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S1. Coulomb Blockade Model 

This section is organized as follows: We begin by simply restating our model to emphasize the physical 

units. We then relate it to the models developed by Tobiska and coworkers1 and Xu and coworkers2,3, 

which we will refer to as the Tobiska model and Xu model, respectively. Finally, we will compare it 

numerically to the Xu model. 

The emission probability density, 𝑃(𝐸), is the probability of emitting a photon with energy in the interval 

[𝐸, 𝐸 + 𝑑𝐸] and has units of inverse energy (eV-1). This is the probability of emission, not the probability 

of emission per electron. This is the sum of single and multi-electron processes as defined in the main 

text:  

𝑃(𝐸) = 𝑃1𝑒(𝐸) + 𝑃2𝑒(𝐸) + 𝑃3𝑒(𝐸) … 

𝑃1𝑒(𝐸) = 𝐺0𝐷̃(𝐸)𝑆̃(𝐸) 

𝑃2𝑒(𝐸) = 𝐺0
2𝐷̃(𝐸) ∫ 𝑑𝜀 𝐷̃(𝜀)𝑆̃(𝜀)

∞

0

𝑆̃(𝐸 − 𝜀)𝐻(𝐸 − 𝜀) 

𝑃3𝑒(𝐸) = 𝐺0
3𝐷̃(𝐸) ∫ 𝑑𝜀 𝐷̃(𝜀)𝑆̃(𝜀) ∫ 𝑑𝜀′𝐷̃(𝜀′)𝑆̃(𝜀′) ⋅ 𝑆̃(𝐸 − 𝜀 − 𝜀′)𝐻(𝐸 − 𝜀 − 𝜀′)

∞

0

∞

0

 

We use the tilde to denote the non-normalized versions of 𝐷(𝐸) and 𝑆(𝐸), which are: 

𝑆̃(𝐸) = 𝐺0 ∑ [2𝜏𝑛
2𝐵(𝐸) + 𝜏𝑛(1 − 𝜏𝑛) ∑ 𝐵(𝐸 ± 𝑒𝑉)

±

]

𝑛

 

𝐷̃(𝐸) =
|𝑍̃(𝐸)|

2

𝐸2
 

𝑍̃(𝐸) is the complex impedance of the electromagnetic environment. This is typically modelled with an 

effective RLC circuit. To obtain the normalized version of these equations, we absorb two factors of 𝐺0 

into 𝐷̃(𝐸). The normalized 𝐷(𝐸) is then defined as 

𝐷(𝐸) = 𝐺0
2𝐷̃(𝐸) =

|𝑍(𝐸)|2

𝐸2
 

where 𝑍(𝐸) is now the impedance normalized to the quantum of resistance i.e 𝑍(𝐸) ≡ 𝐺0𝑍̃(𝐸).  

The Tobiska model1 and Xu model2,3 have an additional prefactor of 
|𝒯|2

ℎ
𝛼2 , where 𝒯  is the coupling 

between the two states of a quantum dot and 𝛼 is the dimensionless coupling between the RLC circuit 

and the detector. This gives the emission rate with units of s-1. We do not use a two-state quantum dot as 

a detector, so more generally, one can replace the constant 𝒯 with 𝒯(𝐸). We replace the entire prefactor 
|𝒯|2

ℎ
𝛼2 with 𝑄(𝐸), for simplicity. 

Both Tobiska and Xu provide a low temperature approximation for the two-electron process. However, 

this approximation is only valid between 1 𝑒𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 and 2 𝑒𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑, i.e. the energy range where the two-



electron emission dominates. As mentioned in the main article and discussed in Ref. S3, there is significant 

mixing between processes of different orders at room temperature, which this approximation cannot 

capture. Rewriting the low temperature approximation using our notation and including the three-

electron process from Peters et al, we get:4 

𝑃1𝑒(𝐸) = 𝐷(𝐸)𝑆(𝐸) 

𝑃2𝑒(𝐸) = 𝐷(𝐸) ∫ 𝑑𝜀 𝐷(𝜀)𝑠(𝜀)

𝑒𝑉

𝐸−𝑒𝑉

⋅ 𝑠(𝐸 − 𝜀) 

𝑃3𝑒(𝐸) = 𝐷(𝐸) ∫ 𝑑𝜀 𝐷(𝜀)𝑠(𝜀) ∫ 𝑑𝜀′𝐷(𝜀′)𝑠(𝜀′) ⋅ 𝑠(𝐸 − 𝜀 − 𝜀′)

𝑒𝑉

𝐸−𝑒𝑉−𝜀

𝑒𝑉

𝐸−2𝑒𝑉

 

Note that the current noise in the two- and three-electron process is not the full expression, but 𝑠(𝐸) =

(𝑒𝑉 − 𝐸) ∑ 𝜏𝑛(1 − 𝜏𝑛)𝑛 .  

An analytical expression for the two-electron process at finite temperature was developed by Xu et al. 

However, we required in this work the three-electron process for comparison with the blackbody work. 

To achieve this, we simply extended the low temperature approximations above by using the full current 

noise expression, adjusting the limits of integration, and including a Heaviside function. This can be 

extended to 𝑛 electrons: Each additional electron introduces an additional operator ∫ 𝑑𝜀𝑖𝐷(𝜀𝑖)𝑆(𝜀𝑖), and 

the final electron energy becomes 𝐸 − ∑𝜀𝑖. This last electron directly emits a total energy E, which is why 

the final factor of 𝐷(𝐸) is outside the integral.  

In Figure S1, we compare our extended numerical approximation to the full analytical expression 

developed by Xu and coworkers. In Figure S1a, we simply use a featureless 𝐷(𝐸) = 0.1 eV-2. Since the 

complex and real parts of 𝑍 enter into the Xu model, we plot the result when 𝑍(𝐸) is purely imaginary to 

correspond to the off-resonant case when a featureless 𝐷(𝐸) is a reasonable approximation. Our model 

is in excellent agreement with the Xu model, with some deviation below 1.0 eV. 

We also compare the two models for a 𝐷(𝐸) with three resonances at 0.5, 1.5, and 2.5 eV. Again, we 

observe deviations below 1.0 eV. Since these calculations were done with an applied bias of 1 Volt, this 

simply means that our approximation is not valid in the underbias emission regime. But as the two-

electron process only produces a small correction to the overall emission, our approximation is sufficient 

for the purposes of this work.  



 

Figure S1: 𝑃1𝑒 and 𝑃2𝑒 calculated from our approximate model (red and blue, respectively) and the Xu 

model (black and green, respectively). (a) Using a featureless 𝐷(𝐸) = 0.1 eV-2. (b) Using three 

resonances as described in the Xu model, with resonances at 0.5, 1.5, and 2.5 eV and an effective 

broadening 𝜂 of 0.2 eV for all three resonances. Other parameters: 𝜏 = 10−3, 𝑇 = 300 K, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 1.0 

V 

  



S2. Reproducing Blackbody-like Phenomena 

 

Figure S2: (a) Calculated total emission spectra 𝑃(𝐸) = 𝑃1𝑒 + 𝑃2𝑒 + 𝑃3𝑒  for different applied voltage. 

Parameters: 𝐷(𝐸) = 0.1 eV-2, 𝜏 = 0.8 , 𝑇 = 500  K. Vertical dashed lines at ℎ𝜈 = 1.7  and 2.06  eV 

correspond to data used to produce (b) and (c), respectively. Figure S2b also includes the same calculation 

but at room temperature in blue. Note the vertical axis is the natural log. All curves in (b) and (c) are 

vertically shifted by the same amount to mimic values in Fig. 4 of Ref. S5. 

We argue in the main manuscript that blackbody radiation cannot explain the superlinear dependence of 

emission on conductance observed here and in previous works. By contrast, we demonstrate here that 

emission from multi-electron processes can produce a dependence on electrical power very similar to that 

predicted by blackbody radiation. Specifically, we reproduce results in Refs. S5 and S6 that show ln(𝑊) ∝

1/√𝐼𝑉. 

In Figure S2a, we plot the total emission probability density 𝑃(𝐸) including emission up to three-electron 

processes for a range of biases, using parameters corresponding to Ref. S5. The different spectra are 

roughly evenly spaced on a semi-log plot. By taking values at two different photon energies, we reproduce 

Figure 4 of Ref. S5 in Figures S2b,c here. Note that without assuming a temperature increase of 200 K, the 

trend deviates from ln(𝑊) ∝ 1/√𝐼𝑉.  

Next, we reproduce Figure 2b from Ref. S6, which we will refer to as Downes 2002. This calculation is 

slightly more involved. First, Fig. 2b in Downes 2002 is the detected photon rate, not the emitted photon 

rate.7 Second, the detected photons are over a broad range of frequencies, dictated by the quantum 

efficiency of the detector used. This is provided in Fig. 4.9 of Ref. S8. Third, close inspection of Fig. 2a in 

Downes 2002 shows that the conductance and the applied voltage are correlated. At room temperature, 

the large electric fields can cause the Au atoms to shift closer together, increasing the conductance. By 

assuming a linear relationship between conductance and voltage, we qualitatively reproduce Fig. 2b in 

Downes 2002 using our model in Figure S3a. 

Downes et al also repeated the measurement with a bandpass filter. This is provided in Fig. 7.13 of Ref. 

S8. Assuming a fixed conductance of 0.4 G0 is sufficient to reproduce the trend. Figure S3b shows the 

results from our calculation, in excellent agreement with their measurement. 

At fixed bias, the emission predicted by blackbody radiation is approximately exponential for 𝐸 ≫ 𝑘𝐵𝑇, 

as depicted in Figure 3 of Downes 2002. This, too, can be reproduced by emission from multi-electron 

processes. In Figure S3c, we calculate the emission spectra at fixed bias using the parameters in Ref. S6. If 



we assume again an elevated electronic temperature of 500 K, the total emission spectra is roughly 

exponential. These comparisons indicate that the results of Refs. S5 and S6 can be explained without 

having to invoke extreme electronic temperatures. 

 

Figure S3: (a) Spectrum 𝑝(𝐸) integrated across all wavelengths for voltages between 1.2 and 2.0, plotted 

against (𝐼𝑉)−0.5. Compare with Fig. 2b of Ref. S6. Parameters: 𝐷(𝐸) = 0.1 eV-2, 𝜏 = 0.7 − 0.95, 𝑇 = 500 

K. (b) Spectrum 𝑝(𝐸) integrated between 2.38-2.58 eV for voltages between 1.55 and 1.95, plotted against 

(𝐼𝑉)−0.5. Compare with Fig. 7.13 of Ref. S8. Parameters: 𝐷(𝐸) = 0.1 eV-2, 𝜏 = 0.4, 𝑇 = 500 K. (c) Total 

emission (black) as a function of photon energy, with contributions from 1e, 2e, and 3e processes in red, 

green, and blue, respectively. Compare with Fig.3 of Ref. S6. Parameters: 𝐷(𝐸) = 0.1 eV-2, 𝜏 = 1.3, 𝑇 =

500 K, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 1.0 V. All curves vertically shifted to mimic published results. 

  



S3. Comparison of Blackbody Radiation and Emission from Inelastic Processes 

Hone et al. provided an expression for the total power radiated from inelastic tunneling9  

𝑊 =
𝜋𝑒2

ℏ𝑐𝜀0
(

𝑎𝑒𝑉

ℎ𝑐
)

2

𝐼𝑉 

where 𝑎 is the effective radius of the tip. For a conductance of 0.1 𝐺0, a bias of 1.4 V, and an effective 

radius of ~100 nm, this is approximately 50 nW.  

The maximum photovoltage without filters we measure ranges between 0.03 V and 0.3 V. From our 

spectra, we know that the majority of the light has wavelength greater than 700 nm, where the detector 

responsivity is less than 0.5 V/nW. If we estimate the fraction of photons detected to be 

sin−1(𝑁𝐴) /𝜋 ≈ 30% (𝑁𝐴 is the numerical aperture of the objective lens), the total power measured is 

between 0.2 and 10 nW, in reasonable agreement with the estimate from the expression from Hone et 

al. We note the experiment underestimates of the total emitted power, since a significant proportion of 

the emitted power is in the NIR, which we do not measure. 

Assuming the vacuum local density of states, the emitted blackbody radiation from an area 𝐴 is10  

𝑊

𝐴
=

𝜋2

60

1

𝑐2ℏ3
(𝑘𝐵𝑇)4 

Assuming 𝐴~103 nm2, the total power radiated for 𝑇 = 500 and 2000 K is 0.03 pW and 0.1 nW, 

respectively. The contribution from low temperature electrons can be safely neglected, and we argue 

that the emission from a hypothetical electronic temperature of 2000 K is too small to account for our 

experimental observations. It is only consistent with the lower end of our experimental values, which is 

already an underestimate of the total power. We have estimated the area based on the scale of the 

electron-phonon mean free path (~30 nm).11,12 

The estimates above are lacking in two respects. First, they do not fairly compare the effect of surface 

plasmons. Second, they only provide an analysis of the total power and not the spectral dependence. 

There may exist a cross-over region where blackbody radiation exceeds emission from inelastic 

tunneling. 

To theoretically compare blackbody radiation and emission from multi-electron processes, we must 

choose a unifying framework. We will approach the problem from the perspective of statistical 

mechanics. The cross spectral density of the electric field can be written in terms of the electric Green’s 

function and the cross spectral density of the current density.13  

⟨𝐸𝑘(𝒓, 𝜔)𝐸𝑙
∗(𝒓′, 𝜔′)⟩ = ⟨𝜇0

2𝜔2 ∫ 𝑑3𝒓1𝑑3𝒓2𝐺𝑘𝑚
𝐸𝐸 (𝒓, 𝒓1, 𝜔) 𝑗𝑚(𝒓1, 𝜔)𝑗𝑛

∗(𝒓2, 𝜔′)𝐺𝑙𝑛
𝐸𝐸∗

(𝒓′, 𝒓2, 𝜔)⟩ 

For a local and isotropic material, we obtain 

⟨𝐸𝑘(𝒓, 𝜔)𝐸𝑙
∗(𝒓′, 𝜔′)⟩ = 𝜇0

2𝜔2  ∫ 𝑑3𝒓1⟨𝑗𝑚(𝒓𝟏, 𝜔)𝑗𝑛
∗(𝒓𝟏, 𝜔′)⟩𝐺𝑘𝑚

𝐸𝐸 (𝒓, 𝒓1, 𝜔) 𝐺𝑙𝑛
𝐸𝐸∗

(𝒓′, 𝒓1, 𝜔) (𝑆1) 

where 𝒓1 ranges over the space of current fluctuation sources. The Green’s function contains 

information of the density of states (found in the expression for blackbody radiation) and the 



electromagnetic impedance (which is found in 𝐷(𝐸) in the model for multi-electron processes).14–16 We 

will ignore the effect of the Green’s function and isolate the problem to comparing the current density 

fluctuations ⟨𝑗𝑚(𝜔)𝑗𝑛
∗(𝜔′)⟩. 

The current fluctuations in a bulk material which give rise to blackbody radiation is given by13,17,18 

⟨𝑗𝑚(𝒓, 𝜔)𝑗𝑛
∗(𝒓′, 𝜔′)⟩ =

𝜔

𝜋
𝜀0𝜀′′(𝜔)𝛿𝑚𝑛𝛿(𝜔 − 𝜔′)𝛿(𝒓 − 𝒓′)

ℏ𝜔

𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1

(𝑆2) 

where 𝜀0 is the vacuum permittivity and 𝜀′′ is the imaginary part of the dielectric constant. 

The current fluctuations due to tunneling is given by 𝑆̃(𝜔) 

𝑆̃(𝜔) = ⟨𝐼(𝜔)𝐼(𝜔′)⟩ = 𝛿(𝜔 − 𝜔′)𝐺0 ∑ [2𝜏𝑛
2𝐵(ℏ𝜔) + 𝜏𝑛(1 − 𝜏𝑛) ∑ 𝐵(ℏ𝜔 ± 𝑒𝑉)

±

]

𝑛

 

𝐵(ℏ𝜔) =
ℏ𝜔

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

To convert 𝑆̃(𝜔) into ⟨𝑗(𝒓, 𝜔)𝑗∗(𝒓′, 𝜔′)⟩, we consider the current fluctuations in the tunnel junctions as 

a point-dipole such that 

⟨𝑗(𝒓, 𝜔)𝑗∗(𝒓′, 𝜔′)⟩ =
𝑆̃(𝜔)

𝑑
𝛿(𝜔 − 𝜔′)𝛿(𝒓 − 𝒓′) (𝑆3) 

where 𝑑 is the tunnel gap distance.  

We plot Eq. S2 for two temperatures (assuming 𝜀′′ = 1) and Eq. S3 for two voltages (assuming 𝜏 =

0.1, 𝑇 = 500 K, 𝑑 = 1 nm) in Figure S4. For the same temperature, the emission from inelastic tunneling 

dominates at all photon energies. For blackbody radiation at an elevated temperature, the crossover 

region depends on the bias. Note that this calculation only considers the emission from 1e processes 

and does not include multi-electron processes, which would increase the emission for larger photon 

energies. This could push the crossover to higher photon energies depending on the magnitude of the 

emission from 2e processes. Finally, the relative strengths of current noise from inelastic tunneling and 

blackbody radiation in Figure S4 are in good agreement with the relative magnitude of the total power 

presented in the beginning of this section. 

Let us briefly consider the effect of the remaining parameters. 𝜀′′ is large for MIR photons (as large as 

104), so blackbody radiation may be comparable to emission from inelastic tunneling at long 

wavelengths. For wavelengths in the visible spectrum (where most experiments are performed), 𝜀′′ is 

only around 10 at most.19 The plasmonic enhancement should be strongest in the tunnel junction, which 

could increase the ratio between emission from inelastic tunneling and blackbody radiation, but the 

integral in Eq. S1 covers a larger volume in the case of blackbody radiation. We do not expect this to 

substantially increase blackbody radiation relative to emission from inelastic tunneling. 



 

Figure S4: The current noise from blackbody radiation at two temperatures and the 1e emission from a 

junction with 𝜏 = 0.1, 𝑇 = 500 K, and 𝑑 = 1 nm at two biases. We drop the units in the Dirac-delta 

functions. 

 

  



S4. Experimental Setup 

 

Figure S5: Schematic of experimental setup 

Figure S5 is a schematic of the modified STM. Note that we measure the voltage drop across the tunnel 

junction (𝑉𝑚), i.e. not including the voltage drop across the 100 Ω resistor. The conductance is then 

calculated as 𝐺 = 𝐼/𝑉𝑚  in units of G0. The measured voltage is less than the applied voltage, but the 

difference is only about 1% of the applied voltage for conductances around G0 and much less for lower 

conductances. 

All optical filters are purchased from Thorlabs. The part numbers are: 

Bandpass Filters: FKB-VIS-10, FL850-10, FB900-10, FB950-10, FB1000-10 

Edgepass filters: FESH0750, FELH0750 

  



S5. Data Analysis 

Before any analysis, we subtract the average background signal in the photovoltage and apply an 101 

point boxcar smoothing (rolling average) to help distinguish signal from noise. The width of the moving 

average is justified by considering the length and time scales of the relevant physics. We are interested in 

the dependence on the log-conductance, which depends linearly on the displacement. We are only 

interested in angstrom-scale displacements as opposed to sub-angstrom thermal fluctuations. Our push 

rate is approximately 20 nm/s. With an acquisition rate of 100 kHz, angstrom-scale displacements 

correspond to 500 points. The width of our moving average is well within this limit. 

The 2D photovoltage-conductance histograms are constructed from the smoothed data during the 

segment when a high bias is applied (shaded region in Fig. 1a in main manuscript). Some traces will not 

display electroluminescence in this region because either the efficiency or conductance is low. Unless 

noted otherwise, the 2D histograms are constructed without selection. 

Depending on the experiment, there are between 15,000 to 30,000 points during the high bias hold. 

Hence, a 4σ event, corresponding to approximately 1 in 30,000 events, is a reasonable threshold to 

separate signal from noise. The sample standard deviation is calculated from the smoothed data. 

S6. Spectra  

The spectra are produced by collecting 1000 traces at each wavelength window (600 – 1000 nm, 50nm 

spacing, ~10 nm FWHM). For each trace, we calculate the mean photovoltage of the points that are (A) 

4σ above noise and (B) between 0.9 and 1.1 G0. Finally, we average the mean photovoltage of each trace, 

ignoring traces that do not show any signal, to generate a representative photovoltage at each 

wavelength. 

Figure S6 shows the 2D photovoltage-conductance histograms for the nine different wavelengths 

measured. The black dot in each histogram represents the representative photovoltage extracted by the 

algorithm above and depicted in Fig. 1d of the main manuscript. 



 

Figure S6: 2D histograms corresponding to the spectrum in Figure 1d of the main manuscript. The black 

dots in each histogram correspond to the points in Fig. 1d. 

  



S7. Superlinear Analysis 

 

Figure S7: (a) Histograms of the fitted 𝛽, corresponding to Fig. 3b,c (red and blue, respectively). 

Histograms of the fitted 𝛽 from two separate experiment performed at applied bias of (b) 1.4 V and (c) 

1.65 V. Same filters (cutoff wavelength 750 nm) are used throughout. 

To characterize the variability between tunnel junctions, we fit the data from junctions that show clear 

emission to a power law, i.e. 𝑉𝑝ℎ𝑜𝑡𝑜 ∝ 𝐺𝛽. As explained in the main manuscript, there are two types of 

junctions measured: higher efficiency junctions that we hypothesize are pristine tunnel junctions, and 

lower efficiency but higher conducting junctions that we hypothesize contain a water bridge. Only the 

second junction is visible with a lowpass filter. Since there is some overlap between the conductances of 

the two types of junctions (see Fig. 1c in the main manuscript), we only fit points with conductances 

between 0.1 and 10 G0. This means we only consider water tunnel junctions. We only consider points 4σ 

above noise when fitting. 

The fitted 𝛽  values are then compiled into the 𝛽  histograms in Figure S7a. Surprisingly, there is 

considerable variability in 𝛽  for both the underbias and overbias emission. We hypothesize that the 

changes in tip geometry from junction to junction explains this variance. In the tunneling regime, the 

electric field enhancement decreases and the surface plasmon modes blue-shift as the junction gap 

decreases.20–23 These two trends have opposing effects: a decrease in field enhancement decreases 𝛽, 

whereas a blue-shift in the surface plasmon modes, which for cut-tips will lie in the near-infrared, could 

increase 𝛽. In addition, the charge transfer plasmons are extremely important in the tunneling regime and 

are quite sensitive to the local geometry.24–27 The break-junction methodology samples many tip 

geometries that may result in superlinear or sublinear 𝛽. In Eq. 1-3, these effects can be modeled by a 

𝐷(𝐸) that depends on the transmission coefficient 𝜏 (see Section S8). 

To demonstrate the repeatability of the superlinear relation between emission and conductance in the 

overbias regime, we show in Figure S7b,c the same phenomenon with two different tips and two different 

biases. The shift in mean fitted 𝛽 between the underbias and overbias emission is comparable in all cases. 

The inability to obtain a 𝛽 approaching 2 even when the shortpass filter cutoff energy is higher than the 

energy supplied bias the bias is likely a limitation of the sensitivity of the detector. 

We rule out two other explanations for the observed variance in 𝛽. First, we argue that this variance is 

not due to the water in the junction. Figure S8a shows the 2D histogram showing only pristine tunnel 

junctions and no water tunnel junctions due to the application of a 2 kΩ resistor. Figure S8b is the 



corresponding histogram for the fitted 𝛽. We observe a similar variance as with experiments performed 

with a 100 Ω resistor. This means that the variance is not a feature of the water tunnel junctions. 

Second, we argue that this variance is not a result of error in the fitting. Figures S8c and S8d are two traces 

with the corresponding fit in red.  

 

Figure S8: (a) 2D histogram of photovoltage vs conductance for experiment performed with 2 kΩ resistor 

(see Fig. S5) and without any optical filter. Theoretical junction bias overlaid in green. Note that the 

second lobe corresponding to water tunnel junctions seen in Figure 1c of the main manuscript is absent 

here. This because at conductances above 10-2 G0, the applied bias begins to drop across the series 

resistor instead of the tunnel junction. This suppresses the current, along with the light emission. (b) 

Histogram of 𝛽 values extracted from traces in (a). Junctions with (c) sublinear and (d) superlinear 𝛽.  

  



S8. The Role of 𝑫(𝑬) 

We will limit our discussion to featureless 𝐷(𝐸), i.e. independent of photon energy. First, we justify our 

choice of 𝐷(𝐸) = 0.1 eV-2. When 𝐷(𝐸) is constant, its role is primarily to regulate the relative intensities 

of the different orders of multi-electron emission. Specifically, larger 𝐷(𝐸) results in a larger two-electron 

emission relative to the one-electron emission. The relative strengths of emission of different orders was 

measured by Peters and coworkers and is provided in Figure 3a of Ref. 4. We qualitatively reproduce their 

experiment in Figure S9a using our chosen parameter of 𝐷(𝐸) = 0.1 eV-2. 

Next, we further justify the chosen temperature increase of 200 K. The calculation in Figure S9a is not very 

sensitive to temperature; a lower temperature will provide similar agreement. However, the 𝛽 of 1.7 

reported in Ref. S28 requires a fairly substantial temperature increase. Assuming 𝐷(𝐸) = 0.1 eV-2, Δ𝑇 

should be approximately 200 K to fit both the 𝛽 value reported in Ref. S28 and the 𝛽 measured in this 

work. Figure S9b is the calculated conductance dependence for parameters in Ref. S28.  

 

Figure S9: (a) Normalized emission spectra simulating Fig. 3a in Ref. S4. Parameters: 𝐷(𝐸) = 0.1 eV-2,  

𝑇 = 200 K. (b) Integrated 𝑃(𝐸) showing 𝛽 = 1.7 in overbias emission. Parameters: 𝐷(𝐸) = 0.1 eV-2, 

𝑇 = 200 K, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 1.33 V. (c) Same parameters as (b) except 𝐷(𝐸) = 0.5 eV-2, showing slightly 

superlinear dependence of underbias emission.  

A different choice of 𝐷(𝐸) will require a different temperature in order to produce the correct 𝛽 in the 

overbias emission. Specifically, as 𝐷(𝐸)  increases, so does the required temperature. One might be 

concerned that this makes it impossible to estimate the temperature without a precise measure of 𝐷(𝐸). 

Worse, if 𝐷(𝐸) is arbitrarily large, the temperature can also be arbitrarily large and the argument that 

blackbody radiation and multi-electron processes are incompatible would no longer hold.  

However, 𝐷(𝐸)  cannot consistently exceed ~1/𝜏  across all wavelengths, otherwise the theory will 

predict more two-electron emission than one-electron emission. Since we sample conductance around 

0.1 G0, 𝐷(𝐸) should be less than 10 eV-2.  

A tighter bound is obtained by observing that although the underbias emission does display some 

superlinear dependence, it is only around 𝛽 = 1.1 on average. The superlinear dependence of underbias 

emission is not very sensitive to temperature (unlike the overbias emission), so we can use this value to 

estimate 𝐷(𝐸) independent of temperature. We find a 𝐷(𝐸)~0.5 eV-2 corresponds well to a 𝛽 = 1.1 in 

the underbias emission. Figure S9c shows the result for a calculation using the parameters in Ref. S28. The 



main result of this analysis is that 𝐷(𝐸) is somewhere between 0.1 and 0.5 eV-2. Temperatures of 2000 K 

are inconsistent with this range of 𝐷(𝐸).  

We use 𝐷(𝐸) = 0.1 eV-2 because a lower value fits a wider range of experiments. An elevated 𝐷(𝐸) in 

the NIR is easily explained by the presence of surface plasmon resonances in the NIR. In other words, it is 

sufficient to assume that 𝐷(𝐸)~0.5 eV-2 for photon energies in the underbias regime to obtain 𝛽 = 1.1 

for underbias emission. We need not assume 𝐷(𝐸)~0.5 eV-2 across the entire spectrum. See Section S9. 

 

Figure S10: (a) Same parameters as Fig. 3c in the main manuscript except with conductance dependent 

𝐷(𝐸) , resulting in consistent sublinear trend. (b) Integrated spectra for overbias emission. Same 

parameters as Fig. 3d in the main manuscript except with different temperatures.  

We hypothesize that the variance in 𝛽 is best explained by the gap dependence of the surface plasmon 

resonances, which causes a correlation between conductance and 𝐷(𝐸). To demonstrate this, we model 

the decrease in electric field enhancement with a simple quadratic function 𝐷(𝐸, 𝜏) =
0.1

16
log(𝜏) (log(𝜏) + 8) . The resulting sublinear conductance dependence in plotted in Figure S10a. 

Superlinear conductance in both the underbias emission and overbias emission can be explained with a 

𝐷(𝐸) that increases as a function of conductance or simply a larger value for 𝐷(𝐸). 

Finally, we verify that the measured 𝛽 is not compatible with higher temperatures. In Figure S10b, we plot 

the theoretical conductance dependence of the overbias emission for different temperatures. A 

temperature of 600 K is still consistent with 𝛽 = 1.35, but by 900 K the 𝛽 is very close to linear.  

  



S9. The Energy Dependence of 𝑫(𝑬) 

 

Figure S11: (a) 𝐷(𝐸)  using parameters: 𝐶 = 0.1  aF, ℏ𝜔0 = 1.4  eV, ℏ𝜂 = 0.5  eV. (b) 𝑝(𝐸)  using  

𝑇 = 500 K, 𝜏 = 0.1, and 𝐷(𝐸) in (a). (c) 𝑝(𝐸) spectrum for a range of conductances integrated over the 

underbias (red) and overbias (blue) regimes. The slope is preserved under the energy-dependent 𝐷(𝐸). 

We have assumed a flat 𝐷(𝐸) throughout this study. In this section, we will relax this assumption and 

investigate how it affects the claims in the manuscript. 

First, we compare the experimental spectra in Fig. 1d and with the theoretical spectrum in Fig. 2d. The 

first major difference is that whereas the theoretical spectrum has a very long tail due to the 2e 

emission, both experimental spectra do not show any emission past 2 eV. This is likely due to the fact 

that there are plasmonic resonances in the NIR for cut tips but not in the visible. We can model this 

using a single plasmon mode.2,3 

𝐷(𝐸) = (
|𝑍|

𝐸
)

2

 

𝑍̃𝜔 = 𝑖√
𝐿

𝐶

𝜔0𝜔

𝜔0
2 − 𝜔2 + 𝑖𝜔𝜂

          𝜔0 =
1

√𝐿𝐶
          𝜂 = 𝑅𝐶 

𝑍(𝐸)

𝐸
=

𝐺0𝑍̃(𝐸)

𝐸
= 𝑖

ℏ𝐺0

𝐶

1

(ℏ𝜔0)2 − 𝐸2 + 𝑖𝐸ℏ𝜂
  

We find the following parameters qualitatively reproduce our spectra 𝐶 = 0.1 aF, ℏ𝜔0 = 1.4 eV, ℏ𝜂 =

0.5 eV. The resulting 𝐷(𝐸), theoretical spectrum, and conductance dependence is shown in Figure S11. 

Importantly, we see that the conductance dependence is preserved under this analysis.  

The second major discrepancy between theory and experiment is the presence of a double peak in the 

measurement performed at 1.4 V. Although in principle this can also be explained with an energy 

dependent 𝐷(𝐸), we note that each point in the spectra collected via the break-junction method takes 

approximately thirty minutes to collect and can be sensitive to changes over time. In addition, the 

bandpass filter at 1.46 eV (corresponding to the second “peak”) has a ~20% higher peak transmission 

probability according to the manufacturer. There is some risk of over-interpreting features in the 

spectra. 



Finally, a non-constant 𝐷(𝐸) has no impact on the ability of the theory to reproduce the 

ln(𝑊𝐵𝐵𝑅(𝐸)) ∝ −(𝛼𝐼𝑉)−0.5 trend. This is because this trend is analyzed at a single wavelength. 𝐷(𝐸) 

will only scale the result, which amounts to a vertical shift on a semi-log plot. The trend will be identical, 

otherwise.  
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