SUPPLEMENTARY INFORMATION

Single-Electron Currents in Designer Single-Cluster Devices

Suman Gunasekaran^{1#}, Douglas A. Reed^{1#}, Daniel W. Paley¹, Amymarie K. Bartholomew¹,

Latha Venkataraman^{1,2*}, Michael L. Steigerwald^{1*}, Xavier Roy^{1*}, Colin Nuckolls^{1*}

¹Department of Chemistry, Columbia University, New York, NY 10027

²Department of Applied Physics and Applied Mathematics, Columbia University, New York,

NY 10027

Table of Contents:

- 1. Experimental
- 2. Hopping Transport Model
- 3. Additional Figures
- 4. Additional Tables
- 5. References

1. Experimental

General considerations. All synthetic procedures were conducted under an inert N₂ atmosphere in a glovebox or using standard Schlenk techniques. Solvents were purchased from Sigma-Aldrich and dried with an alumina column or 3-Å molecular sieves prior to use. Ferrocenium hexaflurophosphate, trimethylsilane diazomethane solution, and tetrabutylammonium hexafluorophosphate were purchased from Sigma Aldrich and used as received. The starting materials $trans-Co_6Se_8(PEt_3)_4(PEt_2(p-C_6H_4SMe))_2,$ $trans-Co_6Se_8(PEt_3)_4(CO)_2$, cis-Co₆Se₈(PEt₃)₄(CO)₂, and PEt₂(p-C₆H₄SMe) were prepared according to previously published procedures.¹⁻² The material $[Co_6Se_8(PEt_2(p-C_6H_4SMe))_6][BF_4]$ (L6) was prepared according to a previously published procedure.³¹H nuclear magnetic resonance (NMR) measurements were carried out on Bruker DRX400 (400 MHz) spectrometers. The blue light source was a Kessil PR160-456nm lamp.

Synthesis of [*trans*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂][PF₆] (trans-L2). To a flask loaded with a stir bar was added 30 mg *trans*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂ (0.016 mmol, 1.0 eq) and 5.3 mg ferrocenium hexafluorophosphate (0.016 mmol, 1.0 eq) dissolved in 5 mL of tetrahydrofuran. The solution was stirred at room temperature for 3 hours. The solvent was removed *in vacuo*, and the resulting powder was dissolved in a minimal amount of toluene, layered with ether, and let stand at -35 °C for 3 days to afford [*trans*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂][PF₆] (trans-L2) as a black powder (22 mg, 68%). Dark needle-like crystals suitable for X-ray diffraction were grown from vapor diffusion of pentanes into a concentrated tetrahydrofuran solution.

¹H NMR: (400 MHz, C₆D₆, 298 K): $\delta = -0.64$ (24H, br), 0.12 (12H, br), 0.29 (36H, br), 2.01 (8H, br), 2.27 (6H, br m), 6.95 (4H, d), 7.49 (4H, d) ppm.

Synthesis of *cis*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂. To a flask loaded with a stir bar was added 50 mg of *cis*-Co₆Se₈(PEt₃)₄(CO)₂ (0.033 mmol, 1.0 eq) and 17.5 mg of PEt₂(*p*-C₆H₄SMe) (0.083 mmol, 2.5 eq) dissolved in 5 mL of tetrahydrofuran. The solution was stirred under blue light at room temperature for 3 hours. The solvent was removed *in vacuo*, and the resulting powder was triturated with acetonitrile (3 x 5 mL) to afford the product *cis*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂ as a black powder (50 mg, 80%).

¹H NMR: (400 MHz, C₆D₆, 298 K): δ = 1.08 (48H, m), 1.88 (24H, m), 2.00 (8H, m), 2.36 (6H, br m), 7.12 (4H, d), 7.48 (4H, d) ppm.

Synthesis of [*cis*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂][PF₆] (cis-L2). To a flask loaded with a stir bar was added 30 mg *cis*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂ (0.016 mmol, 1.0 eq) and 5.3 mg ferrocenium hexafluorophosphate (0.016 mmol, 1.0 eq) dissolved in 5 mL of tetrahydrofuran. The solution was stirred at room temperature for 3 hours. The solvent was removed in vacuo, and the resulting powder was dissolved in a minimal amount of toluene, layered with ether, and let stand at -35 °C for 3 days to afford [*cis*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂][PF₆] (cis-L2) as a black powder (15 mg, 46%). Dark hexagonal plate-like crystals suitable for X-ray diffraction were grown from vapor diffusion of pentanes into a concentrated tetrahydrofuran solution.

¹H NMR: (400 MHz, C₆D₆, 298 K): $\delta = -1.35$ (8H, br), -0.70 (12H, br), -0.44 (12H, br), 0.00 (12H, br), 0.31 (36H, br), 2.20 (6H, br m), 7.02 (4H, d), 7.55 (4H, d) ppm.

Synthesis of [trans-Co₁₂Se₁₆(PEt₃)₈(PEt₂(p-C₆H₄SMe))₂][PF₆] (dimer-L2). To a flask loaded with a stir bar was added 60 mg trans- $Co_6Se_8(PEt_3)_4(CO)_2$ (0.040 mmol, 1.0 eq) and 12.6 mg $PEt_2(p-C_6H_4SMe)$ (0.059 mmol, 1.5 eq) dissolved in 6 mL of tetrahydrofuran. The solution was stirred under blue light at room temperature for 3 hours. The solvent was removed in vacuo to produce a mixture of the desired product $trans-Co_6Se_8(PEt_3)_4(CO)(PEt_2(p-C_6H_4SMe))$ and byproduct *trans*-Co₆Se₈(PEt₃)₄(PEt₂(*p*-C₆H₄SMe))₂ in a 1:1 mixture as determined by ¹H NMR spectroscopy. The crude mixture was then added to a flask loaded with a stir bar, and 6 mL of tetrahydrofuran was added. The solution was cooled to -40 °C, and 30 µL of trimethylsilane diazomethane solution (2.0 M in hexanes, 0.060 mmol, 1.5 eq) was added dropwise. The solution was stirred under blue light at 0 °C for 3 hours. The solvent was removed in vacuo to produce a mixture of the desired product trans-Co₆Se₈(PEt₃)₄(C(H)SiMe₃)(PEt₂(p-C₆H₄SMe)) along with the byproduct *trans*-Co₆Se₈(PEt₃)₄(PEt₂(p-C₆H₄SMe))₂, which remains from the initial reaction, in a 1:1 mixture as determined by ¹H NMR spectroscopy. The crude mixture was dissolved in 2 mL of pyridine and let sit at room temperature overnight. The solvent was removed in vacuo, and the resultant mixture was dissolved in 2 mL of benzene and stirred at room temperature overnight. The solvent was removed in vacuo to produce a crude mixture of the desired product trans- $Co_{12}Se_{16}(PEt_3)_8(PEt_2(p-C_6H_4SMe))_2$ along with the byproduct trans- $Co_6Se_8(PEt_3)_4(PEt_2(p-C_6H_4SMe))_2$ $C_6H_4SM_e)_2$ that remains from the initial reaction to produce a total of 50 mg of powder, which is assumed to be 33% of desired product and 66% byproduct (by molarity). The crude mixture was then added to a flask loaded with a stir bar, and a solution of 3.5 mg of ferrocenium hexafluorophosphate (0.011 mmol, 0.27 eq) dissolved in 6 mL of tetrahydrofuran was added. The solution was stirred at room temperature overnight. The solvent was removed in vacuo, and the product was extracted from the crude mixture with acetonitrile (3 x 5 mL). The solvent was removed in vacuo, and the resulting powder was dissolved in a minimal amount of toluene, layered with ether, and let stand at -35 °C for three days to produce [trans-Co₁₂Se₁₆(PEt₃)₈(PEt₂(p- $C_6H_4SM_{e})_2$ [PF₆] (dimer-L2) as a black powder (20 mg, 25%). Dark needle-like crystals suitable for X-ray diffraction were grown from vapor diffusion of pentanes into a concentrated tetrahydrofuran solution. Similar to previously reported $Co_{12}Se_{16}L_{10}$ clusters, the monocationic **dimer-L2** is NMR silent.⁴

¹H NMR for intermediate *trans*-Co₆Se₈(PEt₃)₄(CO)(PEt₂(*p*-C₆H₄SMe)): (400 MHz, C₆D₆, 298 K): $\delta = 0.96$ (36H, m), 1.07 (4H, m), 1.74 (24H, m), 1.97 (6H, m), 2.44 (3H, br m), 7.10 (2H, d), 7.60 (2H, d) ppm.

¹H NMR for intermediate *trans*-Co₆Se₈(PEt₃)₄(C(H)SiMe₃)(PEt₂(*p*-C₆H₄SMe)): (400 MHz, C₆D₆, 298 K): $\delta = 0.10$ (3H, s), 0.84 (4H, m), 1.08 (36H, m), 1.85 (6H, m), 1.88 (24H, m), 2.41 (3H, br m), 6.75 (1H, s), 7.58 (2H, d), 8.53 (2H, d) ppm.

Single crystal X-ray diffraction. Data for all compounds was collected on an Agilent SuperNova diffractometer using mirror-monochromated Cu K α radiation. Data collection, integration, scaling (ABSPACK) and absorption correction (face-indexed Gaussian integration)⁵ were performed in CrysAlisPro.⁶ Structure solution was performed using ShelXT.⁷ Subsequent refinement was performed by full-matrix least-squares on F₂ in ShelXL.3.⁸ PLATON⁹ was used to model disordered solvent in the structure of **dimer-L2** by the SQUEEZE¹⁰ algorithm. A solvent mask was applied in Olex2¹¹ to model disordered solvent in **cis-L2**. Olex2 was used for viewing and to prepare CIF files. Thermal ellipsoid plots were prepared in CrystalMaker.¹² Thermal ellipsoids are rendered at the 50% probability level.

Ex situ cyclic voltammetry. Cyclic voltammetry was collected using a BioLogic VSP-300 potentiostat in an N_2 filled glovebox. The measurement was collected in a 0.1 M solution of tetrabutylammonium hexafluorophosphate supporting electrolyte in tetrahydrofuran, using a glassy carbon working electrode, a platinum wire counter electrode, and a silver wire pseudo-reference electrode, with a scan speed of 50 mV/s. All measurements were then referenced to the ferrocene/ferrocenium redox couple.

2. Hopping Transport Model

The derivation of the steady-state current for a two-level Marcus model as been presented previously¹³⁻¹⁵ but is included here for completeness. For the two-level Marcus model, there are a total of 8 hopping rates that must be considered,

Red
 Ox

 L
 R
 L
 R

 level 1

$$k_{1,L}^+$$
 $k_{1,R}^ k_{1,L}^ k_{1,R}^-$

 level 2
 $k_{2,L}^+$
 $k_{2,R}^+$
 $k_{2,L}^ k_{2,R}^-$

The master equation at steady-state is,

$$\frac{d}{dt} \begin{pmatrix} P(2) \\ P(1) \\ P(0) \end{pmatrix} = \begin{pmatrix} -(k_{2,L}^- + k_{2,R}^-) & (k_{2,L}^+ + k_{2,R}^+) & 0 \\ (k_{2,L}^- + k_{2,R}^-) & -(k_{2,L}^+ + k_{2,R}^+) - (k_{1,L}^- + k_{1,R}^-) & (k_{1,L}^+ + k_{1,R}^+) \\ 0 & (k_{1,L}^- + k_{1,R}^-) & -(k_{1,L}^+ + k_{1,R}^+) \end{pmatrix} \begin{pmatrix} P(2) \\ P(1) \\ P(0) \end{pmatrix} = 0$$

This system of equations can be solved to yield,

$$P(2) = (k_{2,L}^{+} + k_{2,R}^{+})(k_{1,L}^{+} + k_{1,R}^{+})/N$$
$$P(1) = (k_{2,L}^{-} + k_{2,R}^{-})(k_{1,L}^{+} + k_{1,R}^{+})/N$$
$$P(0) = (k_{2,L}^{-} + k_{2,R}^{-})(k_{1,L}^{-} + k_{1,R}^{-})/N$$

where *N* is the normalization so that P(0) + P(1) + P(2) = 1,

$$N = (k_{2,L}^{+} + k_{2,R}^{+})(k_{1,L}^{+} + k_{1,R}^{+}) + (k_{2,L}^{-} + k_{2,R}^{-})(k_{1,L}^{+} + k_{1,R}^{+}) + (k_{2,L}^{-} + k_{2,R}^{-})(k_{1,L}^{-} + k_{1,R}^{-})$$

The steady-state current can be obtained by considering the net hopping between the left electrode and the cluster,

$$I(V) = e\left(k_{2,L}^{-}P(2) - k_{2,L}^{+}P(1) + k_{1,L}^{-}P(1) - k_{1,L}^{+}P(0)\right)$$

3. Additional Figures:

Figure S1. Molecular structure of (a) **trans-L2** and (b) **cis-L2**. For each crystal structure, there is one-half cluster in the asymmetric unit; the other half is generated by inversion. PF_6 anions, disordered solvent, hydrogen atoms, and the minor positions of disordered ligands are omitted for clarity. Black, carbon; blue, cobalt; green, selenium; magenta, phosphorus; yellow, sulfur.

Figure S2. *Ex situ* cyclic voltammograms of **trans-L2** (blue), **cis-L2** (red), and **L6** (green) in a 0.1 M tetrabutylammonium hexafluorophosphate solution in tetrahydrofuran at a scan rate of 50 mV/s.

Figure S3. 2D conductance histograms of (a) **trans-L2**, (b) **cis-L2**, and (c) **L6** measured at 500 mV in PC. All compounds display similar conductances and plateau lengths.

Figure S4. Example I-V measurement for **trans-L2**, showing tip displacement (top), source-drain bias (middle), and measured current (bottom) as a function of time. Successful I-V measurements were selected using an automated algorithm that required the conductance during the initial 25 ms "hold" to be within the width of the molecular conductance histogram.

Figure S5. Molecular structures of the two independent molecules of **dimer-L2**. Each independent position has one-half cluster in the asymmetric unit; the other half is generated by inversion. PF_6 anions, disordered solvent, hydrogen atoms, and the minor positions of disordered ligands are omitted for clarity. Black, carbon; blue, cobalt; green, selenium; magenta, phosphorus; yellow, sulfur.

Figure S6. Expanded view of the core of dimer-L2, with selected bond lengths highlighted.

Figure S7. (a) 1D conductance histograms for **trans-L2** and **dimer-L2** measured at 500 mV in PC. The conductance of **dimer-L2** is higher than **trans-L2**. (b) 2D conductance histogram of **dimer-L2** measured at 500 mV. The plateau length is larger than for **trans-L2**, consistent with the difference in molecule length.

Figure S8. Schematic of proposed electron transport mechanism for **trans-L2**. The molecular junction is depicted with **trans-L2** (blue) connecting the coated tip (left) and substrate (right). Due to the coated tip, the redox levels (vertical dashed blue lines) are effectively pinned to the chemical potential of the substrate (μ_R). Biasing the junction modulates the chemical potential of the tip (μ_L) relative to the redox levels of the cluster. At low bias, where oxidation/reduction of [**trans-L2**]⁺ is not favorable, current blockade is observed. At negative bias, when μ_L is greater than the reduction potential of [**trans-L2**]⁺ (E_{0/1+}), the tip can reduce the cluster and the substrate can subsequently oxidize the cluster. At positive bias, when μ_L is lower than the oxidation potential of [**trans-L2**]⁺ (E_{1+/2+}), the tip can oxidize the cluster and the substrate can subsequently reduce the cluster.

Figure S9. Comparison of change in average Co–Co distance as a function of oxidation state for the model compounds $[Co_6Se_8(PEt_2(p-C_6H_4SMe))_6]^{n+}$ (blue)³ and $[Co_{12}Se_{16}(PMe_3)_{10}]^{n+}$ (red)⁴.

4. Additional Tables

Compound	trans-L2	cis-L2	dimer-L2
Formula	$C_{54}H_{110}Co_6F_6O_2P_7S_2Se_8$	$C_{46}H_{94}Co_6F_6P_7S_2Se_8$	$C_{74}H_{162}Co_{12}F_6OP_{11}S_2Se_{16}$
MW	2171.58	2027.38	3557.34
Space group	C2/c	P6 ₃ 22	P-1
<i>a</i> (Å)	28.1746(4)	21.8220(8)	13.5505(2)
b (Å)	12.00577(15)	21.8220(8)	17.7338(5)
<i>c</i> (Å)	23.5749(3)	26.4747(8)	25.7572(6)
a (°)	90	90	74.953(2)
β (°)	108.0493(14)	90	86.191(2)
γ (°)	90	120	79.111(2)
V (Å ³)	7581.95(18)	10918.2(9)	5868.7(2)
Z	4	6	2
ρ_{calc} (g cm ⁻³)	1.902	1.850	2.013
T (K)	100	100	100
λ (Å)	1.54184	1.54184	1.54184
$2\theta_{min}, 2\theta_{max}$	7, 146	7, 141	7, 146
Nref	42908	69745	82392
$R(int), R(\sigma)$.0460, .0316	.0972, .0481	.0964, .1006
$\mu(\mathrm{mm}^{-1})$	16.8	17.5	20.7
Size (mm)	.27 x .05 x .04	.14 x .08 x .05	.50 x .05 x .05
T _{max} / T _{min}	4.96	2.65	1.82
Data	7511	6938	23251
Restraints	280	7	804
Parameters	522	308	1265
R ₁ (obs)	0.0441	0.0676	0.0722
wR ₂ (all)	0.1192	0.1914	0.1968
S	1.071	1.051	1.016
Peak, hole (e ⁻ Å ⁻³)	1.26, -1.12	.561,594	2.44, -1.81
CCDC	1996815	2014690	1996814

Table S1. Crystallographic information for trans-L2, cis-L2, and dimer-L2.

5. References

- Roy, X.; Schenck, C. L.; Ahn, S.; Lalancette, R. A.; Venkataraman, L.; Nuckolls, C.; Steigerwald, M. L. Quantum Soldering of Individual Quantum Dots. *Angew. Chem. Int. Ed.* 2012, *51* (50), 12473-12476.
- 2. Champsaur, A. M.; Velian, A.; Paley, D. W.; Choi, B.; Roy, X.; Steigerwald, M. L.; Nuckolls, C. Building Diatomic and Triatomic Superatom Molecules. *Nano Lett.* **2016**, *16* (8), 5273-5277.
- 3. Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Roomtemperature current blockade in atomically defined single-cluster junctions. *Nat. Nanotechnol.* **2017**, *12* (11), 1050-1054.
- 4. Champsaur, A. M.; Hochuli, T. J.; Paley, D. W.; Nuckolls, C.; Steigerwald, M. L. Superatom Fusion and the Nature of Quantum Confinement. *Nano Lett.* **2018**, *18* (7), 4564-4569.
- 5. Blanc, E.; Schwarzenbach, D.; Flack, H. D. The Evaluation of Transmission Factors and Their 1st Derivatives with Respect to Crystal Shape-Parameters. *J. Appl. Crystallogr.* **1991**, *24*, 1035-1041.
- 6. Version 1.171.37.35 (2014). Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- 7. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* **2015**, *71*, 3-8.
- 8. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3-8.
- 9. Spek, A. L. Structure validation in chemical crystallography. *Acta Crystallogr. D* **2009**, *65*, 148-155.
- 10. Vandersluis, P.; Spek, A. L. Bypass an Effective Method for the Refinement of Crystal-Structures Containing Disordered Solvent Regions. *Acta Crystallogr. A* **1990**, *46*, 194-201.
- 11. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- 12. CrystalMaker Software Ltd. Oxford, England: <u>www.crystalmaker.com</u>.
- 13. Migliore, A.; Nitzan, A. Nonlinear Charge Transport in Redox Molecular Junctions: A Marcus Perspective. *ACS Nano* **2011**, *5* (8), 6669-6685.
- 14. Muralidharan, B.; Datta, S. Generic model for current collapse in spin-blockaded transport. *Phys Rev B* **2007**, *76* (3), 035432.
- 15. Kuznetsov, A. M.; Medvedev, I. G. Effect of Coulomb interaction between the electrons on two-electron redox-mediated tunneling. *Electrochem. Commun.* **2008**, *10* (8), 1191-1194.