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From this equation, we obtain binding probabilities of 0.99, 0.27 and 0.01 for IPh, BrPh and ClPh 
respectively. This simple model correlates well with experimental data. The overwhelming binding 
probability for iodobenzene not only implies higher conductance, but also that fewer Au-BDA-Au 
junctions will be formed, as seen in the experiments (see below). Furthermore, the extremely low 
probability for chlorobenzene indicates that it is essentially non-interacting, so that BDA completely 
dominates the surface. This result also helps to validate previous theoretical work that does not 
incorporate solvent effects, since most experimental work is conducted in chlorinated or bare hydrocarbon 
solvents. Finally, the intermediate binding probability for bromobenzene puts it in a unique position: we 
would expect a reasonably large number of high-conducting junctions, but also a broad range of possible 
surface coverage distributions – i.e. it would be reasonable to see junctions with almost all BDA in the 
vicinity as well as junctions with many solvent molecules in the vicinity. Experimentally this would 
manifest as a broad histogram peak, which is what is observed (see below, and Fig. 1A in the text).  

Van der Waals Interactions: van der Waals (vdW) interactions are likely significant, but unfortunately 
vdW contributions to the binding energy are not present in DFT within the standard approximations used 
here, as is well known. However, since only binding energy differences enter our explanation, we do not 
expect vdW interactions to complicate our interpretation of the data. All three model solvents and BDA 
are of similar molecular size and orbital character, and have similar molecular polarizabilities, and so they 
should have approximately equal vdW interactions with the substrate. However, if we were to change 
from halo-benzene solvents to halo-naphthalene solvents, the binding energy to the substrate could be 
stronger due to enhanced vdW interactions (ignoring possible complications due to steric effects). This 
should increase somewhat the BDA-replacement probability, and thereby (a) increase the conductance 
and (b) lower junction probability according to our model. Indeed, the data does qualitatively bear this 
out. Between iodobenzene and iodonaphthalene, junction formation probability goes from very low to 
statistically immeasurable. From bromobenzene to bromonaphthalene, we see the conductance increase 
by 22%, though the junction formation probability is 45% and 60% respectively. From chlorobenzene to 
chloronaphthalene we see no difference, indicating that the increase in binding energy in that case is 
simply not enough to affect the data. An alternative interpretation of the trend between the benzenes and 
naphthalenes is that the binding probabilities for halo-benzenes and halo-naphthalenes are similar, but that 
the larger size of the halo-naphthalenes can exclude BDA from occupying nearby sites, which would 
significantly affect the surface dipole density (much more than by simply replacing a single BDA). 
Strictly following this latter picture makes it difficult to explain the complete lack of junction formation in 
iodonaphthalene. Both vdW and steric effects are likely to play important roles, and future studies are 
needed to address their competition at a quantitative level. 


