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1. Su-Schrieffer-Heeger Model  

 The Su-Schrieffer-Heeger model on isolated polyacetylene chain has been well-described 

elsewhere1-3 and we included it here for completeness. The single-particle Hamiltonian is defined 

as 

! = −$! %(|(,*⟩⟨(, -| + /. 1. )
"

#$!

− $% %(|( + 1, -⟩⟨(, *| + /. 1. )
"&!

#$!

(1) 

where M is the number of unit cells, A and B are the two sublattices (see Figure 1A), and $!, $% are 

the intracell and intercell hopping constants. The property of the bulk states should not depend on 

the two edges. Here we apply periodic boundary conditions to close the bulk part of the chain into 

a ring. The corresponding bulk Hamiltonian is written as 

!'()* = %(−$!|(, *⟩⟨(, -| − $%|((	mod	8) + 1, -⟩⟨(, *|)
"

#$!

+ /. 1. (2) 

Since the bulk has translation invariance, we apply Bloch’s theorem and look for eigenstates in a 

plane wave form. The plane wave basis states transformed from the site basis are 

|:⟩ =
1

√8
% <+#,|(⟩
"

#$!

(3) 

for : ∈ {@, , 2@, , ⋯ ,8@,} with @, = 2C 8⁄ . Therefore, the bulk momentum-space Hamiltonian 

is defined as 

!(:) = ⟨:|!'()*|:⟩ = % ⟨:, E|/'()*|:, F⟩ ∙ |E⟩⟨F|
-,/∈{2,3}

(4) 

The eigenvector |I5(:)⟩ is defined as a linear combination of sublattice states |-⟩ and |*⟩. 

|I5(:)⟩ = J5(:)|-⟩ + K5(:)|*⟩	 (5) 

With matrix representation, the Hamiltonian and the eigenvector becomes 

!(:) = −M
0 $! + $%<&+,

$! + $%<+, 0
O = −PQ6($! + $% cos :) − PQ7$% sin : (6) 
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and 

|I5(:)⟩ = W
J(:)
K(:)

X (7) 

For equation (6), in the dimerization limits, if $! = 1, $% = 0, which means that all the intercell 

hopping is forbidden, !(:) = −PQ6. Otherwise, if $! = 0, $% = 1, which means that each dimer is 

made by sublattices of two adjacent unit cells, !(:) = −PQ6 cos : − PQ7 sin :. In both cases, the 

eigenvalues are Z(:) = ±1, independent of : , which indicates zero-group velocity along the 

chain.  

However, at the long chain limit (the thermodynamic limit), the edge states are at zero-

energy. To solve for the edge states, one needs to investigate the zero-energy eigenstates of the 

single particle Hamiltonian (equation (1)), 

!%(J#|(, -⟩ + K#|(, *⟩)
"

#$!

= 0 (8) 

where J# and K# are the coefficients dependent on the unit cell index. By substituting equation 

(1) to equation (8), we obtain 28 separate recursive equations 

]
$!J# + $%J#8! = 0
$%K# + $!K#8! = 0

(9) 

with ( = 1,⋯ ,8 − 1. At boundaries, we have $!J" = 0 (when ( = 8), and $!K! = 0 (when 

( = 0). The solutions are easily obtained as below. 

⎩
⎪
⎨

⎪
⎧ J# = W

−$!
$%
X
#&!

J!						(( = 2,⋯ ,8)

K# = W
−$!
$%
X
"&#

K" 						(( = 1,⋯ ,8 − 1)
(10) 

We also need K! = J" = 0 to fulfill the boundary conditions. Moreover, we can translate the 

above solutions to 

c
|J"| = |J!|<

&
"&!
9

|K!| = |K"|<
&
"&!
9

(11) 
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In equation (11) we define d ≡ 1 |ln($! $%⁄ )|⁄  as the delocalization length. Because of the nature 

of the exponential relations, we can never achieve a zero-energy eigenstate. However, if 8 → ∞, 

there could be two approximate solutions. 

⎩
⎪
⎨

⎪
⎧|i⟩ = % J#|(, -⟩

"

#$!

|j⟩ = % K#|(, *⟩
"

#$!

(12) 

where J# and K# values are indicated by the solutions above. J! and K" are used to fix the norm 

of |i⟩ and |j⟩, respectively. 

 In the short chain limit, the two edge states, |i⟩ and |j⟩, could couple and generate a small 

energy splitting. The overlap is approximated as 

⟨j|!|i⟩ = kJ!<
&
"&!
9 $!K"k <+: (13) 

where l ∈ [0, 2C) marks the phase difference. The new eigenstates are 

⎩
⎨

⎧|08⟩ =
1

√2
W<&

+:
% |i⟩ + <

+:
% |j⟩X

|0&⟩ =
1

√2
W<&

+:
% |i⟩ − <

+:
% |j⟩X

(14) 

and the corresponding energies are 

Z± = ± kJ!<
&
"&!
9 $!K"k (15) 
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2. Calculating T(E) and T(EF) 

This derivation follows closely the discussion found in these books4, 5. In the molecular 

junction model, H0 describes the Hamiltonian of the isolated single molecule. When two electrodes 

are appended to the molecule, it becomes an open system. The Hamiltonian of this system includes 

the interaction between the molecule and electrodes,  

!n = !< + o = !< + o= + o> (16) 

where o= = p=|1⟩⟨1| and o> = p>|q⟩⟨q| are the self-energies of the left and right electrodes 

(assuming the molecular system consists of N sites). These self-energy terms are non-Hermitian, 

which are described by r= and r>, the scattering rates at molecule-electrode interface on each side. 

r= = stp= − p=
?u = −2Im[p=] (17) 

r> = stp> − p>
?u = −2Im[p>] (18) 

The shift of molecular orbital (MO) energy due to the self-energies are: 

Δ= = p= + p=
? = 2Re[p=] (19) 

Δ> = p> + p>
? = 2Re[p>] (20) 

 For the tight-binding simulations, we assumed the wide-band limit (the coupling between 

molecule and electrodes is energy-independent). By neglecting Δ= and Δ> in the weak coupling 

regime, the self-energies become, 

{
p= = −

s
2
r=

p> = −
s
2
r>

(21) 

and only affect the terminal sites of the molecule. 

 Since !n  is non-Hermitian, its eigenstates and eigenvalues are: 

!n||+⟩ = (!< + o)||+⟩ = }+||+⟩ (22) 

Note that the eigenvalues }+ are complex and the eigenstates ||+⟩ do not form an orthogonal set. 

The Hermitian adjoint of equation (22) is: 
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!n?~|@���Ä = (!< + o?)~|@���Ä = }+
∗~|@���Ä (23) 

||+⟩ and ~|@���Ä form a bi-orthonormal set in which Å|@���~|BÄ = @+B . The Green’s function matrix 

Ç(Z) can be written in terms of these eigenstates and eigenvalues as: 

Ç(Z) = ÉZÑ − !nÖ
&!
=%

||+⟩Å|@���~
Z − }++

(24) 

where Ñ  is the identity matrix and Z  is the energy of the transmitting electron. The energy-

dependent transmission is: 

Ü(Z) = Tr[â=Çâ>Ç?] (25) 

where Ç and Ç? are the retarded and advanced Green’s functions respectively, and â=/> are the 

coupling matrices (â= = r=|1⟩⟨1| and â> = r>|q⟩⟨q|). For transmission at Fermi energy (ZD, with 

ZD = 0), the Green’s function can be simplified to  

Ç(ZD) = É!nÖ
&!
=%

||+⟩Å|@���~
−}++

(26) 

For an electron propagating across the junction, Ü(Z) is dictated by the (1,N) element of the 

Green’s function in its matrix representation6, 

Ü(Z) = r=r>~Ç!,E~
%

(27) 

where 1 and N are indices for the terminal sites. With Cramer’s rule, Ü(Z) at ZD can be written as7 

Ü(ZD) = r=r> k
ΔE,!
dett!nu

k
%

(28) 

in which ΔE,! is the minor determinant of !n .  
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3. Quantum Interference in 1D Topological Chain 

To evaluate quantum interference, we seek to express the transmission function as a sum 

of complex transmission coefficients for each resonance (i), 

Ü(Z) = ã%$+(Z)
+

ã

%

(29) 

We can expand the Green’s function (equation (27)) about its eigenbasis, yielding 

$+(Z) ≈ çr=r>
é+,=é+,>
Z − }+

(30) 

where é+,=/> are the coefficient of the molecular conductance orbital (MCO) index i at the left and 

right molecule-electrode interface. We make the approximation that the MCO coefficients are 

similar to the MO coefficients of the isolated Hamiltonian (as this is in the weak-coupling limit). 

In equation (22), the eigenvalues }+ take the form, 

}+ = è+ − sê+ (31) 

where ê+ represents the coupling to the electrodes, 

ê+ =
1
2
tê+

= + ê+
>u (32) 

and 

ë
ê+
= = r=é+,=

%

ê+
> = r>é+,>

% (33) 

We can express the transmission coefficient in polar form, 

$+(Z) = ±íÜ+
FGH sin(ì+) <+I! (34) 

where ± is given by sgnÉé+,=é+,>Ö and we have defined, 

ì+(Z) = arg(Z − }+
∗) (35) 

and 
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Figure S1. (A) Transmission probability vs energy for a single level (B) Phase of transmission 

coefficient vs energy for in-phase (red) and out-of-phase (blue) molecular orbital (C) Geometric 

construction of transmission coefficient from the complex eigenvalue for the in-phase (red) and 

out-of-phase (blue) orbitals. The centers of the grey circles are located at different energies. The 

diameters of the circles are equal to ÜFGH. The chord vectors are generated by connecting the 

resonance dot (black or white) to the tangent point of each circle to the horizonal line in which Im 

= 0. The magnitude of the transmission coefficient as a function of energy is obtained by the ratio 

of the magnitude of the vectors to the diameter of the circle. 

Ü+
FGH =

4ê+
=ê+

>

(ê+
= + ê+

>)%
(36) 

This leads to a geometric construction of the transmission coefficient (Figure S1). We will use this 

formalism to understand the conductance of the 1D topological chain. 
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Figure S2. Energy coupling diagrams when two edge-state derived resonances approach to the 

center as chain length increases. εC is the on-site energy of carbon. The geometric construction 

clearly demonstrates how the transmission coefficients evolve from constructively interfering (A, 

when the angle between the two vectors is smaller than 90̊ ) to destructively interfering (C, when 

the angle between the two vectors is larger than 90̊ ). The maximum transmission should occur 

when the transmission coefficients are orthogonal.  

In a symmetrically coupled junction, 

r ≡ rJ = rK (37) 

Based on this we see that peak transmission is obtained when the two eigenvalues for the edge 

states produce secant lines at εC that are perpendicular (Figure S2). This is given by the condition, 

ê< =
Z8 − Z&

2
(38) 

where we have defined ê< = ê=LMN = êONMN, and Z± is defined by equation (15). This condition 

simply states that the vertical and horizontal components of each eigenvalue in the complex plane 

must be equal. Assuming the phase difference of the two edge states is l = 0, the HOMO-LUMO 

gap is 

Z8 − Z& = 2 kJ!<
&
"&!
9 $!K"k (39) 
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4. Transmission through Polyacetylene System 

 From here on, we use m to represent the number of unit cells in molecular systems. For 

polyacetylene system in molecular junction (Figure 2A), as shown in the main text, the 

Hamiltonian is 

!n# = −
srJ
2
|1⟩⟨1| −

srK
2
|2(⟩⟨2(| − % $<<

(&!)"R|:⟩⟨: + 1|
%#&!

,$!

+ /. 1. (40) 

$! and $% are defined as $<<&R and $<<R, respectively. Thus, 

@ ≡ ln W
$<
$!
X = ln W

$%
$<
X =

1
2
ln W

$%
$!
X (41) 

and for $% > $! (diradical case), 

@ =
d
2

(42) 

We next derive ΔE,!(!n#) and det(!n#) analytically.  

c
Δ%#,!(!%#) = −$!

#$%
#&!																																			

det(!%") = (−1)# W$!
%# + $%

%(#&!) r=r>
4
X

(43) 

For polyacetylene, the chain has both quinone and diradical features. In a symmetric junction, r= =

r> ≡ r. The corresponding Ü#(ZD) with respect to m is derived as 

Ü#(ZD) = k
4$<

%#&!<&Rr
4$<

%#<&%#R + $<
%#&%<(%#&%)Rr%

k
%

(44) 

Equation (44) can be rewritten as hyperbolic secant functions. 

Ü#(ZD) = sech% ò(2( − 1)@ + ln W
r
2$<

Xô (45) 

The two-level expression of Ü#(ZD) in the main text is directly derived from equation (44). 

If both the numerator and the denominator are divided by 4$<
%#&%<(%#&%)R, we get: 
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Ü#(ZD) = ö
$<<&

(%#&!)Rr

$<
%<&%(%#&!)R + r

%

4

ö

%

(46) 

Equation (46) can be rewritten as 

Ü#(ZD) = ö
r 2⁄ õt$<<&

(%#&!)R + s r 2⁄ u − t−$<<&
(%#&!)R + s r 2⁄ uú

($<<&(%#&!)R + s r 2⁄ )(−$<<&(%#&!)R + s r 2⁄ )
ö

%

(47) 

Finally, we obtain: 

Ü#
(%)(ZD) = k

(−1)#&! r 2⁄

$<<&(%#&!)R + s r 2⁄
+

(−1)# r 2⁄

−$<<&(%#&!)R + s r 2⁄
k
%

(48) 

where 
(&!)#$%S %⁄

U&V$((#$%)*8+S %⁄
= $ONMN, and 

(&!)#S %⁄

&U&V$((#$%)*8+S %⁄
= $=LMN. 

The maximum transmission occurs when the argument of the hyperbolic secant function 

(equation (45)) is zero. 

(2(FGH − 1)@ + ln W
r
2$<

X = 0 (49) 

Therefore, the maximum transmission occurs at a chain length of (FGH. 

(FGH =
1
2
W1 −

1
@
ln W

r
2$<

XX																																																										(50) 

The expression of F# is obtained by taking first derivative of ln(Ü#(Z)) with respect to (. 

F# ≡
ù ln(Ü#(Z))

ù(
= 4@	tanh ò(2( − 1)@ + ln W

r
2$<

Xô (51) 

According to equation (51), at the long chain limit, lim
#→X

F# = 4@ , and at short chain limit, 

lim
#→<

F# = −4@.  
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5. Transmission through X-Terminated Polyacetylene System 

 The X-terminate polyacetylene model is reasonably similar to the previous polyacetylene 

model, with a non-carbon atom at the two terminal sites (Figure 4A) with a non-zero on-site energy. 

The Hamiltonian for this molecule is: 

!n#Y = WèZ −
sr=
2
X |1⟩⟨1| + WèZ −

sr>
2
X |2(⟩⟨2(| − % $<<

(&!)"R|:⟩⟨: + 1|
%#&!

,$!

+ /. 1. (52) 

The determinant values related to !n#Y  are obtained below by substituting sr=/> 2⁄  to sr=/> 2⁄ − èZ.  

c
Δ%#,!t!n#Y u = −$!

#$%
#&!																																																																				

dett!n#Y u = (−1)# M$!
%# − $%

%(#&!) WèZ −
sr=
2
X WèZ −

sr>
2
XO

(53) 

We then obtain the corresponding transmission at ZD in symmetric junction: 

Ü#Y (ZD) =
r%

ûèZ −
sr
2 û

% ü
èZ −

sr
2

$<<&(%#&!)R − $<
&!<(%#&!)R õèZ −

sr
2 ú

%ü

%

(54) 

which can be rewritten as 

Ü#Y (ZD) =
r%

4èZ
% + r%

öcsch †(2( − 1)@ + ln°
èZ −

sr
2

$<
¢£ö

%

(55) 

The hyperbolic functions are multiplied by a coefficient r% (4èZ
% + r%)⁄ .  

The two-level expression for Ü#Y (ZD) in the main text is directly derived from equation (54) 

by simple manipulations to yield:  

Ü#Y (ZD) = ü
r$<<&

(%#&!)R

$<
%<&%(%#&!)R − õèZ −

sr
2 ú

%ü

%

(56) 

Equation (56) can be rewritten as: 
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Ü#Y (ZD) = ö
r 2⁄ õt−èZ + $<<&

(%#&!)R + s r 2⁄ u − t−èZ − $<<&
(%#&!)R + s r 2⁄ uú

(−èZ + $<<&(%#&!)R + s r 2⁄ )(−èZ − $<<&(%#&!)R + s r 2⁄ )
ö

%

(57) 

Finally, we obtain: 

Ü#
Y(%)(ZD) = k

(−1)#&! r 2⁄

−èZ + $<<(E&!)R + s r 2⁄
+

(−1)# r 2⁄

−èZ − $<<(E&!)R + s r 2⁄
k
%

(58) 

where 
(&!)#$%S %⁄

&[+8U&V(,$%)*8+S %⁄
= $ONMN, and 

(&!)#S %⁄

&[+&U&V(,$%)*8+S %⁄
= $=LMN. 

For X-terminated polyacetylene, it is non-trivial to obtain the analytical solution of F#Y  as 

a function of @. The solution of FE
Y  requires comparing real and imaginary parts of the argument 

of the hyperbolic cosecant function in ÜE
Y (ZD) (equation (55)), which are 

Re = (q − 1)@ − ln MíèZ
% + (r 2⁄ )% $<§ O (59) 

and 

Im = tan&!(r 2èZ⁄ ) (60) 

When |Re| > Im, FE
Y  can be approximated by 

FE
Y ≈

⎩
⎪⎪
⎨

⎪⎪
⎧

4@ öcoth †(q − 1)@ + ln°
$<

èZ −
sr
2

¢£ö						(Re > Im)

−4@ öcoth †(q − 1)@ + ln°
$<

èZ −
sr
2

¢£ö						(−Re < Im)

(61) 

When |Re| ≤ Im, there is no trivial analytical solution.  
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6. Transmission through X-Terminated Polyphenylene System 

 The structures are shown in Figure 5A and 5B, where m represents the number of phenylene 

units in the chain. 

1) Quinone 

 For the quinone structure, the Hamiltonian is 

!n#,\ = WèZ −
sr=
2
X |1⟩⟨1| + WèZ −

sr>
2
X |6( + 2⟩⟨6( + 2|

−$! % W
|6ß + 2⟩⟨6ß + 3| + |6ß + 2⟩⟨6ß + 4|
+|6ß + 5⟩⟨6ß + 7| + |6ß + 6⟩⟨6ß + 7|

X

#&!

B$<

−$% °%|6ß + 1⟩⟨6ß + 2|
#

B$<

+ %(|6ß + 3⟩⟨6ß + 5| + |6ß + 4⟩⟨6ß + 6|)
#&!

B$<

¢ + /. 1. (62)

 

where $! and $% are the hopping parameters through single bond and double bond, respectively. 

With r= = r> ≡ r, the determinant values are 

{

Δ]#8%,!t!n#,\u = (−1)#&!2#$!
%#$%

^#8!																															

dett!n#,\u = (−1)# M(2$!
%$%)%# WèZ −

sr
2
X
%

− $%
]#8%O

(63) 

The transmission at ZD can be derived as 

Ü#,\(ZD) = r% ü
2#$!

%#$%
%#8!

(2$!
%)%# õèZ −

sr
2 ú

%

− $%
^#8%

ü

%

(64) 

Finally, Ü#,\(ZD) has the form 

Ü#,\(ZD) =
r%

4èZ
% + r%

öcsch †! ln 2 + 2! ln W&1&2
X + ln°

'X −
)*
2

&2
¢£ö

%

(65) 
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2) Diradical 

 For the diradical structure, the Hamiltonian is 

!n#,_ = WèZ −
sr=
2
X |1⟩⟨1| + WèZ −

sr>
2
X |6( + 2⟩⟨6( + 2|

−$ % W
|6ß + 2⟩⟨6ß + 3| + |6ß + 2⟩⟨6ß + 4| + |6ß + 3⟩⟨6ß + 5|
+|6ß + 4⟩⟨6ß + 6| + |6ß + 5⟩⟨6ß + 7| + |6ß + 6⟩⟨6ß + 7|

X

#&!

B$<

−$!%|6ß + 1⟩⟨6ß + 2|
#

B$<

+ /. 1. (66)

 

where $  and $!  are the hopping parameters through intra-phenylene bond and inter-phenylene 

bond, respectively. Next, we obtain 

{

Δ]#8%,!t!n#,_u = (−1)#&!2#$`#$!
#8!																																				

dett!n#,_u = (−1)# M(2$a)%# Wèb −
sr
2
X
%

− $^#$!
%#8%O

(67) 

and the transmission at ZD is 

Ü#,_(ZD) = r% ü
(2$)#$!

#8!

(2$)%# õèZ −
sr
2 ú

%

− $!
%#8%

ü

%

(68) 

As always, we rewrite Ü#,_(ZD) as a hyperbolic function. 

Ü#,_(ZD) =
r%

4èZ
% + r%

öcsch †! ln 2 + ! ln W &&1
X + ln°

'X −
)*
2

&1
¢£ö

%

(69) 

 The two-level expression of Ü#Y (ZD) in the main text is directly derived from equation (68). 

We divide the numerator and the denominator by (2$)%# to get: 

Ü#,_(ZD) = r% ü
®

õèZ −
sr
2 ú

%

− ®%
ü

%

(70) 

where ® = $!
#8! (2$)#⁄ . We can rewrite equation (70) as: 
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Ü#,_(ZD) = k
r 2⁄ t(−èZ + ® + s r 2⁄ ) − (−èZ + ® + s r 2⁄ )u

(−èZ + ® + s r 2⁄ )(−èZ − ® + s r 2⁄ )
k
%

(71) 

And finally, we obtain the two-level expression: 

Ü#,_
(%)(ZD) = k

(−1)#&! r 2⁄

−èZ + ® + s r 2⁄
+

(−1)# r 2⁄

−èZ − ® + s r 2⁄
k
%

(72) 

where 
(&!)#$%S %⁄

&[+8c8+S %⁄
= $ONMN, and 

(&!)#S %⁄

&[+&c8+S %⁄
= $=LMN. 
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7. Additional Figures 

 

Figure S3. Ü#Y (ZD) as an even function with respect to èZ, with m = 1-4. 

 

 

Figure S4. Transmission at ZD  of X-terminated polyphenylene system at (A) quinone, and (B) 

radical structures, with r = 0.1t0, 0.01t0, and 0.001t0.  
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8. Sample Mathematica Code 

(* Taking Diradical Polyacetylene (m = 2) as example *) 
(* Parameters *) 
t0 = 1; γ = 0.1; δ = 0.5; 
t1 = t0 * Exp[ - δ];t2 = t0 * Exp[δ]; 
 
(* Hamiltonian and Gamma matrices *) 
H = {{0, - t1, 0, 0}, { - t1, 0, - t2, 0}, {0, - t2, 0, - t1}, {0, 0, - t1, 0}}; 
Γl = SparseArray[{1, 1}-> γ, {4, 4}]; 
Γr = SparseArray[{4, 4}-> γ, {4, 4}]; 
 
(* Self - energy *) 
Σ = - I / 2(Γl + Γr); 
 
(* Green's Function *) 
G[E_]:=Inverse[E IdentityMatrix[4] - (H + Σ)]; 
 
(* Transmission function *) 
T[E_]:=Tr[Γl.G[E].Γr.G[E]\[ConjugateTranspose]]; 
 
(* Plot transmission function *) 
LogPlot[{T[E]}, {E, - 1.5, 1.5}] 
 

9. References 

(1)  Heeger, A. J.; Kivelson, S.; Schrieffer, J.; Su, W.-P. Solitons in Conducting Polymers. Rev. 

Mod. Phys. 1988, 60, 781. 

(2)  Su, W. P.; Schrieffer, J.; Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979, 42, 

1698. 

(3)  Asbóth, J. K.; Oroszlány, L.; Pályi, A. A Short Course on Topological Insulators. Lect. Notes 

Phys. 2016, 919, 166. 

(4)  Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge university press: 

Cambridge, 1995. 

(5)  Scheer, E.; Cuevas, J. C. Molecular Electronics: An Introduction to Theory and Experiment. 

World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017. 

(6)  Tsuji, Y.; Stuyver, T.; Gunasekaran, S.; Venkataraman, L. The Influence of Linkers on 

Quantum Interference: A Linker Theorem. J. Phys. Chem. C 2017, 121, 14451-14462. 



S19 
 

(7)  Gunasekaran, S.; Hernangómez-Pérez, D.; Davydenko, I.; Marder, S.; Evers, F.; 

Venkataraman, L. Near Length-Independent Conductance of Polymethine Molecular Wires. 

Nano Lett. 2018, 18, 6387-6391. 

 

 


