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1. Calculating T(E) 

For the molecular junction model, the isolated molecule is described by a Hamiltonian H. 

When the molecule is connected to the electrodes, it is no longer an isolated system. The 

Hamiltonian for the open system which considers the interaction with the electrodes (𝐻’) can be 

expressed as, 

𝐻′ = 𝐻 + Σ (S1) 

and   Σ = Σ𝐿 + Σ𝑅 

where Σ𝐿 and Σ𝑅 are the self-energies of the left and right lead, respectively. Technically, 𝐻’ is not 

a proper Hamiltonian since the self-energy is not Hermitian. The anti-Hermitian part of the self-

energy is described by Γ, 

Γ𝐿 = 𝑖(Σ𝐿 − Σ𝐿
†) = −2Im[Σ𝐿] (S2) 

Γ𝑅 = 𝑖(Σ𝑅 − Σ𝑅
†) = −2Im[Σ𝑅] (S3) 

Transport through the single-molecule junction is described by a Green’s function, 

𝐺(𝐸) = [𝐸𝐼 − 𝐻′]−1 = [𝐸𝐼 − (𝐻 + Σ)]−1 (S4) 

where 𝐼 is the identity matrix and E is the energy of the electron. With the Green’s function, one 

can calculate the transmission function using the formula, 

𝑇(𝐸) = Tr[Γ𝐿𝐺Γ𝑅𝐺
†] (S5) 

A more in-depth discussion of these equations can be found in these texts.1, 2  
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2. Calculating Q(E) 

To elucidate QI, we must consider the eigenbasis of 𝐻’. Since 𝐻’ is not Hermitian, there 

are two sets of eigenvectors, |𝜓𝑖⟩ and |�̅�𝑖⟩ for 𝐻’ and 𝐻’†, respectively: 

𝐻′|𝜓𝑖⟩ = 𝑧𝑖|𝜓𝑖⟩ (S6) 

𝐻′†|�̅�𝑖⟩ = 𝑧𝑖
∗|�̅�𝑖⟩ (S7) 

𝑎𝑛𝑑     ⟨�̅�𝑖|𝜓𝑗⟩ = 𝛿𝑖𝑗 (S8) 

In the third line, we have additionally normalized the eigenvectors. Importantly, the eigenvectors 

of 𝐻’ are also the eigenvectors of the Green’s function, 

𝐺(𝐸)|𝜓𝑖⟩ =
1

𝐸 − 𝑧𝑖
|𝜓𝑖⟩ (S9) 

𝐺†(𝐸)|�̅�𝑖⟩ =
1

𝐸 − 𝑧𝑖
∗ |�̅�𝑖⟩ (S10) 

This eigenbasis is distinct from the MO basis, which is the eigenbasis of the isolated Hamiltonian 

(𝐻 ). Previous works have referred to these eigenvectors as molecular conductance orbitals 

(MCO).3 However, since the coupling to the electrodes is typically small, the MCOs will be very 

similar to the MOs, so we do not make a distinction between these bases in the main text. 

 Since 𝐻’ is not Hermitian, the eigenvalues 𝑧𝑖 will be complex and take the form, 

𝑧𝑖 = 𝜀𝑖 − 𝑖𝛾𝑖 (S11) 

where 𝜀𝑖 is the energy of the MCO and 𝛾𝑖 is the coupling of the MCO to the electrodes. Therefore, 

an energy-coupling diagram can be produced by plotting – 𝐼𝑚[𝑧𝑖] vs 𝑅𝑒[𝑧𝑖] for all eigenvalues of 

𝐻’ (Figure 5g). 
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To obtain the Q matrix, we can expand the transmission function formula in the eigenbasis 

of 𝐺 (and 𝐻’) yielding, 

𝑇(𝐸) = Tr[Γ𝐿𝐺Γ𝑅𝐺
†] 

=∑⟨𝜓𝑖|Γ𝐿𝐺Γ𝑅𝐺
†|�̅�𝑖⟩

𝑖

 

=∑⟨𝜓𝑖|Γ𝐿𝐺|𝜓𝑗⟩⟨�̅�𝑗|Γ𝑅𝐺
†|�̅�𝑖⟩

𝑖𝑗

 

=∑
⟨𝜓𝑖|Γ𝐿|𝜓𝑗⟩⟨�̅�𝑗|Γ𝑅|�̅�𝑖⟩

(𝐸 − 𝑧𝑗)(𝐸 − 𝑧𝑖
∗)

𝑖𝑗

(S12) 

where we have made use of the completeness relation, 

𝐼 =∑|𝜓𝑗⟩⟨�̅�𝑗|

𝑗

(𝑆13) 

We see that we have deconstructed the transmission function into terms comprising single MCOs 

(for 𝑖 = 𝑗) and pairs of MCOs (for 𝑖 ≠ 𝑗), which represent the noninterfering and interfering 

contributions to transmission, respectively.4  

We define a matrix, Q (for quantum interference), whose elements (𝑖, 𝑗) correspond to a 

term in the summation, 

𝑄𝑖𝑗 ≡
⟨𝜓𝑖|Γ𝐿|𝜓𝑗⟩⟨�̅�𝑗|Γ𝑅|�̅�𝑖⟩

(𝐸 − 𝑧𝑗)(𝐸 − 𝑧𝑖
∗)

(S14) 

Note that Q is Hermitian because Γ𝐿 and Γ𝑅 are Hermitian, 

𝑄𝑖𝑗
∗ =

⟨𝜓𝑗|Γ𝐿
†|𝜓𝑖⟩⟨�̅�𝑖|Γ𝑅

†|�̅�𝑗⟩

(𝐸 − 𝑧𝑗
∗)(𝐸 − 𝑧𝑖)

=
⟨𝜓𝑗|Γ𝐿|𝜓𝑖⟩⟨�̅�𝑖|Γ𝑅|�̅�𝑗⟩

(𝐸 − 𝑧𝑖)(𝐸 − 𝑧𝑗
∗)

= 𝑄𝑗𝑖 (S15) 



5 

 

To obtain a matrix formula for Q, we can define a matrices 𝑃 whose columns are the 

eigenvectors of 𝐻′ and 𝑃−1 whose rows are the eigenvectors of 𝐻′†:  

𝑃 = (⋯ 𝜓𝑖 ⋯)  𝑎𝑛𝑑  𝑃−1 = (
⋮
�̅�𝑖
⋮
) (S16) 

Using 𝑃 and 𝑃−1, we can construct matrices 𝐴 and 𝐵, 

𝐴 = 𝑃†Γ𝐿𝐺𝑃 𝑎𝑛𝑑     𝐴𝑖𝑗 = ⟨𝜓𝑖|Γ𝐿𝐺|𝜓𝑗⟩

𝐵 = 𝑃−1Γ𝑅𝐺†𝑃−1† 𝑎𝑛𝑑    𝐵𝑖𝑗 = ⟨�̅�𝑖|Γ𝑅𝐺
†|�̅�𝑗⟩

(S17) 

From the definition of Q, we see that Q is simply an entrywise product of 𝐴 and 𝐵T,  

𝑄 = 𝐴 ∘ 𝐵T     𝑎𝑛𝑑     𝑄𝑖𝑗 = 𝐴𝑖𝑗𝐵𝑗𝑖 (S18) 

This leads to the matrix formula for Q presented in the main text, 

𝑄 = (𝑃†Γ𝐿𝐺𝑃) ∘ (𝑃−1Γ𝑅𝐺†𝑃−1†)T (S19) 

The equivalence of 𝑄(𝐸) and 𝑇(𝐸) can be quickly seen using the identity, 

∑𝐴𝑖𝑗𝐵𝑗𝑖
𝑖𝑗

= Tr[𝐴𝐵] (S20) 

From this identity we have that,5  

∑𝑄𝑖𝑗
𝑖𝑗

= Tr[(𝑃†Γ𝐿𝐺𝑃)(𝑃−1Γ𝑅𝐺†𝑃−1†)] (S21) 

= Tr[Γ𝐿𝐺Γ𝑅𝐺
†] = 𝑇(𝐸)           

Therefore, the Q matrix is mathematically equivalent to the transmission function.  
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3. Transmission Coefficients 

The transmission coefficients can be obtained by additional expansion of equation S12. Since 

Γ𝐿 and Γ𝑅 are Hermitian they can be expressed in terms of their respective eigenvalues, 𝛾ℓ and 𝛾𝑟, 

and eigenvectors, |ℓ⟩ and |𝑟⟩, 

Γ𝐿 =∑𝛾ℓ|ℓ⟩⟨ℓ|

ℓ

          𝑎𝑛𝑑          Γ𝑅 =∑𝛾𝑟|𝑟⟩⟨𝑟|

𝑟

(S22) 

The eigenvectors describe the nature of the coupling with the electrodes and the eigenvalues 

describe the strength of the coupling. Inserting these expressions into equation S12, we have,3  

𝑇(𝐸) =∑∑𝛾ℓ𝛾𝑟
⟨𝜓𝑖|ℓ⟩⟨ℓ|𝜓𝑗⟩⟨�̅�𝑗|𝑟⟩⟨𝑟|�̅�𝑖⟩

(𝐸 − 𝑧𝑗)(𝐸 − 𝑧𝑖
∗)

𝑖𝑗ℓ𝑟

 

           = ∑∑𝛾ℓ𝛾𝑟
⟨�̅�𝑗|𝑟⟩⟨ℓ|𝜓𝑗⟩

𝐸 − 𝑧𝑗
∙
⟨𝜓𝑖|ℓ⟩⟨𝑟|�̅�𝑖⟩

𝐸 − 𝑧𝑖
∗

𝑖𝑗ℓ𝑟

 

=∑∑𝑡ℓ𝑟,𝑗𝑡ℓ𝑟,𝑖
∗

𝑖𝑗ℓ𝑟

=∑|∑𝑡ℓ𝑟,𝑖
𝑖

|

2

ℓ𝑟

(S23) 

where 𝑡ℓ𝑟,𝑖 is the transmission coefficient for the ith MCO for transmission between |ℓ⟩ and |𝑟⟩, 

and is given as, 

𝑡ℓ𝑟,𝑖 = √𝛾𝐿𝛾𝑅
⟨�̅�𝑖|𝑟⟩⟨ℓ|𝜓𝑖⟩

𝐸 − 𝑧𝑖
(S24) 

Note that since Γ𝐿 and Γ𝑅 are positive semi-definite,1 𝛾𝐿 and 𝛾𝑅 are nonegative, and √𝛾𝐿𝛾𝑅 is well-

defined. Additionally, 𝑄𝑖𝑗 can be expressed in terms of the transmission coefficients  as, 

𝑄𝑖𝑗 =∑𝑡ℓ𝑟,𝑗𝑡ℓ𝑟,𝑖
∗

ℓ𝑟

(S25) 
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4. Hückel Models 

For the Hückel models presented in the paper, we assumed the wide-band limit (energy 

independent coupling between the molecule and the electrodes). In this limit, the self-energies 

become, 

Σ𝐿 = −
𝑖

2
Γ𝐿     𝑎𝑛𝑑     Σ𝑅 = −

𝑖

2
Γ𝑅 

Furthermore, we assume the molecule is coupled to the left and right electrode via a single p orbital 

on either end of the molecule with coupling strength 𝛾. Note that the results presented in the 

manuscript will not be significantly different if these restrictions are relaxed. 

With these assumptions, the molecular junction of 1-4 butadiene is described by the 

following matrices, 

𝐻 + Σ =

(

 
 
 
 
−
𝑖𝛾

2
−𝑡 0 0

−𝑡 0 −𝑡 0

0 −𝑡 0 −𝑡

0 0 −𝑡 −
𝑖𝛾

2)

 
 
 
 

     Γ𝐿 =

(

 
 

𝛾 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0)

 
 
     Γ𝑅 =

(

  
 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 𝛾)

  
 

 

where 𝐻 + Σ is the Hamiltian for the open system, and Γ𝐿  and Γ𝑅  describe the coupling to the 

electrodes. The parameter t is the hopping integral that describes the coupling between p orbitals 

of carbon atoms within the molecule. Note that conventionally t is defined as negative; however, 

we have defined t to be positive. Without loss of generality we set the on-site energy for carbon 

atoms to zero (𝐸𝐶 = 0). Furthermore, we assume that the Fermi energy is approximately equal to 

this on-site energy (𝐸𝐹 ≈ 𝐸𝐶). The other molecular junctions presented in the paper are modeled 

similarly.  
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5. Mathematica Code 

 

Code used to obtain the QI map for 1-4 butadiene (Figure 2c): 
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6. Additional Figures 

 

Figure S1. a) Transmission functions for molecular junctions of 1-3 butadiene, 1-2 butadiene, and 

2-3 butadiene. Numbers indicate contact point between the molecule and the electrodes. b) 

Corresponding QI maps at EF. Figures obtained from a Hückel model with hopping integral t and 

coupling γ = 0.1 t. 

 

 

Figure S2. a,b) Transmission function for polyene of increasing length (a) with and (b) without 

QI. c) Transmission at EF versus number of monomer units for polyene. Figures obtained from a 

Hückel model with alternating coupling t1 = 0.8 t, and t2 = 1.2 t, and γ = 0.1 t. 
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Figure S3. QI maps for n = 1–6 polyene series. Dashed lines placed in between the HOMO and 

LUMO in each QI map. Note that the color scale is not the same for all QI maps. The color scale 

in each map is normalized to 𝑄𝑚𝑎𝑥.  
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Figure S4. QI maps for n = 1–6 oligophenyl series. Dashed lines placed in between the HOMO 

and LUMO in each QI map. Note that the color scale is not the same for all QI maps. The color 

scale in each map is normalized to 𝑄𝑚𝑎𝑥. 

 

Figure S5. Total constructive and destructive QI vs oligomer length for (a) oligophenyl and (b) 

polyene. Note linear scale.  
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