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I. Tight-binding method 

In the tight binding method, the general form of the single-particle Hamiltonian, with the 

on-site energy of carbon set to zero, can be written as: 

!! = −$%",$|'⟩⟨*|
",$

+ ,. .. (1) 

where %",$ is the coupling between the i-th site and its neighboring j-th site. The Hamiltonian !! is 

generated by including all the nearest neighbor couplings between all atoms in the molecule as 

illustrated below for L1[m], C1[m], L2[m], and C2[m]. 

 

Here, %%(2) = %! exp(−2), and %&(2) = %! exp(2). 2 = 0.5 represents the topological structural 

limit and 2 = −0.5 represents the trivial structural limit. As an example, we show the Hamiltonian 

for L1[1] and C1[1] at the topological limit below: 

!!(89[1]) =

⎝

⎛
0 −%%(0.5) 0 0

−%%(0.5) 0 −%&(0.5) 0
0 −%&(0.5) 0 −%%(0.5)
0 0 −%%(0.5) 0 ⎠

⎞ (2) 

and 

L1[m] or C1[m] L2[m] or C2[m]
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!!(A9[1]) =

⎝

⎜⎜
⎜
⎛

0 −%%(0.5) 0 0 0 −%%(0.5)
−%%(0.5) 0 −%&(0.5) 0 0 0

0 −%&(0.5) 0 −%%(0.5) 0 0
0 0 −%%(0.5) 0 −%%(0.5) 0
0 0 0 −%%(0.5) 0 −%&(0.5)

−%%(0.5) 0 0 0 −%&(0.5) 0 ⎠

⎟⎟
⎟
⎞

(3) 

The coupling between the left and right electrodes, E' and E(, are defined as: 

E' = F'|G⟩⟨G| (4) 

and 

E( = F(|I⟩⟨I| (5) 

where G and I are the atomic sites directly connecting to the left and right electrode, respectively. 

In this work, we set F' = F( ≡ F = 0.1%! for symmetric electrode-molecule couplings. The total 

Hamiltonian is: 

!K = − '
2 (E' + E() + !! (6) 

The Green’s function is then obtained as: 

M(N) = ONP − !KQ)% (7) 

The transmission function can then be calculated as: 

S(N) = Tr[E'M(N)E(M*(N)] (8) 

We use Mathematica to compute all transmission data presented in the manuscript. A sample 
code for L1[1] is shown below: 

 
(* Taking Diradical Polyacetylene (m = 2) as example *) 
(* Parameters *) 
t0 = 1; γ = 0.1; δ = 0.5; 
t1 = t0 * Exp[ - δ];t2 = t0 * Exp[δ]; 
 
(* Hamiltonian and Gamma matrices *) 
H = {{0, - t1, 0, 0}c, { - t1, 0, - t2, 0}, {0, - t2, 0, - t1}, {0, 0, - t1, 0}}; 
Γl = SparseArray[{1, 1}-> γ, {4, 4}]; 
Γr = SparseArray[{4, 4}-> γ, {4, 4}]; 
(* Self - energy *) 
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Σ = - I / 2(Γl + Γr); 
 
(* Green's Function *) 
G[E_]:=Inverse[E IdentityMatrix[4] - (H + Σ)]; 
 
(* Transmission function *) 
T[E_]:=Tr[Γl.G[E].Γr.G[E]\[ConjugateTranspose]]; 
 
(* Plot transmission function *) 
LogPlot[{T[E]}, {E, - 1, 1}] 
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II. Quantum interference 

 Quantum interference (QI) between molecular orbital channels is determined by the phase 

of the orbitals, which is the phase difference between the two binding sites of the molecule to the 

electrodes. With N+ = 0,	Eq. 8 can be simplified to1-2: 

S(N+) = F& Y Δ,,-
det]!K^Y

&

(9) 

where Δ,,-  is the minor determinant of !K  with respect to its (L,R) element. By Eq. 9 and the 

Hamiltonian of L1[m], the calculated analytical result of S(N+) for L1[m] can be written as2: 

S./[1](N+) = ` −%%31)&%&&1)%

(−1)1)% a%%31%&
&(1)%) + F

&

4 %%
3(1)%)%&&1b

`

&

	

= c
(−1)1 F2
%!d)67 + 'F2

+
(−1)1)% F2
−%!d)67 + 'F2

c

&

(10) 

where %% ≡ %%(0.5) , and %& ≡ %&(0.5) . Eq. 10 is equivalent to having an occupied and an 

unoccupied orbital resonance-based transmission %899:;<=> and %?@A99:;<=> at energies: 

e899:;<=> = −%!d)67 (11) 

and 

e?@A99:;<=> = %!d)67 (12) 

These effective resonances have a coupling: 

f899:;<=> = f?@A99:;<=> =
F
2 (13) 

For single 1D TI molecules with two topological radical states, such as L1[1], the effective 

Occupied and Unoccupied states from the two-level model (Eqs. 10-13) are the actual HOMO and 

LUMO channels. While for molecules with more than two topological states, such as L1[m > 1], 

the effective Occupied and Unoccupied levels are just mathematical entities and not the actual 

molecular resonances. However, it is clear from this expression, that the energies of the effective 
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Occupied and Unoccupied channels are independent of the length g (Eqs. 11-12), but the actual 

HOMO and LUMO states of the L1[m] system get closer when g increases (Figure 2A-2B in the 

main text). The energies of the effective Occupied and Unoccupied states in the two-level model 

(Eqs. 11-12) are the geometric average of the eigen energies of the topological states: 

e899:;<=> = − hije)$j
1

$B%

!
(14) 

and 

e?@A99:;<=> = hijeC$j
1

$B%

!
(15) 

where the subscripts -1, -2, … , -m are indices of the topological states below N+, and +1, +2, … , 

+m are indices of the topological states above N+, as shown below for g = 3: 

 

Eqs. 14-15 can be derived by solving the reduced molecular Hamiltonian where only the 

topological states are included. For g = 1, the energies of the effective Occupied and Unoccupied 

states are the same as the real HOMO and LUMO states, which are the eigenvalues for the reduced 

Hamiltonian: 
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k% = l0 m
m 0n (16) 

where m is the coupling between the two radicals. The eigenvalues for k% is (o)%% , oC%% ) = (−m, m), 
where in the notation o±$1 , the subscript ±* is the orbital index, and the superscript g is the number 

of TI units. Similarly, for g = 2, which has four radical states, the reduced Hamiltonian becomes: 

k& = q
0 m 0 0
m 0 m 0
0 m 0 m
0 0 m 0

r (17) 

with eigenvalues (o)&& , o)%& , oC%& , oC&& ) = l)√F)%
&

m, )√FC%
&

m, √F)%
&
m, √FC%

&
mn . We note that the 

eigenvalues of k% can be expressed in terms of those of k& as: 

                                        o)%% = −s|o)%& o)&& |    and    oC%% = s|oC%& oC&& |																																						(18) 

Extending this to larger g, we can write the eigenvalues of k% in terms of those of k1 following 

the same expression: 

                            o)%% = − s|o)%1 o)&1 …o)11 |!     and    oC%% = s|oC%1 oC&1 …oC11 |! 																								(19) 

Eqs. 19 are equivalent to Eqs. 14-15 under the relations e?@A99:;<=> 899:;<=>⁄ = o±%% , and e±$ =
o±$1 . 

The couplings between the effective Occupied and Unoccupied states and the electrodes 

(Eq. 13) are the sum of the individual states: 

fHIIJK"LM = f?@A99:;<=> =$f)$
1

$B%

		or		$fC$
1

$B%

(20) 

Eqs. 20 can be derived from Fermi’s golden rule3-4, where the transition rate (coupling) from initial 

molecular states |*⟩ (* = 1, 2, … , m) and final electrode states |v⟩ is: 

fNANOP,$→R(N+) =
2w
ℏ& $ $ |⟨v|y|*⟩|&z(N+)

OPP	=P=9NTA>=
UNON=U	R

OPP	VAP=9:POT	
UNON=U	$
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= 2w
ℏ& q $ |⟨v|y|1⟩|&z(N+)

OPP	=P=9NTA>=
UNON=U	R

+ $ |⟨v|y|2⟩|&z(N+)
OPP	=P=9NTA>=
UNON=U	R

+⋯

+ $ |⟨v|y|g⟩|&z(N+)
OPP	=P=9NTA>=
UNON=U	R

r	

= f% + f& +⋯+ f1																																																																																						 (21) 

where y is the coupling for the transition * → v to first order in perturbation theory, and z(N+) is 

the density of state of the electrode at N+.  

Lastly, according to Eq. (10), the Occupied and Unoccupied channels are out-of-phase 

(different by a factor of -1). Therefore, there is constructive quantum interference (QI) between 

the two effective channels. Similarly in a linear π-system, such as L1[m], the actual HOMO and 

LUMO are out-of-phase since LUMO has one more nodal plane than HOMO (Figure S1), which 

renders the effective model a good analog to the actual model.  

We have demonstrated the relations between the effective model and the actual model in 

terms of the three main factors of transmissions: molecular orbital energy levels, molecule-

electrode couplings, and QI. In conclusion, mathematically, the transmission for L1[m] has the 

same form as that of a 1D TI system with two radical states within the topological band. 

Using the effective model, the QI between Occupied and Unoccupied, SWX, as defined in 

the main text can be calculated from the cross term in Eq. 10: 2 

SWX = 2ReO%899:;<=>%?@A99:;<=>∗ Q (22) 

By substituting Eq. 10 into Eq. 22 and solving the Hamiltonian of L1[m], we obtain SWX for L1[m]: 

!!"(#$[&]) =
*#
2 ,-.$/%&'0

# − *
#
4 3

,(.$/%&')# − *
#
4 3

#
+ (.$/%&')#*#

(23) 

Figure 2D in the main text is a plot of Eq. 23. 

  



S9 
 

III. Fano resonance 

 Fano resonance often results from having a pendant group on the main molecular wire. 

Such a pendant group affects the transmission function as detailed below. 

 

Consider a pendant group attached to a molecular wire such that it is coupled to the wire molecular 

orbital j through a parameter ~ and has an on-site energy eK. The transmission across this single-

level can be calculated through a tight-binding approach as5: 

S(N) = F'F(

aN − e$ − ~&
N − eKb

&

+ (F' + F()
&

4

(24)
 

From Eq. 24, the Fano resonance occurs at N = eK and this destructive QI leads to a decrease in 

the conductance of the topological wires. However, in the effective Occupied and Unoccupied 

model (Eq. 10), e899:;<=> and e?@A99:;<=> are not dependent on the wire length m (Eqs. 11-12). 

Hence, the conductance-length relation is not affected by Fano resonance however the magnitude 

of the conductance at EF does change depending on ~ and eK as shown in Figure S3. 
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IV. Additional figures 

 

Figure S1. Eigenvalues of HOMO and LUMO against length for L1[1] to L1[4]. 

 

 

Figure S2. Calculated molecular orbitals of topological states for C1[1] to C1[4]. The wavy bonds 

indicate electrode-molecule coupling. 

m = 1

m = 2

m = 3

m = 4

E

EF

C1[m]
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Figure S3. Conductance-length relationship for L1[m] for different (A) pendant onsite energy (eK) 

values and (B) coupling (~) values. The black dashed line indicates the transmission at Fermi for 

L1[m]. 
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