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1. Dependence of the Green’s function for the molecular part on the number of repeating 

units 

To check whether the Green’s function for the molecular part depends on the number 

of repeating units n, as an example, consider a polymer of 3 units. Its Hückel matrix can be 

written as 

 𝐌∗∗ =

(

  
 

𝐦∗

𝑠
𝟎

𝑠 𝐦
𝑠

𝟎 𝑠 𝐦∗
)

  
 

,     (S1) 

where m represents the block matrix for the monomer unit. We assume that the monomers are 

linked together with a single bond, whose resonance integral is represented by s. This should 

hold true for most polymers. The upper left and lower right corners of the Hückel matrix include 

the self-energy terms due to the interaction with the electrodes/linkers, indicated by asterisk (*). 

In accordance with eq. 25, one can obtain an expression for the Green’s function for 

the molecular part by using Cramer’s rule as follows: 

𝐺1,𝑁
𝐌∗∗ = [𝐸𝐈 − 𝐌∗∗]−1 =

(−1)1+𝑁

det(𝐸𝐈−𝐌∗∗)
∆𝑁,1(𝐸),    (S2) 

where N indicates the number of atoms included in the molecular part and is an even integer 

for even alternant hydrocarbons. To calculate det(𝐸𝐈 − 𝐌∗∗) , we can apply the matrix 

decomposition technique that we have done, by using eq. 4, in the main text to eliminate the 

linker parts. To obtain ∆𝑁,1(𝐸), we use another matrix decomposition technique represented 

by eq. 2. 

If one sequentially applies the matrix decomposition techniques to collapse the left 
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side of the secular determinant for the Hückel matrix, the element of the Green’s function can 

then be reduced to 

 𝐺1,𝑁
𝐌∗∗ = 𝑔𝑙,𝑟

∗(1) (𝑠 ∙ 𝑔𝑙,𝑟
∗(2))… (𝑠 ∙ 𝑔𝑙,𝑟

∗(𝑛−1)) (𝑠 ∙ 𝑔𝑙,𝑟
∗∗).   (S3) 

This is exactly the same as what is done in eq. 30, but here we are only collapsing from the left. 

Each time we collapse the determinant, the Green’s function of the monomer, which is 

represented by 𝑔∗
(𝑖)

, gets a self-energy term in the upper left corner of its matrix. These self-

energy terms vary as the collapsing process goes on. Thus, the asterisks get a superscript (*
(i)) 

to differentiate each monomer Green’s function from other ones. The self-energy term of the 

Green’s function for the first monomer, 𝑔∗
(1)

, comes from the linker/leads. Once one arrives at 

the final monomer, one finds that the Green’s function includes two self-energy terms: one 

comes from the upper left matrix and the other one comes from the lower right matrix, i.e., right 

linker unit. 

 When the Hückel matrix for the monomer unit including the self-energy term due to 

the interaction with the left-neighboring monomer is denoted by 𝐦∗(𝑖), the Green’s function for 

the monomer unit can be written as 

 𝑔1,𝑛
∗(𝑖) = [𝐸𝐈 −𝐦∗(𝑖)]

−1

=
(−1)1+𝑛

det(𝐸𝐈−𝐦∗
(𝑖)
)
∆𝑛,1(𝐸),    (S4) 

where n indicates the number of atoms in the monomer unit. Since the self-energy term is only 

included in the (1, 1) element of 𝐦∗(𝑖), ∆𝑛,1(𝐸) is common among all monomers. For the case 

of the rightmost monomer, the self-energy term is included in both (1, 1) and (n, n) elements, 
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but this does not affect the value of ∆𝑛,1(𝐸). As for det (𝐸𝐈 −𝐦∗(𝑖)), one can use the cofactor 

expansion along the first column as follows: 

 det (𝐸𝐈 −𝐦∗(𝑖)) = (𝐸 −𝑚1,1 − 𝜎
(𝑖))Δ1,1 + ∑ (−𝑚𝑖,1)(−1)

𝑖+1Δ𝑖,1
𝑛
𝑖=2 , (S5) 

where σ(i) indicates the self-energy term. If the monomer unit is an even-alternant hydrocarbon, 

Δ1,1(𝐸) is equal to 0 when E = 0 because Δ1,1(𝐸) is an odd function.1 This may not be true 

for the last monomer because it includes the self-energy term in the (n, n) element. However, if 

the coupling of the last monomer to the electrode/linker is not so large, the self-energy in the 

bottom right corner can be negligible. Thus, det (−𝐦∗(𝑖)) is expected to be common among 

all monomers, and hence all of the monomer Green’s functions are expected to be equal to the 

Green’s function without the self-energy term, namely 𝑔∗(𝑖) = 𝑔, when E = 0. This simplifies 

eq. S3 as follows: 

 𝐺1,𝑁
𝐌∗∗ = 𝑔𝑙,𝑟

∗(1) (𝑠 ∙ 𝑔𝑙,𝑟
∗(2))… (𝑠 ∙ 𝑔𝑙,𝑟

∗(𝑛−1)) (𝑠 ∙ 𝑔𝑙,𝑟
∗∗) ≈

1

𝑠
(𝑠 ∙ 𝑔𝑙,𝑟)

𝑛
.  (S6) 

Let us look at an example, polyene. The monomer unit is ethene and the Green’s 

function at E = 0 can be written as 

𝑔1,2 = (− [
0 𝑑
𝑑 0

]
−1

)
1,2
= ([

0 −
1

𝑑

−
1

𝑑
0
])

1,2

= −
1

𝑑
,    (S7) 

where d indicates the resonance integral for the double bond in the monomer. By using eq. S4, 

one can obtain 

 |𝐺1,𝑁
𝐌∗∗|

2
= (

1

𝑠
(𝑠 ∙ 𝑔𝑙,𝑟)

𝑛
)
2

=
1

𝑠2
(
𝑠

𝑑
)
2𝑛

.     (S8) 

This equation agrees with the one in a previous study.2 Plugging eq. S6 into the equation for 
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the exponential falloff, i.e., eq. 36, we can get 

 𝛽𝑛 = −
𝜕

𝜕𝑛
ln (|𝐺1,𝑁

𝐌∗∗|
2
) = −

𝜕

𝜕𝑛
ln (|

1

𝑠
(𝑠 ∙ 𝑔𝑙,𝑟)

𝑛
|
2

) = − ln (|𝑔𝑙,𝑟 ∙ 𝑠|
𝟐
). (S9) 

This is a general formula for the decay constant of a polymer. This implies that the decay 

constant is equal to the transmission through the monomer multiplied by the coupling or 

resonance integral. Further, the exponential decay comes from the fact that the transmission 

through the polymer is the product of the transmission through the monomers. We can apply 

the formula of the exponential falloff to the polyene example, getting the same equation as the 

one derived in the previous study as follows:2 

 𝛽𝑛 = − ln (|𝑔𝑙,𝑟 ∙ 𝑠|
2
) = − ln ((−

1

𝑑
∙ 𝑠)

2

) = −2 ln (
𝑠

𝑑
).   (S10) 

As an aside, there is a slightly easier way to get the same formula. All one has to do is to realize 

that the decay constant is equal to the negative natural logarithm of the ratio between 

transmissions, Tn and Tn-1, 

 − ln (
𝑇𝑛

𝑇𝑛−1
) = − ln (

𝑒−𝛽𝑛

𝑒−𝛽(𝑛−1)
) = 𝛽𝑛.     (S11) 

Therefore, to obtain the decay constant, one only needs to collapse one monomer unit as 

follows: 

 
𝑇𝑛

𝑇𝑛−1
∝

|𝐺𝑛|
2

|𝐺𝑛−1|2
=
|(𝑔𝑙,𝑟∙𝑠)𝐺𝑛−1|

2

|𝐺𝑛−1|2
= |𝑔𝑙,𝑟 ∙ 𝑠|

2
.     (S12) 

Hsu and Rabitz3 have derived another general relationship between the number of 

repeating units and the conductance decay constant. By following their scheme, we obtain an 

expression for the decay constant for conductance through polyenes as follows: 
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 𝛽𝑛 = 2 ln |
1

𝜆𝑛
|,        (S13) 

where 𝜆𝑛  is chosen so that its absolute value is the largest among the eigenvalues of the 

product of the monomer Green’s function (g) and the coupling matrix between monomers (v). 

For the case of polyenes, the following equations hold true: 

 𝐠 = (𝐸𝐈 − [
0 𝑑
𝑑 0

])
−1

,       (S14) 

and 

 𝐯 = [
0 0
𝑠 0

].        (S15) 

This turns out to be the same as the formula we have derived above if one assumes that the 

monomers are linked by a single bond. Let us take a closer look at the explicit formula for the 

polyene example. The matrix gv can be written as 

 𝐠𝐯 = (𝐸𝐈 − [
0 𝑑
𝑑 0

])
−𝟏

[
0 0
𝑠 0

] = [

𝑠𝑑

𝐸2−𝑑2
0

𝐸𝑠

𝐸2−𝑑2
0
].    (S16) 

The eigenvalues for this matrix are 
𝑠𝑑

𝐸2−𝑑2
 and 0, so 𝜆𝑛 =

𝑠𝑑

𝐸2−𝑑2
, leading to 

 𝛽𝑛 = −2 ln (
𝑠

𝑑
),        (S17) 

where we suppose that E = 0. As one can see in this example, if v only has an element in the 

bottom left corner, namely the assumption of the single-bond coupling, then the matrix gv only 

has nonzero elements in the first column. Therefore, the only nonzero eigenvalue is the 1st 

element of the matrix, [gv]1,1. Since the element [gv]1,1 is simply 𝑔𝑙,𝑟 ∙ 𝑠, the eigenvalues for gv 

are 𝑔𝑙,𝑟 ∙ 𝑠 and 0. Thus, we arrive at the same formula as derived above, 

 𝛽𝑛 = 2 ln |
1

𝜆𝑛
| = −ln|𝜆𝑛|

2 = −ln|𝑔𝑙,𝑟 ∙ 𝑠|
2
.     (S18) 



S7 

 

So we can conclude that our methodology, which is based on the determinant decomposition 

technique, can provide a consistent result with the procedure developed by Hsu and Rabitz. 
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2. Extended Hückel calculations for the Fermi level alignment 

We perform an extended Hückel calculation4 to check how much the Fermi level in 

the substituted systems is different relative to the unsubstituted case. To this end, we hold up a 

diamino benzene molecule as an example. We carried out the geometry optimization of the p- 

and m-diamino benzene molecules with a single Au atom attached to each amine linker. The 

optimizations were performed at the B3LYP/LANL2DZ5 level of theory by using the Gaussian 

09 program.6 The optimized p- and m-diamino benzene molecules with two Au atoms are 

bridged between two Au19 clusters which model an Au electrode. The structure of the 

constructed molecular junctions are shown in Figure S1. We performed transmission 

calculations for these molecular junctions at the extended Hückel level of theory by using 

YAeHMOP7 and Artaios.8  

 

 

Figure S1. Structures of Au20-p-diamino benzene-Au20 molecular junction (a) and Au20-m-

diamino benzene-Au20 molecular junction (b). 
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The calculated transmission spectra for the molecular junctions shown in Figure S1 

are shown in Figure S2. One can clearly see a transmission dip at E = -11.1 eV in the 

transmission spectrum for m-diamino benzene, while one cannot see such a feature in that for 

p-diamino benzene. So the dip at E = -11.1 eV is considered to be due to quantum interference 

(QI). 

 

 

Figure S2. Transmission spectra calculated for Au20-p-/m-diamino benzene-Au20 junctions at 

the extended Hückel level of theory. 

 

In the extended Hückel theory, the energy level of carbon’s 2pz orbital, which is the 

extended-Hückel counterpart of carbons’s Coulomb integral in the simple Hückel theory, is 

located at E = -11.4 eV. This energy level can be regarded as the Fermi level for molecular 

junctions consisting of an unsubstituted alternant hydrocarbon and is almost the same as the 

energy location of the QI dip. Therefore, the influence of overlap matrix and non-nearest 
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neighbor coupling, which is included in the extended Hückel method, does not affect the QI 

feature significantly. 

In Figure S2 one can see a difference in transmission between molecular junctions with 

and without QI. In the energy region from -11.8 eV to -8.2 eV, the QI system has lower 

transmission than the non-QI system. This means that the transmission dip is not so narrow but 

as large as 3.6 eV. This is because the transmission dip appears in between the HOMO and 

LUMO of the bridged molecule, so the width of the dip can be comparable with the HOMO-

LUMO gap. The HOMO-LUMO gap of the p- and m-diamino benzene molecules is in the range 

between 3.2 eV and 3.8 eV at the extended Hückel level of theory. As long as the HOMO-

LUMO gap of the bridged molecule is larger than the estimated shift of the Fermi level, an 

experiment can at least detect the signature of QI. 

To estimate the Fermi level of the gold electrodes, we carried out extended Hückel 

calculations for gold nano-clusters consisting of an odd-number of gold atoms. The structures 

of the smaller sized gold nano-clusters are taken from the ARTAIOS program, while those of 

the larger sized nano-clusters are generated by using Virtual NanoLab.9 The structures of the 

generated clusters are shown in Figure S3.  
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Figure S3. Structures of the smaller Au nano-clusters (top) and larger Au nano-clusters 

(bottom). 

 

Since a gold atom includes odd-numbered valence electrons, odd-numbered gold 

clusters hold the singly occupied molecular orbital (SOMO), and it is reasonable to regard the 

SOMO level as the Fermi level of the gold cluster. Figure S4 shows a plot of the SOMO level 

as a function of the number of gold atoms included in the cluster. As the size of the cluster gets 

larger, the SOMO level converges to E = -10 eV. So we can conclude that the Fermi level of the 

gold electrode is located at around E = -10 eV. Thus, we find that the Fermi level in the 

substituted systems is different relative to the unsubstituted case by 1.4 eV in the case of the 

diamino benzene. 
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Figure S4. SOMO levels of Au nano-clusters calculated at the extended Hückel level of theory 

are plotted as a function of the number of Au atoms included in the cluster. 
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