd|K∗=0(k)
1−Fd|K∗=0(k)

t
≤ Fd|K∗=0(k+ t) ≤ Fd|K∗=0(k)e

fd|K∗=0(k)
Fd|K∗=0(k)

t

Defining u = F0|K∗=0(k + t), we can use the substitution t = Q0|K∗=0(u)− k to translate

the above into bounds on the conditional quantile function of Y0i, evaluated at u:

F0|K∗=0(k)

f0|K∗=0(k)
· ln
(

u

F0|K∗=0(k)

)
≤ Q0|K∗=0(u)−k ≤ −

1− F0|K∗=0(k)

f0|K∗=0(k)
· ln
(

1− u
1− F0|K∗=0(k)

)

And similarly for Y1, letting v = F1|K∗=0(k− t):

1− F1|K∗=0(k)

f1|K∗=0(k)
· ln
(

1− v
1− F1|K∗=0(k)

)
≤ k−Q1|K∗=0(v) ≤ −

F1|K∗=0(k)

f1|K∗=0(k)
· ln
(

v

F1|K∗=0(k)

)

Note that:

E[Y0i − Y1i|Yi = k,K∗i = 0] = 1
B∗
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
{Q0|K∗=0(u)−Q0|K∗=0(u)}du

=
1
B∗
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
{Q0|K∗=0(u)− k}du+

1
B∗
∫ F1|K∗=0(k)

F1|K∗=0(k)−B∗
{k−Q1|K∗=0(v)}dv

where B∗ := P (Yi = k|K∗ = 0). A lower bound for E[Y0i − Y1i|Yi = k,K∗i = 0] is thus:

F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

u

F0|K∗=0(k)

)
du+

1− F1|K∗=0(k)

f1|K∗=0(k)(B∗)
∫ F1|K∗=0(k)

F1|K∗=0(k)−(B∗)
ln
(

1− v
1− F1|K∗=0(k)

)
dv

= g(F0|K∗=0(k), f0|K∗=0(k),B∗) + h(F1|K∗=0(k), f1|K∗=0(k),B∗)
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where

g(a, b,x) :=
a

bx

∫ a+x

a
ln
(u
a

)
du =

a2

bx

∫ 1+x
a

1
ln (u) du

=
a2

bx
{u ln(u)− u}|1+

x
a

1

=
a2

bx

{(
1 + x

a

)
ln
(

1 + x

a

)
− x

a

}
=

a

bx
(a+ x) ln

(
1 + x

a

)
− a

b

and

h(a, b,x) :=
1− a
bx

∫ a

a−x
ln
(

1− v
1− a

)
dv =

(1− a)2

bx

∫ 1+ x
1−a

1
ln (u) du = g(1− a, b,x)

Similarly, an upper bound is:

−
1− F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

1− u
1− F0|K∗=0(k)

)
du

−
F1|K∗=0(k)

f1|K∗=0(k)(B∗)
∫ F1|K∗=0(k)

F1|K∗=0(k)−(B∗)
ln
(

v

F1|K∗=0(k)

)
dv

= g′(F0|K∗=0(k), f0|K∗=0(k),B∗) + h′(F1|K∗=0(k), f1|K∗=0(k),B∗)

where

g′(a, b,x) := −1− a
bx

∫ a+x

a
ln
(

1− u
1− a

)
du = −(1− a)

2

bx

∫ 1

1− x
1−a

ln (u) du

=
(1− a)2

bx
{u− u ln(u)}|11− x

1−a

=
1− a
b

+
1− a
bx

(1− a− x) ln
(

1− x

1− a

)
= −g(1− a, b,−x)
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and

h′(a, b,x) := − a

bx

∫ a

a−x
ln
(v
a

)
dv = −a

2

bx

∫ 1

1−xa
ln (u) du = g′(1− a, b,x) = −g(a, b,−x)

This ∆∗k ∈ [∆Lk , ∆Uk :] were

∆Lk := g (F−(k), f−(k),B − p) + g (1− F (k), f+(k),B − p)

and

∆Uk := −g (1− p− F−(k), f−(k), p−B)− g (F (k)− p, f+(k), p−B)

The bounds are sharp as CHOICE, CONVEX and RANK imply no further restrictions on

the marginal potential outcome distributions. To obtain the final result, note then that

F0|K∗=0(k) =
F0(k)− p

1− p and F1|K∗=0(k) =
F1(k)− p

1− p

f0|K∗=0(k) =
f0(k)

1− p and f1|K∗=0(k) =
f1(k)

1− p

B∗ := P (Yi = k|K∗i = 0) = B − p1− p

and finally that the function g(a, b,x) is homogeneous of degree zero. As shown by Düm-

bgen et al. (2017), BLC implies the existence of a continuous density function, which as-

sures that these density limits exist and are equal to the corresponding potential outcome

densities above.

A.7.5 Proof of Lemma A.2

Let ∆ki (ρ, ρ′) := Yi(ρ, k)− Yi(ρ′, k) for any ρ, ρ′ ∈ [ρ0, ρ1] and value of k.

Assumption SMOOTH (regularity conditions). The following hold:

1. P (∆ki (ρ, ρ′) ≤ ∆,Yi(ρ, k) ≤ y) is twice continuously differentiable at all (∆, y) 6= (0, k∗),
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for any ρ, ρ′ ∈ [ρ0, ρ1] and k.

2. Yi(ρ, k) = Y (ρ, k, εi), where εi has compact support E ⊂ R
m for some m. Y (·, k, ·) is

continuously differentiable on all of [ρ0, ρ1]×E, for every k.

3. there possibly exists a set K∗ ⊂ E such that Y (ρ, k, ε) = k∗ for all ρ ∈ [ρ0, ρ1] and ε ∈ K∗.

The quantity E
[
∂Yi(ρ,k)
∂ρ

∣∣∣ Yi(ρ, k) = y, εi /∈ K∗
]

is continuously differentiable in y for all y

including k∗.

In the remainder of this proof I keep k be implicit in the functions Yi(ρ, k) and ∆ki (ρ, ρ′),

as it will remained fixed. Item 1 of SMOOTH excludes the point (0, k∗) on the basis that

we may expect point masses at Yi(ρ) = k∗, as in the overtime setting. Following Sec-

tion 1.4, item 3 imposes that all such “counterfactual bunchers” have zero treatment ef-

fects, while also introducing a further condition that will be used later in Lemma A.3.

Let K∗i be an indicator for εi ∈ K∗ and denote p = P (K∗i = 1). Item 1 implies that

the density f∆(ρ,ρ′),Y (ρ)(∆, y) is continuous in y whenever y 6= k∗ or ∆ 6= 0, so I define

f∆(ρ,ρ′),Y (ρ)(∆, k∗) = limy→k∗ f∆(ρ,ρ′),Y (ρ)(∆, y) for any ρ, ρ′ and ∆. Similarly, we can define

the marginal density fρ(y) of Yi(ρ) at k∗ to be limy→k∗ fρ(y) for any ρ.

The main tool in the proof of Lemma A.2 will be the following Lemma, which shows

that the uniform density approximation of Theorem A.3 becomes exact in the limit that

the two cost functions approach one another.

Lemma SMALL (small kink limit). Assume CHOICE*, WARP, and SMOOTH. Then:

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = −fρ(k)E

[
dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]

Proof. Throughout this proof we let fW denote the density of a generic random variable or

random vector Wi, if it exists. Write ∆i(ρ, ρ′) = ∆i(ρ,ρ′, εi) where ∆i(ρ, ρ′, ε) := Y (ρ, ε)−
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Y (ρ′, ε).

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = lim

ρ′↓ρ
P (Yi(ρ) ∈ [k, k+ ∆(ρ, ρ′)i])− p(k)

ρ′ − ρ

= lim
ρ′↓ρ

P (Yi(ρ) ∈ (k, k+ ∆(ρ, ρ′)i])
ρ′ − ρ

= lim
ρ′↓ρ

1
ρ′ − ρ

∫ ∞
0

d∆
∫ k+∆

k
dy · f∆(ρ,ρ′),Y (ρ)(∆, y)

= lim
ρ′↓ρ

∫ ∞
0

d∆
∫ k+∆

k
dy ·

f∆(ρ,ρ′),Y (ρ)(∆, k) + (y− k)r∆(ρ,ρ′),Y (ρ)(∆, k, y)
ρ′ − ρ

(A.19)

where we have used that by item 1 the joint density of ∆i(ρ, ρ′) and Yi(ρ) exists for any

ρ, ρ′ and is differentiable and r∆(ρ,ρ′),Y (ρ) is a first-order Taylor remainder term satisfying

lim
y↓k
|r∆(ρ,ρ′),Y (ρ)(∆, y)| = |r∆(ρ,ρ′),Y (ρ)(∆, k)| = 0

for any ∆.

I now show that the whole term corresponding to this remainder is zero. First, note

that:

∣∣∣∣∣ limρ′↓ρ
∫ ∞

0
d∆
∫ k+∆

k
dy ·

(y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣ = lim
ρ′↓ρ

∣∣∣∣∣
∫ ∞

0
d∆
∫ k+∆

k
dy ·

(y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣
≤ lim
ρ′↓ρ

∫ ∞
0

d∆
∫ k+∆

k
dy ·

∣∣∣∣∣ (y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣
≤ lim
ρ′↓ρ

∫ ∞
0

d∆
∆

ρ′ − ρ
∫ k+∆

k
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣

where I’ve used continuity of the absolute value function and the Minkowski inequality.

Define ξ(ρ, ρ′) = supε∈E ∆(ρ, ρ′, ε). The strategy will be show that limρ′↓ρ ξ(ρ, ρ′) = 0, and

then since r∆i(ρ,ρ′),Yi(ρ)(∆, y) = 0 for any ∆ > ξ(ρ, ρ′) and all y (since the marginal density

f∆(ρ,ρ′)(∆) would be zero for such ∆). With ξ(ρ, ρ′) so-defined:

RHS of above ≤ lim
ρ′↓ρ

∫ ξ(ρ,ρ′)

0
d∆

ξ(ρ, ρ′)
ρ′ − ρ

∫ k+ξ(ρ,ρ′)

k
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣

= lim
ρ′↓ρ

ξ(ρ, ρ′)
ρ′ − ρ · limρ′↓ρ

∫ ξ(ρ,ρ′)

0
d∆
∫ ξ(ρ,ρ′)

0
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, k+ y)
∣∣∣(A.20)
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where in the second step I have assumed that each limit exists (this will be demonstrated

below). Let us first consider the inner integral of the above:
∫ k+ξ(ρ,ρ′)
k dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣,

for any ∆. Supposing that limρ′↓ρ ξ(ρ, ρ′) = 0, it follows that this inner integral evaluates

to zero, by the Leibniz rule and using that r∆i(ρ,ρ′),Yi(ρ)(∆, k) = 0. Thus the entire second

limit is equal to zero.

Now I prove that limρ′↓ρ ξ(ρ, ρ′) = 0 and that limρ′↓ρ
ξ(ρ,ρ′)
ρ′−ρ exists. First, note that contin-

uous differentiability of Y (ρ, εi) implies Yi(ρ) is continuous for each i so limρ′↓ρ ∆i(ρ, ρ′) =

0 point-wise in ε. We seek to turn this point-wise convergence into uniform conver-

gence over ε, i.e. that limρ′↓ρ supε∈E ∆(ρ, ρ′, ε) = supε∈E limρ′↓ρ ∆(ρ, ρ′, ε) = supε∈E 0 = 0.

The strategy will be to use equicontinuity of the sequence and compactness of E. Con-

sider any such sequence ρn
n→ ρ from above, and let fn(ε) := Y (ρ, ε) − Y (ρn, ε) and

f(ε) = limn→∞ fn(ε) = 0. Equicontinuity of the sequence fn(ε) says that for any ε, ε′ ∈ E

and e > 0, there exists a δ > 0 such that ||ε− ε′|| < δ =⇒ |fn(ε)− fn(ε′)| < e.

This follows from continuous differentiability of Y (ρ, ε). LetM = supρ∈[ρ0,ρ1],ε∈E |∇ρ,εY (ρ, ε)|.

M exists and is finite given continuity of the gradient and compactness of [ρ0, ρ1] × E.

Then, for any two points ε, ε′ ∈ E and any ρ ∈ [ρ0, ρ1]:

|Y (ρ, ε)− Y (ρ, ε′)| =
∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε

∣∣∣∣ ≤ ∫ ε

ε′
|∇εY (ρ, ε) · dε| ≤M

∫ ε

ε′
||dε|| ≤M ||ε− ε′||

where dε is any path from ε to ε′ and I have used the definition of M and Cauchy-Schwarz

in the second inequality. The existence of a uniform Lipschitz constant M for Y (ρ, ε)

implies a uniform equicontinuity of Y (ρ, ε) of the form that for any e > 0 and ε, ε′ ∈ E,

there exists a δ > 0 such that ||ε− ε′|| < δ =⇒ supρ∈[ρ0,ρ1] |Y (ρ, ε)− Y (ρ, ε′)| < e/2, since

we can simply take δ = e/(2M). This in turn implies that whenever ||ε− ε′|| < δ:

|Y (ρ, ε)− Y (ρn, ε)−
{
Y (ρ, ε′)− Y (ρn, ε′)

}
| = |Y (ρ, ε)− Y (ρ, ε′)−

{
Y (ρn, ε)− Y (ρn, ε′)

}
|

≤ |Y (ρ, ε)− Y (ρ, ε′)|+ |Y (ρn, ε)− Y (ρn, ε′)| ≤ e,
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our desired result. Together with compactness ofE, equicontinuity implies that limn→∞ supε∈E fn(ε) =

supε∈E limn→∞ fn(ε) = 0.

We apply an analogous argument for limρ′↓ρ
ξ(ρ,ρ′)
ρ′−ρ , where now fn(ε) = Y (ρ,ε)−Y (ρn,ε)

ρn−ρ .

For this case it’s easier to work directly with the function Y (ρ,ε)−Y (ρn,ε)
ρn−ρ , showing that it is

Lipschitz in deviations of ε uniformly over n ∈ N, ε ∈ E.

∣∣∣∣Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

− Y (ρ, ε′)− Y (ρn, ε′)
ρn − ρ

∣∣∣∣ = 1
ρn − ρ

∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε−

∫ ε

ε′
∇εY (ρn, ε) · dε

∣∣∣∣
≤ 1
ρn − ρ

(∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε

∣∣∣∣+ ∣∣∣∣∫ ε

ε′
∇εY (ρn, ε) · dε

∣∣∣∣)
≤ 2M
ρn − ρ

∫ ε

ε′
||dε|| ≤ 2M

ρn − ρ
||ε− ε′||

This implies equicontinuity of Y (ρ,ε)−Y (ρn,ε)
ρn−ρ with the choice δ = e(ρn − ρ)/(2M). As be-

fore, equicontinuity and compactness ofE allow us to interchange the limit and the supre-

mum, and thus:

lim
n→∞

ξ(ρ, ρn)
ρn − ρ

= lim
n→∞

supε∈E {Y (ρ, ε)− Y (ρn, ε)}
ρn − ρ

= lim
n→∞

sup
ε∈E

Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

= sup
ε∈E

lim
n→∞

Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

= sup
ε∈E

∂Y (ρ, ε)
∂ρ

:= M ′ <∞

where finiteness of M ′ follows from it being defined as the supremum of a continuous

function over a compact set. This establishes that the first limit in Eq. (A.20) exists and is

finite, completing the proof that it evaluates to zero.
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Given that the second term in Eq. (A.19) is zero, we can simplify the remaining term as:

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = lim

ρ′↓ρ

1
ρ′ − ρ

∫ ∞
0

f∆(ρ,ρ′),Y (ρ)(∆, k)∆d∆

= fρ(k) lim
ρ′↓ρ

1
ρ′ − ρP (∆i(ρ, ρ

′) ≥ 0|Yi(ρ) = k)

·E
[
∆i(ρ, ρ′)|Yi(ρ) = k, ∆i(ρ, ρ′) ≥ 0

]
= fρ(k)(k) lim

ρ′↓ρ

1
ρ′ − ρE

[
∆i(ρ, ρ′)|Yi(ρ) = k, ∆i(ρ, ρ′)

]
= fρ(k)(k)E

[
lim
ρ′↓ρ

∆i(ρ, ρ′)
ρ′ − ρ

∣∣∣∣ Yi(ρ) = k

]
= fρ(k)E

[
−Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]

where I have used Lemma POS and then finally the dominated convergence theorem. To

see that we may use the latter, note that dYi(ρ)
dρ = ∂Y (ρ,εi)

∂ρ < M uniformly over all εi ∈ E,

and E [M |Yi(ρ) = k] = M <∞.

Now we return to the proof of Lemma A.2. By item 1 of Assumption SMOOTH, the

marginal Fρ(y) := P (Yi(ρ) ≤ y) is differentiable away from y = k with derivative fρ(y).

From the proof of Theorem A.1 it follows that B ≤ Fρ1(k)− Fρ0(k) + p(k) with equality

under CONVEX, and thus:

B − p(k) ≤ Fρ1(k)− Fρ0(k)

=
∫ ρ1

ρ0

d

dρ
Fρ(k)dρ

=
∫ ρ1

ρ0
lim
δ↓0

Fρ+δ(k)− Fρ(k)
δ

dρ

=
∫ ρ0

ρ1
lim
δ↓0

Fρ(k)− Fρ+δ(k)
δ

dρ

=
∫ ρ0

ρ1
lim
δ↓0

P (Yi(ρ) ≤ k ≤ Yi(ρ+ δ))− p(k)
δ

dρ

=
∫ ρ0

ρ1
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

where the fourth equality has applied the identity 1 = P (Y0i ≤ k) + P (Yi(ρ) ≤ k ≤
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Yi(ρ+ δ)) + P (Y1i > k) under CHOICE and WARP to the pair of choice constraints B(ρ)

and B(ρ+ δ), noting that P (Yi(ρ) < k) = Fρ(k)− p(k).

A.7.6 Proof of Lemma A.3

This mostly follows the proof in Kasy (2017) adapted to our setting in which y is one-

dimensional. As in the proof of Lemma A.2 I leave k implicit in the functions Yi(ρ, k) and

Y (ρ, k, ε), as k remains fixed throughout. One additional subtlety concerns the possibility

of a point mass in the distribution of each Yi(ρ) at k∗. Note that Assumption SMOOTH im-

plies a continuous density fρ(y) for all ρ ∈ [ρ0, ρ1] and y 6= k∗, which is also continuously

differentiable in ρ. We define fρ(k∗) = limy→k fρ(y) in the case that p > 0.

Consider any bounded differentiable function a(y) having the property that a(k∗) = 0,

and note that we may write A(y) := d
dρE[a(Yi(ρ))] in two separate ways. Firstly:

A(y) =
d

dρ

∫
dy · fρ(y) · a(y) =

∫
dy · a(y) · d

dρ
fρ(y) (A.21)

and secondly:

A(y) =
d

dρ
E[a(Yi(ρ, εi))] =

∫
dFε(ε)

d

dρ
a(Y (ρ, ε)) =

∫
dFε(ε)a

′(Y (ρ, ε)) · ∂ρY (ρ, ε)

(A.22)

The first representation integrates over the distribution of Yi(ρ), while the second inte-

grates over the distribution of the underlying heterogeneity εi. In both cases we are justi-

fied in swapping the integral and derivative by boundedness of a(y).

Continuing with Eq. (A.22), we may apply the law of iterated expectations over values
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of Y (ρ, ε), and then integrate by parts:

A(y) =
∫
dyfρ(y)a

′(y)
∫
dFε|Y (ρ,ε)=y∂ρY (ρ, ε)

=
∫
dyfρ(y)a

′(y) ·E
[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]
= −

∫
dy · a(y) · ∂

∂y

{
fρ(y) ·E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}

where we’ve assumed the density fρ(y) vanishes at the limits of y. Comparing with Eq.

(A.21), we see that for this to be true of any bounded differentiable function a (satisfying

a(k∗) = 0, we must have

d

dρ
fρ(y) = −

∂

∂y

{
fρ(y) ·E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}

point-wise for all y 6= k∗.

Now consider y = k∗. First note that

d

dρ
fρ(k

∗) =
d

dρ
lim
y→k∗

fρ(y) = lim
y→k∗

d

dρ
fρ(y) = − lim

y→k∗
∂

∂y

{
fρ(y)E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}

where we can interchange the limit and derivative by the Moore-Osgood theorem, since

d
dρfρ(y) is uniformly bounded over ρ ∈ [ρ1, ρ0] by Assumption SMOOTH. Furthermore,

for all y 6= k∗: E
[
∂Y (ρ,ε)
∂ρ

∣∣∣ Y (ρ, ε) = y
]
= E

[
∂Y (ρ,ε)
∂ρ

∣∣∣ Y (ρ, ε) = y,K∗i = 0
]
, and the latter

of these is continuously differentiable at all y (including y = k∗) by item 3 of Assumption

SMOOTH. Thus:

d

dρ
fρ(k

∗) = − ∂

∂y

{
fρ(k

∗) ·E
[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = k∗,K∗i = 0
]}

since fρ(y) is also continuously differentiable at y = k∗, by SMOOTH and the definition

of fρ(k∗) as limy→k∗ fρ(y).
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A.7.7 Proof of Theorem 1.2

This proof follows the notation of Appendix A.1. Throughout this proof we let Yi(ρ, k) =

Yi(ρ), given Assumption SEPARABLE.

First, consider the effect of changing k on the bunching probability:

∂k {B − p(k)} = −
∂

∂k

∫ ρ1

ρ0
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

= −
∫ ρ1

ρ0

∂

∂k

{
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]}
dρ

=
∫ ρ1

ρ0
∂ρfρ(k)dρ = f1(k)− f0(k)

I turn now to the total effect on average hours.

∂kE[Y
[k,ρ1]
i ] = ∂k {P (Yi(ρ0) < k)E[Yi(ρ0)|Yi(ρ0) < k]}+ k∂k

(
B[k,ρ1] − p(k)

)
+ B[k,ρ1] − p(k)

+ ∂k {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}

= ∂k

∫ k

−∞
y · fρ0(y) · dy+ k (f0(k)− f1(k)) + B[k,ρ1] − p(k) + ∂k

∫ ∞
k

y · fρ1(y) · dy

=���
�kf0(k) +((((

((((
(

k (f1(k)− f0(k)) + B[k,ρ1] − p(k)−����kf1(k)

Meanwhile:

∂ρ1E[Y
[k,ρ1]
i ] = k∂ρ1B[k,ρ1] + ∂ρ1 {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}

= k∂ρ1B[k,ρ1] +
∫ ∞
k

y · ∂ρ1fρ1(y) · dy

= −kfρ1(k)E

[
Yi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = k

]
−
∫ ∞
k

y · ∂y
{
fρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]}
dy

=
(((

((((
((((

(((
((

−kfρ1(k)E

[
Yi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = k

]
+
((((

((((
((((

(((
((

yfρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]∣∣∣∣k
∞

−
∫ ∞
k

fρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]
dy

where I have used Theorem A.7.5 and Lemma A.3, and then integration by parts along

with the boundary condition that limy→∞ y ·fρ1(y) = 0., implied by Assumption SMOOTH.
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A.8 Secondary proofs

Proof of Proposition A.1

By constant treatment effects, fG1 (y) = fG0 (y + δ) and note that both fG0 (k) and fG1 (k)

are identified from the data. These can be transformed into densities for Y0i and Y1i via

fd(y) = G′(y)fGd (G(y)) for d ∈ {0, 1}. With f0(y) linear on the interval [k, k+ ∆], the inte-

gral
∫ k+∆
k f0(y)dy evaluates to B = ∆

2 (f0(k) + f0(k+ ∆)). Although f0(k) = limy↑k f(y)

by CONT, f0(k+ ∆) is not immediately observable. However:

f0(k+ ∆) = f0
(
G−1 (G(k) + δ)

)
= G′(k+ ∆)fG0 (G(k) + δ)

and furthermore by constant treatment effects:

fG0 (G(k) + δ) = fG1 (G(k)) = (G′(k))−1f1(k) = (G′(k))−1 lim
y↓k

f(y)

Combining these equations, we have the result.

Proof of Proposition A.2

We seek a ∆ such that for some θ0:

B =
∫ k+∆

k̃
g(y; θ0)dy (A.23)

and

f(y) =


g(y; θ0) y < k

g(y+ ∆; θ0) y > k

(A.24)

and

g(y; θ0) > 0 for all y ∈ [k, k+ ∆] (A.25)
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Recall from Equation (A.5) that ∆ = G−1 (G(k) + δ)− k and hence δ = G(k + ∆)−G(k).

Thus if we find a unique ∆ satisfying the two equations, we have found a unique value of

δ: the true value of the homogenous effect δG.

Suppose we have two candidate values ∆′ > ∆. For them to both satisfy (B.3), we would

need ∆′ = ∆(θ′) and ∆ = ∆(θ), where θ, θ′ ∈ Θ and ∆(θ0) is the unique ∆ satsifying

Eq. (B.3) for a given θ0, which is unique for each permissible value θ0 by the positivity

condition (B.5). To satisfy (B.4), we would also need

g(y; θ) =


f(y) y < k

f(y− ∆(θ)) y > k+ ∆(θ)
g(y; θ′) =


f(y) y < k

f(y− ∆(θ′)) y > k+ ∆(θ′)
(A.26)

Since g(y; θ) is a real analytic function for any θ ∈ Θ, the function hθθ′(y) := g(y; θ) −

g(y; θ′) is real analytic. An implication of this is that if hθθ′(y) vanishes on the interval

[0, k̃], as it must by Equation (B.6), it must vanish everywhere on R. Thus for any y >

k+ ∆(θ):

g(y+ ∆(θ′)− ∆(θ); θ) = g(y+ ∆(θ′)− ∆(θ); θ′) = g(y; θ)

So g(y; θ) is periodic with period ∆(θ′)−∆(θ). Since g is non-negative, it cannot integrate

to unity globally, and thus cannot be the same function as f0(y).

Details of calculations for policy estimates

Ex-post evaluation of time-and-a-half after 40

E[Y0i − Yi] = (B − p)E[Y0i − k|Yi = k,K∗i = 0] + p · 0 + P (Y1i > k)E[Y0i − Y1i|Yi > k]
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Consider the first term

(B − p)E[Y0i − k|Yi = k,K∗i = 0] = (1− p)B∗ · 1
B∗

∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
{Q0|K∗=0(u)− k}du

where B∗ := P (Yi = k|K∗ = 0) = B−p
1−p . Bounds for the rightmost quantity are given by

bi-log-concavity of Y0i, just as in Theorem 1.1. In particular:

(B − p)E[Y0i − k|Yi = k,K∗i = 0] ≥ (1− p)B∗ ·
F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

u

F0|K∗=0(k)

)
du

= (1− p)B∗ · g(F0|K∗=0(k), f0|K∗=0(k),B∗)

= (B − p) · g(F−, f−,B − p)

and

(B − p)E[Y0i − k|Yi = k,K∗i = 0] ≤ −(1− p)B∗ ·
1− F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

1− u
1− F0|K∗=0(k)

)
du

= (1− p)B∗ · g′(F0|K∗=0(k), f0|K∗=0(k),B∗)

= −(B − p) · g(1− p− F−, f+, p−B)

where as before g(a, b,x) = a
bx (a+ x) ln

(
1 + x

a

)
− a

b and g′(a, b,x) = −g(1− a, b,−x).

Now consider the second term of E[Y0i − Yi]: P (Y1i > k)E[Y0i − Y1i|Yi > k]. Taking as

a lower bound an assumption of constant treatment effects in levels: P (Y1i > k)E[Y0i −

Y1i|Yi > k] ≥ P (Y1i > k)∆Lk .

For an upper bound, we assume that E
[
dYi(ρ)
dρ

ρ
Yi(ρ)

∣∣∣ Yi(ρ′) = y,K∗i = 0
]
= E for all ρ,

ρ′ and y. Consider then the buncher LATE in logs:

E [ln Y0i − ln Y1i|Yi = k,K∗i = 0] = E
[
ln Y0i − ln Y1i|Y0i ∈ [k,Q0|K∗=0(F1|K∗=0)],K∗i = 0

]
=
∫ ρ1

ρ0
dρ ·E

[
dYi(ρ)

dρ

1
Yi(ρ)

∣∣∣∣ Y0i ∈ [k, k+ ∆∗0],K∗i = 0
]

=
∫ ρ1

ρ0
d ln ρ · 1

B∗
∫ k+∆∗0

k
dy · f0(y) ·E

[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣ Y0i = y,K∗i = 0
]

= E
∫ ρ1

ρ0
d ln ρ = E ln(ρ1/ρ0)
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with the notation that ∆∗0 := Q0|K∗=0(F1|K∗=0)− k. Moreover:

E[Y0i − Y1i|Yi > k] =
∫ ρ1

ρ0
dρ ·E

[
dYi(ρ)

dρ

∣∣∣∣ Y1i > k,K∗i = 0
]

= P (Y1i > k)−1
∫ ρ1

ρ0
d ln ρ ·

∫ ∞
k

y · f1(y) ·E
[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣ Y1i = y,K∗i = 0
]
dy

= E ·E[Y1i|Y1i > k]
∫ ρ1

ρ0
d ln ρ = E ln(ρ1/ρ0) ·E[Y1i|Y1i > k]

Thus in the isoelastic model

E[Y0i−Yi] = (B−p)E[Y0i−k|Yi = k,K∗i = 0]+E[Y1i|Y1i > k] ·P (Y1i > k)E [lnY0i − lnY1i|Yi = k,K∗i = 0]

and an upper bound is

δUk ·E[Yi|Yi > k]− (B − p) · g(1− p− F−, f+, p−B)

where δUk is an upper bound to the buncher LATE in logs E [lnY0i − lnY1i|Yi = k,K∗i = 0].

Moving to double time

I make use of the first step deriving the expression for ∂ρ1E[Y
[k,ρ1]
i ] in Theorem 1.2, namely

that:

∂ρ1E[Y
[k,ρ1]
i ] = k∂ρ1B[k,ρ1] + ∂ρ1 {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}
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Thus:

E[Y
[k,ρ1]
i ]−E[Y [k,ρ̄1]

i ] = −
∫ ρ̄1

ρ1
∂ρE[Y

[k,ρ]
i ]dρ = −

∫ ρ̄1

ρ1

{
k∂ρB[k,ρ] + ∂ρ {P (Yi(ρ) > k)E[Yi(ρ)|Yi(ρ) > k]}

}
dρ

= −k(B[k,ρ̄1] −B[k,ρ1]) + P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]− P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]

= −k(B[k,ρ̄1] −B[k,ρ1]) + {P (Yi(ρ1) > k)− P (Yi(ρ̄1) > k)} ·E[Yi(ρ̄1)|Yi(ρ̄1) > k]

+ P (Yi(ρ1) > k) (E[Yi(ρ1)|Yi(ρ1) > k]−E[Yi(ρ̄1)|Yi(ρ̄1) > k])

= (E[Y1i|Y1i > k]− k) (B[k,ρ̄1] −B[k,ρ1]) + P (Y1i > k) (E[Y1i|Y1i > k]−E[Yi(ρ̄1)|Yi(ρ̄1) > k])

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ̄1] −B[k,ρ1]) + P (Y1i > k)E[Yi(ρ1)− Yi(ρ̄1)|Y1i > k]

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Yi(ρ1)− Yi(ρ̄1)|Y1i > k]

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Y0i − Y1i|Y1i > k]

≈ (E[Y1i|Y1i > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Y0i − Y1i|Y1i > k]

≤ (E[Y1i|Y1i > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Yi|Yi > k] · δUk

In the iso-elastic model, making use instead of the final expression for ∂ρ1E[Y
[k,ρ1]
i ] in Theorem 1.2:

E[Y
[k,ρ1]
i ]−E[Y [k,ρ̄1]

i ] = −
∫ ρ̄1

ρ1
∂ρE[Y

[k,ρ1]
i ]dρ =

∫ ρ̄1

ρ1
dρ

∫ ∞
k

fρ(y)E

[
dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = y

]
dy

=
∫ ρ̄1

ρ1
d ln ρ

∫ ∞
k

fρ(y)y ·E
[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣ Yi(ρ) = y

]
dy

≥ E
∫ ρ̄1

ρ1
d ln ρ

∫ ∞
k

fρ(y)y · dy

= E
∫ ρ̄1

ρ1
d ln ρ · P (Yi(ρ) > k)E[Yi(ρ)|Yi(ρ) > k]

≥ E ln(ρ̄1/ρ1) · P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]

= E ln(ρ̄1/ρ1) · {P (Y1i > k)E[Y1i|Y1i > k] + (P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]− P (Y1i > k)E[Y1i|Y1i > k])}

= E ln(ρ̄1/ρ1) ·
{
P (Y1i > k)E[Y1i|Y1i > k]−

(
E[Y

[k,ρ1]
i ]−E[Y [k,ρ̄1]

i ]
)
+ k(B[k,ρ̄1] −B[k,ρ1])

}

where in the fourth step I’ve used that Yi(ρ) is decreasing in ρ with probability one, which follows

from SEPARABLE and CONVEX. So

E[Y
[k,ρ1]
i ]−E[Y [k,ρ̄1]

i ] ≥ E ln(ρ̄1/ρ1)

1 + E ln(ρ̄1/ρ1)
·
{
P (Y1i > k)E[Y1i|Y1i > k] + k(B[k,ρ̄1] −B[k,ρ1])

}
≥ E ln(ρ̄1/ρ1)

1 + E ln(ρ̄1/ρ1)
· P (Y1i > k)E[Y1i|Y1i > k]
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Effect of a change to the kink point on bunching

Using that p(k∗) = p and p(k′) = 0:

B[k′,ρ1] −B[k∗,ρ1] =
(
B[k′,ρ1] − p(k′)

)
−
(
B[k∗,ρ1] − p(k∗)

)
− p = −p+

∫ k′

k∗
dk · ∂k

(
B[k′,ρ1] − p(k)

)
= −p+

∫ k′

k∗
dk · (f1(k)− f0(k)) = −p+ F1(k

′)− F1(k
∗)− F0(k

′) + F0(k
∗)

= P (k∗ < Y1i ≤ k′)− P (k∗ < Y0i ≤ k′)− p

= P (k∗ < Yi ≤ k′)− P (k∗ < Y0i ≤ k′)− p

if k′ > k∗.

Similarly, if k′ < k∗:

B[k′,ρ1] −B[k∗,ρ1] = P (k′ ≤ Y0i < k∗)− P (k′ ≤ Y1i < k∗)− p

= P (k′ ≤ Yi < k∗)− P (k′ ≤ Y1i < k∗)− p

The Lemma in the next section gives identified bounds on the potential outcome proba-

bility in either case.

Average effect of a change to the kink point on hours

E[Y
[k′,ρ1]
i ]−E[Y [k∗,ρ1]

i ] =
∫ k′

k∗
∂kE[Y

[k,ρ1]
i ]dk =

∫ k′

k∗

{
B[k,ρ1] − p(k)

}
dk

= k
(
B[k,ρ1] − p(k)

)∣∣∣k′
k∗
−
∫ k′

k∗
k · ∂k

{
B[k,ρ1] − p(k)

}
dk

= k′B[k′,ρ1] − k∗(B − p)−
∫ k′

k∗
y (f1(y)− f0(y)) dy

= (k′ − k∗)B[k′,ρ1] + k∗
(
B[k′,ρ1] −B

)
+ pk∗ −

∫ k′

k∗
y (f1(y)− f0(y)) dy
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For k′ > k∗, this is equal to

(k′ − k∗)B[k′,ρ1] + k∗
(
B[k′,ρ1] − (B − k)

)
+ P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]

− P (k∗ < Y1i ≤ k′)(E[Y1i|k∗ < Y1i ≤ k′]

= (k′ − k∗)B[k′,ρ1] + P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]− k∗)− P (k∗ < Y1i ≤ k′)(E[Y1i|k∗ < Y1i ≤ k′]− k∗)

= (k′ − k∗)B[k′,ρ1] + P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]− k∗)− P (k∗ < Yi ≤ k′)(E[Yi|k∗ < Yi ≤ k′]− k∗)

The first term represents the mechanical effect from the bunching mass under k′ being

transported from k∗ to k′, and can be bounded given the bounds for B[k′,ρ1] − B[k∗,ρ1] in

the last section. The last term is point identified from the data, while the middle term can

be bounded using bi-log concavity of Y0i conditional on K∗ = 0. Similarly, when k′ < k∗,

the effect on hours is:

(k′ − k∗)B[k′,ρ1] + P (k′ ≤ Y0i < k∗)(k∗ −E[Y0i|k′ ≤ Y0i < k∗])− P (k′ ≤ Y1i < k∗)(k∗ −E[Y1i|k′ ≤ Y1i < k∗])

= (k′ − k∗)B[k′,ρ1] + P (k′ ≤ Yi < k∗)(k∗ −E[Yi|k′ ≤ Yi < k∗])− P (k′ ≤ Y1i < k∗)(k∗ −E[Y1i|k′ ≤ Y1i < k∗])

with the middle term point identified from the data and last term bounded by bi-log

concavity of Y1i conditional on K∗ = 0. The analytic bounds implied by BLC in each

case are given by the Lemma below.

Lemma. Suppose Yi is a bi-log concave random variable with CDF F (y). Let F0 := F (y0) and

f0 = f(y0) be the CDF and density, respectively, evaluated at a fixed y0.

For any y′ > y0:

A ≤ P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
≤ B

and for any y′ < y0:

B ≤ P (y′ ≤ Yi ≤ y0)
(
y0 −E[Yi|y′ ≤ Yi ≤ y0]

)
≤ A
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where A = g(F0, f0,FL(y′)) and B = g(1− F0, f0, 1− FU (y′)), with

FL(y
′) = 1− (1− F0)e

− f0
1−F0

(y−y0), FU (y
′) = F0e

f0
F0

(y′−y0)

and

g(a, b, c) =


ac
b

(
ln
(
c
a

)
− 1
)
+ a2

b if c > 0

a2

b if c ≤ 0

In either of the two cases max{0,FL(y′)} ≤ F (y′) ≤ min{1,FU (y′)}.

Proof. As shown by Dümbgen et al., 2017, bi-log concavity of Yi implies not only that f(y)

exists, but that it is strictly positive, and we may then define a quantile function Q = F−1

such that Q(F (y)) = y and y = Q(F (y)). Theorem 1 of Dümbgen et al., 2017 also shows

that for any y′:

1− (1− F0)e
− f0

1−F0
(y−y0)︸ ︷︷ ︸

:=FL(y′)

≤ F (y′) ≤ F0e
f0
F0

(y′−y0)︸ ︷︷ ︸
:=FU (y′)

We can re-express this as bounds on the quantile function evaluated at any u′ ∈ [0, 1]:

y0 +
F0
f0

ln
(
u

F0

)
︸ ︷︷ ︸

QL(u′)

≤ Q(u′) ≤ y0 −
1− F0
f0

ln
(

1− u
1− F0

)
︸ ︷︷ ︸

QU (u′)

Write the quantity of interest as:

P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
=
∫ y′

y0
(y− y0)f(y)dy =

∫ F (y′)

F0
(Q(u)− y0)du
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Given that Q(u) ≥ y0, the integral is increasing in F (y′). Thus an upper bound is:

P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
≤
∫ FU (y′)

F0
(QU (u)− y0)du

= −1− F0
f0

∫ FU (y′)

F0
ln
(

1− u
1− F0

)
du

=
(1− F0)2

f0

∫ 1−FU (y′)
1−F0

1
ln (v) dv

=
(1− F0)(1− FU (y′))

f0

(
ln
(

1− FU (y′)
1− F0

)
− 1
)
+

(1− F0)2

f0

where we’ve made the substitution v = 1−u
1−F0

and used that
∫

ln(v)dv = v(ln(v) − 1)).

Inspection of the formulas for FU and FL reveal that FU ∈ (0,∞) and FL ∈ (−∞, 1). In

the event that FU (y′) ≥ 1, the above expression is undefined but we can replace FU (y′)

with one and still obtain valid bounds:

P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
≤ −(1− F0)2

f0

∫ 1

0
ln (v) dv =

(1− F0)2

f0

where we’ve used that
∫ 1

0 ln(v)dv = −1.

Similarly, a lower bound is:

P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
≥
∫ FL(y

′)

F0
(QL(u)− y0)du =

F0
f0

∫ FL(y
′)

F0
ln
(
u

F0

)
du

=
F 2

0
f0

∫ FL(y
′)/F0

1
ln (v) du

=
F0FL(y

′)

f0

(
ln
(
FL(y

′)

F0

)
− 1
)
+
F 2

0
f0

where we’ve made the substitution v = u
F0

. If FL(y′) ≤ 0, then we replace with zero to

obtain

P (y0 ≤ Yi ≤ y′)
(
E[Yi|y0 ≤ Yi ≤ y′]− y0

)
≥ −F

2
0
f0

∫
0

1 ln (v) du =
F 2

0
f0
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When y′ < y, write the quantity of interest as:

P (y′ ≤ Yi ≤ y0)
(
y0 −E[Yi|y′ ≤ Yi ≤ y0]

)
=
∫ y0

y′
(y0 − y)f(y)dy =

∫ F0

F (y′)
(y0 −Q(u))du

This integral is decreasing in F (y′), so an upper bound is:

P (y′ ≤ Yi ≤ y0)
(
y0 −E[Yi|y′ ≤ Yi ≤ y0]

)
≤
∫ F0

FL(y′)
(y0 −QL(u))du = −F0

f0

∫ F0

FL(y′)
ln
(
u

F0

)
du

= −F
2
0
f0

∫ 1

FL(y′)/F0
ln (v) du

=
F0FL(y

′)

f0

(
ln
(
FL(y

′)

F0

)
− 1
)
+
F 2

0
f0

or simply F 2
0 /f0 when FL(y′) ≤ 0, and a lower bound is:

P (y′ ≤ Yi ≤ y0)
(
y0 −E[Yi|y′ ≤ Yi ≤ y0]

)
≥
∫ F0

FU (y′)
(y0 −QU (u))du

=
1− F0
f0

∫ F0

FU (y′)
ln
(

1− u
1− F0

)
du

= − (1− F0)2

f0

∫ 1
1−FU (y′)

1−F0

ln (v) dv

=
(1− F0)(1− FU (y′))

f0

(
ln
(

1− FU (y′)
1− F0

)
− 1
)
+

(1− F0)2

f0

or simply (1− F0)2/f0 when FU (y′) ≥ 1.

Wage correction terms

For the ex-post effect of the kink

Suppose that straight-time wagesw∗ are set according to Equation (1.1) for all workers,

where h∗ are their anticipated hours. The straight-wages that would exist absent the FLSA

w∗0, yield the same total earnings z∗, so:

w∗0h
∗ = w∗(h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k))
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where k = 40 and ρ1 = 1.5. The percentage change is thus

(w∗0 −w∗)/w∗ =
(ρ1 − 1)(h∗ − k)1(h∗ > k)

h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k)

If h0i is constant elasticity in the wage with elasticity E , then we would expect

h0it − h∗0it
h0it

= 1−
(

1 + (ρ1 − 1)(h∗ − k)1(h∗ > k)

h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k)

)E

Taking h0it ≈ h1it ≈ h∗ and integrating along the distribution of h1it, we have:

E[h0it − h∗0it] ≈ E
[
1(hit > k)hit

(
1−

(
1 + (ρ1 − 1)(hit − k)

hit + (ρ1 − 1)(hit − k)

)E)
]

]

which will be negative provided that E < 0.The total ex-post effect of the kink is:

E[hit − h∗0it] = E[hit − h0it] +E[h0it − h∗0it]

For a move to double-time

The straight-wages w∗2 that would exist with double time, for workers with h∗ > k,

that yield the same total earnings z∗ as the actual straight wages w∗ satisfy:

w∗2(k+ (ρ̄1 − 1)(h∗ − k)) = w∗(k+ (ρ1 − 1)(h∗ − k))

where ρ̄1 = 2. The percentage change is thus

(w∗2 −w∗)/w∗ =
k+ (ρ1 − 1)(h∗ − k)
k+ (ρ̄1 − 1)(h∗ − k) − 1
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Let h̄0i be hours under a straight-time wage of w∗2. By a similar calculation thus:

E[h̄
[ρ̄1,k]
i − h[ρ̄1,k]

it ] ≈ E
[
1(hit > k)hit

((
k+ (ρ1 − 1)(h∗ − k)
k+ (ρ̄1 − 1)(h∗ − k)

)E
− 1
)
]

]

The total effect of a move to double-time is:

E[h̄
[ρ̄1,k]
it − hit] = E[h̄

[ρ̄1,k]
it − h[ρ̄1,k]

it ] +E[h
[ρ̄1,k]
it − hit]

The above definitions are depicted visually in Figure A.19 below.

40 h1 h∗
0 h∗ h0

40w∗

z∗ = w∗
0h

∗

h

Figure A.19: Depiction of h∗, h0, h∗0 and h1 for a single fixed worker that works overtime
at h1 hours this week. Their realized wage w∗ has been set to yield earnings z∗ based on
anticipated hours h∗ given the FLSA kink. In a world without the FLSA, the worker’s
wage would instead be w∗0 = z∗/h∗, and this week the firm would have chosen h∗0 hours,
where the worker’s marginal productivity this week isw∗0 (in the benchmark model). Note:
while (z∗,h∗) is chosen jointly with employment and on the basis of anticipated produc-
tivity, choice of h∗0 is instead constrained by the contracted purple pay schedule (with the
worker already hired) and on the basis of updated productivity. h1 may differ from h∗

for this same reason. In the numerical calculation h∗ is approximated by h1 – which cor-
responds to productivity variation being small and h∗ being a credible choice given the
FLSA. If credibility (the firm not wanting to renege too far on hours after hiring) were
a constraint on the choice of (z∗,h∗) in the no-FLSA counterfactual, then h∗ would be
smaller without the FLSA, but I consider this “second-order” and do not attempt a cor-
rection here.
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Changing the location of the kink

Let B[k]w denote bunching with the kink at location k and (a distribution of) wages

denoted by w. Then the effect of moving k on bunching is

B[k
′]

w′ −B
[k∗]
w =

(
B[k

′]
w −B[k

∗]
w

)
+
(
B[k

′]
w′ −B

[k′]
w

)

where w′ are the wages that would occur with bunching at the new kink point k′. The

first term has been estimated by the methods described above, with the second term rep-

resenting a correction due to wage adjustment. Taking Y0i ≈ Y1i ≈ h∗, the straight-time

wages w∗ set according to Equation (1.1) that would change are those between k′ and k∗.

Consider the case k′ < k∗. We expect wages to fall, as the overtime policy becomes more

stringent, and
(
B[k

′]
w′ −B

[k′]
w

)
is only nonzero to the extent that the increase in Y0 and Y1

changes the mass of each in the range [k′, k∗]. With the range [k′, k∗] to the left of the

mode of Y0i, it is most plausible that this mass will decrease. Similarly, for Y1i, it is most

likely that this mass will decrease, making the overall sign of
(
B[k

′]
w′ −B

[k′]
w

)
ambiguous

However, since most of the adjustment should occur for workers who are typically found

between k and k′, we would not expect either term to be very different from zero.

Now consider the effect on average hours:

E[Y
[k′]
w′ − Y

[k∗]
w ] = E[Y

[k′]
w − Y [k∗]

w ] +E[Y
[k′]
w′ − Y

[k′]
w ]

For a reduction in k, we would expect wages w′ to be lower with k = k′ and hence the

second term positive. This will attenuate the effects that are bounded by the methods

above, holding the wages fixed at their realized levels.

Consider first the case of k′ < k∗. Let w′ be wages under the new kink point k′, and

assuming they adjust to keep total earnings z∗ constant, wages w′ will change if w∗ is
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between k and k′ as:

w′(k′ + 0.5(h∗ − k′)) = w∗h∗

And the percentage change for these workers is thus

(w′ −w∗)/w∗ = h∗

k′ + 0.5(h∗ − k′) − 1

E[Y
[k′]
w′ − Y

[k′]
w ] ≈ E

[
1(k′ < Yi < k∗)Yi

((
Yi

k′ + 0.5(Yi − k′)

)E
− 1
)
]

]

In the case of k′ > k∗, we will have wages change as:

w′h∗ = w∗(k∗ + 0.5(h∗ − k∗))

w∗ is between k and k′. And the percentage change for these workers is thus

(w′ −w∗)/w∗ = k∗ + 0.5(h∗ − k∗)
h∗

− 1

E[Y
[k′]
w′ − Y

[k′]
w ] ≈ E

[
1(k∗ < Yi < k′)Yi

((
k∗ + 0.5(Yi − k∗)

Yi

)E
− 1
)]
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Appendix B: Supplements to Chapter 2

B.1 Identification result without rectangular support

This section provides an extension of Theorem 1 for cases when the support Z of the

instruments is not rectangular (i.e. supp(Zi) 6= (Z1 ×Z2 × · · · × ZJ )), and there may be

perfect linear dependencies between the instruments (of the form that would arise from

the mapping from discrete to binary instruments presented in Section 2.3.3).

A weaker version of Assumption 3 is comprised of the following two conditions, with

the definition that Z∅i is a degenerate random variable that takes the value of one with

probability one:

Assumption 3a* (existence of instruments). There exists a family F of subsets of the instru-

ments S ⊆ {1 . . . J}, where ∅ ∈ F and |F| > 1, such that random variables ZSi for all S ∈ F are

linearly independent, i.e. P (∑S∈F ωSZSi = 0) < 1 for all vectors ω ∈ R|F|/0.

Assumption 3b* (non-degenerate subsets generate the response groups). There exists a

family F satisfying Assumption 3a*, such that for any S /∈ F , g(F ) /∈ G for all Sperner families

F that contain S.

Assumption 3a* is in itself very weak, requiring only that there exists some product of the

instruments that has strictly positive variance. Assumption 3b* is much more restrictive:

it says that all response groups aside from never-takers can be generated from members

of a family of linearly independent subsets of the instruments.

The construction in Proposition 2.4 mapping discrete instruments to binary instruments

yields a case where Assumption 3* will hold, given rectangular support of the original

discrete instruments.
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Proposition. Let each Zj have Mj ordered points of support zj1 < zj2 · · · < zjMj
and let Z̃jm =

1(Zji ≥ zjm). If P (Zi = z) > 0 for z ∈ (Z1 × Z2 × · · · × ZJ ), then Assumption 3* holds

with F the family of all subsets ofM := {Z̃jm} j∈{1...J}
m=2...mj

containing at most one Zjm for any given

j ∈ {1 . . . J}.

Proof. See Appendix B.4.

The above proposition allows us to make use of Assumption 3* in cases where discrete

instruments are mapped to binary instruments via Proposition 2.4. To illustrate, consider a

case with a single discrete instrument Z1 having three levels z1 < z2 < z3 and instruments

2− J binary. Proposition 2.4 shows that if Z1 . . . ZJ satisfies VM then so does the set of

J + 1 instruments Z̃2, Z̃3,Z2, . . . ZJ where Z̃2 = 1(Z1 ≥ z2) and Z̃3 = 1(Z1 ≥ z3). In this

case there are 2J−1 “redundant” simple response groups vis-a-vis Assumption 3, since for

any S ⊆ {2 . . . J}: Z̃2iZ̃3iZSi = Z̃3iZSi.

In this example, the vector Γi would contain all non-null subsets of {Z̃2, Z̃3,Z2, . . . ZJ}

that do not contain both of Z̃2 and Z̃3. In general, F can be constructed by considering all

subsets of the instruments, and for each subset considering all possible assignments of a

value to each instrument, with one fixed value for each instrument omitted from consider-

ation throughout. Provided rectangular support on the original instruments, Assumption

3* then follows with this choice of F , for which a generalized version of Theorem 2.1 can

be stated:

Theorem 1*. The results of Theorem 2.1 holds under Assumption 3* replacing Assumption 3,

where now Γi := {ZSi}S∈F ,S 6=∅, λ := {E[c(S),Zi)]}S∈F ,S 6=∅ and again h(Zi) = λ′Σ−1(Γi −

E[Γi]) with Σ := V ar(Γi), for any family F satisfying Assumption 3*.

Proof. Identical to that of Theorem 2.1, except as noted therein.

Theorem 1* may also be useful in other cases in which the practitioner has auxiliary

knowledge that some of the response groups are not present in the population. In such

cases, Assumption 3* may hold even without rectangular support among the instruments.
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B.2 Identification with covariates

This section discusses how one can accommodate, in a nonparametric way, covariates

that need to be conditioned on for the instruments to be valid. In practice, it is often easier

to justify a conditional version of Assumption 1:

{(Yi(1),Yi(0),Gi) ⊥ Zi} |Xi

where X are a set of observed covariates unaffected by treatment. In this section I discuss

identification and considerations for estimation in such a setting. I maintain that vector

monotonicity continues to hold for a set of binary instruments, as VM is expressed in

Assumption 2. This implies that the direction of response is the same regardless of Xi,

since the condition in Assumption 2 holds with probability one.

If Assumption 3 and Property M each hold conditional on Xi = x, then Theorem 2.1

implies that we can identify ∆c(x) := E[∆i|Ci = 1,Xi = x] for ∆c satisfying Property M,

from the distribution of (Yi,Zi,Di)|Xi = x. In particular, the function h(z) from Theorem

2.1 will now depend on the conditioning value of Xi:

h(Zi,x) = λ(x)′V ar(Γi|Xi = x)−1 (Γi −E[Γi|Xi = x])

for each x ∈ X, where recall that Γi is a vector of products ΓSi of Zji within subsets of the

instruments, where S indexes such subsets. Here we define λ(x)S = E[c(g(S),Zi)|Xi = x]

– which is identified – for each simple response group g(S). Under these assumptions, we

have that ∆c(x) = E[h(Zi,x)Yi|Xi = x]/E[h(Zi,x)Di|Xi = x].

If the support of Xi corresponds to a small number of “covariate-cells”, it might be

feasible to repeat the entire estimation on fixed-covariate subsamples, to estimate ∆c(x)

for each x ∈ X. If the number of groups is large, or if Xi includes continuous variables,

estimation of ∆c(x) could still in principle be implemented by nonparametric regression
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of each component of Γi on Xi as well as nonparametrically estimating the conditional

variance-covariance matrix V ar(Γi|Xi = x) (Yin et al. (2010) describe a kernel-based

method for this). The vector λ(x) can also be computed via nonparametric regression.

Furthermore, when the object of interest is simply the unconditional version of ∆c, the

conditional quantities become nuisance parameters. Notably, they can be integrated over

separately in the numerator and the denominator of the empirical estimand. To see that

this, write:

∆c = E[∆i|Ci = 1] =
∫
dFX|C(x|1)∆c(x)

=
∫
dFX|C(x|1)

E[h(Zi,x)Yi|Xi = x]

E[h(Zi,x)Yi|Xi = x]
=
∫
dFX|C(x|1)

E[h(Zi,x)Yi|Xi = x]

P (Ci = 1|Xi = x)

=
1

P (Ci = 1)

∫
dFX(x)E[h(Zi,Xi)Yi|Xi = x] =

E[h(Zi,Xi)Yi]

E[h(Zi,Xi)Di]

where we have used Bayes’ rule and that P (Ci = 1|Xi = x) = E[h(Zi,x)Di|Xi = x]

(and hence P (Ci = 1) = E[h(Zi,Xi)Di] as well). This provides a VM analog to a similar

result that holds under IAM. In that context, Frölich (2007) shows that this fact can deliver
√
n-consistency of a nonparametric analog of the Wald ratio.

Note that by the conditional version of Corollary 2.1 we have that:

∆c =
E[λ̃(Xi)′A {E[Yi|Zi = z,Xi]}]
E[λ̃(Xi)′A {E[Di|Zi = z,Xi]}]

if we define λ̃(x) to have component λ(x) for any S ⊆ {1 . . . J} ,S 6= ∅ and 0 for S = ∅,

and we let {·} indicate vector representations of functions over z ∈ Z . If the CEFs of Y and

D happen to both be separable between Z and X , i.e E[Yi|Zi = z,Xi = x] = y(z) + w(x)

and E[Di|Zi = z,Xi = x] = d(z) + v(x), then the expression simplifies:

∆c =
E[λ̃(Xi)′A {y(z)}+w(Xi)λ̃(Xi)′A1]
E[λ̃(Xi)′A {d(z)}+ v(Xi)λ̃(Xi)′A1]

=
E[λ̃(Xi)′A {y(z)}]
E[λ̃(Xi)′A {d(z)}]

where 1 is a vector of ones and we have used that λ̃(x)′A1 = 0 for any x. This follows from
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the definition of the entries: AS,z = ∑ f⊆z0
(z1∪f)=S

(−1)|f | where z0 is the set of components

of z that are equal to zero. For any S 6= ∅,the identity ∑f⊆S(−1)|f | = 0 implies that

[A1]S = ∑z1⊆S ∑f⊆(S−z1)(−1)|f | = 0. The first component of A1, corresponding to S = ∅,

does not contribute since the first component of λ̃(x) is always zero, by construction.

Now, since each λS(x) is defined as E[Ci = 1|Gi = g(S),Xi = x], its expectation

delivers the unconditional analog: λS := E[Ci = 1|Gi = g(S)] = E[λ(Xi)S ]. Thus we can

write ∆c =
λ′A{y(z)}
λ′A{d(z)} . This shows that in this separable case the estimand that identifies ∆c

is essentially unchanged from the baseline case without covariates, aside from the need

to control semiparametrically for Xi to obtain the functions y(z) and d(z). The estimates

reported in Section 2.6 use this result, with w(x) and v(x) taken to each be linear.

B.3 Regularization and asymptotic distribution

In this section I propose a regularization procedure for the estimator, to improve its

performance in small samples. I then show asymptotically normality of the regularized

estimator and give an expression for the variance, based on a result from Imbens and

Angrist, 1994.

B.3.1 Regularization of the estimator

Recall from Section 2.5 that the simple plug-in estimator of the all-compliers LATE in

fact only uses data at two points inZ . This issue can be seen as a near collinearity problem:

when there are few observations in the points Z̄ and Z, the n× |F| design matrix Γ will

have singular values that are close to zero (to see this, note that Γ′Γ = A′
−1
n · diag{P̂ (Zi =

z)}A−1). This observation suggests that the issue might be mitigated by employing a

ridge-type shrinkage estimator (see e.g. Hoerl and Kennard, 1970). Accordingly, we allow

a sequence of regularization parameters αn:

ρ̂(λ̂,α) =
(
(0, λ̂′)(Γ′Γ + αI)−1Γ′D

)−1
(0, λ̂′)(Γ′Γ + αI)−1Γ′Y (B.1)
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The estimator ρ̂(λ̂,α) with a choice of α > 0 establishes a floor on the singular values of

the matrix Γ.

In the case of the ACL, Corollary 2.1 can be leveraged to show that α > 0 allows the

estimator to make use of the full support of Zi, rather than just the two points Z̄ and Z. But

ridge regression comes at the expense of some bias. Proposition B.1 below yields a means

of navigating this trade-off to choose α in practice. In particular, I propose choosing α to

minimize a feasible estimator of the conditional MSE E[(ρ̂(λ,α)− ∆c)2|Z1 . . . Zn].

Proposition B.1. Under the assumptions of Theorem 2.1, E[(ρ̂(λ,α)− ∆c)2|Z1 . . . Zn] is, up to

second order in estimation error and a positive constant of proportionality:

λ̃′(Γ′Γ + αI)−1 {Γ′(ΩY + ∆2
cΩD − 2∆cΩY D)Γ

+α2(βY β
′
Y + ∆2

cβDβ
′
D − 2∆cβY β′D)

}
(Γ′Γ + αI)−1λ̃ (B.2)

where λ̃ := (0,λ′)′, βY := E[ΓiΓ′i]
−1
E[ΓiYi], βD := E[ΓiΓ′i]

−1
E[ΓiDi], and ΩVW = E[(V −

βV Γ)(W − βWΓ)′|Γ] for V ,W ∈ {Y ,D}, and all expectations are assumed to exist.

Furthermore, if α̂mse is chosen as the smallest positive local minimizer of the following estimate of

the above:

M̂(α) := (0, λ̂′)(Γ′Γ + αI)−1 {nΠ̂ + α2(β̂β̂′)
}
(Γ′Γ + αI)−1(0, λ̂′)′

with β̂V := (Γ′Γ)−1Γ′V for each V ∈ {Y ,D}, Π̂ := 1
n ∑i(Yi− β̂Y Γi− (0,λ̂′)β̂Y

(0,λ̂′)β̂D
(Di− β̂DΓi))2ΓiΓ′i

and β̂ := β̂Y − (0,λ̂′)β̂Y
(0,λ̂′)β̂D

β̂D then

α̂mse/
√
n

p→ 0

provided that λ̂
p→ λ, (0,λ′)Σ−1(βY + ∆cβD) 6= 0.

Proof. See Appendix B.4.

The proposed data-driven choice α̂mse estimates the unknown quantities in Eq. (B.2)
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based on an initial guess of α = 0, and then minimizes with respect to α. This can be

seen as a “one-step” version of a more general iterative algorithm in which a value αt is

used to compute the function M̂(α), which is then minimized to find αt+1 and so on until

convergence. I implement the single-step version in Appendix B.3, and find that it indeed

improves estimation error considerably for the simulation DGPs considered.

The reason that my proposed rule evaluates α̂mse as a local minimizer of M̂(α) rather

than a global minimizer, is that the function M̂(α) is always positive but approaches zero

as α→∞. This stands in contrast with the standard case of ridge regression in which reg-

ularization bias always grows with α, eventually dominating any efficiency gains from

increasing it further. In the present case, the vector β̂ as defined above and (0, λ̂′)′ are or-

thogonal (in sample as well as in the population limit), and thus the “(squared) bias” term

vanishes as α → ∞, along with the variance of the regularized estimator (this is roughly

analogous to ridge regularizing a vector of regression coefficients when their true values

are all zero). Nevertheless, the function M̂(α) does have a well-defined local minimum

that achieves a lower value than M̂(0) at some strictly positive α (see Appendix B.4 for

details), and this local minimum is shown to provide a helpful guide to choosing α in

the simulations of Appendix B.3. Note that the condition (0,λ′)Σ−1(βY + ∆cβD) 6= 0 in

Proposition B.1 rules out a knife-edge case in which the Hessian of M̂(α) is zero when the

other arguments of M̂ are evaluated at their probability limits.

B.3.2 Asymptotic distribution

Consistency and asymptotic normality of the estimator ρ̂(λ̂,α) follows in a straight-

forward way from the results thus far. In particular, with α = 0 the asymptotic variance

can be computed as a special case of Theorem 3 in Imbens and Angrist (1994). In our

setting, we can view estimation of h(z) as a parametric problem h(z) = g(z, θ) where the
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parameter vector θ is the mean and variance of Γi, along with the vector λ:

θ = (µΓ, Σ,λ)′ = ({µΓ,l}l, {Σlm}l≤m, {λ}l)′ with l,m ∈ {1 . . . |F|}

Then ρ̂(λ,α) = Ĉov(g(Zi, θ̂),Yi)/Ĉov(g(Zi, θ̂),Di), where θ̂ solves a set of moment condi-

tions ∑N
i=1 ψ(Zi, θ̂) = 0 given explicitly in the theorem below.

Theorem B.1 below allows αn > 0 provided that the sequence converges in probabil-

ity to zero at a sufficient rate. By Proposition B.1, we obtain this rate for the “one-step”

minimizer of the feasible MSE estimate given in Eq. (B.2).

Theorem B.1. Under the Assumptions of Theorem 2.1, if αn = op(
√
n) then

√
n(ρ̂(λ̂,αn)− ∆c)

d→ N(0,V )

where V = e1
′Π−1Ω(Π′)−1e1 (i.e. the top-left element of Π−1Ω(Π′)−1) with:

Ω =


−E[Dig(Zi, θ)] −E[g(Zi, θ)] E[Uidθg(Zi, θ)]

−E[Di] −1 0

0 0 E[dθ′ψ(Zi, θ)]



Π =


E[g(Zi, θ)2] E[g(Zi, θ)Ui] E[g(Zi, θ)ψ(Zi, θ)]′

E[g(Zi, θ)Ui] E[U2
i ] E[Uiψ(Zi, θ)]′

E[g(Zi, θ)Uiψ(Zi, θ)] E[Uiψ(Zi, θ)] E[ψ(Zi, θ)ψ(Zi, θ)′]


so long as Ω and Π are finite and Π has full rank, with the definitions:

Ui := Yi −E[Yi]− ∆c(Di −E[Di])

θ = (µΓ, Σ,λ)′ = ({µΓ,l}l, {Σlm}l≤m, {λ}l)′

g(z, θ) = λ′Σ−1(Γ(Zi)− µΓ)
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ψ(Zi, θ) = ((Γ(Zi)− µΓ)
′, {(Γl(Zi)− µΓ,l)(Γm(Zi)− µΓ,m)− Σlm}l≤m, {cl(Zi)− λl}l)′

Here Γ(Zi) = (Γ1(Zi) . . . Γ|F|(Zi))′ where Γ(Zi)l = ZSl,i for some arbitrary ordering Sl of the

sets in F , and cl(z) = c(g(Sl), z) (and thus P (Ci = 1|Gi = g(Sl)) = E[cl(Zi)]).

Proof. See Appendix B.4.

B.3.3 Simulation study

This section reports a Monte Carlo experiment in which the regularized estimator pro-

posed above is compared against its unregularized version and 2SLS. I proceed in two

steps. In a first simulation involving three binary instruments, I demonstrate the practical

importance of regularization. A second simulation with two binary instruments high-

lights the potential dangers of using 2SLS.

Three instrument DGP:

We first let J = 3, and put equal weight P (Gi = g) = .05 over each of the 20 response

groups. To introduce endogeneity, I let Yi(0) = Gi · Ui where the Gi are numbered arbi-

trarily from one to 20 and Ui ∼ Unif [0, 1]. The treatment effect within each group g is

chosen to be constant and equal to g, so that

Yi(1) = Yi(0) +Gi + Vi

with Vi ∼ Unif [0, 1]. With this setup, ACL = 10.

For the joint distribution of the instruments, I consider two alternatives, meant to cap-

ture different extremes regarding statistical dependence among the instruments:

1. (Z1i,Z2i,Z3i) generated as uncorrelated coin tosses
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2. (1) followed by the following transformation: if Z2i = 1 set Z3i = 0 with probability

95%

I let the sample size be n = 1000, and perform one thousand simulations. Our primary

goal is to compare the estimator ρ̂(1, 1, . . . , 1,α), where α chosen by the feasible approx-

imate MSE minimizing procedure described in Section 2.5, to the simple Wald estimator

of ACL (Ê[Yi|Zi = (111)] − Ê[Yi|Zi = (000)])/(Ê[Di|Zi = (111)] − Ê[Di|Zi = (000)]),

which is equal to ρ̂(1 . . . 1,α = 0). I also benchmark both estimators against fully saturated

2SLS. I stress that 2SLS is not generally consistent for the ACL (or any convex combina-

tion of treatment effects) under vector monotonicity. Nevertheless, given the popularity

of 2SLS and its desirable properties under traditional LATE monotonicity, it is important

to know if and when the proposed estimator ρ̂(λ,α) outperforms 2SLS in practice.

Figure B.1 shows the results for the first DGP, where the Zj are independent Bernoulli

random variables with mean 1/2. We see that with the good overlap of the points Z̄ =

(1, 1, 1) and Z̄ = (0, 0, 0) (which are each equal to 1/8), the Wald estimator performs

well. For this DGP, the procedure to choose α̂mse, minimizing MSE, results in small values

with high probability. Hence the regularized estimator ρ̂((1, 1, . . . 1)′, α̂mse) according to

Proposition B.1 is very close to the Wald estimator (recall that they are identical when

α = 0). However, my estimator does deliver a slightly smaller RMSE, as expected, at the

cost of some bias. Fully saturated 2SLS happens to also perform well for this DGP.

Figure B.2 shows the results for the second DGP, where I modify the joint distribution

of (Z1,Z2,Z3) to impose E(Z3i|Z2i = 1) = 0.05. In this case, the Wald estimator performs

comparatively poorly. We see that regularizing the estimator to use the full sample rather

than just the points Z̄ = (1, 1, 1) and Z̄ = (0, 0, 0) can help considerably.

Two instrument DGP:

Note that in both Figures B.1 and B.2, fully saturated 2SLS (regression on the propensity

score) performs well, in the latter case actually outperforming both of the alternative esti-
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Figure B.1: Monte Carlo distributions of estimators, for the first DGP (Z uncorrelated coin
tosses) with three binary instruments. “Reg. Est.” indicates ρ̂(1, . . . , 1, α̂mse). The vertical
line shows the true value of ACL.

Figure B.2: Monte Carlo distributions of estimators, for the first DGP (P (Z3i|Z2i = 1) =
0.05) with three binary instruments. “Reg. Est.” indicates ρ̂(1, . . . , 1, α̂mse). The vertical
line shows the true value of ACL.

mators. This is despite the fact that it is not consistent for the ACL, and is in general not

even guaranteed to be consistent for ∆c for any choice of the function c(g, z). To demon-

strate that 2SLS can in practice perform very poorly under vector monotonicity, I below

report results from an additional simulation in which J = 2.

For this simulation, the DGP is as follows. Among the six possible response groups

under vector monotonicity, I give units a 90% chance of being Z1 complier and a 10%

chance of Z2 complier. The treatment effect is set to 2 for Z1 compliers, and −8 for Z2

compliers, resulting in aACL of unity. I generate negatively correlated binary instruments

244



(with correlation of about −.1) from a multivariate normal. In particular, with

Z∗1
Z∗2

 ∼ N


0

0

 ,

 1 −.8

−.8 1




I set Z1i = 1 when Z∗1i is over its median and Z2i = 1 when Z∗2i is over its median. I again

let the sample size be n = 1000, and perform a thousand simulations.

Figure B.3 shows that in this case, 2SLS is indeed outside of the convex hull of treat-

ment effects, despite having high precision. The proposed regularized estimator clearly

outperforms both of the alternatives for this DGP.

Figure B.3: Monte Carlo distributions of estimators, for the second two-instrument DGP.
“Reg. Est.” indicates ρ̂(1, . . . , 1, α̂mse). The vertical line shows the true value of ACL.
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B.4 Proofs

This section provides proofs for the formal results presented in the body of the paper.

B.4.1 Proof of Proposition 2.1

To simplify notation take each ordering ≥j to be the ordering on the natural numbers

≥, without loss. The two versions of VM are:

Assumption VM (vector monotonicity). For z, z′ ∈ Z , if z ≥ z′ component-wise, then

Di(z) ≥ Di(z′) for all i.

Assumption VM’ (alternative characterization). Di(zj , z−j) ≥ Di(z′j , z−j) for all i when

zj ≥ z′j and both (zj , z−j) and (z′j , z−j) ∈ Z

The claim is that VM ⇐⇒ VM ′.

• VM =⇒ VM′ : immediate, since (zj , z−j) ≥ (z′j , z−j) in a vector sense when zj ≥ z′j

• VM′ =⇒ VM : consider z, z′ ∈ Z such that z ≥ z′ in a vector sense, i.e. zj ≥ z′j for

all j ∈ {1 . . . J}. Then by VM ′ and connectedness of Z , then for some ordering of

the instrument labels 1 . . . J :

Di



z1

z2
...

zJ


≥ Di



z′1

z2
...

zJ


∀i, Di



z′1

z2
...

zJ


≥ Di



z′1

z′2
...

zJ


∀i, etc . . .

and thus:

Di



z1

z2
...

zJ


≥ Di



z′1

z2
...

zJ


≥ Di



z′1

z′2
...

zJ


≥ · · · ≥ Di



z′1

z′2
...

z′J


for all i
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B.4.2 Proof of Proposition 2.2

Let P (z) := E[Di|Zi = z] be the propensity score function. By the law of iterated

expectations and Assumption 1:

P (z) = ∑
g∈G

P (Gi = g|Zi = z)E[Di(Zi)|Gi = g,Zi = z] = ∑
g∈G

P (Gi = g)Dg(z)

By VM, Dg(z) is component-wise monotonic for any g in the support of Gi. As a convex

combination of component-wise monotonic functions, P (z) will thus also be component-

wise monotonic.

In the other direction, note that by PM if P (zj , z−j) > P (z′j , z−j), then we must have

that Di(zj , z−j) ≥ Di(z′j , z−j) rather than Di(zj , z−j) ≤ Di(z′j , z−j). Thus component-wise

monotonicity of P (z) with respect to some collection of orderings {≥j}j∈{1...J} implies

Di(zj , z−j) ≥ Di(z′j , z−j) for all choices of j ∈ {1 . . . J}, zj ≥j z′j , and z−j ∈ Z−j (and all i).

This is the equivalent form of VM stated in Proposition 2.1.

B.4.3 Proof of Proposition 2.4

Let Z̃ be the set of possible values for the new set of instruments (Z̃2, . . . Z̃m,Z−1).

Since P (Z̃mi = 0 & Z̃ni = 1) = 0 for any m > n, we can take Z̃ to only consist of cases

where for all m: Z̃−m is composed of all zeros for the first m− 1 entries, and then ones for

m+ 1 . . .M . Note that fixing Z1 is equivalent to fixing Z̃2 . . . Z̃M .

If Z is connected, then the Z̃ given above is connected. Then, by Proposition 2.1, we

simply need to show that for anyZ−1 = (Z2, . . . ,ZJ ) and Z̃−m = (Z̃2, . . . , Z̃m, Z̃m+1, . . . , Z̃M )

such that (0, Z̃−m,Z−1) ∈ Z and (1, Z̃−m,Z−1) ∈ Z :

Di(1, Z̃−m;Z−1) ≥ Di(0, Z̃−m;Z−1)

where the notation Di(a, b; c) is understood as Di(d, c) where d is the value of Z1 corre-
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sponding to Z̃ with value a for Z̃m and b for Z̃−m. For any Z̃−m satisfying (0, Z̃−m,Z−1) ∈

Z and (1, Z̃−m,Z−1) ∈ Z , switching Z̃m from zero to ones corresponds to switching Z1

from value zm−1 to value zm. Since

Di(1, Z̃−m;Z−1)−Di(0, Z̃−m;Z−1) = Di(zm,Z−1)−Di(zm−1,Z−1) ≥ 0

by vector monotonicity on the original vector (Z1 . . . ZJ ), the result now follows.

B.4.4 Proof of Proposition 2.3

For any fixed z, write the condition Dg(F )(z) = 1 as

{
Dg(F )(z) = 1

}
⇐⇒

{ ⋃
S∈F

{
Dg(S)(z) = 1

}}
⇐⇒ not

{ ⋂
S∈F

{
Dg(S)(z) = 0

}}

which can be written as

Dg(z) = 1− ∏
S∈F

(
1−Dg(S)(z)

)
= ∑

f⊆F :f 6=∅
(−1)|f |+1 ∏

S∈F
Dg(S)(z)

Let z(z) = {j ∈ {1 . . . J} : zj = 1} represent z as the subset of instrument indices for

which the associated instrument takes the value of one. Then, using that for a simple
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response group Dg(S)(z) = 1(S ⊆ z(z)):

Dg(z) = ∑
f⊆F :f 6=∅

(−1)|f |+1 ∏
s∈F
Dg(S)(z)

= ∑
f⊆F :f 6=∅

(−1)|f |+1 · Dg((⋃S∈f S))(z)

= ∑
f⊆F :f 6=∅

(−1)|f |+1 · 1
((⋃

S∈f
S

)
⊆ z(z)

)

= ∑
∅⊂f⊆F :

(
⋃
S∈f S)⊆z(z)

(−1)|f |+1 = ∑
S′⊆z(z)

∑
∅⊂f⊆F :

(
⋃
S∈f S)=S′

(−1)|f |+1

= ∑
S′⊆{1...J}

1
(
S′ ⊆ z(z)

)
∑

∅⊂f⊆F :
(
⋃
S∈f S)=S′

(−1)|f |+1

= ∑
S′⊆{1...J}

 ∑
∅⊂f⊆F :

(
⋃
S∈f S)=S′

(−1)|f |+1

Dg(S′)(z) = ∑
∅⊂S′⊆{1...J}

 ∑
f⊆F :

(
⋃
S∈f S)=S′

(−1)|f |+1

Dg(S′)(z)

Thus, letting s(F ,S′) :=
{
f ⊆ F :

(⋃
S∈f S

)
= S′

}
, we haveDg(F )(z) = ∑S′ [MJ ]F ,S′Dg(S)(z),

where the sum ranges over non-null subsets of the instruments ∅ ⊂ S′ ⊆ {1 . . . J} and

[MJ ]F ,S′ = ∑f∈s(F ,S′)(−1)|f |+1.

B.4.5 Proof of Lemma 2.1

Any indicator 1(Zi = z) for a value z ∈ {0, 1}J can be expanded out as a polynomial in

the instrument indicators as 1(Zi = z) = ∏j∈z1 Zji ∏j∈z0(1−Zji) = ∑f⊆z0(−1)|f |Z(z1∪f),i,

where (z1, z0) is a partition of the indices j ∈ {1 . . . J} that take a value of zero or one in z,

respectively. With J = 2 for example,

((1−Z1i)(1−Z2i),Z1i(1−Z2i),Z2i(1−Z1i),Z1iZ2i) = (1,Z1i,Z2i,Z1iZ2i)A = (1, Γ′i)A
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where A =



1 0 0 0

−1 1 0 0

−1 0 1 0

1 −1 −1 1


. Denote the random vector of such indicators Zi. Then

(1, Γ′i)A = Z′i, with the matrix of coefficients AS,z = ∑ f⊆z0
(z1∪f)=S

(−1)|f |. The matrix A so

defined must be invertible, because any product of the instruments ZSi for S ⊆ {1 . . . J}

can similarly be expressed as a linear combination of the components of Zi, where we

define Z∅i = 1. Specifically, ZSi = ∑z∈Z 1 (∀j∈S , zj = 1) 1(Zi = z).

Consider the matrix

Σ∗ := E[(1, Γ′i)
′(1, Γ′i)] = A′

−1
E[ZiZ

′
i]A
−1 = A′

−1
diag{P (Zi = z)}A−1

where E[ZiZ′i] is diagonal since the events that Zi take on two different values are exclu-

sive. Since A−1 exists, the rank of Σ∗ must be equal to the rank of diag{P (Zi = z)}, which

is in turn equal to the cardinality of Z . Assumption 3 thus holds if and only if Σ∗ has

full rank of 2J . Note that although A−1 diagonalizes the matrix Σ∗, it does not provide its

eigen-decomposition, as A−1 6= A′ (A is not orthogonal).

Now we prove that Σ∗ has full rank whenever Σ has full rank, and vice versa. Note that

Σ = V ar(Γi) has full rank if and only if ω′E[(Γi−EΓi)(Γi−EΓi)]ω = E[ω′(Γi−EΓi)(Γi−

EΓi)ω] > 0, i.e. P (ω′(Γi−EΓi) = 0) < 1 for any ω ∈ R2J−1/0. Similarly Σ∗ has full rank if

P ((ω0,ω)′((1, Γi) = 0) < 1 for any ω0 ∈ R,ω ∈ R2J−1 where (ω0,ω) is not the zero vector

in R2J . But if for some ω, ω′(Γi −EΓi) = 0 w.p.1., then we also have (ω0,ω)′(1, Γi) = 0

w.p.1. by choosing ω0 = −ω′E[Γi]. In the other direction, note that (ω0,ω)′(1, Γi) = 0

w.p.1. implies that ω′Γi = −ω0 and hence ω′(Γi−EΓi) = −ω0− ω′EΓi = −ω0−E[ω′Γi] =

−ω0 + ω0 = 0.
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B.4.6 Proof of the Appendix B.1 Proposition

Introduce the notation that t indicates inclusion of a new set among a family of sets

(while ∪ continues to indicate taking the union of elements across sets).

For any S ⊆ M that contains both Zjm and Zjm′ for some j and m < m′, g(F t S) and

g(F t S/{Zjm}) generate the same selection behavior for any Sperner family F on all of Z

(this can be seen by mapping the implied selection behavior back to the original discrete

instrument Zj). Thus, we can take G to exclude such S without loss of generality.

Now, consider the family F of all S ⊂ M that contain at most one Zjm for any given

j. By the above, this choice of F satisfies Assumption 3b*. Suppose it did not sat-

isfy Assumption 3a*. Then, there would need to exist a non-zero vector ω such that

P (∑S∈F ωSZSi = 0) = 1 with ZSi := ∏(j,m)∈S Z̃
j
m. This would imply non-invertibility

of Σ∗ := E[(1, Γi)(1, Γi)′], where Γi := {ZSi}S∈F ,S 6=∅ by the same argument as in the proof

of Lemma 2.1 (Γi and a vector of indicators for all z ∈ Z are each related by an invertible

linear map), which in turn contradicts the assumption of full support. Note that invert-

ibility of Σ∗ is again equivalent to invertibility of V ar(Γi) as before.

B.4.7 Proof of Theorem 2.1

We first note that any measurable function f(Y ) preserves Assumption 1, that is

(f(Yi(1)), f(Yi(0)),Gi) ⊥ Zi

and Assumptions 2-3 are unaffected by such a transformation to the outcome variable.

Thus, we continue without loss with Yi, Yi(1) and Yi(0) possibly redefined as f(Yi), f(Yi(1))

and f(Yi(0)) respectively.

Note that the function h(·) given in Theorem 2.1 has the property that E[h(Zi)] = 0,

for any distribution of the instruments. Consider the quantity E[YiDih(Zi)] for a func-

tion h having this property. By the law of iterated expectations, and the independence
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assumption:

E[YiDih(Zi)] = ∑
g

P (Gi = g)E[YiDih(Zi)|Gi = g]

= ∑
g

P (Gi = g)E[Yi(1)Dg(Zi)h(Zi)|Gi = g]

= ∑
g

P (Gi = g)E[Yi(1)|Gi = g]E[Dg(Zi)h(Zi)] (B.3)

where Dg(z) denotes the selection function for response group g. Similarly,

E[Yi(1−Di)h(Zi)] = ∑
g

P (Gi = g)E[Yi(0)(1−Di)h(Zi)|Gi = g]

= ∑
g

P (Gi = g) {E[Yi(0)|Gi = g]E[h(Zi)]

−E[Yi(0)|Gi = g]E[Dg(Zi)h(Zi)]}

= ∑
g

−P (Gi = g)E[Yi(0)|Gi = g]E[Dg(Zi)h(Zi)] (B.4)

where we have used that Zi ⊥ (Yi(0),Zi) and E[h(Zi)] = 0.

Combining these two results:

E[Yih(Zi)] = E[YiDih(Zi)] +E[Yi(1−Di)h(Zi)] = ∑
g

P (Gi = g)E[Dg(Zi)h(Zi)]∆g
(B.5)

where ∆g := E[Yi(1)− Yi(0)|Gi = g]. By the law of iterated expectations, we also have

that

E[Dih(Zi)] = ∑
g

P (Gi = g)E[Dg(Zi)h(Zi)] (B.6)

Note that in all of Equations (B.3), (B.4) and (B.5), the weighing over various groups g

is governed by the quantity E[Dg(Zi)h(Zi)]. It can be seen that never takers and always

takers receive no weight, since E[Dn.t(Zi)h(Zi)] = E[0] = 0 and since E[Da.t(Zi)h(Zi)] =

E[h(Zi)] = 0.
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Let F denote the set of non-empty subsets of the instrument indices: F := {S ⊆

{1, 2, . . . J},S 6= ∅}, and recall that these correspond each to a simple response group

g(S), where Dg(S)(Zi) = ZSi. I first show that for any λ ∈ R|F|, Assumption 3 allows

us to define an h(Zi) such that E[Dg(S)(Zi)h(Zi)] = E[ZSih(Zi)] = λS . Note that since

E[h(Zi)] = 0, this is the same as tuning each covariance Cov(ZSi,h(Zi)) to λS (c.f. Propo-

sition 2.5). In particular, consider the choice h(Zi) = (Γi −E[Γi])′Σ−1λ, where recall that

Γi is a vector of ZSi for each S ∈ F .

(E[h(Zi)i, Γi1],E[h(Zi), Γi2], . . . ,E[h(Zi), Γik])′ = E[(Γi −E[Γi])h(Zi)]

= E[(Γi −E[Γi])(Γi −E[Γi])′]Σ−1λ

= ΣΣ−1λ = λ

We can understand the algebra of this result as follows. Let V = span({ZSi−E[ZSi]}S∈F ).

V is a subspace of the vector space V of random variables on Z , with the zero vector be-

ing a degenerate random variable equal to zero. Since the matrix Σ is positive semidefi-

nite by construction, Assumption 3 is equivalent to the statement that for all ω ∈ R|F|/0,

ω′E[(Γi−E[Γi])(Γi−E[Γi])′]ω = E[|ω′(Γi−E[Γi])|2] > 0: i.e. P (∑S∈F ωS(ZSi −E[ZSi])) = 0) <

1 for all ω ∈ R|F|/0. In other words, the random variables (ZSi−E[ZSi]) for S ∈ F are lin-

early independent, and hence form a basis of V . Since V is finite dimensional, there exists

an orthonormal basis of random vectors of the same cardinality, |F|, where orthonormal-

ity is defined with respect to the expectation inner product: 〈A,B〉 := E[AiBi]. It is this

orthogonalized version of the ZSi that affords the ability to separately tune each of the

E[h(Zi)ZSi] to the desired value λS , without disrupting the others.

Note that under Assumption 1:

∆c = ∑
g∈G

{
P (Gi = g)P (Ci = 1|Gi = g)

P (Ci = 1)

}
· ∆g =

∑g∈G P (Gi = g)P (Ci = 1|Gi = g) · ∆g
∑g∈G P (Gi = g)P (Ci = 1|Gi = g)
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Comparing with Equations (B.5) and (B.6), the equality ∆c = E[h(Zi)Yi]/E[Dih(Zi)] fol-

lows (provided that P (Ci = 1) > 0) if the coefficients match. That is: E[Dg(Zi)h(Zi)] =

P (Ci = 1|Gi = g), for all g ∈ Gc. By the above, this is guaranteed under Property M if we

choose λS = P (Ci = 1|Gi = g(S)) = E[c(g(S),Zi)], since the quantity E[Dg(Zi)h(Zi)]

appearing in Eq. (B.5) is linear in Dg(Zi). The same logic follows for causal parameters of

the form E[Yi(d)|Ci = 1] for d ∈ {0, 1}, using Equations (B.3) and (B.4) and

E[Yi(d)|Ci = 1] = ∑
g∈G

P (Gi = g|Ci = 1)E[Yi(d)|Gi = g, c(g,Zi) = 1]

= P (Ci = 1)−1 ∑
g∈G

P (Gi = g)P (Ci = 1|Gi = g)E[Yi(d)|Gi = g]

by independence. Note that the quantity λS for each S can be computed from the ob-

served distribution of Z.

To replace Assumption 3 with Assumption 3* from Appendix B.1, simply replace F as

defined here with a maximal F from Assumption 3a*.

B.4.8 Proof of Corollary 2.1 to Theorem 2.1

The proof of Lemma 2.1 shows that (1, Γ′i)A is a vector of indicators Z′i for values of Z,

where A is the matrix with entries given in Corollary 2.1, which is invertible, and Zi is a

vector of indicators 1(Zi = z) for each of the values z ∈ Z . We can thus write h(Zi) from

Theorem 2.1 as

h(Zi) = λ′Σ−1(Γi −E[Γi]) = (0,λ′)E[(1, Γ′i)
′(1, Γ′i)]

−1(1, Γ′i)
′

= (0,λ′)E[A′−1
A′(1, Γ′i)

′(1, Γ′i)AA
−1]−1A′

−1
Zi

= (0,λ′)AE[ZiZ′i]−1Zi
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This is useful because E[ZiZ′i] is diagonal, since the events that Zi take on two different

values are exclusive: E[ZiZ′i] = diag{P (Zi = z)}z∈Z .

Now, for V ∈ {Y ,D}, E[h(z)Vi] = (0,λ′)Adiag{P (Zi = z)}−1
z∈Z{E[1(Zi = z)Vi]}z∈Z =

(0,λ′)A{E[Vi|Zi = z]}z∈Z . Thus (0,λ′)A describes the coefficients in an expansion of

E[h(z)Vi] into CEFs of Vi across the support of Zi.

B.4.9 Proof of Proposition 2.6

VM case

The if direction is most straightforward. From Proposition 2.3 we have that for any

z ∈ Z and g ∈ Gc:

Dg(z) = ∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S · Dg(S)(z)

Thus, for any such c(g, z):

c(g, z) =
K

∑
k=1

∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S · Dg(S)(hk(z)))− ∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S · Dg(S)(lk(z)))

= ∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S ·
{

K

∑
k=1
Dg(S)(hk(z)))−Dg(S)(lk(z)))

}

= ∑
S⊆{1...J},S 6=∅

[MJ ]F (g),S · c(g(S), z)

for any z ∈ Z . To finish verifying Property M, we need only observe that c(a.t., z) =

c(n.t., z) = 0 for all z since Dg(hk(z)) = Dg(lk(z)) for any hk, lk when g ∈ {a.t.,n.t.}.

Now we turn to the other implication of the Proposition, that any c satisfying Property

M has a representation like the above. For shorthand, let c−1(z) indicate the family of

S ⊆ {1 . . . J} such that c(g(S), z) = 1. The following Lemma establishes that the family

c−1(z) and its complement are each closed under unions:
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Lemma. Let c be a function from G ×Z to {0, 1} satisfies Property M. If A ∈ c−1(z) and B ∈

c−1(z), then A∪B ∈ c−1(z), and if A /∈ c−1(z) and B /∈ c−1(z), then A∪B /∈ c−1(z).

Proof. If the setsA andB are nested, then the result follows trivially. Now suppose neither

set contains the other, and consider the Sperner family A tB constructed of the two sets

A and B. By Property M and using Proposition 2.3:

c(g(AtB), z) = ∑
∅⊂S′⊆{1...J}

 ∑
f⊆{{{A,B}}}:

(
⋃
S∈f S)=S′

(−1)|f |+1

 c
(⋃
S∈f

S, z
)

= ∑
∅⊂f⊆{{{A,B}}}

c

(⋃
S∈f

S, z
)

= c(g(A), z) + c(g(B), z)− c(g(A∪B), z)

In the first case, if both A and B are in c−1(z), then we must have c(g(A ∪B), z) = 1 to

prevent c(g(AtB), z) from evaluating to 2, which contradicts the assumption that c takes

values in {0, 1}. In the second case, when both c(g(A), z) and c(g(B), z) are zero, we must

have c(g(A∪B), z) = 1 to prevent c(g(AtB), z) from evaluating to -1.

As a consequence of the Lemma, since c−1(z) is a finite set, there exists a member S1(z)

of c−1(z) that satisfies S1(z) =
⋃
S∈c−1(z) S (similarly, there exists a S0(z) =

⋃
S/∈c−1(z) S

with S0(z) /∈ c−1(z)). All members of the family c−1(z) are subsets of S1(z), and all

S ⊆ {1 . . . J} that are not in c−1(z) are subsets of S0(z).

Let z take some fixed value, and beginning with the set S1 = S1(z), define a sequence

of sets {S1,S2,S3, . . . } as follows:

S2k =
⋃

S′⊆S2k−1:
S′/∈c−1(z)

S′ and S2k+1 =
⋃

S′⊆S2k :
S′∈c−1(z)

S′

where we take
⋃
S′∈∅ S

′ to evaluate to the empty set. This sequence provides a characteri-
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zation of the family c−1(z) as follows. For any ∅ ⊂ S ⊆ {1 . . . J}:

c(g(S), z) = 1(S ∈ c−1(z))

= 1(S ⊆ S1 : S ∈ c−1(z))

= 1(S ⊆ S1)− 1(S ⊆ S1 : S /∈ c−1(z))

= 1(S ⊆ S1)−
(
1(S ⊆ S2)− 1(S ⊆ S2 : S ∈ c−1(z))

)
= 1(S ⊆ S1)− 1(S ⊆ S2) +

(
1(S ⊆ S3)− 1(S ⊆ S3 : S /∈ c−1(z))

)
= . . .

=
N

∑
n=1

(−1)n+1 · 1(S ⊆ Sn) + (−1)N ·


1(S ⊆ SN : S ∈ c−1(z)) if N even

1(S ⊆ SN : S /∈ c−1(z)) if N odd

for any natural number N .

Think of the power set of S1 as a “first-order” approximation to the family c−1(z).

However, in most cases this family is too large, as there will be subsets of S1 that are

not found in c−1(z). Define S2 to be the union of all such offending sets. The power

set of S2 now provides a possible “overestimate” of the family of offending sets (since

they are all in 2S2) and hence removing all subsets of S2 as a correction to be applied

to 2S1 as an estimate of c−2(z) will overcompensate: we will have removed some sets

which are indeed in c−1(z). We thus define S3 analogously, whose power set provides an

approximation to the error in S2 as an approximation to the error in S1, and so on.

Does this process of over-correction eventually terminate, so that the final remainder

term is zero? Note that for any n: Sn ⊆ Sn−1. If Sn = Sn−1 6= ∅, then we have a fixed point

S where
⋃
S′⊆S:S′∈c−1(z) S

′ =
⋃
S′⊆S:S′/∈c−1(z) S

′. But by the Lemma, this would imply that

S is a member both of {S′ ⊆ S : S′ ∈ c−1(z)} and of {S′ ⊆ S : S′ /∈ c−1(z)}, and therefore

that both c(g(S), z) = 1 and c(g(S), z) = 0, a contradiction. Thus, Sn ⊂ Sn−1, and |Sn| is a

decreasing sequence of non-negative integers that is strictly decreasing so long as |Sn| > 0.

It must thus converge to zero in at most |S1| iterations, so that Sn = ∅ for all n ≥ |S1|.
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Without loss, we can terminate the sequence on an even term, since 1(S ⊆ ∅) = 0 for

any S ⊃ ∅. Let 2K denote the smallest even number such that Sn = ∅ for all n > 2K, for a

fixed z. Thus, we have for any ∅ ⊂ S ⊆ {1 . . . J}:

c(g(S), z) =
2K
∑
n=1

(−1)n+1 · Dg(S)(Sn) =
K

∑
k=1
Dg(S)(S2k−1)−Dg(S)(S2k)

where 2K ≤ |S1| ≤ J , and we have used that Dg(S)(S′) = 1(S ⊂ S′) for any S′.

Now recall that we have left the dependence of each of the sets Sn (as well as the integer

K) on z implicit, and have also adopted the notational convention ofDg(S) as a shorthand

for Dg(z) where z is a point in Z that takes a value of one for exactly the instruments in

the set S. To obtain the notation of the final result, define for each k = 1 . . . K the point

uk(z) ∈ Z to have a value of one exactly for the elements in S2k−1 for that value of z, and

lk(z) ∈ Z to have a value of one exactly for the elements in S2k for that value of z. We may

thus write, for any ∅ ⊂ S ⊆ {1 . . . J} and any z ∈ Z :

c(g(S), z) =
K(z)

∑
k=1
Dg(S)(uk(z))−Dg(S)(lk(z)) =

K

∑
k=1
Dg(S)(uk(z))−Dg(S)(lk(z))

where we let K be the maximum of K(z) over the finite set Z , and we define uk(z) and

lk(z) to each be a vector of zeros whenever k > K(z). For each z, the relations uk(z) ≥

lk(z) and lk(z) ≥ uk+1(z) component-wise now follow from Sn ⊆ Sn+1.

Now we may apply Property M to construct c(g, z) for any of the non-simple re-

sponse groups as well. Recall that Property M says that c(g(F ), z) = ∑∅⊂S⊆{1...J}[MJ ]F ,S ·
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c(g(S), z) for all z, for any Sperner family F . Thus:

c(g(F ), z) = ∑
∅⊂S⊆{1...J}

[MJ ]F ,S ·
K

∑
k=1
{Dg(S)(uk(z))−Dg(S)(lk(z))}

=
K

∑
k=1
{ ∑
∅⊂S⊆{1...J}

[MJ ]F ,S · Dg(S)(uk(z))} − { ∑
∅⊂S⊆{1...J}

[MJ ]F ,S · Dg(S)(lk(z))}

=
K

∑
k=1
Dg(F )(uk(z))−Dg(F )(lk(z))

Finally, note thatDg(uk(z)) = Dg(lk(z)) for any g ∈ {a.t.,n.t.} so the following expression

holds for all g ∈ G:

c(g, z) =
K

∑
k=1
Dg(uk(z))−Dg(lk(z))

IAM case

Now I prove that representation from Proposition 2.6 also holds under IAM. Note that

under IAM Property M places no restriction beyond c(a.t., z) = c(n.t., z) = 0 since there

is no perfect linear dependency between the functions Dg(z) to worry about. Under IAM,

each g ∈ Gc can be associated with an integer m =∈ {1, 2 . . . 2J − 1} and characterized

directly 1(g = m) = Dg(zm+1)−Dg(z′m), where z1, z2, . . . , z2J is any fixed ordering of the

points that is weakly increasing according to the propensity score E[Di|Zi = zm]. m is

simply the “first” point in Z along this sequence for which individuals of response type g

take treatment.

Thus, for any function g : G ×Z → {0, 1} such that c(a.t., z) = c(n.t., z) = 0:

c(g, z) =
2J−1
∑
m=1

c(m, z) · (Dg(zm+1)−Dg(z′m)) (B.7)

=
K

∑
k=1
Dg(uk(z))−Dg(lk(z))
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withK = 2J −1 where for each z we let lk(z) = zm and we let uk(z) =


zk if c(k, z) = 0

zk+1 if c(k, z) = 1
.

Note that if any set of consecutive c(k, z) = c(k + 1, z) . . . c(k + T , z) are all equal to

one, then one can drop T − 1 of these terms as the inner terms will all cancel leaving

Dg(uk+T (z))−Dg(lk(z)). Thus we may take without loss K ≤ 2J/2 = 2J−1 (correspond-

ing to the case where c(1, z) = 1, c(2, z) = 0, c(3, z) = 1 etc.).

Finally, we discuss how the above analysis reveals some common structure to The-

orem T-6 of Heckman and Pinto (2018) (HP), which extends IAM-type identification to

settings with more than two treatment states. Their analysis assumes a condition they call

unordered monotonicity, which reduces to IAM when treatment takes on just two values, as

we consider in our paper.

To establish the connection, let us extend the above mapping between points in Z and

response groups g ∈ G under IAM to associate m = 0 with always-takers, and m = |Z|

with never-takers (the fact that |Z| = 2J for J binary instruments with rectangular support

is not important here). Recall that 1(g = m) = Dg(zm+1)−Dg(z′m) for the other groups.

Then, HP’s Theorem T-6 applied to a binary treatment implies that E[Yi(1)|Gi = m] is

identified for any m < |Z|, and E[Yi(0)|Gi = m] is identified for any m > 0 under IAM.

We focus here on E[Yi(1)|Gi = m], as the argument is symmetric under redefinition of

treatment and control.

Note that E[Yi(1)|Gi = m] corresponds to the choice c(g, z) = 1(g = m). Since we’ve

defined Property M in a way that rules out the m = 0 case, we focus on m > 0 to keep

the discussion simple. Let b be a row vector of c(g, z) across the g = 1 . . . |Z|, noting that

this choice of c(g, z) does not depend on instrument value z. The key step in the proof

of HP’s T-6 is the intermediate result that b = b[B†B], where B is a matrix with generic

element Bzg = Dg(z) and B† is its Moore-Penrose pseudo-inverse. Given our ordering

of Z , B is simply a lower triangular matrix of ones, appended to the right by a single

column of zeros (for the never-takers). It can then be verified that rows r = 2 . . . (|Z| − 1)

260



of B† are of the form (0, . . . ,−1, 1, . . . 0)′ with r− 2 zeroes on the left (while the first row is

composed of a single 1 in the first column, and the last row is all zeros). Since the columns

of B are vectors of the Dg(z) across z ∈ Z , it follows that for any m = 1 . . . (|Z| − 1):

Dg(zm+1)−Dg(z′m) is simply the m, g component of B†B, which we’ve seen is also equal

to 1(g = m). For these values of m, the equation b = b[B†B] is then identical to Equation

(B.7), viewed as a row vector over g.

B.4.10 Proof of Corollary 2.2 to Theorem 2.1

Using independence and Property M:

E[h(Zi)Di] = ∑
g

P (Gi = g)E[h(Zi)Dg(Zi)]

= ∑
g

P (Gi = g)E

[
h(Zi)

{
∑
S

[MJ ]F (g),SDg(s)(Zi)
}]

)

= ∑
g

P (Gi = g)∑
S

[MJ ]F (g),SP (Ci = 1|Dg(s)(Zi))

= ∑
g

P (Gi = g)P (Ci = 1|Gi = g)

= P (Ci = 1)

B.4.11 An Equivalence Result

The proofs of Proposition 2.7 and 2.9 will make use of the following equivalence result:

Proposition B.2. Let the support Z of the instruments be discrete and finite. Fix a function

c(g, z). Let PDZ denote the joint distribution of Di and Zi. Then the following are equivalent:

1. ∆c is (point) identified by PDZ and {βs}s∈S , for some finite set S of known or identified

(from PDZ) measurable functions s(d, z), and βs := E[s(Di,Zi)Yi]

2. ∆c = βs for a single such s(d, z)

3. ∆c = E[t(Di,Zi,Yi)] with t(d, z, y) a known or identified (from PDZ) measurable function
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4. ∆c is identified from the set of CEFs {E[Yi|Di = d,Zi = z]} for d ∈ {0, 1}, z ∈ Z along

with the joint distribution PDZ

Proof. See Supplemental Material.

In saying that a parameter θ is identified by some set of empirical estimands, I mean that

the set of values of θ that are compatible with the empirical estimands is a singleton,

regardless of the distribution of the latent variables (Gi,Yi(1),Yi(0)) – for all PDZ within

some class (note that the marginal distribution of Gi must also be compatible with PDZ).

For example, by writing the estimand of Theorem 2.1 ∑z∈Z
P (Zi=z)h(z;PDZ )
E[h(Zi;PDZ )Di]

·E[Yi|Zi = z],

where we make explicit that the function h depends on PDZ , it is clear that for any ∆c

satisfying Property M and under Assumptions 1-2, ∆c is identified in the sense of item 4.,

for all PDZ with the properties: i) the marginal distribution of Zi satisfies Assumption 3;

and ii) E[h(Zi;PDZ)Di] > 0.

B.4.12 Proof of Proposition 2.7

By Proposition B.2, we know that if ∆c is identified from a finite set of IV-like estimands

and PDZ , it can be written as a single one: ∆c = βs with s(d, z) an identified functional of

PDZ . Now, using that Yi = Yi(0) +Di∆i where ∆i := Yi(1)− Yi(0):

∆c = βs = {E[s(Di,Zi)Yi(0)] +E[s(Di,Zi)Di∆i]}

= ∑
g

P (Gi = g) {E[s(Dg(Zi),Zi)Yi(0)|Gi = g] +E[s(Dg(Zi),Zi)Dg(Zi)∆i|Gi = g]}

= ∑
g

P (Gi = g)
(
((((

((((
(

E[s(Dg(Zi),Zi)]
)
E[Yi(0)|Gi = g]

+ ∑
g

P (Gi = g) (E[s(Dg(Zi),Zi)Dg(Zi)])E[∆i|Gi = g]

= ∑
g

P (Gi = g) (E[s(1,Zi)Dg(Zi)])∆g

where we’ve used independence, and that the crossed out term must be equal to zero for

every g by the assumption that βs = ∆c for every joint distribution of response groups and
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potential outcomes compatible with PDZ in some class (it is always possible to translate

the support of the distribution of Yi(0) and Yi(1) by the same constant without affecting

∆i). Finally, s(Dg(Zi),Zi)Dg(Zi) = s(1,Zi)Dg(Zi) with probability one, establishing the

final equality.

Recall that from Equation (2.3) that ∆c can also be written as a weighted average of

group-specific average treatment effects ∆g = E[Yi(1)− Yi(0)|Gi = g] as:

∆c =
1

P (Ci = 1) ∑
g

P (Gi = g)E[c(g,Zi)] · ∆g

Since βs = ∆c holds for any vector of {∆g} across all of the g for which P (Gi = g) >

0 is compatible with PDZ , we can match coefficients within this group to establish that

E[c(g,Zi)] = P (Ci = 1)E[s(1,Zi)Dg(Zi)]. This set of weights satisfies Property M, since

for any g ∈ Gc:

E[c(g,Zi)] = P (Ci = 1)E[s(1,Zi)∑
S

[MJ ]F (g),SDg(S)(Zi)]

= ∑
S

[MJ ]F (g),S

(
P (Ci = 1)E[s(1,Zi)Dg(S)(Zi)]

)
= ∑

S

[MJ ]F (g),S ·E[c(Zi, g(S))]

If this holds for any distribution ofZi satisfying Assumption 3, then we must have c(g, z) =

∑S [MJ ]F (g),S · c(g(S), z) for all z ∈ Z . To see this, consider a sequence of distributions for

Zi that converges point-wise to a degenerate distribution at any single point z, but satis-

fies Assumption 3 for each term in the sequence. Applying the dominated convergence

theorem to E[c(g,Zi)] − ∑S [MJ ]F (g),S ·E[c(g(S),Zi)] = 0 along this sequence, we have

that c(g, z) = ∑S [MJ ]F (g),S · c(g(S), z). We can apply a similar argument to establish that

c(a.t., z) = c(n.t., z) = 0 for all z ∈ Z given that E[c(g,Zi)] = P (Ci = 1)E[s(1,Zi)Dg(Zi)]

and E[s(1,Zi)] = 0.
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B.4.13 Proof of Proposition 2.9

In the Supplemental Material, I show that with two binary instruments, if PM holds

but not VM or IAM, then G consists of seven response groups, whose definitions are given

in the Supplemental Material. We suppose that all 7 groups are possibly present, and the

practitioner has knowledge of E[Yi|Di = d,Zi = z] for all eight combinations of (d, z), as

well as the joint distribution of Di and Zi. This is equivalent to knowledge of E[YiDi|Zi =

z] and E[Yi(1 −Di)|Zi = z] for all z ∈ Z and the joint distribution of (Di,Zi). Point

identification from these moments is in turn equivalent to point identification from a finite

set of IV-like estimands, by Proposition B.2.

Using Supplemental Material Table 2, these eight moments can be written in matrix

form as



E[YiDi|Zi = (0, 0)]

E[YiDi|Zi = (0, 1)]

E[YiDi|Zi = (1, 0)]

E[YiDi|Zi = (1, 1)]

E[Yi(1−Di)|Zi = (0, 0)]

E[Yi(1−Di)|Zi = (0, 1)]

E[Yi(1−Di)|Zi = (1, 0)]

E[Yi(1−Di)|Zi = (1, 1)]



=



0 0 1 0 0 1 0 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1 1 1 0 1





podd ·E[Yi(1)|Gi = odd]

peager ·E[Yi(1)|Gi = eager]

preluct. ·E[Yi(1)|Gi = reluct.]

p1 ·E[Yi(1)|Gi = 1only]

p2 ·E[Yi(1)|Gi = 2only]

pa ·E[Yi(1)|Gi = a.t.]

pn ·E[Yi(1)|Gi = n.t.]

podd ·E[Yi(0)|Gi = odd]

peager ·E[Yi(0)|Gi = eager]

preluct. ·E[Yi(0)|Gi = reluct.]

p1 ·E[Yi(0)|Gi = 1only]

p2 ·E[Yi(0)|Gi = 2only]

pa ·E[Yi(0)|Gi = a.t.]

pn ·E[Yi(0)|Gi = n.t.]



,

for some labeling of the instrument values, where the groups “reluctant defiers” and “odd

compliers” are defined in the Supplemental Material. If this equation is written as b =

Ax, where b is the 8× 1 vector of identified quantities, and x the 14× 1 unknown vector

of potential outcome moments (note the matrix A here is not the same as the matrix A
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defined in Corollary 2.1), then ACL can be written as

ACL =
1

1− pa − pn
·
(

1 1 1 1 1 0 0 −1 −1 −1 −1 −1 0 0
)′

︸ ︷︷ ︸
:=λ

x (B.8)

ACL is identified only if the vector λ is in the row space of matrix A (the column space of

A′), which follows from the proof of 4→ 2 in Proposition B.2. This can be readily verified

not to hold, since

A′(AA′)−1Aλ ≈
(

1.45 .82 .82 .73 .73 .18 0 −1.45 −.73 −.73 −.82 −.82 0
)

where A′(AA′)−1A is the orthogonal projector into the row space of A (which has full row

rank). Since the RHS of the above is not equal to λ (given explicitly in Eq. B.8), λ is not in

the row space of A.

B.4.14 Proof of Proposition B.1

Write the parameter of interest ∆c as θY /θD, where for V ∈ {Y ,D}, θV = λ̃′βV with

βV := E[ΓiΓ′i]
−1
E[Γ′iVi] and λ̃ = (0,λ′)′. Denote the estimator ρ̂(λ̂,α) as ∆̂c for shorthand.

It takes the form ∆̂c = θ̂Y /θ̂D, where θ̂V := (0, λ̂′)′(Γ′Γ + K)−1Γ′V , and K = αI . I

keep the notation in terms of K as the first part of the argument below will go through

with any diagonal matrix of positive entries, allowing a different regularization parameter

corresponding to each singular vector of Γ′Γ. Write each θ̂V := (0, λ̂′)′β̂∗V where β̂∗V is the

ridge-regression estimate of βV , and let β̂V = (Γ′Γ)−1Γ′V be the unregularized regression

coefficient estimator.

Consider the conditional MSE M = E[(∆̂c − ∆c)2|Γ]. It can be rearranged as:

M = E

[(
θ̂Y

θ̂D
− θY
θD

)2∣∣∣∣∣ Γ

]
=

1
θ2
D

E
[(

(θ̂Y − θY )− ∆̂c(θ̂D − θD)
)2∣∣∣ Γ

]
=

1
θ2
D

E
[
(θ̂Y − θY )2 + ∆̂2

c(θ̂D − θD)2 − 2∆̂c(θ̂Y − θY )(θ̂D − θD)
∣∣ Γ
]

(B.9)
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For any V ,W ∈ {Y ,D}, and m ≥ 1:

E
[
(∆̂c)m(θ̂V − θV )(θ̂W − θW )

∣∣ Γ
]
= E

[
(∆̂c)m(0, λ̂)′(β̂∗V − βV )(β̂∗W − βW )′(0, λ̂)′

∣∣ Γ
]

= (∆c)mλ̃′E
[
(β̂∗V − βV )(β̂∗W − βW )′

∣∣ Γ
]
λ̃+Rmn

where the first term in the above is viewed as an approximation that ignores terms that

are of third or higher order in estimation errors. The asymptotic rate at which the approx-

imation error captured by the Rmn converges to zero is considered explicitly at the end of

this section.

Let Z = (Γ′Γ +K)−1Γ′Γ and notice that β̂∗V = Zβ̂V . Using that E[β̂V |Γ] = βV (as Γi

includes all products of the instruments the CEF must be linear) for V ∈ {Y ,D}:

E
[
(β̂∗V − βV )(β̂∗W − βW )′

∣∣ Γ
]
= ZE

[
(β̂V − βV )(β̂W − βW )′

∣∣ Γ
]
Z ′ + (Z − I)βV β′W (Z − I)′

= (Γ′Γ +K)−1(Γ′ΩVWΓ +KβV β
′
WK)(Γ′Γ +K)−1

where we define the n× 1 vector UV = V − ΓβV and ΩVW = E[UV U
′
W |Γ]. Thus, total

conditional MSE is, by Equation (B.9):

M ≈ 1
θ2
D

λ̃′(Γ′Γ +K)−1 {Γ′(ΩY + ∆2
cΩD − 2∆cΩY D)Γ

+K(βY β
′
Y + ∆2

cβDβ
′
D − 2∆cβY β′D)K

}
(Γ′Γ +K)−1λ̃

This development follows and generalizes that of Hoerl and Kennard (1970), who con-

sider MSE optimal regularization via ridge regression for estimating a single regression

vector, under homoscedasticity. Our case targets the ratio θ̂Y /θ̂D rather than a vector of

regression coefficients, and also allows for heteroscedasticity.

We now prove that α/
√
n

p→ 0 if α is chosen to minimize the following “single-step”
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estimator of the MSE (ignoring the positive factor of θ−2
D that does not depend on K):

M̂ := λ̃′(Γ′Γ +K)−1

{
Γ′
(

Ω̂Y +

(
θ̂Y

θ̂D

)2

Ω̂D − 2
(
θ̂Y

θ̂D

)
Ω̂Y D

)
Γ+

K

(
β̂Y β̂

′
Y +

(
θ̂Y

θ̂D

)2

β̂Dβ̂
′
D − 2

(
θ̂Y

θ̂D

)
β̂Y β̂

′
D

)
K

}
(Γ′Γ +K)−1λ̃

where
(
θ̂Y
θ̂D

)
is the un-regularized estimator of ∆c. The problem can be re parameterized

as a choice of b := α/n, where

M̂(b) := λ̃′
(

Γ′Γ
n

+ bI

)−1


1
n

Γ′
(

Ω̂Y +
(
θ̂Y
θ̂D

)2
Ω̂D − 2

(
θ̂Y
θ̂D

)
Ω̂Y D

)
Γ

n
+

b2
(
β̂Y −

(
θ̂Y

θ̂D

)
β̂D

)(
β̂Y −

(
θ̂Y

θ̂D

)
β̂D

)′}(
Γ′Γ
n

+ bI

)−1
λ̃

:= m(b, Π̂, β̂, Σ̂, λ̂)

where Π̂ := 1
n ∑i(ÛY i − θ̂Y /θ̂DÛDi)2ΓiΓ′i, β̂ := (β̂Y − θ̂Y /θ̂Dβ̂D), and Σ̂∗ := 1

n ∑i ΓiΓ′i.

Note that β̂
p→ β := βY − ∆cβD, Σ̂∗

p→ Σ∗ := E[(1, Γ′i)
′(1, Γ′i)],

√
n
(
Π̂−Π

) d→ N(0,V ) for

some V provided that the variance of (ÛY i− θ̂Y /θ̂DÛDi)2ΓiΓ′i exists, where Π := E[(ÛY i−

θ̂Y /θ̂DUDi)2ΓiΓ′i]. The function m is

m(b, Π/n, β, Σ∗,λ) = (0,λ′) (Σ∗ + bI)−1 {Π/n+ b2ββ′
}
(Σ∗ + bI)−1 (0,λ′)′

We wish to show that
√
nb = α/

√
n

p→ 0, when b is chosen as the smallest positive

minimizer of m(·, Π̂/n, β̂, Σ̂, λ̂). The strategy will be to show that nb
p→ X where X is a

finite degenerate random variable. Since Π and ββ′ are positive definite, it is clear that

m(b, Π/n, β, Σ∗,λ) is weakly positive for any choice of b. Further, m(b, Π/n, β, Σ∗,λ) is

typically strictly positive at b = 0, and it can also be seen that limb→∞m(b, Π/n, β, Σ∗,λ) =

0 (see Section B.3.1 for discussion). However, m is generally not monotonically decreasing
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in between, as we shall see below.

Observe that b = 0 minimizes m(b, 0, β, Σ∗,λ) with respect to b regardless of the values

of β, Σ∗,λ, where 0 is a k × k matrix of zeros (the dimension of Π), since m(·) is always

positive and when its second argument vanishes can be made equal to zero by choosing

b = 0. Furthermore, b = 0 is a local minimizer when Π/n = 0, since mb vanishes when

evaluated at (0, 0, β, Σ∗,λ)–see below, while the second derivative of m with respect to b,

evaluated at (0, 0, β, Σ∗,λ), is equal to

(0,λ′)Σ∗−1ββ′Σ∗−1λ =
(
(0,λ′)Σ∗−1β

)2

up to a strictly positive constant. We have assumed that the quantity in parenthesis is non-

zero. By the implicit function theorem, there then exists a unique function g(Π/n; β, Σ∗,λ)

such that g(0; β̂, Σ̂∗, λ̃) = 0 and mb(g(Π̂/n; β̂, Σ̂∗, λ̃), β̂, Σ̂∗, λ̃) = 0, in a neighborhood

N of the probability limits (0, β, Σ∗,λ) of (Π̂/n, β̂, Σ̂∗, λ̃), and this function is continu-

ously differentiable with respect to all parameters, (including, in particular, the elements

of Π). Since the second derivative of m is strictly positive at (0, 0, β̂, Σ̂∗, λ̃) and continuous

with respect to all arguments, N can furthermore be chosen such that the critical point at

(g(Π̂/n; β̂, Σ̂∗, λ̃), β̂, Σ̂∗, λ̃) is always a local minimum within N .

Since for any realization of β̂, Σ̂∗, λ̃:

mb(0, 0, β̂, Σ̂∗, λ̃) = 2λ̃′(Σ̂∗ + bI)
−1 {

bI − b2(Σ̂∗ + bI)
−1}

β̂β̂′(Σ̂∗ + bI)
−1
λ̃
∣∣∣
b=0

= 0

we see that m has a critical point at b = 0 for values (0, β̂, Σ̂∗, λ̃) of the other arguments.

By uniqueness of the function g(Π/n; β, Σ∗,λ), this implies then that g(0, β̂, Σ̂∗, λ̃) = 0. By
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the mean value theorem, we can write

g(Π̂/n; β̂, Σ̂∗, λ̃) = g(Π̂/n; β̂, Σ̂∗, λ̃)− g(0, β̂, Σ̂∗, λ̃)

=
∂

∂x
g(vec(cn−1Π̂); β̂, Σ̂∗, λ̂) · vec(Π̂)

n

for some c ∈ [0, 1], where vec(Π) denotes the vectorization x of the matrix Π, and we

let ∂
∂xg(x; β, Σ∗,λ) denote a gradient of g with respect to that vector (recall that existence

of the derivative is a consequence of the implicit function theorem). By continuity of

∂
∂xg(x; β, Σ∗,λ) and the continuous mapping theorem then,

n · g(Π̂/n; β̂, Σ̂∗, λ̃) p→ ∂

∂x
g(0, β, Σ∗,λ)vec(Π) (B.10)

which is a finite scalar.

To complete the proof, we now simply note that with probability approaching unity,

(Π̂/n, β̂, Σ̂∗, λ̃) is within the neighborhood N , and thus if b is chosen as the smallest pos-

itive local minimizer of m(b, Π̂/n; β̂, Σ̂∗, λ̃) we have that b = g(Π̂/n; β̂, Σ̂∗, λ̃). We have

now established the result, since for any B > 0:

P (|α/
√
n| > B) ≤ P (|α/

√
n| > B and b = g(Π̂/n; β̂, Σ̂∗, λ̃)) + P (b 6= g(Π̂/n; β̂, Σ̂∗, λ̃))

= P (|n · g(Π̂/n; β̂, Σ̂∗, λ̃)| > √nB) + P (b 6= g(Π̂/n; β̂, Σ̂∗, λ̃))
n→ 0 + 0

Finally, I consider the error involved in the approximation made to Equation (B.9). Write
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this as:

Rn := Rmn +Rmn =

=
1
θ2
D

λ̃′(Γ′Γ +K)−1 {(∆̂2
c − ∆2

c)(Γ
′ΩDΓ +KβDβ

′
DK)

−2(∆̂c − ∆c)(Γ′ΩY DΓ +KβY β
′
DK)

}
(Γ′Γ +K)−1λ̃

=
1

θ2
D · n3/2 · λ̃

′
(

Γ′Γ
n

+
K

n

)−1 {√
n(∆̂2

c − ∆2
c)

(
Γ′ΩDΓ
n

+
K√
n
βDβ

′
D
K√
n

)
−2
√
n(∆̂c − ∆c)

(
Γ′ΩY DΓ

n
+

K√
n
βY β

′
D
K√
n

)}(
Γ′Γ
n

+
K

n

)−1
λ̃

Provided that α/
√
n

p→ 0 as above, we will show in Theorem B.1 that ∆̂c is
√
n-consistent

for ∆c. In this case, the approximation error term is Op(n−3/2).

B.4.15 Proof of Theorem B.1

When αn = 0, the result follows from Theorem 3 of Imbens and Angrist (1994). To see

that op(
√
n) regularization has no asymptotic effect, note that

(0, λ̂′)′(Γ′Γ + αI)−1Γ′Y = (0, λ̂′)′(Γ′Γ + αI)−1(Γ′Γ + αI − αI)(Γ′Γ)−1Γ′Y

= (0, λ̂′)′(Γ′Γ)−1Γ′Y − α(0, λ̂′)′(Γ′Γ + αI)−1(Γ′Γ)−1Γ′Y

and similarly for D, thus:

ρ(λ̂,α) = (0, λ̂′)′(Γ′Γ)−1Γ′Y − α(0, λ̂′)′(Γ′Γ + αI)−1(Γ′Γ)−1Γ′Y
(0, λ̂′)′(Γ′Γ)−1Γ′D− α(0, λ̂′)′(Γ′Γ + αI)−1(Γ′Γ)−1Γ′D

=
Ĉov(g(Zi, θ̂),Yi)− α

n (0, λ̂′)′( 1
nΓ′Γ + α

n I)
−1( 1

nΓ′Γ)−1 1
nΓ′Y

Ĉov(g(Zi, θ̂),Di)− α
n (0, λ̂′)′( 1

nΓ′Γ + α
n I)
−1( 1

nΓ′Γ)−1 1
nΓ′D

=
Ĉov(g(Zi, θ̂),Yi)
Ĉov(g(Zi, θ̂),Di)

+
α

n
·
(0, λ̂′)′( 1

nΓ′Γ + α
n I)
−1( 1

nΓ′Γ)−1
{

1
nΓ′D · Ĉov(g(Zi,θ̂),Yi)

Ĉov(g(Zi,θ̂),Di)
− 1
nΓ′Y

}
Ĉov(g(Zi, θ̂),Di)− α

n (0, λ̂′)′( 1
nΓ′Γ + α

n I)
−1( 1

nΓ′Γ)−1 1
nΓ′D

and thus the asymptotic distribution of
√
n(ρ̂(λ̂, 0)− ∆c) is the same as that of

√
n
(
Ĉov(g(Zi,θ̂),Yi)
Ĉov(g(Zi,θ̂),Di)

− ∆c
)

, provided that αn/
√
n

p→ 0 (in which case the second term above

is op(n−1/2)).
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Appendix C: Supplements to Chapter 3

C.1 Formal treatment of the RSD mechanism

In this appendix we provide a formal definition of the Random Serial Dictatorship

Mechanism in order to motivate our instrumental variables analysis. We do so by adopt-

ing the notion of a continuum economy from Abdulkadiroğlu et al. (2017) that provides

an approximation in large samples. Throughout this section we focus on a single instance

of the lottery, and suppress the lottery indicator Li.

C.1.1 RSD mechanism

Recall the notation from Section 3.4 that we let i index individual doctors within some

population I. We now consider two cases, one in which I is a finite set of n doctors (re-

ferred to as the finite economy), and another in which I is considered to be the unit interval

(referred to as the continuum economy). In either case, we assume that there is a fixed set

H of hospitals, and that doctors are indifferent between (residency) jobs within a hospital.

We assume each doctor i has a well-defined preference ordering �i over hospitals h ∈ H.

Each hospital each can accommodate proportion qh of the doctors in that year. That is, in

the finite case hospital h has Qh = nqh positions available, and in the continuum case hos-

pital h can accomodate proportion qh of the unit measure of doctors. In our actual data,

we have ∼ 250 doctors per year across ∼ 60 hospitals, so a typical qh can be thought of as

being in the vicinity of 1/60.

RSD begins by allocating each doctor a lottery number Ri, taken to lie in the unit in-

terval [0, 1] (see Section 3.4). While in our setting the RSD mechanism is decentralized

(doctors indicate a selection from their choice set in real time before the procedure moves
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to the next doctor), it delivers the same outcome as one in which all doctors submit their

full preference ordering �i and allocations are made centrally, under the assumption that

doctors choose according to well-defined and stable such preferences. In this framework,

RSD is a special case of the deferred acceptance (DA) mechanism, in which hospitals have

no priorities over doctors beyond lottery number. Abdulkadiroğlu et al. (2017), charac-

terize DA in terms of a set of cutoffs τ = {τh}h∈H such that hospital h is available to i iff

Ri ≤ τh (and thus i would be centrally assigned to h if they prefer h to any other h′ such

that Ri ≤ τh′).

Let the type θi of doctor i be the tuple of their demographic group, potential outcomes

and preferences: θi = (Gi,Yi,�i), and let Θ be the possible values of θi. In a finite econ-

omy, the cutoffs τ arising from RSD are determined by the set of pairs {(θi,Ri)}i=1...n.

Given a fixed realization of the lottery, we may equivalently represent this set by a dis-

crete uniform distribution over the pairs (θi,Ri) in the economy. Denote this probability

distribution as Fn. Taking I to be the underlying sample space, we write Fn(I0) = |I0|/n

for any set I0 ⊆ I of individuals. In the continuum economy, we again work in terms of

a distribution over pairs (θi,Ri), denoted as F0. To construct F0 begin with an underly-

ing “population” distribution F θ0 over types, and take the product measure with a uniform

U [0, 1] measure for the lottery draws. This allows for a unified probability space both over

individuals and over lottery draws, while maintaining independence between θi and Ri.

As described in Abdulkadiroğlu et al. (2017), the cutoffs can be expressed as τh =

limt→∞ τ
t
h where we imagine a set of “rounds” t in which initially all hospitals are avail-

able: τ0
h = 1 for all h, and in subsequent rounds the thresholds are lowered for hospitals

that were “over-subscribed” given last rounds’ thresholds. With F equal to either Fn or

F0, we can write this as:

τ t+1
h =


1 if F (Qh(τ t)) < qh

max{t ∈ [0, 1] : F (Qh(τ t) ∩ {i : Ri ≤ t}) ≤ qh} if F (Qh(τ t)) ≥ qh

(C.1)
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where

Qh(τ ) = {i : Ri ≤ τh and h �i h′ for all h′ s.t. Ri ≤ τh′}

is the set of doctors who prefer hospital h from their choice set.1 Intuitively, Equation

(C.1) reduces the threshold for each oversubscribed hospital to the largest value t such

that it is no longer over-capacity, ignoring indirect effects of this change from space in

other hospitals being made available by the doctors who will now newly choose h. We

can write the final choice set Ci for doctor i as a function of their lottery number and the

final vector of cutoffs: Ci = {h ∈ H : Ri ≤ τh}.

C.1.2 Asymptotics

We will motivate choices of instruments and treatment based on observations about

the continuum economy, which can be expected to provide an accurate approximation to

finite economies of sufficient size n. Recall that in either case, the thresholds characterizing

the outcome of RSD are determined by the function F (either Fn or F0, depending on the

case).

Fix a continuum economy with joint distribution F0 over types and lottery numbers,

and vector of hospital capacities q. Formally, we will view a finite economy as a random

sample {θi,Ri}i=1...n of n individuals from this fixed continuum economy. Let Fn be the

empirical distribution over (θi,Ri), noting that this coincides with the definition of Fn

given in the last section. Asymptotic arguments will consider a sequence of such {Fn}

with increasing sample size. By the Glivenko-Cantelli theorem, Fn → F0 almost surely.

This will provide a basis for consistent estimation of “population” quantities defined with

respect to the continuum economy.

For a given sample, the econometrician observes a realized outcome Yi, doctor i’s

1Abdulkadiroğlu et al. (2017) define the function F over sets taking the form I0 = I(Θo, r0) := {i ∈
I : θi ∈ Θ0,Ri ≤ r0} for any subset Θ0 ⊂ Θ. F (I0) is again defined as |I0|/n in the finite case, and as
P (θi ∈ Θ0) · r0 in the continuum case. However, as the set Qh(τ ) does not take this form, we do not pursue
this definition here.
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choice of job Hi and rank Ri according to the lottery. Their choice set can be imputed

as

Ci = {h ∈ H such that |{j : Hj = h and Rj < Ri}| < Qh}

where Qh is the actual number of job openings at hospital h (the continuum economy

is defined to have qh = Qh/n for the actual sample size n, in our case ∼ 250). Let Ri =

Ri/n be lottery numbers normalized to the unit interval. The econometrician can compute

empirical cutoffs as the largest lottery number such that hospital h is available:

τ̂h = max{Ri : h ∈ Ci}i=1...n

Let τ̂ be the vector of cutoffs for a given sample of size n. Lemma 3 of Abdulkadiroğlu

et al. (2017) shows that τ̂ a.s.→ τ , where τ is the set of cutoffs arising from the continuum

economy F . This property will prove useful in the following section.

C.1.3 Independence of choice sets

Recall that Assumption 3.1 from Section 3.4 does generally not hold exactly in a finite

economy (c.f. footnote 16). However, we can justify it by appealing to the continuum

economy. One way to think about the example given in footnote 16 is that in a finite

economy, the probability distribution over Ci depends on Pi = {�j}j∈I,j 6=i, the set of

preferences of all individuals in the economy that are not i. Each of these other individuals

has the opportunity to choose before i for some realizations of the lottery, thus having

an impact on the choices remaining for i. As n gets large, it is reasonable to expect the

magnitude of this effect to attenuate, as Pi and Pi′ become nearly the same “overall”

for any i 6= i′. We can now formalize this notion, based on the asymptotic sequence of

economies introduced in the last section.

Let us now consider a binary “instrument” Zi that indicates a particular value of i’s

choice set: Zi = 1(Ci = c) for some fixed c ⊆ H. For any economy (whether finite or
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continuum) with cutoff vector τ , we can write Zi = f(Ri, τ ) where

f(Ri, τ ) := 1(∀h ∈ c : Ri ≤ τh and ∀h /∈ c : Ri > τh)

For each n, let τn be the cutoffs according to Fn. Let Zni = f(Ri, τn) denote the instrument

defined with respect to the finite economy’s cutoffs τn, and let Zi = f(Ri, τ ) represent the

“population” analog defined with respect to the continuum limiting cutoffs τ .

Proposition C.1 independence in the continuum economy. Zi ⊥ θi.

Proof. Immediate, since with τ fixed, Zi is a measurable function of Ri, and Ri ⊥ θi.

Since the above holds for any c, and the events Ci = c and Ci = c′ are exclusive for c 6= c′,

Proposition C.1 implies that Ci ⊥ θi, with Ci interpreted with respect to the continuum

economy. Thus Assumption, 3.1 as stated in Section 3.4, since θi = (Gi,�i,Yi) and thus

Proposition C.1 implies that {(Yi,�i) ⊥ Ci} |Gi (recall that lottery Li is conditioned on

implicitly in this section).

Intuitively, Proposition C.1 makes use of the notion that with a continuum of doctors

and a continuum of positions available at each hospital, any two doctors A and B share

the same function that maps lottery numbers to choice sets. With any single doctor a

measure zero set from a continuum of doctors, Pi defined above does not differ between

doctors. Note that we do not have an analog of Proposition C.1 for the finite economy,

since the finite economy cutoffs τn depend on Fn, itself a random quantity. As Fn is not

independent of θi for any fixed i in the realized sample, we cannot expect Zni = f(Ri, τn)

to be exactly, except in special cases.

Furthermore, even Zni itself is not directly observed. In a finite sample, we can only

compute the estimate Ẑni = f(Ri, τ̂ ) which uses the empirical cutoffs τ̂ observed in the

sample. Nevertheless, Ẑni becomes close to the unobserved ideal instrument Zi for large n,

as the empirical cutoffs τn approach their continuum analogs τ . To establish consistency
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of standard IV estimators, it is sufficient to apply the following Lemma to each of the

random variables Vi ∈ {Yi,Dhi}:

Proposition C.2. For any Vi such that E[V 2
i ] <∞, 1

n ∑n
i=1 ViẐ

n
i

p→ P (Ci = c)E[Vi|Ci = c]

Proof. See Appendix C.4.

Note that Proposition C.2 also implies that 1
n ∑n

i=1 Vi(1− f(Ri, Ẑni )
p→ P (Ci 6= c)E[Vi|Ci 6=

c], since 1
n ∑n

i=1 Vi(1− Ẑni ) = 1
n ∑n

i=1 Vi − 1
n ∑n

i=1 ViẐ
n
i and 1

n ∑n
i=1 Vi

p→ E[Vi] by the weak

law of large numbers. Then apply the law of iterated expectations over Zi.

C.2 Simulation evidence on the random choice-set approximation

In this section we present simulation evidence that the asymptotic approximation in

Section is a reasonable one in our context.

The simulation DGP constructs an environment with 235 doctors and 60 hospitals,

roughly matching a typical year from our data. Hospitals have between 2 and 6 spots

available, with a distribution reported in Figure C.1, again intended to match the empirical

setting. The total number of spots is 258, allowing each doctor to be placed.

Figure C.1: Simulation distribution of number of spots Qh in hospital h, across the 60
hospitals.

Preferences over hospitals for the 235 doctors are constructed by first introducing two

types of hospitals to create a structured basis for preference heterogeneity. 80% of hospi-

tals (47 in total) are “urban”, and the remaining 20% “rural”. There are two broad types of
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doctors, those who typically prefer urban hospitals, and those who typically prefer rural

ones. 90% of the doctors (199 in total) are urbanites. Within each doctor type, we introduce

a “typical” ordering over hospitals, which places all urban hospitals ahead of any rural

hospitals, or vice versa. This is meant to reflect a standard ranking over which hospitals

are a good place to live/work. Doctors are indifferent between spots in the same hospital.

For 75% of doctors of each type, we start with the archetype ordering for that type

and perturb it by performing a series of random swaps of adjacent hospitals in the or-

dering. Swaps occur with an increasing probability further down the list, reflecting the

notion that there is the most agreement among the most desired hospitals, and more het-

erogeneity among less desired options.2 Since swaps may permute urban with non-urban

hospitals, this procedure softens slightly the constraint that all urbanite doctors prefer

all urban hospitals to all rural hospitals. The remaining 25% of doctors within each type

receive a completely random preference ordering within hospital type, then ordered lexi-

cographically across urban/rural.

The simulation then proceeds by running the RSD lottery 500,000 times, and allocating

doctors to hospitals based upon their preferences. Since there are enough jobs for all of

the doctors, and none prefer an outside option (by construction), all doctors receive a

position. Figures C.2 and C.3 compare the distribution across simulation runs of features

of the choice sets facing two doctors: “Doctor 1” and “Doctor 2”. Doctor 1 is a single

randomly chosen urbanite doctor, and Doctor 2 is a single ranomly chosen non-urbanite

doctor. If choice sets are unconditionally random, then the doctors should face the same

probability distribution over any function of their choice set. In both cases, statistical

tests reject this null-hypothesis. However, the figures reveal that the differences are quite

minor, almost imperceptible without close inspection. This provides evidence that the

asymptotic approximation of choice-set independence is likely to be quite reasonable in

2Specifically, a vector of 30 “swap positions” are introduced through the preference list, with a CDF
increasing as the square of number in the list. For each swap position j, a random draw determines whether
the hospital in that position is swapped with the one below, the one above, or no change is made.
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our context.

Figure C.2 compares the distributions facing the two doctors over lottery draws of

the proportion of hospitals in their choice set that are urban. If these distributions were

substantially different from one another, it would cast doubt on using something like the

proportion urban of one’s choice set as an instrument for choosing an urban hospital. In

particular, it would suggest that this instrument is not indpeendent of preferences, since

the only difference between Doctors 1 and 2 in the simulation are their preferences (recall

that Doctor 1 prefers urban hospitals and Doctor 2 rural ones). A two sample Kolmogorov-

Smirnov test strongly rejects the null that the two distributions are identical, which is not

surprising given the large number of simulation draws. Statistics of the distribution also

differ: for example the average proportion urban for Doctor 1 is 68.0% vs. 67.3% for

Doctor 2. Nevertheless, the differences are quite small in practical terms, as evident in the

histograms. Across all of the 235 Doctors, the minimum value of the average proportion

urban is 67.3%, and its maximum is 68.0%.

Figure C.2: Simulation distribution over the proportion of one’s choice set that is urban
hospitals, between Doctors 1 and 2)

As a benchmark, Figure C.3 compares the distribution over number of distinct hos-

pitals present in each of the two doctors’ choice sets. Given that there is no statistical
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relationship between hospital size Qh and whether h is urban or rural, we might expect

|Ci| to be independent of θi in this case, even in a finite sample. A chi-squares test also

strongly rejects this null hypothesis, however the distributions appear nearly identical in

practical terms.

Figure C.3: Comparison of the simulation distribution over number of hospitals in one’s
choice set, between Doctors 1 and 2)
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C.3 Additional tables and figures

Figure C.4: Average income by age among specialists and non-specialists.

Figure C.5: Number of hospitals by year.
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Hospital Characteristics Good Hospitals Other Hospitals

Mean SD Mean SD

Number of doctors 186.92 198.88 47.53 47.13
Mean doctor experience (years) 12.07 2.28 10.88 3.36
Number of specialists 90.46 104.63 78.21 88.24
Proportion of doctors who are specialists 0.54 0.10 0.51 0.15
Mean doctor income 161.47 30.05 163.55 34.76
Average doctor age 43.75 2.04 44.80 4.41
Proportion of male doctors 0.67 0.10 0.72 0.15
Proportion of foreign doctors 0.27 0.14 0.38 0.21

Observations 703 698

Doctor Characteristics Female Male

Mean SD Mean SD

Age 39.19 9.80 45.73 11.40
Cohabit 0.63 0.48 0.75 0.43
Number of Children 1.05 1.14 0.97 1.18
Born Abroad 0.23 0.42 0.20 0.40

After-Tax Income 71.51 49.83 90.91 135.37
Real Estate 30.68 46.74 48.49 55.24
Debt 133.98 163.10 209.00 255.96

Specialization
Specialist 0.34 0.47 0.56 0.50
General Practice 0.09 0.28 0.12 0.32
Internal Medicine 0.13 0.34 0.18 0.39
Surgery 0.05 0.22 0.18 0.39

Observations 80,025 134,458

Table C.1: This table presents summary statistics using annual data on hospitals and doc-
tors in Norway during 1995-2011. Hospitals (and doctors) that are observed twice will
count as two separate observations, since observable characteristics may change over
time. Rural location is defined as the proportion of population in the municipality that
lives in rural areas. Doctor income is in thousands in 2011 USD.
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Individual Characteristic ωC t-stat R2 N

Male 0.003 0.561 0.082 9828

Age -0.001 -1.370 0.082 9828

Rural Residence at Age 15 -0.011 -0.846 0.085 8267

Born Abroad -0.005 -0.655 0.082 9828

Study Abroad -0.0002 -0.021 0.095 2871

Table C.2: This table presents evidence that the lottery number was not influenced by
doctor characteristics. Each row presents estimates from a separate regression, where the
dependent variable is the lottery draw number normalized to lie between 0 and 1, and the
independent variable is an individual (doctor) characteristic. Regressions include lottery
fixed effects to allow for demographic changes in the participant pool over time. The
number of observations is much lower for the last row because data on study location is
only available for the last few years of the sample.

g h [θ̂Lgh, θ̂Ugh] Cn
(category) κn = 0 κn = 10% (95% CI)

W
om

en

1 0.50 0.50 0.49 0.60 0.26 3.95
2 1.00 1.00 0.99 1.10 0.26 4.74
3 0.63 0.71 0.62 0.78 0.53 4.74
4 0.86 0.88 0.85 1.12 0.26 5.00

M
en

1 0.79 0.79 0.74 0.91 0.26 4.74
2 0.50 0.50 0.49 0.68 0.53 3.68
3 1.00 1.03 1.00 1.13 0.53 3.95
4 1.50 1.50 1.50 1.56 0.26 5.00

Table C.3: First job effects µgh = E[Yi(h)|Gi = g] for career number of specializations.
Table reports estimates of the identified set [θLgh, θUgh] and 95% confidence intervals for µgh.
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Figure C.6: Number of individuals and hospitals by lottery.

Figure C.7: Number of individuals and hospitals by lottery.

Figure C.8: Distribution of the number of choices for residency hospital |Ci| (left), and the
number of observations post-residence for a given doctor (right).
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Figure C.9: Earnings FJE’s µgh vs. average realized earnings E[Yi|Hi = h,Gi = g], with 45
degree line in red. Brackets represent 95% intervals on the difference between µgh and µg4
for Category 4.

C.4 Proofs

C.4.1 Proof of Proposition 3.2

This proof follows the logic of Kolesar (2015) from the binary treatment case. Assump-

tions 3.1 implies that

(Yi(h) ⊥ Ci) |Gi,Li (C.2)

where Li is the lottery/cohort of doctor i. Assumption 3.2 says that

E[Yi(h)− Yi(h0)|Hi = h′, Ci = c,Li = `,Gi = g] = βhg (C.3)

where βhg is a number that does not depend on h′, h0, or x (or c). Fix an arbitrary choice of

h0, which will serve as a comparison hospital throughout intermediate steps of the proof.

By the law of iterated expectations over Hi and Ci, βhg must be equal to µhg − µh0g.

284



Now substituting h′ = h into Equation (C.3), we have:

E[Yi(h)− Yi(h0)|Hi = h, Ci = c,Li = `,Gi = g] = βhg for all h, c.

Collect the βhg across h for a fixed g into a vector βg. Then we can rewrite this as:

E[Yi − Yi(h0)−β′gDi|Di, Zi = z,Li = `,Gi = g] = 0

for any z, which implies by the law of iterated expectations over Di that

E[Yi − Yi(h0)−β′gDi|Zi = z,Li = `,Gi = g] (C.4)

Consider first the case in which there is a single cohort, and we can thus ignore the condi-

tioning on Li. Then Assumption 3.1 implies that E[Yi(h0)|Zi = z,Gi = g] = µh0g. and we

can thus write:

E[Yi − µh0g −β′gDi|Zi = z,Li = `,Gi = g] = E[Yi −µ′gDi|Zi = z,Li = `,Gi = g] = 0

This implies in particular that E[ZiYi|Gi = g] = E[ZiD′i|Gi = g]µg. E[ZiD′i|Gi = g] is

invertible by Assumption 3.3, yielding the result as stated in Proposition 2.

In actual estimation, we pool over cohorts with cohort fixed effects. To see that this

is valid under Equations C.2 and C.3, let Li be a vector of indicators for each value of Li.

Note that E[Yi(h0)|Li = `,Gi = g] must be linear in Li for each g. Let

E[Yi(h0)|Zi = z,Li = `,Gi = g] = δ′gLi

Thus, picking up from Equation C.4:

E[Yi − δ′gLi −β′gDi|Zi = z, Li,Gi = g] = 0
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which gives us moment conditions to identify βg and δg for each g. The FJE’s are now

recoverable as:

µhg = E[Yi(h)|Gi = g] = E[Yi(h0)|Gi = g] + βgh = E[Li
′]δg + βgh

C.4.2 Proof of Lemma C.2

Recall that Zi = 1(Ci = c) = f(Ri, τ ) and Ẑni = f(Ri, τ̂ ). We show that

plim

(
1
n

n

∑
i=1

Vif(Ri, τ̂ )−
1
n

n

∑
i=1

ViZi

)
= 0.

This suffices to prove the Lemma since plim
( 1
n ∑n

i=1 ViZi
)
= P (Ci = c)E[Vi|Ci = c] by

the weak law of large numbers.

For a given value r, the function f(r, τ̂ ) may be discontinuous at values of τ̂ such that

τ̂h = r for some h ∈ S. However, the continuous mapping theorem nevertheless implies

that f(r, τ̂ ) a.s.→ f(r, τ ) pointwise for all r such that r 6= τh for all h. To simplify notation,

let G = {r ∈ [0, 1] : r 6= τh for all h}. By the Severini-Egorov theorem, for any ε̃′ > 0,

there exists a set J ⊂ [0, 1] of Lebesque measure smaller than ε̃′ such that for any δ̃ > 0:

P
(

supr∈G\J |f(r, τ̂ )− f(r, τ )| > δ̃
)

n→ 0.

Fix any δ > 0 and ε > 0, and for now, consider an aribrary set J . Expanding over the

two cases:

P

(∣∣∣∣∣ 1n n

∑
i=1

Vi f(Ri, τ̂ )−
1
n

n

∑
i=1

ViZi

∣∣∣∣∣ ≥ δ
)

= P

(∣∣∣∣∣ 1n n

∑
i=1

Vi(f(Ri, τ̂ ))−Zi)
∣∣∣∣∣ ≥ δ

)

≤ P

∣∣∣∣∣∣ 1n ∑
i:Ri∈G\J

Vi(f(Ri, τ̂ ))−Zi) +
1
n ∑
i:Ri/∈G\E

Vi(f(Ri, τ̂ ))−Zi)

∣∣∣∣∣∣ ≥ δ


≤ P

∣∣∣∣∣∣ 1n ∑
i:Ri∈G\J

Vi(f(Ri, τ̂ ))−Zi)

∣∣∣∣∣∣ ≥ δ/2

+ P

∣∣∣∣∣∣ 1n ∑
i:Ri/∈G\J

Vi(f(Ri, τ̂ ))−Zi)

∣∣∣∣∣∣ ≥ δ/2


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Considering the first term, and applying the Markov and Cauchy-Schwarz inequalities:

P

∣∣∣∣∣∣ 1n ∑
i:Ri∈G\J

Vi(f(Ri, τ̂ ))−Zi)

∣∣∣∣∣∣ ≥ δ/2

 ≤ P
 1
n ∑
i:Ri∈G\K

|Vi(f(Ri, τ̂ ))− f(Ri, τ ))| ≥ δ/2


≤ 2
δ
E [1(Ri ∈ G\J) · |Vi(f(Ri, τ̂ ))− f(Ri, τ ))|]

≤ 2
δ
E [|Vi| · 1(Ri ∈ G\J) · |(f(Ri, τ̂ ))− f(Ri, τ ))|]

≤ 2
δ

√
E[V 2

i ] ·
√
E [1(Ri ∈ G\J) · |f(Ri, τ̂ ))− f(Ri, τ )|2]

≤ 2
δ

√
E[V 2

i ] ·
√
P (Ri ∈ G\J)) ·E [(f(Ri, τ̂ ))− f(Ri, τ ))2|Ri ∈ G\J ]

≤ 2
δ

√
E[V 2

i ] ·
√
E [(f(Ri, τ̂ ))− f(Ri, τ ))2|Ri ∈ G\J ]

≤ 2
δ

√
E[V 2

i ] ·

√√√√E

[
{ sup
r∈G\J

|f(r, τ̂ )− f(r, τ )|}2
]

For any ε̃ > 0, there exists anN1 such that for all n ≥ N1, P
(

supr∈G\J |f(r, τ̂ )− f(r, τ )| > δ̃
)
<

ε̃. Given that |f(r, τ̂ )− f(r, τ )| ≤ 1 for any r and τ̂ , it then follows that for n ≥ N1:

E

[
{ sup
r∈G\J

|f(r, τ̂ )− f(r, τ )|}2
]
≤ δ̃2(1− ε̃) + ε̃

By choosing ε̃ and δ̃ such that δ̃2(1− ε̃) + ε̃ ≤ ε2δ2

36E[V 2
i ]

, we will have

P

(∣∣∣∣∣ 1n ∑
i:Ri∈G\J

Vi(f(Ri, τ̂ ))−Zi)
∣∣∣∣∣ ≥ δ/2

)
< ε/3

In particular, we can choose ε̃ = 1/2 ·min{ ε2δ2

36E[V 2
i ]

, 1} and δ̃ = ε̃
1−ε̃ .
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Now we turn to the second term.

P

∣∣∣∣∣∣ 1n ∑
i:Ri/∈G\J

Vi(f(Ri, τ̂ ))−Zi)

∣∣∣∣∣∣ ≥ δ/2

 ≤ P
 1
n ∑
i:Ri/∈G\J

|Vi(f(Ri, τ̂ ))−Zi)| ≥ δ/2


≤ P

(
1
n ∑

i

1(Ri /∈ G\J) · |Vi| ≥ δ/2
)

≤ 2
δ

√
E[V 2

i ] ·
√
P (Ri /∈ G\J)

≤ 2
δ

√
E[V 2

i ] ·
√
P (Ri /∈ G) + P (Ri ∈ J)

≤ 2
δ

√
E[V 2

i ] ·
(√

P (Ri /∈ G) +
√
P (Ri ∈ J)

)

by similar steps as above. Firstly, we choose J such that P (Ri ∈ J) = ε̃′ = δε2

36E[V 2
i ]

.

Secondly, note that since Ri
d→ U [0, 1] and G is a finite set of points in [0, 1], P (Ri ∈ G) n→

0: that is, given any ε̃′′ > 0 there exists a N2 such that P (Ri ∈ G) > 1− ε̃′′ for all n ≥ N2.

In particular, choose ε̃′′ = δε2

36E[V 2
i ]

.

All together, for n ≥ max{N1,N2}we have that

P

(∣∣∣∣∣ 1n n

∑
i=1

Vi(f(Ri, τ̂ ))−Zi)
∣∣∣∣∣ ≥ δ

)
≤ ε/3 + ε/3 + ε/3 = ε

and thus plim
( 1
n ∑n

i=1 Vif(Ri, τ̂ )− 1
n ∑n

i=1 ViZi
)
= 0.
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