Supplementary Information

For

Alkane Solvent-Derived Acylation Reaction Driven by Electric Fields

Xiye Wang¹[‡], Boyuan Zhang²[‡], Brandon Fowler¹, Latha Venkataraman^{1,2*}, and Tomislav Rovis^{1*}

¹ Department of Chemistry, Columbia University, New York, NY, USA. ² Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.

TABLE OF CONTENTS

1	Rea	ction Conditions	4
	1.1	Sample preparation	4
	1.1.	1 General experimental considerations	4
	1.1.2	2 General reaction solution preparation	4
	1.2	STM-BJ setup	4
2	Rea	ction Analysis	5
	2.1	STM-BJ conductance	5
	2.2	Gold-only scale-up experiment	6
	2.2.	1 Au substrate synthesis	6
	2.2.2	2 Isolation and purification procedure	6
	2.2.	3 Preparative HPLC-MS analysis	6
	2.3	NMR analysis	8
	2.4	LC-MS and MS ^E analysis	. 12
	2.4.	1 LC sample preparation, method, and analysis	. 12
	2.4.2	2 Mass list of products and their isotopologues	. 13
	2.4.	3 Representative extracted ion chromatograms and MS ^E spectra	. 14
	2.4.4	4 LC matching of reaction products and synthesized standards	. 22
3	Syn	thetic Procedures and Characterization of New Compounds	. 23
	3.1	General experimental considerations	. 23
	3.2	DMEDA and its isotopologues	. 23
	3.3	Acylated DMEDA derivatives	. 26
	3.4	Deuterated <i>n</i> -alkanes and their hydroperoxides	. 29
	3.5	¹ H and ¹³ C NMR spectra of new compounds	. 34
4	Mec	chanistic Investigations	. 51
	4.1	Measurement of deuterium isotopologues of DMEDA	. 51
	4.2	Measurement in deuterated solvents	. 60
	4.3	Evaluation of bias dependency	. 67
	4.4	Evaluation of reproducibility	. 67
	4.5	Evaluation of air components on reactivity	. 68
	4.6	Evaluation of internal standard on reactivity	. 68
	4.7	Reactivity solvent dependence	. 70
	4.8	Evaluation of possible alkyl precursors	. 71

4	4.9 Ev	aluation of surface functionalization	74
4	1.10 Pla	usible mechanisms	75
	4.10.1	Alkyl chain from alkyl hydroperoxides	75
	4.10.2	Alkyl chain truncation from alkyl hydroperoxides	76
5	Referen	ces	77

1 REACTION CONDITIONS

1.1 SAMPLE PREPARATION

1.1.1 General experimental considerations

Unless otherwise specified, all commercial chemicals were used as supplied without additional purification. New compounds were synthesized as described in Section 3. All sample preparations were conducted under ambient conditions.

1.1.2 General reaction solution preparation

To prepare solutions: reagents with a desired final concentration of less than 10 mM in the reaction solution were first made as a separate solution of 100x concentration and added to the reaction mixture with serial dilution; reagents with a desired final concentration of more than 10 mM in the reaction solution were added directly. Following the addition of all reagents, the reaction mixture was topped up to the desired volume (1 mL) in a volumetric flask.

1.2 STM-BJ SETUP

STM-BJ measurements were made using a custom-built scanning tunneling microscope.¹ The electric field was applied between a 0.25 mm gold wire (99.998%, Alfa Aesar) as a gold STM-tip and a gold-coated (99.999%, Alfa Aesar) steel puck as a gold substrate, while the strength of the field was modulated either by changing the bias applied or the distance between tip and substrate.² Conductance measurements were performed in dilute solutions (1 mM) of reaction mixtures in different solvents as indicated in the main text. In polar solvents, the insulated tips were created by driving a mechanically cut gold tip through Apiezon wax. A commercially available z-axis piezoelectric positioner (P-840.10, PI) was used to drive the tip in and out of contact with the substrate at a speed of 20 nm/s in a dilute solution of the target molecule under ambient conditions. The junction current (I) was recorded as a function of tip-substrate displacement at a fixed applied bias voltage (with a 100 k Ω resistor in series). The current, voltage across the junction, and electrode position data are all collected at a 40 kHz acquisition rate using custom Igor Pro (Wavemetric, Inc.). All the measurements are performed using fresh solutions, without any exposure to light, and in a dark acoustic box.

2 REACTION ANALYSIS

2.1 STM-BJ CONDUCTANCE

Conductance (G=I/V) was determined as a function of displacement and analyzed further using onedimensional (1D) conductance and two-dimensional (2D) conductance-displacement histograms. A gold point-contact is first formed with a conductance close to 1 G_0 (= 2e²/h, conductance quantum) and then followed by a molecular conductance plateau below 1 G_0 . The measured conductance traces were then collected and compiled into logarithmically binned 1D histograms (100/decade), and 2D histograms along the conductance axis (100/decade) and linear bins (1000/nm) along the displacement axis without data selection. Authentic standards of the +6, 9, and 10 C products (**2a**, **2b**, **2c**) were synthesized as described in SI section 3.3.

Figure 2-1 Logarithm-binned 2D conductance-displacement histograms of conductance traces measured with **DMEDA** and exsitu synthesized products, compiled from thousands of measured traces without data selection. All measurements were performed using $\sim 1 \text{ mM}$ in tetradecane at room temperature.

Figure 2-2 Logarithm-binned 1D conductance-displacement histograms of conductance traces measured with DMEDA over time, compiled from thousands of measured traces without data selection. All measurements were performed using 1 mM in tetradecane at room temperature.

2.2 GOLD-ONLY SCALE-UP EXPERIMENT

2.2.1 Au substrate synthesis

To fabricate the scale-up Au substrate, we first used degenerately doped silicon wafer with a 285 nm thermal silicon oxide layer as the bottom substrate. Next, we coated the bottom substrate with gold (99.999%, Alfa Aesar) as the scale up Au substrate.

2.2.2 Isolation and purification procedure

1 mL of 1 mM DMEDA in TD was placed on the large Au substrate, and removed after 24 h. An additional 1 mL 1 mM DMEDA in TD was added and allowed to react on Au for 24 h and removed until 10 mL of combined product mixture was collected. The reaction was extracted with 1 M aqueous HCl (3 x 10 mL), and the combined aqueous layer was washed with hexanes (10 mL) to remove organics, and concentrated *in vacuo* to afford a mixture of products as their HCl salts.

2.2.3 Preparative HPLC-MS analysis

The combined product HCl salts were resuspended in 1 mL H₂O and purified using preparative HPLC-MS: 10-90% MeCN in H₂O with 0.1 % formic acid over 12 min, 100 uL injection volume, XBridge Prep C18 5 μ m OBD 19x100 mm column, 20 mL/min flow rate, with Waters 3100 mass detector in ES+ mode. Fractions with [C₄H₁₃N₂+CO+(CH₂)₄₋₁₁]⁺, corresponding to [DMEDA+CO+(CH₂)₄₋₁₁+H]⁺, or +5- 12 C products were collected.

Figure 2-3

2.3 NMR ANALYSIS

Although preparative HPLC (section 2.2.3) did not isolate products of sufficient quantity and analytical purity for characterization purposes, structural assignments could be achieved from ¹H NMR, COSY, HSQC, and HRMS data.

Figure 2-4

Representative product compound +8 C:

2g

N-methyl-2-(N-methyloctanamido)ethan-1-aminium chloride (2g), mixture of rotamers (A:B=4.5:1) in D₂O. ¹H NMR (400 MHz, D₂O) δ 3.72 (t, *J* = 6.0 Hz, 2H), 3.24 (t, *J* = 5.9 Hz, 2H), 3.14 (rotamer A, s, 3H), 2.97 (rotamer B, s, 3H), 2.74 (rotamer A, s, 3H), 2.67 (rotamer B, s, 3H), 2.54 – 2.39 (m, 2H), 1.69 – 1.55 (m, 2H), 1.45 – 1.27 (m, 8H), 0.98 – 0.84 (m, 3H).

Figure 2-5

Figure 2-6

Figure 2-7

2.4 LC-MS AND MS^E ANALYSIS

2.4.1 LC sample preparation, method, and analysis

50 μ L of a TD solution containing 1 mM DMEDA is subjected to the STM-BJ conditions (described in SI section 1.2) at 100 mV for 24 h. 50 μ L of the reaction mixture was diluted with 50 μ L isopropanol, and analyzed by LC-MS or LC-MS^E. When visualization of DMEDA was required, an additional 50 μ L of propionic anhydride was added; this allowed DMEDA and the mono-acylated products to be detected as their +propionate [+C₃H₄O] adduct.

Chromatographic separation was performed on Acquity UPLC H-Class system (Waters Corporation, Milford, MA, USA) using an Acquity UPLC BEH C18 column (2.1 mm \times 100 mm, 1.7 µm). Mobile phase A consisted of water with 0.1% formic acid and mobile phase B consisted of MeOH/IPA (4:1; v/v). The chromatographic gradient was set as follows: 80% A, and 20% B, 0-2 min 20% A and 80% B, 2-4 min 20% A and 80% B, 4-5 min 80% A. The flow rate was set to 0.35 mL/min and the column temperature was set at 40 °C. The UPLC was coupled to a Xevo G2 XS Q-ToF MS (Waters Corporation, Milford, MA, USA), and operated in positive electrospray ionization mode. The capillary voltage and sampling cone voltage of 3 kV and 30 V were used in the positive mode. The source and desolvation temperatures were 120 °C and 500 °C, respectively. The desolvation gas flow (N2) was set to 650 L/hr. The samples were also acquired in data independent MSE mode for the structural assignment of the compounds. The low collision energy was set to 4 eV, and the trap collision energy was ramping from 15-40 eV. All data were analyzed in MassLynx software (Waters, Version 4.1).

For quantitative analysis, the samples ran in triplicates, and integrations of each product compound were then averaged. When no internal standard is used, quantification was based on the raw integration values; experiments were only compared relatively if all samples came from the same stock solution. When an internal standard (1-methyl-2-phenylindole at 50 μ M) is used, all product quantifications were normalized to the internal standard integration (yield reported as the ratio of integral values of product/internal standard, or A/IS). The quantification of the data was performed in QuanLynx software.

MEDA-d14					159.2218	173.2375	187.2532	201.2689	215.2846	229.3003	243.316	257.3317	271.3474	285.3631	299.3788	313.3945	327.4102
MEDA-d13				144.1998	158.2155	172.2312	186.2469	200.2626	214.2783	228.294	242.3097	256.3254	270.3411	284.3568	298.3725	312.3882	326.4039
MEDA-d12 D				143.1935	157.2092	171.2249	185.2406	199.2563	213.272	227.2877	241.3034	255.3191	269.3348	283.3505	297.3662	311.3819	325.3976
MEDA-d11 D			128.1715	142.1872	156.2029	170.2186	184.2343	198.25	212.2657	226.2814	240.2971	254.3128	268.3285	282.3442	296.3599	310.3756	324.3913
MEDA-d10 D			127.1652	141.1809	155.1966	169.2123	183.228	197.2437	211.2594	225.2751	239.2908	253.3065	267.3222	281.3379	295.3536	309.3693	323.385
MEDA-d9 DN			126.1589	140.1746	154.1903	168.206	182.2217	196.2374	210.2531	224.2688	238.2845	252.3002	266.3159	280.3316	294.3473	308.363	322.3787
MEDA-d8 D			125.1526	139.1683	153.184	167.1997	181.2154	195.2311	209.2468	223.2625	237.2782	251.2939	265.3096	279.3253	293.341	307.3567	321.3724
DMEDA-d7			124.1463	138.162	152.1777	166.1934	180.2091	194.2248	208.2405	222.2562	236.2719	250.2876	264.3033	278.319	292.3347	306.3504	320.3661
DMEDA-d6			123.14	137.1557	151.1714	165.1871	179.2028	193.2185	207.2342	221.2499	235.2656	249.2813	263.297	277.3127	291.3284	305.3441	319.3598
DMEDA-d5			122.1337	136.1494	150.1651	164.1808	178.1965	192.2122	206.2279	220.2436	234.2593	248.275	262.2907	276.3064	290.3221	304.3378	318.3535
DMEDA-d4			121.1274	135.1431	149.1588	163.1745	177.1902	191.2059	205.2216	219.2373	233.253	247.2687	261.2844	275.3001	289.3158	303.3315	317.3472
DMEDA-d3			120.1211	134.1368	148.1525	162.1682	176.1839	190.1996	204.2153	218.231	232.2467	246.2624	260.2781	274.2938	288.3095	302.3252	316.3409
DMEDA-d2	H ⁺ Me ⁻ N ⁻ Me	of the me	119.1148	133.1305	147.1462	161.1619	175.1776	189.1933	203.209	217.2247	231.2404	245.2561	259.2718	273.2875	287.3032	301.3189	315.3346
0MEDA-d1	Me N ⁺	o the	118.1085	132.1242	146.1399	160.1556	174.1713	188.187	202.2027	216.2184	230.2341	244.2498	258.2655	272.2812	286.2969	300.3126	314.3283
DMEDA major products D	Me N2	o the me	117.1022	131.1179	145.1336	159.1493	173.165	187.1807	201.1964	215.2121	229.2278	243.2435	257.2592	271.2749	285.2906	299.3063	313.322
U +			1	2	ŝ	4	S	9	7	80	6	10	11	12	13	14	15

2.4.2 Mass list of products and their isotopologues

Figure 2-8

1.170F MS ES+ 299.306.0.0500Da 1.2762	140 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 11 TOF MS ES+	285.2910_0500Da 4.65e4	(40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 1: TOF MS ES+	271.275 0.0500Da 2.78e4	1.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 11: TOF MS ES+	28.3.50 3.62 3.68 3.90 4.02,4.06 4.38 4.47,4.53 4.82 4.9912564	(40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 11 TOF MS ES+	243.244 0.0500Da 1.31e5	40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00	229,228 0.05000a 229,228 0.05000a 229,228 0.05000a 22454	3.02 3.94 4.00 4.20 4.4.0 4.60 4.80 5.00	11. TOF MS ES+ 215.212.0.05000a 61.44e4	40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00	141 354358 384 3.92 410 425 4.43 49 480 491 86169 341 354358 384 3.92 410 425 4.43 49 480 497 86163	1. 100 3.60 3.80 4.00 4.20 4.40 4.50 4.50 5.00 1. 105 8.5+	344 3.563.66 3.79 3.86 4.10 4.194.30 4.49 4.56 4.73 4.93 7.0963	1.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 1. TOF MS ES+	37 Sum 0.0500a 1.3465 1.3465 1.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00
315	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	3.16	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	304 314 323	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	4 157 1.77 1.89 2.11 2.29 2.73 2.85 3.10 3.273 .	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	276	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	2.56 2.57 2.56 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57	20 1.00 1.00 1.00 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.20 3.10 3.20 3.00 3.20 3.00 3.20 3.00 3.00 3.0	2.27	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	1132 1401 $69^{1.77}$ 1.91 $992.222.282.32$ $254.774.2.78$ 3.03 $3.113.23$	7.1.40 1.60 1.80 2.00 2.20 2.40 2.60 3.00 3.20 3.20	126 141162 172 188 195 22225 239 262 267 279 2.94 ³⁰³ 3213.39	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EIC for +14 C [M+H] 0 1003	230125 AXW STM102	EIC for +13 C [M+H]	0.20 0.40 0.60 0.80 1.00 1.20 230125 AXW STM102	EIC for +12 C [M+H] 100	0.20 0.40 0.60 0.80 1.00 1.20 230125 AXW STM102	EIC for +11 C [M+H] 3200 04 0.67,0.71 1.01 1.2	230125_AXW_STM102	FIC for +10 C [M+H]	0.20 0.40 0.60 0.80 1.00 1.20			230125_AXW_STM102 EIC for +8 C [M+H] 103	0^4 0.20 0.40 0.60 0.80 1.00 1.20	230125_AXW_STM102 EIC for +7 C [M+H] 100130 150 017 083 0.93 1.78	04	EIC for +6 C [M+H] 100 0.18 0.320.47 0.55 0.71 0.97 1.12	<u> </u>	[C4H13N2+CO+(CH ₂) _{5,14}] ⁺ ¹⁰⁰ [C4H13N2+CO+(CH ₂) _{5,14}] ⁺ ⁰⁰¹ -0 ⁻¹⁰ 020 040 080 100 120

2.4.3 Representative extracted ion chromatograms and MS^E spectra

	230125_AXW_STM102_733_(3.383)		1: TOF MS ES+
MS for +15 C [M+H]	100 40 88.111898.9010 110.1434.139.986/ 205.0749.229.1416 282.2793 313.3215 353.2656 313.4275 529.4 52	1385 543.4494	5.4/e5
	0 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 230155 AXW STM102707 (3.262)	540 560	580 600 1: TOF MS ES+
MS for +14 C [M+H]	100 w4 102,1280 116,144,139.9676 268,264,2 299,3066 325,1631 353,2660 415,2092 487,3893 515,4321 529,4 □ ○ <td< th=""><th>378 543.4543</th><th>575.4055</th></td<>	378 543.4543	575.4055
	UT 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 230 530 530 540 500 520 230 520 520 230 520 520 520 520 520 520 520 520 520 52	540 560	580 600 1: TOF MS ES+
MS for +13 C [M+H]	1 100 ≪10 102 1285 116 1441139 989 205 0761 229 1401 254 2478266 2492 297 2915 353 295 305 3139 5163 415 2109 437 1893 488 2993 502 3139 5163 305 2663 81108 110 1182 9857 411 2000 1000 1000 1000 1000 1000 1000	314 543.4520	4.86e5
	60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 400 420 440 460 480 500 520 230125 AXW STM102 657 (3.035)	540 560	580 600 1: TOF MS ES+
MS for +12 C [M+H]	1 100 *(16 84 205.0754229.141 274.279 290.2684 501.4015 515.4191 274.22355 224.22355 224.22355 201.4015 515.4197	529.4382	4.72e5
	0 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 250 500 520	540 560	580 600
MS for +11 C [M+H]	100 wf 8 49564 89560 100		1. TUF MS ES+ 4.23e5
	01-60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 400 420 440 460 420 500 520	540 560	580 600 ^{m/z}
MS for +10 C [M+H]	230125_AXW_STM102 598 (2.762) 1 100-42 102.1284_2116.1443210.0006 212.2025_243.2449		1: TOF MS ES+ 3.85e5
	² 3144 0057 98 9620 July 41 41 41 41 41 41 41 41 41 41 41 41 41	529.4391 567.2	173591.0377 m/z
	60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 230152_AXW_STM102.556(2.570)	540 560	580 600 1: TOF MS ES+
MIS for +9 C [M+H]	100 ⁺ 46 102.1283 7116.1442139.9874 186.0461198.1859 229.1417 © 2014 1065 24.9566 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2	110	3.30e5
	01	540 560	580 600
MS for +8 C [M+H]	230125_AXW_STM102 492 (2.275) 100 <mark>-4484 9592 102.1280_116</mark> 1443_141.9602_184_1711_215_2129_229.1424		1: TOF MS ES+ 2.65e5
	7 35. 3451 0.02 35. 3451 0.02 35. 3451 0.02 35. 3451 0.02 35. 350 350 350 350 350 350 350 350 350 350	28 549.9284	594.6654/z
	00 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 400 420 440 460 460 300 320 320 350 250 250 250 250 250 250 250 250 250 2	040 000	1: TOF MS ES+
MS for +7 C [M+H]	100 *24 84.9594 26.9600118.0871141.9599 81.5199 11 11 11 11 11 11 11 11 11 11 11 11		2.22e5
	00 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 230 530 540 500 520 230 550 550 550 550 550 550 550 550 550 5	540 560	580 600 1 TOF MS FS+
MS for +6 C [M+H]	100 410 84.9555 96.9613118.0865.41.9596 182.9857 229.1417 • 81 51529 110 411 411 411 110 411 110 111 11 230.1443 279.0933287.8832		3.32e5
	60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520	540 560	580 600

Figure 2-10

Figure 2-14

S-17

Figure 2-16

S-18

Figure 2-18

Figure 2-20

When derivatized with propionic anhydride (SI section 2.4.1), DMEDA and lighter amide products (+1-5 C) could be visualized.

ó

Ze,

Figure 2-21

Figure 2-22

2.4.4 LC matching of reaction products and synthesized standards

Authentic standards of the +6, 9, and 10 C products (**2a**, **2b**, **2c**) were synthesized as described in SI section 3.3. 0.5 mM solutions in isopropanol of these 3 standards were compared to the STM reaction mixture using the LC method described in SI section 2.4.1

3 Synthetic Procedures and Characterization of New Compounds

3.1 GENERAL EXPERIMENTAL CONSIDERATIONS

Unless otherwise specified, all commercial chemicals were used as supplied without additional purification; all reactions were conducted under ambient conditions with magnetic stirring. Thin layer chromatography was performed on SiliCycle® 250 µm, 60 Å plates. Visualization was accomplished with 254 nm UV light, cerium ammonium molybdate (CAM), KMnO₄, ninhydrin, or I₂. Chromatographic purification was accomplished by flash column chromatography on SiliCycle® Silica Flash® 40-63 µm silica gel, 60 Å or RediSep® Silver Silica Gel Disposable Flash Columns, 40–60 micron. ¹H NMR spectra were recorded on Bruker 300, 400, or 500 MHz spectrometers at ambient temperature and reported in ppm using tetramethylsilane (0.00 ppm) as an internal standard. Chemical shift is reported with multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet) and coupling constants (Hz) where appropriate. Proton-decoupled ¹³C NMR spectra were recorded on Bruker 400 or 500 MHz spectrometers (¹³C Larmor frequency at 101 or 126 MHz) at ambient temperature and reported in ppm using tetramethylsilane (0.00 ppm) as an internal standard. ²H NMR spectra were recorded on Bruker 400 MHz spectrometers (²H Larmor frequency at 61 MHz) at ambient temperature and reported in ppm using CDCl₃ (7.26 ppm) as an internal standard. Infrared spectra were recorded on a Perkin Elmer Spectrum Two FT-IR spectrometer in ATR mode. Low-resolution mass spectra (LRMS) were recorded on an Agilent 7890B GC System 5977B MSD GCMS with EI ionization. High-resolution mass spectra (HRMS) were obtained from the Columbia University Chemistry Department Mass Spectrometry Facility on a Waters XEVO G2-XS QToF mass spectrometer equipped with a UPC² SFC inlet and a LockSpray source with one of three probes: electrospray ionization (ESI) probe, atmospheric pressure chemical ionization (APCI) probe, or atmospheric pressure solids analysis probe (ASAP). All compounds were judged to be homogeneous (>95% purity) by ¹H and ¹³C NMR spectroscopy.

3.2 DMEDA AND ITS ISOTOPOLOGUES

N1,N2-bis(methyl-d3)ethane-1,2-diamine $(1b)^3$, N1,N2-dimethylethane-1,2-diamine-d2 $(1c)^{4,5}$, and N1,N2-dimethylethane-d4-1,2-diamine $(1d)^3$ were synthesized according to literature procedures and spectral data were in agreement with reported characterization.

N,N'-(ethane-1,2-diyl-d4)bis(4-methylbenzenesulfonamide) (5) was synthesized according to literature procedures and spectral data were in agreement with reported characterization.³

N,N'-(ethane-1,2-diyl-d4)bis(4-methyl-N-(methyl-13C)benzenesulfonamide) (6). A round bottom flask charged was charged with sulfonamide **5** (1.042 g, 2.80 mmol, 1 equiv), K₂CO₃ (1.160 g, 8.40 mmol, 3 equiv), N,N-dimethylformamide (20 mL) sequentially, and cooled to 0 °C. ¹³CH₃I (1.000 g, 7.00 mmol, 2.5 equiv) was added and the suspension was allowed to warm up to room temperature, and stirred for 21 h. The suspension was poured into deionized water (100 mL) and filtered. The solid residue was washed with deionized water (2x50 mL) and dissolved in CH₂Cl₂ (100 mL). The solution was dried with anhydrous Na₂SO₄ and concentrated *in vacuo* to afford sulfonamide **6** as a white powder (1.040 g, 93% yield; >99% CD₂, >99% ¹³CH₃ by ¹H NMR). **TLC** (20% ethyl acetate in hexanes) R_f 0.11 (UV); **IR** (film) 2023, 2965, 2918, 2875, 2803, 1596, 1452, 1335, 1153 cm⁻¹; ¹H **NMR** (300 MHz, CDCl₃) δ 7.71 – 7.62 (m, 4H), 7.37 – 7.29 (m, 4H), 2.81 (d, J = 139.5 Hz, 6H), 2.44 (s, 6H); ¹³C **NMR** (101 MHz, CDCl₃, referenced to residual CHCl₃, minor decoupling sidebands observed due to ¹³C labeling) δ 143.58, 134.26, 129.76, 127.31, 35.62, 21.45; **HRMS** (ESI+/qToF) m/z: [M+Na]⁺ Calculated for C24H48N2O2Na⁺ 419.3614; found 419.3629; ²**H NMR** (61 MHz, CHCl₃) δ 3.19.

N1,N2-di(methyl-13C)ethane-d4-1,2-diamine (1f). A round bottom flask was charged with N,N'-(ethane-1,2-diyl-d4)bis(4-methyl-N-(methyl-13C)benzenesulfonamide) **6** (1.000 g, 2.48 mmol, 1 equiv), 48 wt% HBr (6.0 mL), and acetic acid (3 mL), and stirred under reflux for 3 h. The solution was cooled to room temperature, concentrated, and redissolved in deionized water (10 mL). The solution was basified with NaOH (400 mg, 9.94 mmol, 4 equiv) until pH was verified to be >11. The solution was completely distilled (bath temperature 160 °C) into 1 M HCl (50 mL) and additional water (2x10 mL) was added to the solids and distilled over. The combined distillate pH was verified to be <1, and concentrated *in vacuo*. The salt was dried by azeotropic distillation with toluene (3x50 mL). The resulting solid was transferred to a flame-dried round bottom flask, to which K₂CO₃ (3.433 g, 25.0 mmol, 10 equiv) was added. The reaction vessel was evacuated and backfilled with argon (3x), and anhydrous tetrahydrofuran (10 mL) was added. The suspension was stirred for 18 h and filtered through a pad of celite, and the filtrate was cooled and slowly concentrated *in vacuo* at 0 °C; concentration progress was monitored by ¹H NMR of an aliquot, and deemed complete when tetrahydrofuran was completely removed, affording N¹,N²-dimethylethane-1,2-d2-1,2-diamine **1f** as a yellow liquid (42 mg, 18% yield, 99% CHD by ¹H NMR). **IR** (film) 3301, 2957, 2836, 2780, 2187, 2064, 1473, 1448, 1429, 1146 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 2.43 (d, J = 132.9 Hz, 6H), 1.16 (s, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 36.53; **LRMS** (GC/EI+) m/z: [M]⁺ Calculated for C₂¹³C₂H₈D₄N₂⁺ 94.1 found 94.0; ²H **NMR** (61 MHz, CHCl₃) δ 2.66.

(Z)-N,N'-(ethene-1,2-diyl)bis(N,4-dimethylbenzenesulfonamide) (7) was synthesized according to literature procedures and spectral data were in agreement with reported characterization.⁶

N,N'-((1R,2S)-ethane-1,2-diyl-1,2-d2)bis(N,4-dimethylbenzenesulfonamide) (8). A flame-dried round bottom flask charged was charged with sulfonamide 7 (1.000 g, 2.54 mmol, 1 equiv), 10 wt% palladium on carbon (269 mg, 254 µmol, 0.1 equiv), and CD₃OD (20 mL). The reaction mixture was purged with D₂ for 1 min, and stirred under 1 atm D₂ for 22 h. The suspension was filtered through a pad of celite, washed with CH₂Cl₂ (3x50 mL), and concentrated *in vacuo* to afford sulfonamide **8** as a white powder (1.001 g, 99% yield; 95% CHD, 6% SO₂C₆H₄CH₂D by ¹H NMR). **TLC** (20% ethyl acetate in hexanes) R_f 0.10 (UV); **IR** (film) 3033, 2168, 1596, 1494, 1453, 1384, 1339, 1306, 1156, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.36 – 7.30 (m, 4H), 3.19 (m, 2H), 2.82 (s, 6H), 2.44 (s, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 143.61, 134.30, 129.79, 127.36, 48.68, 48.38 (t, J=21.1 Hz), 35.76, 21.49; **HRMS** (ESI+/qToF) m/z: [M+H]⁺ Calculated for C₁₈H₂₂D₂N₂O₄S₂ 399.1381; found 399.1380; ²H NMR (61 MHz, CHCl₃) δ 3.22, 2.42.

N¹,N²-dimethylethane-1,2-d2-1,2-diamine (1e). A round bottom flask was charged with N,N'-(ethane-1,2-diyl-1,2-d2)bis(N,4-dimethylbenzenesulfonamide) **8** (996 mg, 2.50 mmol, 1 equiv), 48 wt% HBr (6.0

mL), and acetic acid (3 mL), and stirred under reflux for 3 h. The solution was cooled to room temperature, concentrated, and redissolved in deionized water (10 mL). The solution was basified with NaOH (400 mg, 10.0 mmol, 4 equiv) until pH was verified to be >11. The solution was completely distilled (bath temperature 160 °C) into 1 M HCl (50 mL) and additional water (2x10 mL) was added to the solids and distilled over. The combined distillate pH was verified to be <1, and concentrated *in vacuo*. The salt was dried by azeotropic distillation with toluene (3x50 mL). The resulting solid was transferred to a flame-dried round bottom flask, to which K₂CO₃ (3.450 g, 25.0 mmol, 10 equiv) was added. The reaction vessel was evacuated and backfilled with argon (3x), and anhydrous tetrahydrofuran (10 mL) was added. The suspension was stirred for 18 h and filtered through a pad of celite, and the filtrate was cooled and slowly concentrated in vacuo at 0 °C; concentration progress was monitored by ¹H NMR of an aliquot, and deemed complete when tetrahydrofuran was completely removed, affording N¹,N²dimethylethane-1,2-d2-1,2-diamine 1e as a colorless liquid (52 mg, 23% yield, 99% CHD by ¹H NMR). **IR** (solution in CDCl₃) 3280, 2949, 2856, 2796, 1539, 1454, 1375, 1313 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, referenced to residual CHCl₃) δ 2.70 – 2.63 (m, 2H), 2.43 (s, 6H), 1.45 (s, 2H); ¹³C NMR (101 MHz, CDCl₃, referenced to CDCl₃) δ 51.42, 51.02 (t, J = 20.5 Hz), 36.58; ²H NMR (61 MHz, CHCl₃) δ 2.68.

3.3 ACYLATED DMEDA DERIVATIVES

N-methyl-N-(2-(methylamino)ethyl)hexanamide (2a). A round bottom flask charged with acetic acid (20 mL) was placed in a room temperature (23 °C) water bath. N,N'-Dimethylethylenediamine (409 mg, 4.65 mmol, 2 equiv) and hexanoic anhydride (498 mg, 2.32 mmol, 1 equiv) were sequentially added dropwise to the reaction flask. The reaction was stirred for 2 h and poured into 60 mL 3 M aqueous NaOH, and the pH was verified to be >11. The resulting suspension was extracted with ethyl acetate (3x100 mL), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (gradient elution: 5-10% methanol in CH₂Cl₂+ 2% triethylamine) to afford amide 2a as a yellow oil (190 mg, 44% yield, mixture of rotamer in CDCl₃ A:B=1.4:1): TLC (10% methanol in CH₂Cl₂ + 2% triethylamine), R_f 0.33 (ninhydrin); IR (film) 3627, 2929, 2857, 1638, 1466, 1457 cm^{-1} ; ¹**H NMR** (400 MHz, CDCl₃) δ 3.50 (rotamer A, t, J = 6.6 Hz, 2H), 3.42 (rotamer B, t, J = 6.8Hz, 2H), 3.02 (rotamer A, s, 3H), 2.94 (rotamer B, s, 3H), 2.76 (m, 2H), 2.47 (rotamer B, s, 3H), 2.45 (rotamer A: s, 3H), 2.33 (m, 2H), 1.70 - 1.56 (m, 2H), 1.43 (s, 1H), 1.38 - 1.27 (m, 4H), 0.94 - 0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.43, 173.38, 49.92, 49.74, 49.46, 47.47, 36.59, 36.32, 36.01, 33.57, 33.50, 33.01, 31.69, 31.66, 25.16, 24.75, 22.53, 13.98.; **HRMS** (ESI+/qToF) m/z: [M+H]⁺ Calculated for C10H23N2O⁺ 187.1810; found 187.1804. Equilibration between rotamers was observed by magnetization transfer via NOESY.

N-methyl-N-(2-(methylamino)ethyl)nonanamide (2b). A round bottom flask charged with acetic acid (20 mL) was placed in a room temperature (23 °C) water bath. N,N'-Dimethylethylenediamine (950 mg, 10.8 mmol, 2 equiv) and nonanovl chloride (941 mg, 5.32 mmol, 1 equiv) were sequentially added dropwise to the reaction flask. The reaction was stirred for 2 h and poured into 120 mL 3 M aqueous NaOH, and the pH was verified to be >11. The resulting suspension was extracted with ethyl acetate (3x200 mL), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was triturated with CH₂Cl₂ (3x50 mL), filtered through a pad of celite, concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel deactivated by 5 column volume of 10% methanol in $CH_2Cl_2 + 2\%$ triethylamine (gradient elution: 10-20% methanol in CH_2Cl_2) to afford amide **2b** as a colorless oil (392 mg, 32% yield, mixture of rotamer in CDCl₃ A:B=1.4:1): TLC (10% methanol in CH₂Cl₂ + 2% triethylamine), Rf 0.36 (ninhydrin); IR (film) 3313, 2923, 2852, 2793, 1636, 1464, 1401, 1147, 1111 cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 3.49 (rotamer A, t, J = 6.6 Hz, 2H), 3.41 (rotamer B, t, J = 6.8 Hz, 2H), 3.02 (rotamer A, s, 3H), 2.94 (rotamer B, s, 3H), 2.75 (m, 2H), 2.47 (rotamer B, s, 3H), 2.44 (rotamer A: s, 3H), 2.33 (m, 2H), 1.69 - 1.56 (m, 2H), 1.39 - 1.18 (m, 10H), 1.13 (s, 1H), 0.92 -0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.28, 50.01, 49.77, 49.59, 47.52, 36.61, 36.40, 35.98, 33.58, 33.45, 33.02, 31.88, 29.54, 29.49, 29.22, 25.48, 25.09, 22.68, 14.10; HRMS (ESI+/qToF) m/z: [M+H]⁺ Calculated for C13H29N2O⁺ 229.2280; found 229.2299; Equilibration between rotamers was observed by magnetization transfer via NOESY.

N,N'-(ethane-1,2-diyl)bis(N-methylnonanamide) (2d). A round bottom flask was sequentially charged with N,N'-dimethylethylenediamine (409 mg, 4.65 mmol, 1 equiv) and N,N-diisopropylethylamine (1.50 g, 11.6 mmol, 2.5 equiv), and cooled to 0 °C. Nonanoyl chloride (1.81 g, 10.2 mmol, 2.2 equiv) was added dropwise to the mixture, and the reaction was stirred until the reaction warmed up to room temperature. The reaction mixture was partitioned between 50 mL CH₂Cl₂ and 50 mL 1 M aqueous NaOH solution. The organic layer was collected, and the aqueous layer was extracted with CH₂Cl₂ (2x 50 mL). The combined organic fractions were concentrated in vacuo to 50 mL volume, and washed with 50 mL 1 M aqueous HCl. The organic layer was collected, and the acidic aqueous layer was extracted with CH₂Cl₂ (2x 50 mL). The combined organic fractions were washed with saturated aqueous NaCl, dried with anhydrous Na₂SO₄, and concentrated *in vacuo* to afford amide **2d** as a yellow solid (1.54 g, 90%) vield, mixture of rotamer in CDCl₃ A:B:C=3.5:1:1.2): TLC (50% ethyl acetate in hexanes), R_f 0.15 (CAM); IR (film) 2953, 2917, 2849, 1640, 1467, 1406, 1281, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.53 (rotamer A, s, 4H), 3.46 (rotamer B and C, s, 4H), 3.02 (rotamer A, s, 6H), 3.01 (rotamer B, s, 6H), 2.96 (rotamer C, s, 6H), 2.37 – 2.20 (m, 4H), 1.68-1.55 (m, 4H), 1.34 – 1.22 (m, 20H), 0.90 – 0.85 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.37, 173.30, 173.23, 47.31, 46.99, 44.55, 36.94, 35.57, 33.53, 32.66, 31.92, 29.60, 29.58, 29.53, 29.27, 29.23, 25.55, 25.08, 24.96, 22.70, 14.11.; HRMS (ESI+/qToF) m/z: [M+Na]+ Calcd for C22H44N2O2Na 391.3300; found 391.3319; Equilibration between rotamers was observed by magnetization transfer via NOESY.

N-methyl-N-(2-(methylamino)ethyl)decanamide (2c). A round bottom flask charged with acetic acid (20 mL) was placed in a room temperature (23 °C) water bath. N,N'-Dimethylethylenediamine (832 mg, 9.44 mmol, 2 equiv) and decanovl chloride (901 mg, 4.72 mmol, 1 equiv) were sequentially added dropwise to the reaction flask. The reaction was stirred for 2 h and poured into 120 mL 3 M aqueous NaOH, and the pH was verified to be >11. The resulting suspension was extracted with ethyl acetate (3x200 mL), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was triturated with CH₂Cl₂ (3x50 mL), filtered through a pad of celite, concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel deactivated by 5 column volume of 10% methanol in $CH_2Cl_2 + 2\%$ triethylamine (gradient elution: 10-20% methanol in CH_2Cl_2) to afford amide 2c as a colorless oil (486 mg, 43% yield, mixture of rotamer in CDCl₃ A:B=1.5:1): TLC (10% methanol in CH₂Cl₂ + 2% triethylamine), R₁0.36 (ninhydrin); **IR** (film) 3312, 2922, 2852, 2794, 1637, 1463, 1401, 1147, 1109 cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 3.50 (rotamer A, t, J = 6.5 Hz, 2H), 3.41 (rotamer B, t, J = 6.7 Hz, 2H), 3.02 (rotamer A, s, 3H), 2.94 (rotamer B, s, 3H), 2.76 (m, 2H), 2.46 (rotamer B, s, 3H), 2.45 (rotamer A: s, 3H), 2.38-2.20 (m, 2H), 1.70 – 1.55 (m, 2H), 1.38-1.19 (m, 12H), 1.13 (s, 1H), 0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.39, 173.26, 49.71, 49.53, 49.11, 47.15, 36.37, 35.92, 35.85, 33.46, 33.34, 32.92, 31.74, 29.34, 29.14, 25.33, 24.90, 22.51, 13.95; **HRMS** (ESI+/qToF) m/z: [M+H]⁺ Calculated for C₁₄H₃₁N₂O⁺ 243.2436; found 243.2463; Equilibration between rotamers was observed by magnetization transfer via NOESY.

N.N'-(ethane-1,2-divl)bis(N-methyldecanamide) (2e). A round bottom flask was sequentially charged with N,N'-dimethylethylenediamine (409 mg, 4.65 mmol, 1 equiv) and N,N-diisopropylethylamine (1.50 g, 11.6 mmol, 2.5 equiv), and cooled to 0 °C. Decanoyl chloride (1.95 g, 10.2 mmol, 2.2 equiv) was added dropwise to the mixture, and the reaction was stirred until the reaction warmed up to room temperature. The reaction mixture was partitioned between 50 mL CH₂Cl₂ and 50 mL 1 M aqueous NaOH solution. The organic layer was collected, and the aqueous layer was extracted with CH_2Cl_2 (2x 50 mL). The combined organic fractions were concentrated in vacuo to 50 mL volume, and washed with 50 mL 1 M aqueous HCl. The organic layer was collected, and the acidic aqueous layer was extracted with CH₂Cl₂ (2x 50 mL). The combined organic fractions were washed with saturated aqueous NaCl, dried with anhydrous Na₂SO₄, and concentrated *in vacuo* to afford amide **2e** as a yellow solid (1.84 g, quantitative yield, mixture of rotamer in CDCl₃ A:B:C=3.3:1:1.1): TLC (50% ethyl acetate in hexanes), R_f 0.15 (CAM); IR (film) 2954, 2917, 2849, 1628, 1468, 1407, 1285, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 3.53 (rotamer A, s, 4H), 3.47 (rotamer B and C, s, 4H), 3.02 (rotamer A, s, 6H), 3.01 (rotamer B, s, 6H), 2.96 (rotamer C, s, 6H), 2.39 – 2.19 (m, 4H), 1.67 – 1.52 (m, 4H), 1.35-1.22 (m, 24H), 0.91 – 0.84 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.45, 173.33, 47.33, 47.00, 44.56, 36.94, 35.57, 34.26, 33.54, 32.65, 31.98, 29.61, 29.40, 25.58, 25.10, 24.98, 22.74, 14.13; **HRMS** (ESI+/qToF) m/z: [M+Na]+

Calcd for C24H48N2O2Na 419.3614; found 419.3629. Equilibration between rotamers was observed by magnetization transfer via NOESY.

3.4 DEUTERATED *N*-ALKANES AND THEIR HYDROPEROXIDES

Tetradecyl 4-methylbenzenesulfonate (10). A round bottom flask was sequentially charged with tetradecan-1-ol (2.000 g, 9.329 mmol, 1 equiv), 4-dimethylaminopyridine (22.8 mg, 187 µmol, 0.02 equiv), triethylamine (2.360 g, 3.25 mL, 2.5 equiv, 23.32 mmol), and CH₂Cl₂ (100 mL). p-toluenesulfonyl chloride (2.668 g, 1.5 equiv, 13.99 mmol) was added to the solution, and the reaction was stirred for 15 h. The reaction mixture was poured into saturated NaHCO₃ (100 mL), the organic layer was removed, and the aqueous layer was extracted with CH₂Cl₂ (2 x 100 mL). The combined organic layer was dried with anhydrous Na₂SO₄, concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography (gradient elution: 10-50% CH₂Cl₂ in hexanes) to afford tetradecyl 4-methylbenzenesulfonate **10** as a white solid (2.703 g, 79% yield): **TLC** (20% CH₂Cl₂ in hexanes), R_f 0.14 (CAM); **IR** (film) 2917, 2850, 1599, 1471, 1356, 1172 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.37 – 7.31 (m, 2H), 4.02 (t, *J* = 6.5 Hz, 2H), 2.45 (s, 3H), 1.63 (m, 2H), 1.34 – 1.19 (m, 22H), 0.92 – 0.84 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 144.73, 133.48, 129.93, 128.04, 70.85, 32.07, 29.82, 29.80, 29.75, 29.65, 29.54, 29.50, 29.08, 28.98, 25.48, 22.84, 21.77, 14.26; **HRMS** (ESI+/qToF) m/z: [M+Na]⁺ Calculated for C21H36O3NaS⁺ 391.2283; found 391.2299.

Me D

3a

Tetradecane-1-d (3a). A flame-dried flask evacuated and backfilled with N₂ was charged with lithium aluminum deuteride (125.3 mg, 1.1 equiv, 2.984 mmol) and anhydrous Et₂O (30 mL) under N₂ sequentially, and cooled to 0 °C. A solution of tetradecyl 4-methylbenzenesulfonate (1.000 g, 1 equiv, 2.713 mmol) in anhydrous Et₂O was added to the reaction dropwise. The suspension was refluxed for 20 h. The reaction mixture was partitioned between 1 M HCl (50 mL) and hexanes (50 mL), and the organic layer was removed. The aqueous layer was extracted with hexanes (2 x 50 mL), and the combined organic layer was dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (isocratic elution: hexanes) to afford tetradecane-1-d **3a** as a colorless oil (470 mg, 97% yield, 100% D by inverse-gated ¹³C NMR): **TLC** (hexanes), R_f 0.74 (I₂); **IR** (film) 2922,2853, 2175, 1466, 1377 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 1.36-1.16 (m, 24H), 0.92-0.82 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 32.27, 32.24, 30.06, 30.01, 29.72, 23.00, 22.91, 14.31, 14.01 (t, *J*=19.1 Hz); **LRMS** (GC/EI+) m/z: [M]⁺ Calculated for C14H29D⁺ 199.2 found 199.3; ²H **NMR** (61 MHz, CDCl₃) δ 0.89.

8-phenyloctyl 4-methylbenzenesulfonate (11). A round bottom flask was sequentially charged with 8-phenyloctan-1-ol (900 mg, 1 equiv, 4.36 mmol), 4-Dimethylaminopyridine (10.7 mg, 0.02 equiv, 87.2 μmol), triethylamine (1.10 g, 1.52 mL, 2.5 equiv, 10.9 mmol), and CH₂Cl₂ (50 mL). p-toluenesulfonyl chloride (1.25 g, 1.5 equiv, 6.54 mmol) was added to the solution, and the reaction was stirred for 15 h. The reaction mixture was poured into saturated NaHCO₃ (50 mL), the organic layer was removed, and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layer was dried with an anhydrous Na₂SO₄, concentrated *in vacuo*, and the resulting residue was purified by flash column chromatography (gradient elution: 20-50% CH₂Cl₂ in hexanes) to afford 8-phenyloctyl 4-methylbenzenesulfonate **11** as a colorless oil (1.57 g, 97% yield): **TLC** (20% CH₂Cl₂ in hexanes), R_f 0.38 (UV/CAM); **IR** (film) 2917, 2850, 1599, 1471, 1356, 1190, 1172, 1097 cm⁻¹; ¹**H NMR** (400 MHz, CDCl-₃) δ 7.82 – 7.75 (m, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.31 – 7.23 (m, 2H), 7.17 (td, J = 5.4, 2.9 Hz, 3H), 4.01 (t, J = 6.5 Hz, 2H), 2.63 – 2.54 (m, 2H), 2.44 (s, 3H), 1.59 (m, 4H), 1.26 (m, 8H).; ¹³C **NMR** (101 MHz, CDCl₃) δ 144.74, 142.91, 133.43, 129.92, 128.51, 128.37, 128.02, 125.73, 70.79, 70.71, 36.05, 31.53, 29.36, 29.24, 28.97, 28.94, 25.44, 21.75; **HRMS** (ESI+/qToF) m/z: [M+Na]⁺ Calculated for C21H28O3NaS⁺ 383.1657; found 383.1669.

Ph V D

3b

(Octyl-8-*d*)benzene (3b). A flame-dried flask evacuated and backfilled with N₂ was charged with lithium aluminum deuteride (128.1 mg, 1.1 equiv, 3.051 mmol) and anhydrous Et₂O (55 mL) under N₂ sequentially, and cooled to 0 °C. A solution of 8-phenyloctyl 4-methylbenzenesulfonate (1.000 g, 1 equiv, 2.774 mmol) in anhydrous Et₂O (20 mL) was added to the reaction dropwise. The suspension was refluxed for 20 h. The reaction mixture was partitioned between 1 M HCl (50 mL) and hexanes (50 mL), and the organic layer was removed. The aqueous layer was extracted with hexanes (2 x 50 mL), and the combined organic layer was dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (isocratic elution: hexanes) to afford (octyl-8-d)benzene **3b** as a colorless oil (420 mg, 79% yield, 100% D by ¹H NMR): **TLC** (hexanes), R_f 0.49 (UV/KMnO₄); **IR** (film) 3085, 3063, 3027, 2926, 2855, 2173, 1605, 1496, 1453 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 2H), 7.18 (d, J = 7.3 Hz, 3H), 2.61 (t, J = 7.7 Hz, 2H), 1.78 – 1.54 (m, 2H), 1.50 – 1.20 (m, 10H), 0.87 (m, 2H).; ¹³C **NMR** (101 MHz, CDCl₃) δ 143.06, 128.54, 128.36, 125.69, 77.48, 77.16, 76.84, 36.19, 32.07, 31.73, 29.69, 29.55, 29.48, 22.78, 13.96 (t, *J* = 19.1 Hz); **LRMS** (GC/EI+) m/z: [M]⁺ Calculated for C14H21D⁺ 191.2; found 191.2; ²H **NMR** (61 MHz, CDCl₃) δ 0.89.

$$Me \underbrace{OH}_{\text{DCM}, 0-23 \ \text{°C}} Me \underbrace{OH}_{\text{CM}, 0-23 \ \text{°C}} Me$$

Octyl methanesulfonate (12). A round bottom flask was charged with octan-1-ol (5.000 g, 6.05 mL, 1 equiv, 38.39 mmol), CH₂Cl₂ (100 mL), methanesulfonyl chloride (4.837 g, 3.291 mL, 1.1 equiv, 42.23 mmol) sequentially and cooled to 0 °C. Triethylamine (4.662 g, 6.42 mL, 1.2 equiv, 46.07 mmol) was added to the reaction mixture dropwise, and the reaction was warmed to room temperature, and stirred for 24 h. The reaction was poured into 1 M HCl (100 mL), and the organic layer was removed. The aqueous layer was extracted with CH₂Cl₂ (2 x 100 mL), and the combined organic layer was washed with saturated NaHCO₃ (100 mL), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was triturated with hexanes (100 mL), filtered through a pad of celite, and concentrated *in vacuo* to afford octyl methanesulfonate **X** as a yellow oil (7.8438 g, 98% yield): **TLC** (10% ethyl acetate/hexanes), R_f 0.13 (CAM); **IR** (film) 3028, 2927, 2857, 1468, 1353, 1173 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 3.96 (t, J = 6.6 Hz, 2H), 2.74 (s, 3H), 1.55 – 1.43 (m, 2H), 1.20 – 0.96 (m, 10H), 0.67 – 0.58 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 70.34, 37.47, 37.45, 31.81, 29.24, 29.18, 29.09, 25.53, 22.71, 14.16; **LRMS** (GC/EI+) m/z: [M]⁺ Calculated for C9H20O3S⁺ 208.1 found 208.1.

$$Me \underbrace{He}_{\text{H}_{7}} I = \underbrace{\frac{\text{AgOCOCF}_{3}, \text{H}_{2}\text{O}_{2}}{\text{Et}_{2}\text{O}, \text{H}_{2}\text{O}, \text{O} - 23 \text{°C}}}_{18\%} Me \underbrace{He}_{\text{H}_{7}} OOH \underbrace{He}_{18\%} OOH \underbrace{He}_{18\%} OOH \underbrace{He}_{18\%} OOH \underbrace{He}_{11} O$$

1-hydroperoxyoctane (4i). An oven-dried 3-dram vial was charged with 1-iodooctane (1.000 g, 752 μ L, 1 equiv, 4.164 mmol) and dry Et₂O (4 mL) sequentially, and cooled to 0 °C. Silver trifluoroacetate (1.104 g, 1.2 equiv, 4.997 mmol) was added to the reaction in small portions, followed by hydrogen peroxide dropwise (708.2 mg, 638.0 μ L, 30% Wt, 1.5 equiv, 6.247 mmol). The reaction was warmed to room temperature and stirred for 3 h. The reaction was filtered through a pad of celite, and the filtrate was added to saturated NaHCO₃ (10 mL). The organic layer was removed and the aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was purified by flash column chromatography on silica gel (gradient elution: 0-40% ethyl acetate in hexanes) to afford 1-hydroperoxyoctane **4i** as a colorless oil (111 mg, 18% yield): **TLC** (15% ethyl acetate/hexanes), R_f 0.37 (KMnO4); **IR** (film) 3384, 2924, 2855, 1655, 1467, 1378 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (s, 1H), 4.02 (t, J = 6.6 Hz, 2H), 1.63 (m, 2H), 1.42 – 1.18 (m, 10H), 0.95 – 0.82 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 77.38, 31.93, 29.53, 29.33, 27.70, 26.05, 22.78, 14.21; **LRMS** (GC/EI+) m/z: [M]⁺ Calculated for C8H18O2⁺ 146.1 found 146.0.

13

Octyl-8-d methanesulfonate (13). A flame-dried round bottom flask was charged with 8-bromooctan-1ol (1.66 g, 1.36 mL, 1 equiv, 7.94 mmol), and dry THF (40 mL) sequentially, and cooled to 0 °C. LiAlD4 (500 mg, 1.50 Eq, 11.9 mmol) was added to the reaction in portions, and the reaction was warmed to room temperature and stirred for 18 h. The reaction was partitioned between saturated NH₄Cl (50 mL) and Et_2O (50 mL), and the organic layer was removed. The aqueous layer was extracted with Et_2O (2 x 50 mL), and the combined organic layer was dried with anhydrous Na₂SO₄, and concentrated *in vacuo* to afford the crude reduced n-octanol-d1 (790 mg), which was used without purification. The solid residue was transferred to a round bottom flask. To the reaction vessel CH_2Cl_2 (15 mL), and methanesulfonyl chloride (758.7 mg, 516.1 µL, 1.1 equiv, 6.624 mmol) was added sequentially, and cooled to 0 °C. Triethylamine (731.2 mg, 1.01 mL, 1.2 Eq, 7.226 mmol) was added dropwise to the reaction. The reaction was warmed to room temperature, and stirred for 24 h. 1 M HCl (50 mL) was added to the reaction, and the organic layer was removed. The aqueous layer was extracted with CH_2Cl_2 (3 x 50 mL), and the combined organic layer was washed with NaHCO₃ (50 mL), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was triturated with hexanes (50 mL), filtered through a pad of celite, concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (gradient elution: 0-40% ethyl acetate in hexanes) to afford octyl-8-d methanesulfonate 13 as a colorless oil (925 mg, 56% yield over 2 steps): TLC (25% ethyl acetate/hexanes), R_f 0.38 (CAM); IR (film) 3031, 2928, 2857, 2174, 1467, 1352, 1173 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.22 (t, J = 6.6 Hz, 2H), 3.00 (s, 3H), 1.75 (m, J = 7.7, 6.6 Hz, 2H), 1.47 – 1.18 (m, 10H), 0.86 (m, J = 4.1, 1.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 70.34, 37.48, 31.80, 29.25, 29.20, 29.10, 25.54, 22.63, 14.06, 13.87, 13.68; LRMS $(GC/EI+) m/z: [M]^+$ Calculated for C9H19DO3S⁺ 209.1 found 208.9; ²H NMR (61 MHz, CDCl₃) δ 0.88.

HOO M8

4j

1-hydroperoxyoctane-8-*d* (**4j**). A round bottom flask was charged with octyl-8-d methanesulfonate (500 mg, 1 equiv, 2.39 mmol), methanol (7.2 mL), water (0.8 mL), hydrogen peroxide (1.08 g, 976 μ L, 30% Wt, 4 Eq, 9.55 mmol) sequentially, and cooled to 0 °C. A solution of potassium hydroxide (298 mg, 90% Wt, 2 Eq, 4.78 mmol) in water (0.5 mL) was added to the reaction dropwise, and the reaction was warmed to room temperature and stirred for 20 h. The reaction was partitioned between Et₂O (50 mL) and H₂O (50 mL), and the organic layer was removed. The aqueous layer was extracted with Et₂O (3 x 50 mL), and the combined organic layer was dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The solid residue was purified by flash column chromatography on silica gel (gradient elution: 0-40% ethyl acetate in hexanes) to afford 1-hydroperoxyoctane-8-*d* **4j** (colorless liquid, 142 mg, 40% yield). **TLC** (15% ethyl acetate/hexanes), R_f 0.37 (KMnO4); **IR** (film) 3378, 2926, 2856, 2174, 1650, 1465, 1374 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (s, 1H), 4.02 (t, J = 6.6 Hz, 2H), 1.71 – 1.58 (m, 2H), 1.44 – 1.20 (m, 10H),

 $0.94 - 0.78 \text{ (m, 2H)}; {}^{13}\text{C NMR} (101 \text{ MHz, CDCl}_3) \delta 31.76, 29.40, 29.20, 27.57, 25.91, 22.56, 13.94, 13.79, 13.64; LRMS (GC/EI+) m/z: [M]⁺ Calculated for C8H17DO2⁺ 147.1 found 146.8; {}^{2}\text{H NMR} (61 \text{ MHz, CDCl}_3) \delta 0.89.$

3.5 ¹H AND ¹³C NMR SPECTRA OF NEW COMPOUNDS

4 MECHANISTIC INVESTIGATIONS

4.1 MEASUREMENT OF DEUTERIUM ISOTOPOLOGUES OF DMEDA

1b-f were synthesized as described in SI section 3.2. TD solutions containing 1 mM DMEDA or their isotopologues were subjected to STM conditions (SI section 1.2) and analyzed via LC-MS (SI section 2.4.1). A modified LC method was used from described in the general LC parameters: 20-80% methanol/isopropanol (4:1) in H₂O with 0.1% formic acid over 11.5 min, 1 uL injection volume, Acquity UPLC BEH C₁₈ column (2.1 mm × 100 mm, 1.7 μ m), 0.35 mL/min flow rate, with the mass detector in ES+ mode.

	220201 AXW STM061B r1 100 ₃		\$										FC L 00 L	7.77 7.77				1: TOF MS ES+ 305.344 0.0500Da
EIC for +14 C [M+H]		1.0	32 1.99 2.2	2	00 0	3.47	3.93	37 4 60 4 6	8			675	1.09 1.34		7.848.068	418.48		4.0/6
	220201_AXW_STM061B_r1	00:1	7.00	00.7	00.0	00.0	4.00	00.4	00.0	00.0	0.00	00.0	00.1	nc.1	0.00	00.00	8.00	1: TOF MS ES+
FIC for +13 C [M+H]	- 100-										6.3	6.57 6.	847.05	7.57 7.852	92 8.04 8.	28		291.328 U.U0UU
	0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50 1. TOT MS FS.
FIC for +12 C [M+H]	1001											69.69						277.313 0.0500Da
	0.50 1.00 220201 AXW STM061B r1	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50 1: TOF MS ES+
	^{- 100} 0.52										5.97	6.6	7.167.4	t ^{7.50} 7.74	7.89 8.	38		263.297 0.0500Da
	0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50 1- TOE MS EST
									5.3	8								249.281 0.0500Da
EIC for +10 C [M+H]	0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50
	1001 AXW_SIMUOID_11							4.68										1. TUE MS ES ⁺ 235.266 0.0500Da 2.39e5
	0-1 0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50 1- TOE MS EST
EIC for +8 C [M+H]						3.58												221.25 0.0500Da
	0.50 1.00 220201 AXW STM061B r1	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50 1. TOF MS ES+
EIC for +7 C [M+H]	100 0.41		0	28														207.234 0.0500Da 4.00e4
	0.50 1.00 220201 AXW STM061B r1	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50 1: TOF MS ES+
EIC for +6 C [M+H]	0.42 100 0.42					3.53 3.66						6.49	7.2	•				193.219 0.0500Da
	0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50 1- TOE MS FS-
EIC for +6-15 C (-d6) products	100 100 0.41 1.08		Ο,	28		3.58		4.68	5.3	8 5.52	6.14	6.69	7.24					Sum 0.0500Da 2.40e5
	0.50 1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	00.6	9.50

Figure 4-1

D_3C_N____N__CD_3

1b

Figure 4-3

No deuterium incorporation on the alkyl chain in the product was detected.

1d

Figure 4-4

MS at 1.08 min

(where +6 C product and any possible isotopologues should elute under LC conditions) +6 C or isotopologues ND

No products were detected.

	211229_AXW_STM053_r1 1: TOF MS ES+
EIC for +13 C [M+H]	$= \begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
EIC for +12 C [M+H]	211229_AXW_STM053_r1 21120 MS E5+ 21120 MS 25+ 2112 MS 25+ 2112 MS 25+ 2112 MS 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+
EIC for +11 C [M+H]	$ \begin{bmatrix} 211229 & XW & STM053 & 1.00 & 1.50 & 2.00 & 2.50 & 3.00 & 3.50 & 4.00 & 4.50 & 5.00 & 6.00 & 6.50 & 7.00 & 7.50 & 8.00 & 8.50 & 1.10F MS ESt \\ \hline 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STM053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW & STW053 & 1 \end{bmatrix} \\ \begin{bmatrix} 211229 & XW053 & XW053 & XW053 & XW053 & XW053 \\ \end{bmatrix} \\ \begin{bmatrix} 211229 & XW053 &$
EIC for +10 C [M+H]	211229 AXW STM053 I I TOF MS ES+ 100 4.85 5.90 7.44 0.50015 0 0.50 1.00 1.50 2.00 3.50 4.00 5.50 6.00 7.60 8.00
EIC for +9 C [M+H]	211229 AXW_STM053_T1 7.94 229 228 0.05000a 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EIC for +8 C [M+H]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
EIC for +7 C [M+H]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
EIC for +6 C [M+H]	211229_AXW_STM053_T1 100_0_0380.45_0.59_0.96_1.08_1_53_1.89_2.04_2.41_2.813.033.413.47_3.68_4.04_4.30_4.40_5_075.15_5.53_5.685.51.6.16_6.25_6.65_6.85_7.15_7.59_7.03187.1810.0500012 0.344444.04444.0444.0444.0444.0444.0444
EIC for +6-15 C products	211229 AXW STM053 r1 211229 AXW STM053 r1 100 100 100 100 100 100 100 100 100 1

Figure 4-6

Figure 4-8

No deuterium incorporation on the alkyl chain in the product was detected.

	220324_AXW_STM067_	E.													7	2301 2	OF MS ES+
EIC for +14 C [M+H]	0.340.41 0.67	0.78 1.20	1.50 1.7	71 1.96	2.29 2.6	5 2.96 3.15	3.22 3.55 3	71 3.90 4 09 4	31 4.66	5.10, 5.18	5.49 5	81 6.05	3.356.456.836	89 7.21	7.547.63	7.94	2.60e3
	0.50 220324_AXW_STM067	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	00.6	5.50	0.00	09.90	00.7	0G.1 86.7	8.00 1: T	OF MS ES+
EIC for +13 C [M+H]	100 80.12 0.39 0.47	0.84 1.08 1.	31 1.52 1	1.78 1.94	2.31 2.61		3.62	2 4.03.4.1	1 4.50	5.185	5.36 5.58	5.936.11	6.42 6.74	6.98 7.32		8.01	3.46 B.44e3
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	
EIC for +12 C [M+H]	1001 1003	=]											6.526.58	86 6.937.15	7.31 7.57 7.	273.2 737.94 8.1	0F M3 E3+ 88 0.0500Da 48.491.71e4
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	
EIC for +11 C [M+H]	100 0.24 AXW SIMU6/	54 0.97 ^{1.08}	1.53 1.6	91.782.05.2	2.13 2.48	2.88	1.20 3.41 ^{3.1}	77 3.87 4.09	4.38 4.69	4.77 5.3	375.46 5.75	6.99 6.06 6.2	6 6.38 6.686.	74 7.017.4	07.55 7.70	259.2 .77 8.088.	0F MS ES+ 72 0.0500Da 14 0.19e3
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	
EIC for +10 C [M+H]	220324 AXW_STM067 100 0.40	T]								5	41					1: T 245.2	OF MS ES+ 56 0.0500Da 7.24e4
	0.50 0.50 0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	DE MC ECT
EIC for +9 C [M+H]	1003	=]							4.69				6.706	76		231.	24 0.0500Da 6.00e4
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	-
EIC for +8 C [M+H]	220324 AXW STM067 100-	T					3.61									1: T 217.2	OF MS ES+ 25 0.0500Da
	0.38.0.450.50	- to a to		la serie de la serie de										7.03		8	27 2.89e4
	0.50 220324 AYM STM067	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	TOE WE LET
EIC for +7 C [M+H]		40.93 1.09	1.63	1.89 2.2	2.32 8 2.61	2.84 3	.27 3.41 3.61	4.04 4.20	0 4.41 4.69	4.89 5.17 5.2	5.395.76	5.86 6.12	6.38 6.72	6.937.247.3	31 7.59 7.	85 8.24t	09 0.0500Da 3.41 1.13e4
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	
EIC for +6 C [M+H]	220324 AXW STM067 1003 0.40 0.50	1 1.11	i.		070700	87 2.2.		3 O.6	00. PC		17301	5 GR 2.2	6.81	oor 733	1	1:1 189.1	OF MS ES+ 93 0.0500Da 7 58e3
	21 U.Z. A.		90-1- A	1.811.99		2.24	3.22 3.01	4 10 4 10 1	4.00	N7-C I N-C			0.30 	CR.0			-
	220324 AXW STM067	00 -	0C.1	2.00	00.2	00.0	00.0	4.00	00.4	00.0	00.0	0.00	00.0	00.7	0C.1	0.00	OF MS ES+
EIC for +6-15 C (-d2)	100 0.40	1.11			2.32		3.61		4.53	5	41 554	6.05 6.2	6 6.70 6.	86	7.40 7.70 7.8	22 8.	27 7.32e4
products	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	00.9	6.50	7.00	7.50	8.00	

Me NH H H

1e

Figure 4-9

Figure 4-11

No deuterium incorporation on the alkyl chain in the product was detected.

	220328 AXW STM068 r	_														1: TO	E MS ES+
EIC for +14 C [M+H]	100 0.06 0.37 0.63	96.0	1.68	1.87	2.52 2.652	2.743.00	3.33	3.904.00	4.444.62	4.99	37 5.505.67	5.93 6.29	6.48,6.55	6.95 7.24	.30 \\7.38 7.71	305.344 8.018.20	0.0500Da 6.48e3
	0.50 220328 AXW STM068 r	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1. TO	8.50 F MS ES+
EIC for +13 C [M+H]	0.300.390.45	0.98 1.3	1 1.47 1	83 2.12 2	2.35.2.55	2.84		3.80	4.76	4.93 5.20	5.37 5.61	5.95 6.096.	6 146.44	177 A 6.83 7.15	7.20 7.60 7.84	291.328 7.91 8.29 8	0.0500Da
	220328 AXW STM068 rt	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1: TO	8.50 F MS ES+
EIC for +12 C [M+H]	$= \frac{100}{64} 0.28 0.400.50$	1.3	2			3.11	3.36	3.80 4.02	4.46 4.73	4.99 5.2	23 5.48 5.7	2 6.03 6	(31 \\6.37 (1,78,6.87 7.2	3 7.477.53	277.313 8.058.10	0.0500Da 8.37e3
	0.50 220328 AXW STM068 r	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1: TO	8.50 F MS ES+
EIC for +11 C [M+H]	100 0.34 0.42 0.52	0.95 1.20	1.571.6	6 1.82 2.24	2.45 2.61	2.84 3.5	31 3.463.64	3.924.10	4.47 4.72	5.11 5	26 ^{5.53} 5.70	5.83)^ 6.006.18	6.31 <u>6.6</u>	8 6.99 7.05	7.46 7.61	263.297 7.97 8.20 8	0.0500Da 39.4.72e3
	0.50 220328 AXW STM068 r1	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1: TO	8.50 F MS ES+
EIC for +10 C [M+H]	· 100 2 2 2 0.40									5.20	>32					249.281	0.0500Da 2.39e4
	0.50 0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1. TOI	8.50 MS FS1
EIC for +9 C [M+H]	1003	_							4.64							235.266	0.0500Da
	0.41 0	ور و الم		ومرور والمرور والمرار	مت و بقالو و تقنف و لل		3.6	0			لل من عند الله من عند الله				7.64	9:3	
	220328 AXW STM068 rt	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00 1: TOF	8.50 F MS ES+
EIC for +8 C [M+H]	1003 0.29 0.400.49 0.7	Jn 04 1 16	03 1 64	2.07, 36 C	135,257 2	032 08	3.29 3.31 A 3.	68 3.89	7 4.41		5.45	8 08	6.59 ₆	2 Z.00 7 17	7 44 7.767	221.25 86 8 08 8 4	0.0500Da
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50
EIC for +7 C [M+H]	220328_AXW_STM068_r 1003_0.26_0_43_0.55	1 07 1 12	1.53 1.72 1	841 on 7	30	70 29423	73 5 CV 5 M	3.80 A D7 4.	19 A E 4	90 F OD F 2	0 5 42 5.71	5 84 6.16 6	.39 6 55	6 84 7.20 7	31738 77	1: T0 207.234 8.30.8	F MS ES+ 0.0500Da 38 3.68e3
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50
EIC for +6 C [M+H]	220328 AXW STM068 r ¹⁰⁰ 3 0.31 0.43 0.63	1 1.06 1.3 1.3	1 1.43 1.7	6 2.05 2.1	18 2.66 2.	78 3.	36.3.42 3.66	~	4,49,4.55,4.6	5	23 5.58 5.79	5.84 6.26	3.336.596.7	3 6.97 _{7 05} 7	18 _{7,587,75} ,7	1: T0 193.219 92 8.21 8.42	F MS ES+ 0.0500Da 2.3.34e3
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50
EIC for +6-15 C	220328_AXW_S1M068_r 1003_0.31 ^{0.41} _0.630.6	1 39 1.11 1.3	1 1.68	1.86 2	30 2.57 2.4	65 2.93	3.42 3.593	69 4.03 4.	4.64	4.79 5.20	5.32 _5.38	5.84 6.17 6	296.34 6	117.07 7.221	1.31 7.66 7.82	7.92 8.29	- MS ES+ 0.0500Da 2.52e4
(-a ₂ c ₂) products	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50

Figure 4-12

 $H_3^{13}C\underbrace{N}_H \underbrace{D}_D \underbrace{D}_D H_{13}CH_3$

1f

Figure 4-14

No deuterium or ¹³C incorporation on the alkyl chain in the product was detected.

4.2 MEASUREMENT IN DEUTERATED SOLVENTS

Tetradecane-1-d (3a) and (Octyl-8-d)benzene (3b) were synthesized as described in SI section 3.4. Solutions in deuterated solvents 3a, 3b, and tetradecane-d30 (3c) containing 1 mM DMEDA were subjected to STM conditions at 750 mV (SI section 1.2) and analyzed via LC-MS (SI section 2.4.1). A modified LC method was used from described in the general LC parameters (SI section 2.4.1): 10-100% methanol/isopropanol (4:1) in H₂O with 0.1% formic acid over 9.5 min, 0.5 uL injection volume, Acquity UPLC BEH C₁₈ column (2.1 mm × 100 mm, 1.7 μ m), 0.35 mL/min flow rate, with the mass detector in ES+ mode.

	20028 AXW_STM081A_r1 100-	1: TOF MS ES+ 299.306 0.0500De
EIC for +14 C [M+H]	$ \begin{array}{c} 303 \ 310 \\ 020 \ 040 \ 080 \ 100 \ 120 \ 140 \ 160 \ 180 \ 200 \ 220 \ 240 \ 260 \ 280 \ 300 \ 320 \ 340 \ 360 \ 380 \ 400 \ 420 \ 440 \\ \end{array} $	1.61e4
EIC for +13 C [M+H]	220428 AXW STM081A ri 1 ⁰⁰¹ 1 006 AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1: TOF MS ES+ 285.291 0.0500Da 4 77 4.56e3
	017 V 22 V	0 4.80 5.00
EIC for +12 C [M+H]	100 - 259 286.299 15 - 340.347 3.86 4.19	11.1 UF MS ES+ 271.275 0.0500Da 664.77 4.85 1.22e4
	020 040 050 050 050 100 120 140 150 1.80 2.00 220 2.40 2.60 2.60 3.00 3.20 3.40 3.60 4.00 4.20 4.40 220428 AXW STIMBERA ri	0 4.80 5.00 1: TOF MS ES+
EIC for +11 C [M+H]	$ \begin{array}{c} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	257.259 0.0500Da 89.4.72 <u>1.72e4</u>
	0200 <u>28_AXW_STM081A_r11</u> 220028_AXW_STM081A_r11 100-	0 4.80 5.00 1: TOF MS ES+ 243.244 0.0500Da
EIC for +10 C [M+H]	$= \frac{38}{200}$	4.75 1.7864
	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.00 4.20 4.40 220428_AXW_STM0814_r1	0 4.80 5.00 1: TOF MS ES+
EIC for +9 C [M+H]	\sim 222 303307319 336 372 389 413417 2	4.98 1.77e4
	020 040 050 040 050 120 140 150 140 150 250 240 250 40 40	0 4.80 5.00
EIC for +8 C [M+H]	220428 AXW STM081A rt] - 101 - 101 - 0.255 - 261 - 263 - 263 - 263 - 263 - 2552-40 - 263 - 2552-40 - 263 - 263 - 263 - 263 - 263 - 263 - 263	1: TOF MS ES+ 215.212 0.0500Da 4 60 - 4 02 - 4.83e3
	$0^{1} 0.20 0.40 0.60 0.00 1.20 1.40 1.60 1.60 2.00 2.20 2.40 2.60 3.00 3.20 3.40 3.60 3.60 4.00 4.20 4.40 4.20 $	0 4.80 5.00
EIC for +7 C [M+H]	$\frac{220426\ \text{AXW}\ \text{STM081A}\ \text{II}}{012\ 0.38}\frac{3.46\ 3.96}{0.2}9.80\ 91\ 999\ 1.17\ 1.441\ 49\ 161\ 1.76\ 1.88\ 2.14\ 2.24\ 2.42\ 2.57\ 2.76\ 2.90\ 3.10\ 3.16\ 3.39\ \text{A}^{2.66}\ 3.75\ 3.96\ 3.96\ 3.75\ 3.96\ 3.96\ 3.75\ 3.96\ 3.96\ 3.75\ 3.96\ 3.$	1: TOF MS ES+ 201.196 0.0500Da 4.67 4.844.94 5.00e3
	0_200_40060080100120140160180200220240260280300320340360360400420440 220428_AXW_STM081A_TI	0 4.80 5.00 1: TOF MS ES+
EIC for +6 C [M+H]	$ = \frac{100}{8} \left[0.16^{0.2} \left(0.380 4.3^{0.49} \right) 6^{2.0} 6^{4.0} 0.61 00.104 1/23 $	187.181 0.0500Da 61 4.71 4.96 3.82e3
	020 040 050 050 050 050 100 120 140 150 1,80 2,00 220 240 2,50 2,80 3,00 3,20 3,40 3,50 4,00 4,20 4,40 20428 AXW STMM8IA ri	0 4.80 5.00 1: TOF MS ES+
EIC for +6-15 C products	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4.77 4.85 2.47e4
	0.20 0.40 0.60 0.60 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.60 4.00 4.20 4.40	0 4.80 5.00

Me ()12 D

3a

247.1627

248.1649

248.1478

248

247.1275

247.0874

247

246.1510

246

246.0728

245.1907

246.0015

249.1786

249.0993

249

249.1961

249.2452

250

251.151

251.1161

ъđ

251

252 1667

252

252.2511

m/z

Figure 4-17

0

239.1603

239.2050 240.2543

alta

240

No deuterium incorporation on the alkyl chain in the product was detected.

244.0838

244

243.0979

243

243.0660

241 1686

241

242.0911

242

244.2421

244 9406

245

	220428 AXW S	TM081B_r1														ň	52 3.64		4 10 4.3	21, 4.29	94.36	ç	1: TOF MS ES+ 313.322 0.0500Da
EIC for +14 C [M+H]	0.05 0.20 220428_AXW_S	0.44 0.4 0.40 0 0.40 0 TM081B_r1	9 .00 09	1.0	0 1.2	1.32	1.60	1.80	2.00	2.15	2.33.2.51	2.60	2.76 2.9	34 3.11 171111	3.20 3.3 7 3.20 3.20	3.40	3.60	3.80	4 00	4.20	4.40	49 _{4.57}	4.83 5.65e3 4.80 5.00 1: TOF MS ES+
EIC for +13 C [M+H]	1001																						299.306 0.0500Da 1.29e6
	0.20 220428 AXW S	0.40 0 TM081B_r1	.09	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1: TOF MS ES+ 285.201.05000a
EIC for +12 C [M+H]	100-														9	$\langle \langle \rangle$							2.0965
	0.20 220428 AXW S	0.40 0 TM081B r1	.60 0.6	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1: TOF MS ES+
EIC for +11 C [M+H]														3.00 ³ .08	3.16	26 3.40							271.275 0.0500Da 4.87 4.98 2.02e4
	0.20 220428_AXW_S	0.40 0 TM081B_1	60 09	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1: TOF MS ES+
EIC for +10 C [M+H]	- 100 - 218 0.18 0).39 ^{0.42} 0.45			1.2	1.32_1.	37 1.6	4 1.9	11.94 21	02 2.14	2.362.41	2.7	52.792	95.3.023	123.15	34 3.4	1 3.53	3.84		4.19		4.704	257.259 0.0500Da
	0.20	0.40 0	9.0 09.	0 1 (0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00
EIC for +9 C [M+H]	1003 1003	0.430.47 0	51 0.7	0			1.57,16	31 73 1 7	8 1 98 2	01 223	2 272.44	2.54 2	67 2.85	2.90	13 3.26	3.39 3	55	3.76 3.90	4 08	4.27	74.414.4	14.4.58	243.244 0.0500Da .674.80 6.00e3
	0.20	0.40 0	9.0 09.	1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00
EIC for +8 C [M+H]	100-220428 AXW S	0.39 0.48						÷-	88	2.14 2	31	2.65	2.75	3.03	3.283	.393.523	55	3.843.87	3.91 4.	4	4.33	4.56.4.61	11: 1 UF MS ES+ 229.228 0.0500Da 1.59e4
	0.20 20428 AXW S	0.40 0 TM081B -1	9.0 09	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1- TOF MS ES+
EIC for +7 C [M+H]	10010 0.10 0.	36.0.39 0.47	0:60 0.7	9 0.88	1.05 1.16	1.37	.42 1.61	1.81	891.992	10 2.2	2.35 5 2.41	2.59 2	2.84	2.88 3.0	0 3.23	3.46 3.	57 3.66	3.84	4.03	4.12 4.2	5 4.42 4	4.74	215.212 0.0500Da
	0.20 220428 AXW S	0.40 0 TM081B r1	9.0 09.	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1. TOF MS FS+
EIC for +6 C [M+H]	¹⁰⁰ 30.03 0.15	0.41	80.61 0.7	4 0.91	1.12	1.39	1.62	1.69 1	88_1.93	2.08 2.2	52.28	2.65	2.77	3.1	33.253.2	9 3.44	3.603.6	3 3.79 3	.96 4.1	24.234.	33 4.47	4.57 4	201.196 0.0500Da 69 4.86 5.88e3
	0.20 220428 AXW S	0.40 0 TM081B_r1	60 08	0 1.0	0 1.2	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80 5.00 1: TOF MS ES+
EIC for +6-15 C products	0.20 0.44444444	0.40.0.44	3.0 69.0 3.0 09.0 3.0 09.	36 0.95	0.99 1.2	11.36.1.4	3 1.631.	67 1.85	31.94 2. 772-00	03 2.20 12 20	2.37 2.4 ************************************	H 2.66 ********	2.872	90 3.05 	3.24 2.0	3.28 3.4 2.28 3.4 3.40	4 3.65 3.60	3.84 3.84 3.80	904.104 Marado 4.00	1.16 4.20	4.39 4.4 	16 4.63 4.60	187.181 0.0500Da 4.834.93 1.06e3 4.80 5.00

Ph M 3b

`D

Figure 4-20

No deuterium incorporation on the alkyl chain in the product was detected.

tetradecane-d30 (3c)

EIC for +14 C [M+H]	201104_BZ_DMEDA_d-TD_nofune_ 201104_BZ_DMEDA_d-TD_nofune_01 0.16_0_26_052_066_0810990103_1_21133_150_167177182_201_225228_245255_270_277_314_321 - 339-4PMPV/microsoful/work/figro/Microsoft/PMPV/microsoft/Scontegro/Microsoft	4.03, 4.18, 4.47	4.51 4.70 299.306 0.0500Da 4.54 4.70 299.306 0.0500Da
	220 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3. 201104 BZ DMEDA d-TD notine 01	3.80 4.00 4.20 4.40	4.60 4.80 5.00 1: TOF MS ES+
EIC for +13 C [M+H]	$= 1003 \\ 0.16 \\ 0.22 \\ 0.62 \\ 0.66 \\ 0.710 \\ 0.86 \\ 0.95 \\ 106 \\ 1.5 \\ 1.37 \\ 1.54 \\ 1.601 \\ 6.4 \\ 1.87 \\ 1.99 \\ 1.61 \\ 1.87 \\ 1.99 \\ 2.03 \\ 2.22 \\ 2.82 \\$	3.79 3.92 4.164.20 4.45	4.49 4.6825.2910.0500Da
	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3 201104 BZ DMEDA d-TD notine 01	3.80 4.00 4.20 4.40	4.60 4.80 5.00 1: TOF MS ES+
EIC for +12 C [M+H]	1001 0.05 0.23 0.38 0.510.62 0.850.91 1.04 1.10 1.39 4.6 1.58 1.781.82 2.03 2.23 2.22 2.22 2.74 2.96 3.11 3.24 3.28 3.77	73 3.95 3.99 4.03 4.23 4.31 4	1.48 4.70 271.275 0.0500Da
	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3 201104 B2_DMEDA_d-TD_indunc_01	3.80 4.00 4.20 4.40	4.60 4.80 5.00 1: TOF MS ES+
EIC for +11 C [M+H]	100 5 85 8 81 100 100 100 100 100 100 100	75. 3.97 4.26 4.41	4 54 4.72 259 0.0500Da
	201104 BZ DMEDA GTD ndunc_01 201104 BZ DMEDA GTD ndunc_01	3.80 4.00 4.20 4.40	4.60 4.80 5.00 1. TOF MS ES+
EIC for +10 C [M+H]		,	4.52 243.244 0.0500Da
	020 040 060 080 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3	3.80 4.00 4.20 4.40	4.60 4.80 5.00
FIC for +9 C [M+H]	201104_bZ_UMEDA_G+ID_notunc_01 100a	4.13	1: 10F MS ES+ 229.228 0.0500Da
			Caon.7
	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 2. 201104_B2_DMEDA_6+TD_ndunc_01	3.80 4.00 4.20 4.40	4.60 4.80 5.00 1: TOF MS ES+
EIC for +8 C [M+H]	100 363 0.440.50	4.32	215.212 0.0500Da 8.41e4
		3.80 4.00 4.20 4.40	4.60 4.80 5.00
EIC for +7 C [M+H]	201104 BZ UMEDA G-LU noture UT - 103 0.25 0.400.460.42 0.05 0.75 1.00 1.40 1.45 1.53 1.55 1.53 2.05 2.14 2.51 2.50 入 3.22 3.37 3.40 3.733.	763873004134.364.	514.564 59 4 74 4 86 1.9644
	0^{4} 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.80 3	3.80 4.00 4.20 4.40	4.60 4.80 5.00
EIC for +6 C [M+H]	201104 BZ DMEDA d-TD_ndunc_01 1003 0.45 0.77 150 226 234 1003		1: TOF MS ES+ 187.181 0.0500Da
	= 28 0.12 0.32 2.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	1 3.9/ 4.01 4.22 4.46	4.9 4.89 1.1044
	<u>uzu uun uun</u> uun uun uun uun uun uun uun u	3.00 4.00 4. 2 0 4.40	4.00 4.00 5.00 1: TOF MS ES+
EIC for +6-15 C products	100 3.63 3.63	4.13	4.52 Sum 0.0500Da 4.76 4.86 4.81e5
או טעמיניס	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.	3.80 4.00 4.20 4.40	4.60 4.80 5.00

Figure 4-21

Figure 4-23

No deuterium incorporation on the alkyl chain in the product was detected.

4.3 EVALUATION OF BIAS DEPENDENCY

Figure 4-24 Reaction yields with added n-OctOOH (100 mM) in solution only, with field at 100 mV, and with field at 750 mV in the STM-BJ

4.4 EVALUATION OF REPRODUCIBILITY

Figure 4-25 Reaction yields with added n-OctOOH (100 mM) in (a) 3 different gold-coated substrates coated with 100 mV applied bias and (b) 6 different gold-coated substrates coated without applying the field.

4.5 EVALUATION OF AIR COMPONENTS ON REACTIVITY

Solutions in TD containing 1 mM DMEDA and internal standard (1-methyl-2-phenylindole at 50 μ M) were purged with air, Ar, O₂, or CO₂ at 1 atm for 5 min, then 50 μ L of the solutions were deposited on Au substrates, left for 24 h, and analyzed by LC-MS (SI section 2.4.1).

+C	air	Ar	02	CO2
6	0.00122213	0.001564	0.000935	0.000682
7	2.05308E-05	0.00015	0.000172	0.000121
8	0.000614761	0.000755	0.000706	0.000485
9	0.00093615	0.001929	0.001573	0.000887
10	0.001714229	0.001844	0.001554	0.001737
11	0.001297938	0.001243	0.000932	0.001005
12	0.002122961	0.002225	0.002134	0.002767
13	0.005020478	0.00464	0.005004	0.005056
14	0.009734664	0.00924	0.009812	0.0094
15	0.004355012	0.004441	0.004877	0.00459

Figure 4-26

4.6 EVALUATION OF INTERNAL STANDARD ON REACTIVITY

 $50 \ \mu\text{L}$ of solutions in TD, TCB, and OB containing 1 mM DMEDA with or without internal standard (1-methyl-2-phenylindole at $50 \ \mu\text{M}$) were deposited on Au substrates, left for 24 h, and analyzed by LC-MS (SI section 2.4.1).

+C	TD w IS	TD w/o IS	TCB w IS	TCB w/o IS	OB w IS	OB w/o Is	% w IS	% w/o IS	% TCB w IS	%TCB w/o IS	% OB w IS	% OB w/o Is
6	324.6053	191.34	148.0113	165.309333	21633.296	18567.9623	1.01264776	0.614207	4.7578937	3.520456181	12.43029	12.2118378
7	114.513	90.916	37.538	59.057	133068.031	117184.76	0.35723792	0.291843	1.2066766	1.257688096	76.45966	77.0704538
8	411.208	364.1447	131.6897	180.848	11604.8723	9635.193	1.28281583	1.168915	4.2332261	3.851370316	6.668053	6.33690503
9	1750.447	2109.392	2366.86	3240.95067	3388.20533	2549.901	5.46074175	6.771207	76.083835	69.01984647	1.946832	1.67702717
10	2258.715	2538.346	278.9273	816.346	560.559	552.402	7.04635072	8.148162	8.9662499	17.38504574	0.322092	0.36330554
11	1183.069	1321.044	24.27333	115.867	204.668667	266.857667	3.69073576	4.240589	0.7802777	2.467523691	0.117601	0.17550782
12	2947.434	3319.498	49.058	58.381	678.97	861.005333	9.19489545	10.65568	1.5769924	1.243291883	0.39013	0.56626878
13	4888.613	5183.407	15.742	33.686	698.037333	551.815333	15.2506521	16.63888	0.506034	0.717382888	0.401086	0.3629197
14	11431.03	8531.237	6.432	17.223	738.895333	632.326333	35.6605527	27.38551	0.2067597	0.36678399	0.424562	0.41587044
15	6745.475	7503.052	52.32633	8.01133333	1461.371	1246.65467	21.0433701	24.085	1.6820545	0.170610742	0.83969	0.81990389

Figure 4-27

Figure 4-28 Logarithm-binned 1D and 2D conductance-displacement histograms of conductance traces measured with DMEDA and internal standard tributylamine, showing the tunneling current. The dash line shows the noise floor, indicating the current is above noise floor. All measurements were performed using 1 mM in tetradecane at room temperature.

4.7 REACTIVITY SOLVENT DEPENDENCE

 $50 \ \mu\text{L}$ of solutions in TD, or OB containing 1 mM DMEDA and internal standard (1-methyl-2-phenylindole at $50 \ \mu\text{M}$) were deposited on Au substrates, left for 24 h, and analyzed by LC-MS (SI section 2.4.1).

n=	TD	TD	OB	OB
		A/IS		A/IS
6	392	0.141	618	0.229
7	1094	0.395	4329	1.606
8	2602	0.939	359	0.133
9	4068	1.468	122	0.045
10	6570	2.370	27	0.010
11	9463	3.414	19	0.007
12	11846	4.273	125	0.046
13	1713	0.618	92	0.034
14	62	0.022	55	0.020
15	trace	trace	84	0.031

Data with an older (more autoxidized) bottle of TD.

Figure 4-30

4i and **4j** were synthesized as described in SI section 3.4. 50 μ L of solutions in TCB containing 1 mM DMEDA and 100 mM additives **4a-j** were deposited on Au substrates, left for 24 h, and analyzed by LC-MS (SI section 2.4.1). A modified LC method was used from described in the general LC parameters (SI section 2.4.1): 0-100% methanol/isopropanol (4:1) in H₂O with 0.1% formic acid over 5 min, 0.1 uL injection volume, Acquity UPLC BEH C₁₈ column (2.1 mm × 100 mm, 1.7 μ m), 0.35 mL/min flow rate, with the mass detector in ES+ mode.

4a-4g

EIC for or +6-15 C products

Figure 4-32

4a-4g are not alkyl sources since they inhibit reactivity.
4h

+C	TD									
6	0									
7	0.000148									
8	0.001663									
9	0.004388									
10	0.008011									
11	0.004232									
12	0.012887									
13	0.018637									
14	0.041506									
15	0.017755									
0.05 0.04 (N) Nejet 0.02 0.01 0	6 7	8	9	10 number of 0	11 C inserted	12	13	14	15	TD
TD										

No significant increase in the +13 C product suggests **4h** is not the alkyl precursor.

Me OOH

4i

	no Au	Au only	100 mV
avg A	48749.64	143121	181997

Yield vs. conditions is graphed in Fig. 4 in the main text. **4i** significantly increases +8 C product, this is consistent with it being the alkyl precursor.

An identical reaction was done with steel substrates instead, and the corresponding yield vs. conditions figure can be found in Fig. 4 in the main text.

	avg A
solution	2984.55
only	
steel only	4158.037
field	5328.432

MS spectrum of the +C8 product is shown in Fig. 2d in the main text. 4j is a competent alkyl transferring reagent under STM reaction conditions.

4.9 EVALUATION OF SURFACE FUNCTIONALIZATION

Experiment A: 50 μ L of solution in TCB containing 1 mM DMEDA and 100 mM n-OctOOH (**4i**) is deposited on an Au substrate, removed after 10s, and frozen until analysis by LCMS. The substrate is then used in experiment C.

Experiment B: 50 μ L of solution in TCB containing 1 mM DMEDA is deposited on an Au substrate, removed after 26 h, and frozen until analysis by LCMS.

Experiment C: Substrate from experiment A is washed with tetradecane and CH_2Cl_2 thoroughly (3x2 mL with each solvent), and an additional 50 μ L of solution in TCB containing 1 mM DMEDA is deposited on the substrate, removed after 26 h, and frozen until analysis by LCMS.

Experiment D: 50 μ L of solution in TCB containing 100 mM n-OctOOH (**4i**) is deposited on an Au substrate, removed after 10 s, and the substrate is then washed with tetradecane and CH₂Cl₂ thoroughly (3x2 mL with each solvent), and an additional 50 μ L of solution in TCB containing 1 mM DMEDA is deposited on the substrate, removed after 26 h, and frozen until analysis by LCMS.

Upon thawing of the samples, they are prepared and analyzed by LCMS (SI section 2.4.1)

Experiment	А	В	С	D	
Au	+	+	+, from A	OctOOH Functionalized	
n-OctOOH	+	_	—	_	
time	10 s	26 h	26 h	26 h	
avg A	626.61433	0	32.067333	26.850667	

Figure 4-34

4.10 PLAUSIBLE MECHANISMS

4.10.1 Alkyl chain from alkyl hydroperoxides

Figure 4-35

Alkyl hydroperoxides originating from autoxidation of alkanes are known to decompose to their corresponding aldehydes as a secondary autoxidation product under O_2 and high heat.^{7–9} This process is known to be facilitated by radical initiators such as AIBN,¹⁰ (t-BuO)₂,¹¹ or oxidants such as Cu (I),^{12,13} Mo (VI),¹⁴ Pd (II),¹⁵ Ce (IV),¹⁶ Fe (III),¹⁷ or IBX.¹⁸ This is thought to intercept the dimeric Russell intermediate which fragments to afford the aldehyde, along with the alcohol, and O_2 .^{10,16} Alternatively, upon oxidative dimerization of the hydroperoxide to the dialkyl peroxide, base catalyzed Kornblum-Delamare rearrangement could also afford the aldehyde.¹⁹ Both of these reaction mechanisms intercept charge-separated intermediates (dipoles shown) that could be stabilized by the presence of the electric field; moreover, the catalytic effect of the Au surface on hydroperoxide functionalization is unprecedented in the literature. The novel Au-catalyzed disproportionation of the alkyl hydroperoxide can generate the corresponding aldehyde, which could be intercepted by DMEDA. The hydrophobicity of the reaction solvent (tetradecane) likely favors the formation of the hemiaminal, and could be oxidized by the hydroperoxide.²⁰ The reaction likely operates under diffusion control, as this novel mode of peroxide activation by the Au surface is at millimolar concentration, with the peroxide originating from solvent autoxidation likely similarly dilute. Alternatively, data from Figure 3b in the main text suggests some rapid functionalization and stabilization of the hydroperoxide or their fragmentation products may be implicated in this novel activation mode.

Figure 4-36

Following autoxidation of the alkane, the hydroperoxide products is known to fragment to shorter carboncontaining synthons via Hock RAR¹⁹ or β -scission.²¹ This mode of C-C cleavage mediated by a Au surface and electric field is unknown in the literature, but likely the stabilization of their corresponding charge-separated transition state by Au is integral to the electric field acceleration effect observed.

5 REFERENCES

- Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Single-Molecule Circuits with Well-Defined Molecular Conductance. *Nano Lett.* 2006, 6 (3), 458– 462. https://doi.org/10.1021/nl052373+.
- (2) Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.; Venkataraman, L. Formation and Evolution of Single-Molecule Junctions. *Phys. Rev. Lett.* **2009**, *102* (12), 126803. https://doi.org/10.1103/PhysRevLett.102.126803.
- (3) Zhou, S.; Doni, E.; Anderson, G. M.; Kane, R. G.; MacDougall, S. W.; Ironmonger, V. M.; Tuttle, T.; Murphy, J. A. Identifying the Roles of Amino Acids, Alcohols and 1,2-Diamines as Mediators in Coupling of Haloarenes to Arenes. J. Am. Chem. Soc. 2014, 136 (51), 17818–17826. https://doi.org/10.1021/ja5101036.
- (4) Kins, C. F.; Dudenko, D.; Sebastiani, D.; Brunklaus, G. Molecular Mechanisms of Additive Fortification in Model Epoxy Resins: A Solid State NMR Study. *Macromolecules* 2010, 43 (17), 7200–7211. https://doi.org/10.1021/ma101374m.
- (5) Ivin, K. J.; Lillie, E. D. Synthesis of Dithiocarbamates from Linear Poly(Iminoethylene) and Some Model Compounds. *Die Makromolekulare Chemie* 1978, *179* (3), 591–599. https://doi.org/10.1002/macp.1978.021790304.
- (6) Zhang, Z.; Fu, B.; Wang, H.; Chen, H.; Tu, Y.; Zhao, J. Access to (Z)-1,2-Endiamides and 1,1-Endiamides via a Base-Promoted Tandem Reaction. J. Org. Chem. 2020, 85 (8), 5245–5254. https://doi.org/10.1021/acs.joc.9b03305.
- (7) Blaine, S.; Savage, P. E. Reaction Pathways in Lubricant Degradation. 1. Analytical Characterization of n-Hexadecane Autoxidation Products. *Ind. Eng. Chem. Res.* **1991**, *30* (4), 792–798. https://doi.org/10.1021/ie00052a026.
- (8) Blaine, S.; Savage, P. E. Reaction Pathways in Lubricant Degradation. 2. n-Hexadecane Autoxidation. *Ind. Eng. Chem. Res.* **1991**, *30* (9), 2185–2191. https://doi.org/10.1021/ie00057a020.
- (9) Blaine, S.; Savage, P. E. Reaction Pathways in Lubricant Degradation. 3. Reaction Model for n-Hexadecane Autoxidation. *Ind. Eng. Chem. Res.* 1992, 31 (1), 69–75. https://doi.org/10.1021/ie00001a010.
- (10) Russell, G. A. Deuterium-Isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of PEroxy Radicals1. J. Am. Chem. Soc. 1957, 79 (14), 3871–3877. https://doi.org/10.1021/ja01571a068.
- (11)Lorand, E. J.; Edwards, E. I. P-Methylbenzyl Hydroperoxide. J. Am. Chem. Soc. **1955**, 77 (15), 4035–4037. https://doi.org/10.1021/ja01620a022.
- (12)Chen, S.; Chen, W.; Chen, X.; Chen, G.; Ackermann, L.; Tian, X. Copper(I)-Catalyzed Oxyamination of β,γ-Unsaturated Hydrazones: Synthesis of Dihydropyrazoles. *Org. Lett.* 2019, *21* (19), 7787–7790. https://doi.org/10.1021/acs.orglett.9b02733.
- (13)Kundu, R.; Ball, Z. T. Copper-Catalyzed Remote Sp3 C-H Chlorination of Alkyl Hydroperoxides. *Org. Lett.* **2010**, *12* (11), 2460–2463. https://doi.org/10.1021/ol100472t.
- (14)Lebeuf, R.; Nardello-Rataj, V. Dual Catalytic Role of Molybdate Ions for Direct Conversion of Photo-Oxidized Fatty Acid Methyl Esters into Keto or Hydroxy Derivatives. ACS Sustainable Chem. Eng. 2019, 7 (3), 3034–3041. https://doi.org/10.1021/acssuschemeng.8b04643.
- (15)Shimokawa, R.; Kawada, Y.; Hayashi, M.; Kataoka, Y.; Ura, Y. Oxygenation of a Benzyl Ligand in SNS-Palladium Complexes with O2: Acceleration by Anions or Brønsted Acids. *Dalton Trans.* 2016, 45 (41), 16112–16116. https://doi.org/10.1039/C6DT02948E.
- (16)Howard, J. A.; Ingold, K. U. Self-Reaction of Sec-Butylperoxy Radicals. Confirmation of the Russell Mechanism. J. Am. Chem. Soc. **1968**, 90 (4), 1056–1058. https://doi.org/10.1021/ja01006a037.
- (17)Arasasingham, R. D.; Balch, A. L.; Cornman, C. R.; Latos-Grazynski, L. Dioxygen Insertion into Iron(III)-Carbon Bonds. NMR Studies of the Formation and Reactivity of Alkylperoxo Complexes of

Iron(III) Porphyrins. J. Am. Chem. Soc. **1989**, 111 (12), 4357–4363. https://doi.org/10.1021/ja00194a031.

- (18)Kuga, T.; Sasano, Y.; Iwabuchi, Y. IBX as a Catalyst for Dehydration of Hydroperoxides: Green Entry to α,β-Unsaturated Ketones via Oxygenative Allylic Transposition. *Chem. Commun.* 2018, 54 (7), 798–801. https://doi.org/10.1039/C7CC08957K.
- (19) Yaremenko, I. A.; Vil', V. A.; Demchuk, D. V.; Terent'ev, A. O. Rearrangements of Organic Peroxides and Related Processes. *Beilstein J. Org. Chem.* 2016, *12* (1), 1647–1748. https://doi.org/10.3762/bjoc.12.162.
- (20)Ragab, I.; Selim, Y. A.; Abd El-Azim, M. H. M. Synthesis of Some New Dihydropyrimidines Derivatives by Cyclization of Polarized Unsaturated Systems. *Journal of Heterocyclic Chemistry* 2018, 55 (12), 2727–2731. https://doi.org/10.1002/jhet.3332.
- (21)Zhong, W.; Xu, W.; Yang, Q.; Kato, T.; Liu, Y.; Maruoka, K. A New Approach for the Copper-Catalyzed Functionalization of Alkyl Hydroperoxides with Organosilicon Compounds via in-Situ-Generated Alkylsilyl Peroxides. *Tetrahedron* 2022, *112*, 132627. https://doi.org/10.1016/j.tet.2021.132627.