
IET Communications

Research Article

On the DoF of two-way 2 × 2 × 2 relay networks
with or without relay caching

ISSN 1751-8628
Received on 9th March 2017
Revised 1st May 2017
Accepted on 22nd June 2017
E-First on 19th September 2017
doi: 10.1049/iet-com.2017.0252
www.ietdl.org

Mehdi Ashraphijuo1, Vaneet Aggarwal2, Xiaodong Wang1 
1Electrical Engineering Department, Columbia University, New York, NY 10027 USA
2School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA

 E-mail: wangx@ee.columbia.edu

Abstract: Two-way relay is potentially an effective approach to spectrum sharing and aggregation by allowing simultaneous
bidirectional transmissions between source–destinations pairs. In this study, the two-way 2 × 2 × 2 relay network, a class of four-
unicast networks, where there are four source/destination nodes and two relay nodes, with each source sending a message to
its destination, is studied. They show that without relay caching the total degrees of freedom (DoF) is bounded from above by
8/3, indicating that bidirectional links do not double the DoF (it is known that the total DoF of one-way 2 × 2 × 2 relay network is
2). Further, they show that the DoF of 8/3 is achievable for the two-way 2 × 2 × 2 relay network with relay caching. Finally, even
though the DoF of this network is no more than 8/3 for generic channel gains, DoF of 4 can be achieved for a symmetric
configuration of channel gains.

1 Introduction
In a simple two-way relay channel, two users communicate to each
other with the assistance of relays, two-unicast channels consist of
two sources and two destinations communicating through a general
network. The degrees of freedom (DoF) for one-way 2 × 2 × 2
fully-connected two-unicast channels has been studied in [1], and
further extended with interfering relays in [2]. These results were
further generalised to one-way 2 × 2 × 2 non-layered topology in
[3, 4]. General one-way two-unicast channel has been considered
in [5, 6] and it was shown in [6] that the DoF for any topology
takes one of the values in {1, 3/2, 2}, depending on the topology.
Two-way two-unicast channels have been studied for a single relay
in [7–9]. In [10], three different achievability strategies for two-
way multiple-input multiple-output (MIMO) 2 × 2 × 2 fully-
connected channel are proposed. A finite-field two-way two-
unicast model is also studied in [11, 12].

Caching is a technique to reduce traffic load by exploiting the
high degree of asynchronous content reuse and the fact that storage
is cheap and ubiquitous in today's wireless devices [13, 14]. During
off-peak periods when network resources are abundant, some
content can be stored at the wireless edge (e.g. access points or end
user devices), so that demands can be met with reduced access
latencies and bandwidth requirements. There are various forms of
caching, i.e. to store data at user ends, relays and so on [15].
However, using the uncoded data on devices can result in an
inefficient use of the aggregate cache capacity [16]. The caching
problem consists of a placement phase, which is performed offline
and an online delivery phase. One important aspect of this problem
is the design of the placement phase in order to facilitate the
delivery phase. There are several recent works that consider
communication scenarios where user nodes have pre-cached
information from a fixed library of possible files during the offline
phase, in order to minimise the transmission from source during the
delivery phase [17, 18]. There are only a limited number of works
on the DoF with caching. In particular, Han et al. [19, 20] study the
DoF for the relay and interference channels with caching,
respectively, under some assumptions and provide asymptotic
results on the DoF as a function of the output of some optimisation
problems.

In this paper, we study the two-way 2 × 2 × 2 relay network, a
class of four-unicast networks, also known as the two-way layered
interference channel in the literature. We consider a general two-

way 2 × 2 × 2 relay network where all channel gains are chosen
from the same continuous distribution. Even though the one-way
2 × 2 × 2 relay network has 2 DoF, we show that the two-way
2 × 2 × 2 relay network has DoF less than or equal to 8/3. Thus,
the bidirectional links cannot double the DoF. In the analysis of
cached 2 × 2 × 2 relay network, we show the equivalence of our
model to the compound multiple-input single-output (MISO)
broadcast channel and use the existing results on the latter to obtain
the achievable DoF of the former. Note that this is the first work
relating 2 × 2 × 2 relay network and compound MISO broadcast
channel.

We further propose a caching strategy in relays for the two-way
2 × 2 × 2 relay network based on prefetching uncoded raw bits and
delivering linearly encoded messages to facilitate the transmission
from relays to destinations. We show that with relay caching, the
DoF of 8/3 is achievable.

Finally for a special case of two-way 2 × 2 × 2 relay network
where the channels exhibit symmetries, we show that the DoF is 4.
This special case is interesting because (i) This shows that the
2 × 2 × 2 topology allows 4 DoF for some symmetric channel gains
while the DoF is outer bounded by 8/3 for generic channel gains.
(ii) The non-invertibility of the symmetric channel matrix plays an
important role in achieving DoF = 4, which does not hold for the
general channel matrix. (iii) The symmetric channel is a common
model for many results on interference channels [21–24]; and these
results can be obtained only with such symmetric assumptions and
the problems remain open otherwise.

The remainder of this paper is organised as follows. In Section
2, we give the model for the two-way 2 × 2 × 2 relay network. In
Section 3, the main results on the DoF of the 2 × 2 × 2 relay
network without relay caching is studied. The DoF of a symmetric
two-way 2 × 2 × 2 relay network is also investigated in this
section. In Section 4, the results on the DoF of the 2 × 2 × 2 relay
network with relay caching is presented. Finally, Section 5
concludes this paper.

2 Channel model and related works
In this section, we first present our system model and then we
discuss some recent related results in the literature.
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2.1 Channel model

As shown in Fig. 1, the two-way 2 × 2 × 2 relay network consists
of four transmitters S1, …, S4, two relays R1, R2, and four receivers
D1, …, D4. Each transmitter Si has one message that is intended for
its receiver Di. Fig. 2 shows the two hops of this system separately.
In the first hop (Fig. 2a), the signal received at relay Rk, k ∈ {1, 2}
in time slot m is

YRk[m] = ∑
i = 1

4
Hi, Rk[m]Xi[m] + ZRk[m], (1)

where Hi, Rk[m] is the channel coefficient from transmitter Si to
relay Rk, Xi[m] is the signal transmitted from Si, YRk[m] is the signal
received at relay Rk and ZRk[m] is the i.i.d. circularly symmetric
complex Gaussian noise with zero mean and unit variance,
i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. In the second hop (Fig. 2b), the signal
received at receiver Di in time slot m is given by

Yi[m] = ∑
k = 1

2
HRk, i[m]XRk[m] + Zi[m], (2)

where HRk, i[m] is the channel coefficient from relay Rk to receiver
Di, XRk[m] is the signal transmitted from Rk, Yi[m] is the signal
received at receiver Di and Zi[m] is the i.i.d. circularly symmetric
complex Gaussian noise with zero mean and unit variance,
i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. We assume that the channel coefficient
values are drawn i.i.d. from a continuous distribution and they are
bounded from below and above, i.e. Hmin < |Hi, Rk[m] | < Hmax and

Hmin < |HRk, i[m] | < Hmax as in [25]. The relays are assumed to be
full-duplex and equipped with caches. Furthermore, the relays are
assumed to be causal, which means that the signals transmitted
from the relays depend only on the signals received in the past and
not on the current received signals and can be described as

XRk[m] = f (YRk
m − 1, XRk

m − 1, CRk), (3)

where XRk
m − 1 ≜ (XRk[1], …, XRk[m − 1]), YRk

m − 1 ≜ (YRk[1], …, YRk[m
−1]), and CRk is the cached information in relay Rk. We assume that
source Si, i ∈ {1, 2, 3, 4} knows only channels Hi, Rk, k ∈ {1, 2};
relay Rk, k ∈ {1, 2} knows channels Hi, Rk, HR1, i and HR2, i,
i ∈ {1, 2, 3, 4}; and destination Di, i ∈ {1, 2, 3, 4} knows only
channels HRk, i, k ∈ {1, 2}. 

The source Si, i ∈ {1, 2, 3, 4} has a message Wi that is intended
for destination Di. |Wi| denotes the size of the message Wi. The
rates ℛi = log |Wi|/n, i ∈ {1, 2, 3, 4} are achievable during n
channel uses by choosing n large enough, if the probability of error
can be arbitrarily small for all four messages simultaneously. The
capacity region C = {(ℛ1, ℛ2, ℛ3, ℛ4) | (ℛ1, ℛ2, ℛ3, ℛ4) ∈ C}
represents the set of all achievable quadruples. The sum-capacity is
the maximum sum-rate that is achievable, i.e. CΣ(P) = ∑i = 1

4 ℛi
c

where (ℛ1
c, ℛ2

c, ℛ3
c, ℛ4

c) = arg max(ℛ1, ℛ2, ℛ3, ℛ4) ∈ C ∑i = 1
4 ℛi and

P is the transmit power at each source node. The DoF is defined as

DoF ≜ lim
P → ∞

CΣ(P)
log P = ∑

i = 1

4
lim

P → ∞
ℛi

c

log P = ∑
i = 1

4
di, (4)

where di ≜ limP → ∞ ℛi
c/log P is the DoF of source Si, for

i ∈ {1, 2, 3, 4}. We assume that channel gains are i.i.d., chosen
from the same continuous distribution, and thus the DoF is the
result for almost every channel realisation (in other words, with
probability 1 over the channel realisations). We denote DoFC as the
DoF for the case of with relay caching, DoFNC as the DoF for the
case of no relay caching.

2.2 Related works

In the literature, there has been extensive research over the last
decade to characterise the DoF and the capacity region of one-way
relay networks as well as two-unicast networks. However, beyond
single-hop, there is much less known about the capacity of multi-
flow networks. Even in the simplest case with two sources S1 and S2
and two destinations D1 and D2, there are very few results, such as
[26], where the maximum flow in two-unicast undirected wireline
networks is characterised. In the wireless realm, constant-gap
capacity approximations for specific two-hop networks (the ZZ and
ZS structures as depicted in Fig. 3) were obtained in [27].
Furthermore, it was shown that the network resulting from the
concatenation of two fully-connected interference channels (the
XX network as depicted in Fig. 4) admits the maximum of two
DoF [1, 6]. The achievability scheme relies on the notion of real
interference alignment, which was introduced in [28]. 

In [6], two-unicast multi-hop wireless networks with two
sources S1 and S2 and two destinations D1 and D2 that have a layered
structure with arbitrary connectivity are studied. It is shown that, if
the channel gains are chosen independently according to
continuous distributions, then, with probability 1, the DoF of the
two-unicast layered Gaussian networks can be 1, 3/2 or 2. In
particular, for the one-way 2 × 2 × 2 relay network in Fig. 4, one
DoF for each user is achievable, i.e. the total DoF is two.

There are limited number of works on the two-way 2 × 2 × 2
relay network in Fig. 1. In [10], three different achievability
strategies for such a network with MIMO channels are proposed.
However, these schemes are considerably away from the optimum,
since the achievable total DoF is only two for the SISO case, i.e.
the same as the one-way network. In addition, a symmetric finite-
field two-way 2 × 2 × 2 relay network model is studied in [11, 12].

Fig. 1  Two-way 2 × 2 × 2 relay network
 

Fig. 2  Channels from and to relays in a two-way 2 × 2 × 2 relay network
(a) Channels from transmitters to the relays, (b) Channels from relays to the receivers
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There are a few recent papers that studied the impact of caching
on DoF. In particular, Han et al. [19, 20] analysed the DoF gain
induced by caching in interference networks, and proposed a
cache-induced cooperative transmission strategy. Also
Naderializadeh et al. [29] studied some fundamental limits of the
DoF for cache-aided interference networks.

3 Main results on the two-way 2 × 2 × 2 relay
network
In this section, we study the model in Figs. 1 and 2, with and
without caching at relays.

3.1 Two-way 2 × 2 × 2 relay network without caching

We assume that the channel parameters H j, Rk, HRk, j, j ∈ {1, 2, 3, 4},
k ∈ {1, 2} are independent and chosen from the same continuous
distribution. Our result is that without caching at the relay, the total
DoF of the two-way 2 × 2 × 2 network is lower bounded by 2 and
upper bounded by 8/3.
 
Proposition 1: For a two-way 2 × 2 × 2 relay network, DoFNC ≥ 2.
 
Proof: If all nodes except for S1, R2 and S3 in Fig. 1 are silent, then
the channel can be seen as a two-way 1 × 1 × 1 relay network
formed by S1, R2 and S3. This channel can achieve two DoF by

simply forwarding the sum of the received signals at relay R2,
which is the sum of the two messages from S1 and S3. □

The next result shows that the DoF for the two-way 2 × 2 × 2
relay network is upper bounded by 8/3. Thus, the DoF for the two-
way network is smaller than twice the DoF for the one-way
network.
 
Theorem 1: For a two-way 2 × 2 × 2 relay network, DoFNC ≤ 8/3.
 
Proof: For the outer bound, we assume that there is a channel with
infinite capacity between the relays. Also, suppose that a genie
provides W1 to this combined relay. Then W3 should be decodable
at the relay as it is decodable at D3 given W1. Following this, the
messages W2 and W4 can be decoded if the matrix H (defined
below) is full rank as (5) will suggest this mathematically, which
happens with probability 1 over generic channel gains. Therefore,
the combined relay should be able to decode three signals W2, W3
and W4 with its two antennas (suggesting d2 + d3 + d4 ≤ 2). This is
further proved in the following.
Consider n time slots of the channel use and assume that nRi
represents the maximum rate achievable for transmitter i in the
total n time slots. Define Yi

n ≜ (Yi[1], …, Yi[n]) and
Xi

n ≜ (Xi[1], …, Xi[n]), i = 1, …, 4. We also define
hj, R ≜ [H j, R1 H j, R2], yR

n ≜ [YR1
n YR2

n ] and zR
n ≜ [ZR1

n ZR2
n ], where

YRk
n ≜ (YRk[1], …, YRk[n]) and ZRk

n ≜ (ZRk[1], …, ZRk[n]). Then, we
have

nℛ3 ≤
(a)

I(W3; Y3
n) + nϵn

≤
(b)

I(W3; Y3
n |W1) + nϵn

≤
(c)

I(W3; yR
n |W1) + nϵn

= h(yR
n |W1) − h(yR

n |W1, W3) + nϵn

= h(yR
n |W1) − I(yR

n; W2, W4 |W1, W3)
−h(yR

n |W1, W3, W2, W4) + nϵn

=
(d)

h(yR
n |W1) − I(yR

n; W2, W4 |W1, W3) − h(zR
n) + nϵn

= h(yR
n |W1) − I(yR

n; W2, W4 |W1, W3) − log (2πe)2n + nϵn

= h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2, W4 |W1, W3, yR
n) − 2nlog 2πe + nϵn

≤ h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2, W4 | yR
n − H1, RX1

n − H3, RX3
n) − 2nlog 2πe + nϵn

= h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2, W4 |H2, RX2
n + H4, RX4

n + zR
n) − 2nlog 2πe + nϵn

=
(e)

h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2, W4 | [X2
n X4

n] + zR
nH−1) − 2nlog 2πe + nϵn

=
(f)

h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2, W4 | X2
n + z2

n′, X4
n + z4

n′) − 2nlog 2πe + nϵn

≤
(g)

h(yR
n |W1) − H(W2, W4 |W1, W3)

+H(W2 | X2
n + z2

n′) + H(W4 | X4
n + z4

n′) − 2nlog 2πe + nϵn

=
(h)

h(yR
n |W1) − H(W2, W4 |W1, W3) − 2nlog 2πe + nϵn

′ + nϵn

= h(yR
n |W1) − H(W2, W4) − 2nlog 2πe + nϵn

″

≤
(i)

h(yR
n) − H(W2, W4) − 2nlog 2πe + nϵn

″

≤
(j)

h(YR1
n ) + h(YR2

n ) − H(W2, W4) − 2nlog 2πe + nϵn
″

≤
(k)

2 log 2πe(4Hmax
2 P + 1) n − H(W2, W4) − 2nlog 2πe + nϵn

″ ,
(5)

Fig. 3  One-way ZZ and ZS networks
(a) One-way ZZ channel, (b) One-way ZS channel

 

Fig. 4  One-way 2 × 2 × 2 relay network
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where (a) follows since the transmission rate is less than or equal to
the mutual information between the message and the received
signals, and ϵn can be arbitrarily small by increasing n; (b) follows
since I(W3; Y3

n |W1) − I(W3; Y3
n) = I(W3; Y3

n; W1)
≥ − min {I(W3; Y3

n), I(W1; Y3
n), I(W3; W1)} = 0 (as I(W3; W1) = 0);

(c) holds since W3 → yR
n → Y3

n; (d) follows since by subtracting the
contributions of Xi

n, i = 1, …, 4 from yR
n, we will only have

Gaussian noise at the relays; (e) follows from the fact that by
defining H ≜ [h2, R

T h4, R
T ]T, we obtain the following:

yR
n − H1, RX1

n − H3, RX3
n H−1 = [X2

n X4
n]T + zR

nH−1, (6)

(f) holds by defining [z2
n′ z4

n′] ≜ zR
nH−1; (g) holds since conditioning

decreases entropy; (h) follows from Fano's inequality and the fact
that probability of error in decoding Wi given Xi

n + zi
n′, i = 2, 4 goes

to zero for high signal-to-noise ratio (SNR); (i) holds because
conditioning decreases the entropy; (j) holds since
h(X, Y) ≤ h(X) + h(Y); (k) holds since YRi is in the form of (1),
with |Hi, Rk[m] | ≤ Hmax, and Xi ∼ CN(0, P).
Dividing both sides of (5) by nlogP, and using
n(ℛ2 + ℛ4 − ϵn

‴) ≤ I(W2; Y2) + I(W4; Y4) =
H(W2) − H(W2 |Y2) + H(W4) − H(W4 |Y4)
≤ H(W2) + H(W4) = H(W2, W4), results in

ℛ3

logP ≤ 2log 2πe(4Hmax
2 P + 1) n

nlogP − (ℛ2 + ℛ4)
logP − 2nlog 2πe

nlogP

+ ϵn
″

logP ,
(7)

and with n → ∞ and P → ∞, we obtain the following bound:

d2 + d3 + d4 ≤ 2. (8)

Similarly, we also have

d1 + d2 + d3 ≤ 2, (9)

d1 + d2 + d4 ≤ 2, (10)

d1 + d3 + d4 ≤ 2. (11)

Summing up (8)–(11) gives the upper bound in the statement of the
theorem. □

3.2 Symmetric two-way 2 × 2 × 2 relay network

In this section, we focus on a symmetric case of the two-way
2 × 2 × 2 relay network in Fig. 1, where the channel parameters are
assumed to have the following symmetry: H1, Rk = H3, Rk,
H2, Rk = H4, Rk, HRk, 1 = HRk, 3 and HRk, 2 = HRk, 4, k ∈ {1, 2}. The two-
hop decomposition of such a symmetric two-way 2 × 2 × 2 relay
network is shown in Fig. 5. The following result shows that the
DoF for symmetric two-way 2 × 2 × 2 relay network is four. Thus,
this two-way network achieves twice the DoF as compared to the
one-way network studied in [1]. Essentially the symmetry in
channel parameters allows for efficient alignment of the signals
from the two directions at the relays that leads to the DoF of four. 
 
Proposition 2: For the symmetric two-way 2 × 2 × 2 relay network,
DoFNC = 4.
 
Proof: For the achievability, S1 and S3 can be seen as one user and
S2 and S4 can be seen as another user from the relay nodes'
perspective, due to symmetry. Based on the result for the one-way
2 × 2 × 2 network in [1], each message can achieve one DoF. Since
we increase the number of messages from 2 in [1] to 4 in this
paper, DoF = 4 is achievable.
In addition, it can be seen that the upper bound follows from the
cut-set bound. □
 
Remark 1: The comparison of Theorem 1 and Proposition 2 shows
that, interestingly, even though without caching 8/3 is an upper
bound for generic channels, for symmetric channels DoF = 4
which shows that this network topology can, in principle, allow 4
DoF. Note that step (e) in (5) for generic channel parameters
requires the invertibility of H, which does not hold for symmetric
channels. This is what distinguishes generic channels (for which
DoF ≤ 8/3) from symmetric symmetric channels (for which
DoF = 4).

4 Two-way 2 × 2 × 2 network with caching
4.1 Caching and transmission strategy

In this subsection, we consider the more general model of multi-
antenna relays and single-antenna source/destination nodes, where
each relay Rk, k ∈ {1, 2} has Nk antennas. For this model, the
difference with the single-antenna case in Section 2.1 is that
channels Hi, Rk[m], HRk, i[m] are Nk × 1 and 1 × Nk vectors,
respectively, the signals to and from the relays, (YRk[m] and XRk[m],
respectively), are vectors of size Nk × 1, and the noise ZRk[m] is an
Nk × 1 vector, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. We assume that each
relay is equipped with a cache that can store the data from the
sources. Our goal is to design strategies for caching and
transmission so that the sum rate of all four source–destination
pairs is maximised. Similar to caching strategies in the literature
[17, 18], the transmission consists of two phases. The first phase is
the transmission from sources to the relays, as shown in Fig. 2a,
which is performed offline and is known as the placement phase.
The second phase is the transmission from the relays to the
destinations, as shown in Fig. 2b, which is performed online and is
known as the delivery phase. We assume that the relays decode Wi,
i = 1, …, 4 in the offline phase and save W1′ ≜ W1 ⊕ W3,
W2′ ≜ W2 ⊕ W4 in their caches. Then since both relays have access
to W1′ and W2′, we can consider them together as an (N1 + N2)-
antenna relay, transmitting xR

n = f (W1′, W2′), which intends to make
W1′ decodable at D1 and D3, and W2′ decodable at D2 and D4 in Fig.
2b.

The next result, after a short review of the compound broadcast
channels, shows that the DoF for the two-way 2 × 2 × 2 relay

Fig. 5  Channels from and to relays in a symmetric two-way 2 × 2 × 2 relay
network
(a) Channels from transmitters to the relays, (b) Channels from relays to the receivers
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network with multiple-antenna relays and single-antenna
transceivers is lower bounded by (4(N1 + N2))/(N1 + N2 + 1) under
the above caching and transmission strategy.

4.2 Background on compound broadcast channel

Here, we briefly introduce the compound broadcast channel and
list two lemmas that we need. The Gaussian MISO compound
broadcast channel comprises one transmitter with N antennas and K
single-antenna receivers. The transmitter transmits K messages,
each intended for a different receiver i whose channel state is
chosen from a finite set {1, …, Ji}, i = 1, …, K. In the literature
there are several results on the behaviour of this channel at high
SNR, i.e. the DoF. We cite the following two lemmas on the lower
and upper bounds of the compound broadcast channel,
respectively.
 
Lemma 1 [30, 31]: For the compound broadcast channel with N
antennas at the transmitter, K single-antenna receivers, and Ji ≥ N
states at receiver i, i = 1, …, K, the total DoF of (NK)/(N + K − 1)
is achievable.
 
Lemma 2 [32]: Consider a compound broadcast channel with N
antennas at the transmitter, and K = 2 single-antenna receivers
with J1 = 1, J2 = 2. Then the DoF region is outer bounded by the
following region:

1
N d1 + d2 ≤ 1, (12)

d1 + 1
N d2 ≤ 1. (13)

4.3 DoF of two-way 2 × 2 × 2 relay network with caching

In the following, we provide a result on the achievability of the
two-way 2 × 2 × 2 relay network with multiple-antenna relays and
single-antenna transceivers with caching:
 
Proposition 3: Under the caching and transmission strategy given
above,
DoF ≥ (4(N1 + N2))/(N1 + N2 + 1) for the two-way 2 × 2 × 2 relay
network with multiple-antenna relays and single-antenna
transceivers.
 

Proof: In our transmission strategy, the relays amplify-and-forward
the encoded data available in their caches. We treat the two relays
together as a super-relay with (N1 + N2) antennas that has access to
W1′ and W2′. The super-relay intends to make W1′ decoded at D1 and
D3, and W2′ decoded at D2 and D4 since each receiver can decode the
desired message by cancelling the contribution of its own message.
This becomes equivalent to a compound MISO broadcast channel
where message W1′ should be received at both D1 and D3, while
message W2′ should be received at both D2 and D4 as depicted in
Fig. 6. Thus, using Lemma 1 with N = N1 + N2 and K = 2, we
obtain the DoF of (2(N1 + N2))/(N1 + N2 + 1) which needs to be
multiplied by 2 due the fact that each of the signals W1′ and W2′ is
decoded by two receivers in the original channel. Hence we obtain
the DoF of (4(N1 + N2))/(N1 + N2 + 1) with caching. □ 

Now, we provide a discussion on the optimal transmission
strategy for the channel with relay caching. Consider the following
two transmission strategies for the relays:

• Encode W1 and transmit with power P: It is helpful for receiver 1,
has no effect for receiver 3, and is treated as interference for the
other two receivers.
• Encode W1′ and transmit with power P: It is helpful for receiver 1
(exactly the same effect as in the previous case), and is also helpful
for receiver 3 (in contrast to the previous case), and is treated as
interference for the other two receivers similar to the previous case.

Comparison of the above two strategies suggests that if there is
an achievability scheme where all of the messages are decodable
for some given total transmission power at the relays, then there is
also a strategy with the same power that comprises only W1′ and
W2′. Note that receivers 1 and 3 can decode their desired messages
by having access to W1′ (because they have access to each other's
message and can subtract it), and similar relation holds for
receivers 2 and 4. With this assumption, we present the following
result that gives the sum DoF = (4(N1 + N2))/(N1 + N2 + 1).
 
Proposition 4: For the two-way 2 × 2 × 2 relay network with
multiple-antenna relays and single-antenna transceivers and with
caching at the relays, total DoFC = (4(N1 + N2))/(N1 + N2 + 1) if
the relays only use W1

′  and W2
′  in their transmission rather than the

original individual messages.
 
Proof: The achievability follows from Proposition 3. Now we give
the proof of the outer bound. With the assumption that the relays
only transmit W1′ and W2′. The channel can be seen as a compound
broadcast channel with two receivers, where each receiver takes
two possible states as in Fig. 6. We know that decreasing the
number of channel states does not decrease the capacity [30]. So,
we decrease the number of states in receiver 1 to only 1. Then,
according to Lemma 2, the DoF region of the compound channel is
bounded by (12) and (13) for N = N1 + N2, and bounds
1/N d1 + d2 ≤ 1 and d1 + 1/N d2 ≤ 1. These two bounds give a

convex region with three non-zero corners of

(d1, d2) = N1 + N2

N1 + N2 + 1, N1 + N2

N1 + N2 + 1 ,

(d1, d2) = (1, 0) and (d1, d2) = (0, 1) .

Therefore, d1 = d2 = (N1 + N2)/(N1 + N2 + 1) results in the largest
value of d1 + d2 = (2(N1 + N2))/(N1 + N2 + 1) which as before
needs to be multiplied by 2 due the fact that each of the signals W1′
and W2′ is decoded by two receivers in the original channel.
Therefore, we obtain (4(N1 + N2))/(N1 + N2 + 1) as a DoF upper
bound. □

The above result leads to the following conjecture on the
general upper bound:
 
Conjecture 1: For the two-way 2 × 2 × 2 relay network with
multiple-antenna relays and single-antenna transceivers and with
caching at the relays, the total DoFC ≤ (4(N1 + N2))/(N1 + N2 + 1).
 

Fig. 6  Compound MISO broadcast channel as achievability for two-way
2 × 2 × 2 relay network with multiple-antenna relays and single-antenna
transceivers and with relay caching
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Remark 2: The results in Section 3.1 show that the DoF of two-way
2 × 2 × 2 relay network with no relay caching is bounded as
2 ≤ DoFNC ≤ 8/3 and Proposition 3 shows that DoFC = 8/3 is
achievable with relay caching for N1 = N2 = 1. Hence caching can
achieve the upper bound of the non-caching DoF of the two-way
multiple-unicast network, thus showing that relay caching in this
network could potentially improve the DoF.

Finally, the following corollary gives the DoF of symmetric
2 × 2 × 2 relay networks with caching.
 
Corollary 1: For the symmetric two-way 2 × 2 × 2 relay network
with relay caching, DoFC = 4.
 
Proof: The proof follows from the following facts together:

• For the symmetric two-way 2 × 2 × 2 relay network with no
caching, DoFNC = 4 (Proposition 2).
• For the two-way 2 × 2 × 2 relay network, DoFC ≤ 4 due to the
cut-set bound.
• DoFC ≥ DoFNC.

□

5 Conclusions
We have investigated the two-way 2 × 2 × 2 relay network, a class
of four-unicast networks. Table 1 summarises the main results of
this paper. In particular, we have shown that the total DoF is
bounded from above by 8/3, indicating that bidirectional links do
not double the DoF. We have also shown that DoF of 8/3 is
achievable with caching at the relays. Therefore, the proposed
work demonstrates that caching can achieve the outer bound of the
non-caching DoF of the two-way multiple-unicast network, thus
showing that relay caching in this network could be helpful in
terms of DoF. Decreasing the gap between the lower and the upper
bounds in Table 1 is an important problem. Finding the DoF for
other models of two-way four-unicast networks as well as two-way
networks with more than four source–destination pairs remains an
open problem. Further, the rate analysis under finite SNR for such
networks is also an open problem. Moreover, the effect of finite-
size cache and message popularity in the information theoretic
setting also remains to be investigated. 
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