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Multicast Beamforming Design in Multicell
Networks With Successive Group Decoding

Mehdi Ashraphijuo, Xiaodong Wang, Fellow, IEEE, and Meixia Tao, Senior Member, IEEE

Abstract— We consider a generic problem of multicast
beamforming design in multicell networks where each base
station (BS) has multiple independent messages to multicast and
each user intends to decode an arbitrary subset of messages
sent from all BSs using successive group decoding (SGD).
We first formulate the total transmit power minimization problem
subject to the constraints that a target rate vector is achievable
by the SGDs at all receivers. This problem is a non-convex
quadratically constrained quadratic program and NP-hard.
We propose a new method based on solving a sequence of
linearly regularized semi-definite programming (SDP) relaxation
of the original problem that yields feasible and near-optimal
solutions with high probability. Moreover, we propose a decen-
tralized algorithm based on the alternating direction method
of multipliers to solve each linearly regularized SDP, which
consists of solving a quadratic program at the central controller,
and closed-form analytic computations at each BS. Finally,
we propose an iterative procedure for joint beamformer and
rate optimization under the SGD framework. Numerical results
confirm the superiority of the proposed beamformer design
in both performance and complexity. It is also demonstrated
that, compared with the traditional linear receivers, the SGD
receivers achieve both significant rate improvement and energy
savings.

Index Terms— Successive group decoding, multicell multicast
beamforming, semi-definite program, decentralized algorithm,
ADMM.

I. INTRODUCTION

THE physical layer multicast beamforming is a promising
technology to increase the efficiency of transmitting a

common message to multiple users in wireless communi-
cations. The multicast beamforming problem for quality-of-
service (QoS) guarantee was first considered in [1]. The similar
problem of multicasting to multiple co-channel groups was
later studied in [2]. The design of coordinated multicast beam-
forming in multicell networks was studied in [3]. The design
in several other scenarios such as massive MIMO systems,
relay networks, and cache-enabled cloud radio access networks
and under different practical constraints was investigated
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in [4]–[11]. Some other issues such as outage analysis and
capacity limits were studied later in [12] and [13]. It is shown
that the multicast beamforming problem is in general a non-
convex quadratically constrained quadratic program (QCQP)
and NP-hard [1]. In addition, the problem can be infeasible
in multi-group and multicell scenarios due to co-channel
interference [2], [3].

Interference is known to be a limiting factor in wireless
networks. One venue of mitigating interference and increasing
data rate is the deployment of advanced receiver techniques
by exploiting the structure of interfering signals. In particular,
the successive group decoding (SGD) technique [14] chooses
an optimal subset of interferers to decode, in addition to
decoding the desired signals, to maximize the transmission
rate or to minimize the outage probability. The efficient
rate allocation in a single-antenna interference channel with
single-codebook and fixed power per user has been investi-
gated in [15] and [16]. In particular, the work [16] consid-
ers a K -user interference channel where each user employs
the successive interference cancellation-based decoder and
obtains a max-min fair decentralized rate allocation algo-
rithm. The work [15] considers a K -user Gaussian inter-
ference channel and solves the problem of maximizing the
desired user’s rate at a particular receiver given the trans-
mission rates of the other users. In addition, [15] proposes
sequential and iterative rate allocation algorithms, which yield
pareto-optimal rate-vectors albeit without a fairness guarantee.
Later, [17] studied this approach of rate allocation in
multiple-input single-output (MISO) cognitive radio chan-
nel when each secondary user has only one message to
decode. Moreover, [18], [19] address the rate allocation prob-
lem where each user has multiple intended messages and there
is a constraint on the number of users that can be jointly
decoded at any stage. Recently, [6]–[8] applied rate splitting
for multigroup multicasting problems.

This paper considers a generic multicast beamforming
design problem in multicell networks where each base sta-
tion (BS) transmits multiple messages and each user performs
the SGD to decode multiple intended messages. We formulate
the problem as a sum power minimization problem subject
to the constraint that a target rate vector is achievable by the
SGDs at all users. For the degenerative case that the SGD
becomes the simple linear receiver and hence each user only
desires one single message, our formulation unifies several
existing works on multicast and unicast beamforming design
such as [3] and [20]–[22].

In general, the problem of multicast beamforming design is
non-convex and NP-hard. A common approach is to first solve
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a convex problem through semi-definite relaxation (SDR).1

If the solution to the relaxed problem consists of all rank-one
matrices, then we obtain the optimal solution to the original
problem. However, this is not the case in general and in the lit-
erature, randomization methods have been proposed to obtain
suboptimal rank-one solutions. Unfortunately, these methods
yield infeasible solutions most of the time for the problem
considered here due to the large number of constraints.
We therefore propose a new approach to obtaining rank-one
feasible solutions by solving a sequence of linearly regular-
ized semi-definite programs, which is termed as successive
linearly regularized semi-definite relaxation (SLR-SDR). The
proposed linear regularization promotes low-rank solutions
through simultaneous penalization of the trace function and
uplift of off-diagonal elements of the non rank-one matrices.
Numerical examples confirm that the proposed method yields
rank-one solutions with very high probability.

Another contribution of this work is that we propose a
decentralized algorithm to solve the linearly regularized semi-
definite program (SDP), based on the alternating direction
method of multipliers (ADMM) [23]. Each iteration of the pro-
posed algorithm only involves a computationally cheap convex
program at the central controller and evaluations of closed-
form expressions at each BS locally. Thus our algorithm is
very computationally efficient and highly scalable. In addition,
the algorithm is guaranteed to converge to the optimal solution
of the considered SDP problem.

Finally, we propose an iterative procedure for joint beam-
former and rate optimization under the SGD framework.
Simulation results show that the procedure converges usually
in only 2 iterations.

The main contributions of this work are summarized as
follows:
• We consider a very generic multicast network model

where each cell (or BS) has multiple messages to send
and each user aims to decode an arbitrary subset of
the messages sent from all BSs. Our network model
includes the conventional multi-cell multicast, multi-
group multicast, hybrid multicast/unicast transmission,
as well as multi-user unicast transmission as special
cases. To facilitate the transmission and reception in such
generic network model, each message is encoded using
multiple codebooks (rate splitting) and each user employs
the successive group decoding receiver to decode its
intended messages (as opposed to the conventional linear
receiver assumed by most works in the literature.)

• We propose a new and efficient rank-reduction method
using linearly regularized SDP that significantly outper-
forms the existing methods of SDR with randomization.

• We propose an ADMM-based low complexity algorithm
for solving the linearly regularized SDP. Compared with
the traditional SDP solver, the proposed algorithm is
decentralized without loss of any optimality.

1In general, there are several common methods to approximate non-
convex QCQPs, including (a) SDR (prevailing); (b) reformulation linearization
technique (RLT); (c) successive convex approximation (SCA). The drawback
with approaches (b) and (c) is that they need a feasible point as initialization,
which is difficult to obtain in general.

• An iterative joint beamformer and rate optimization
method is also proposed to successively improve the
rate and reduce the transmission power, starting from the
simple channel-matched beamformers.

The remainder of the paper is organized as follows.
Section II describes the system under consideration. Section III
provides the problem formulation and gives the proposed cen-
tralized solution. The proposed decentralized solution based
on ADMM is given in Section IV. Section V proposes an
iterative procedure for joint beamformer and rate optimization
for SGD. Section VI provides simulation results and finally,
the concluding remarks are made in Section VII.

II. SYSTEM DESCRIPTIONS

A. System Model

Consider a generic multicast network comprising M BSs
and K mobile users. Assume that the j th BS is equipped with
M j transmit antennas, ∀ j ∈ {1, . . . , M}, and each mobile user
has one receive antenna. Each BS j , for j = 1, . . . , M , has
Sj (≤ M j ) independent messages to transmit. Let us define
M as the set of indices of all transmitted messages, i.e., M �
{( j, s)| j ∈ {1, . . . , M}, s ∈ {1, . . . , Sj }}. Also, denote A(k) ⊆
M as the set of messages that the kth user for k = 1, . . . , K
aims to decode. Let h j,k ∈ CM j denote the frequency-flat
quasi-static complex channel vector from the j th BS to the
kth mobile user, ∀ j ∈ {1, . . . , M}, k ∈ {1, . . . , K }. Let w j,s ∈
CM j denote a beamforming vector applied to the sth message
of the j th BS, ∀ j ∈ {1, . . . , M}, s ∈ {1, . . . , Sj }. Note that
the message s from BS j can be desired by one or multiple
users in the network. As a result, w j,s is a general multicast
beamformer by including unicast as a special case.

Moreover, we define L as the number of codebooks used per
message and denote the set of codebooks of the sth message
of the j th BS by C j,s

�={C j,s,1, . . . , C j,s,L} where C j,s,� is a
Gaussian codebook with rate r j,s,�. Increasing L provides the
receivers with more freedom to decide what fraction of the
interfering messages to decode and what fraction to treat as
noise. This is essentially the rate splitting method [24] and
was considered in [17] and [18].

Define x j,s,� as the unit-power input from codebook C j,s,�

to the channel. Then, we have

x j,s =
√

1

L

L∑
�=1

x j,s,�, (1)

as the transmitted signal for the sth message of the j th

BS which satisfies the unit-power constraint for all j ∈
{1, . . . , M}, s ∈ {1, . . . , Sj }, and consequently, the rate of
the sth message of the j th BS is

r j,s =
L∑

�=1

r j,s,� , for all j ∈ {1, . . . , M}, s ∈ {1, . . . , Sj }.

(2)

Note that although here for simplicity we assumed that each
message is divided into L parts with equal power, all results
can be extended to the case of unequal power. In that case,
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Eqn. (1) can be replaced with x j,s =
√

Pj,s,�
L

∑L
�=1 x j,s,�

such that
∑L

�=1 Pj,s,� = 1, Pj,s,� ≥ 0, ∀ j, s and the rest of
the paper can be updated accordingly.

Denote B(k) = M \A(k) as the set of messages that the kth

user does not intend to decode, ∀k ∈ {1, . . . , K }. Moreover
for every set D ⊆ M , define D∗ = {( j, s, �)|( j, s) ∈ D}.

The discrete-time baseband signal received by the kth user,
∀k ∈ {1, . . . , K }, is given by

yk =
M∑

j=1

S j∑
s=1

hH
j,kw j,s x j,s + zk

=
√

1

L

∑
( j,s,�)∈A∗(k)

hH
j,kw j,s x j,s,�

+
√

1

L

∑
( j,s,�)∈B∗(k)

hH
j,kw j,s x j,s,� + zk, (3)

where zk ∼ CN (0, σ 2
k ) is an independent circularly symmetric

complex Gaussian noise. The first term in (3) is the desired
signal and the second term is the received interference.

B. Successive Group Decoding

Each user k performs the successive group
decoding (SGD) [14], [18] to decode the messages in A∗(k).
Specifically, given a set of beamformers {w j,s}, a target rate
vector r0 = {r0

j,s,�}, and a fairness vector t = {t j,s,�}, it first
implements SGD(a)-(b) in the Appendix to obtain the optimal
SGD schedule Q(k) = [Q1(k), . . . , Q pk (k)], and the final
achievable rate vector r = r0 + xt, where Qm(k) denotes the
set of messages to be jointly decoded during the mth stage
of SGD, pk represents the number of SGD stages for the kth

user, and x is a scalar. Once {Q(k)} and r are computed,
each user k then implements SGD(c) to decode the messages
in A∗(k). We next briefly explain these two steps.

1) Computing the Optimal SGD Schedule and Achievable
Rate Vector: For the kth user, we define r0

k = {r0
j,s,� :

( j, s, �) ∈ A∗(k)}, i.e., the sub-vector of r0 corresponding
to the messages to be decoded by user k. Similarly define
tk and rk . Denote Hk =

{
h1,k, . . . , hM,k

}
as the channel

parameters from all transmitters to the kth receiver. Each
user k then implements SGD(a) independently to compute
its SGD schedule Q(k) = {Qm(k)} with |Qm(k)| ≤ μk

where μk is the maximum size of the group of messages
that can be jointly decoded by user k. We then have that
∀u ∈ A∗(k), ∃ 1 ≤ m ≤ pk such that u ∈ Qm(k). We also
define Qi (k) � B∗(k) ∪pk

j=i+1 Q j (k).
The group decoding theory, including the optimality prop-

erties, is developed in [18]. It follows from [18] that for a set
of given beamformers and a target rate vector, SGD obtains
the optimal transmission rates and the corresponding decoding
orders.

As it is detailed in [18], a low-rate feedback is sent to the
BSs to inform them the rate. BSs need to know the mink{xk}.
There are two possible approaches (we used the first one):
1) One approach is that each user k sends the scalar value of

xk to all the BSs; 2) Another approach is that all users send
the scalar values of xk’s to only one specific user, and that
user calculates mink{xk} and sends this scalar value to all the
BSs. This is the only “coordination” that is needed.

2) Performing the SGD: For any subset D ⊆ M ∗, let xD
denote the set of the signals with indices ( j, s, �) ∈ D and
rD denote the vector of the corresponding rates. Also, for any
two disjoint subsets U and V of M ∗, let Ck(Hk , U, V ) denote
the instantaneous achievable rate region of the kth user for
the sub-messages in U decoded using the maximum-likelihood
(ML) decoder, after assuming the messages in V to be additive
Gaussian interferers. In particular, we have that

Ck(Hk , U, V )

=
⎧⎨
⎩rU ∈ R

|U|
+ : ∀D ⊆ U, D �= ∅,

∑
( j,s,�)∈D

r j,s,� <

log

⎛
⎝1+

1
L

∑
( j,s,�)∈D |hH

j,kw j,s |2
1
L

∑
( j,s,�)∈V |hH

j,kw j,s |2 + σ 2
k

⎞
⎠
⎫⎬
⎭ . (4)

In SGD we start by decoding Q1(k) by treating all other
messages as noise, and then subtracting Q1(k) and decoding
Q2(k) and so on. SGD(c) shows this procedure.

The achievable rate region of SGD is ∩K
k=1 ∩pk

i=1

Ck

(
Hk, Qi (k), Qi (k)

)
. That is, the following constraints

should be satisfied:

log

⎛
⎝1+

1
L

∑
( j,s,�)∈Ji

|hH
j,kw j,s |2

1
L

∑
( j,s,�)∈Qi(k) |hH

j,kw j,s |2 + σ 2
k

⎞
⎠

≥
∑

( j,s,�)∈Ji

r j,s,�, ∀k ∈ {1, 2, ..., K },

∀i ∈ {1, 2, ..., pk}, ∀Ji ⊆ Qi (k), Ji �= ∅. (5)

III. BEAMFORMING DESIGN WITH

SGD FOR GIVEN RATES

A. Problem Formulation

The objective of beamforming design is to minimize the
total transmit power while maintaining the target transmission
rates for all signals transmitted by the BSs. For a given set of
SGD schedules Q(k) = {Q1(k), . . . , Q pk (k)}, k ∈ {1, . . . , K },
and a given set of rates r ∈ R

|M ∗|
+ of the messages that we seek

to be satisfied, by using the rate region of SGD, the problem
can be formulated as

P(r) : min
{w j,s}M, S j

j=1,s=1

M∑
j=1

S j∑
s=1

||w j,s||2

subject to (5). (6)

Define

r j,s,� = log(1+ γ j,s,�),

∀ j ∈ {1, . . . , M}, s ∈ {1, . . . , Sj }, � ∈ {1, . . . , L}.
(7)
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Then, the problem in (6) can be rewritten in terms of the target
SINR values γ = {γ j,s,�} as the following

P(γ ) : min
{w j,s}M, S j

j=1,s=1

M∑
j=1

S j∑
s=1

||w j,s ||2

s.t.
1
L

∑
( j,s,�)∈Ji

|hH
j,kw j,s |2

1
L

∑
( j,s,�)∈Qi(k) |hH

j,kw j,s|2 + σ 2
k

≥ f (γ Ji
),

∀k ∈ {1, 2, ..., K }, ∀i ∈ {1, 2, . . . , pk},
∀Ji ⊆ Qi (k), Ji �= ∅, (8)

where f (γ Ji
) � �( j,s,�)∈Ji (γ j,s,� + 1)− 1.

Remark 1: The problem P(γ ) in (8) is non-convex and
NP-hard2. In general, determining its feasibility is as difficult
as solving the problem itself. However, as long as the target
rate vector {r j,s,l} is obtained through SGD(a)-(b) and hence
achievable by using SGD, the problem is always feasible.

Remark 2: Minimizing the total power is a common
objective in multicell systems, see, e.g., [25], [26]. Moreover,
we can also use the weighted sum power as the objective simi-
lar to [10], [21] and the algorithm can be modified accordingly
to take into account the weights. Note that the peak-antenna
or peak-BS power constraint can be easily incorporated in our
sum-power minimization problem and proposed algorithms
since these constraints are all linear.

In what follows, we propose a suboptimal method for
solving this problem.

B. Semi-Definite Programming Relaxation
Here, we employ an SDR approach. By introducing new

variables W j,s = w j,swH
j,s , the problem P(γ ) in (8) can

be written in terms of {W j,s} with the added constraints
rank{W j,s} = 1, W j,s � 0, and W j,s is a Hermitian matrix,
∀ j ∈ {1, 2, . . . , M}, s ∈ {1, 2, . . . , Sj }.

For the new formulation, both the objective function and
all constraints except for the rank-one constraints, are convex.
Therefore we can consider the following relaxed version
of P(γ ):

P1(γ ) : min
{W j,s }M, S j

j=1,s=1

M∑
j=1

S j∑
s=1

tr{W j,s}

s.t.
∑

( j,s,�)∈Ji

tr{H̃ j,kW j,s} − f (γ Ji
)Lσ 2

k

− f (γ Ji
)

∑
( j,s,�)∈Qi(k)

tr{H̃ j,kW j,s} ≥ 0,

∀k ∈ {1, 2, . . . , K }, ∀i ∈ {1, 2, . . . , pk},
∀Ji ⊆ Qi (k), Ji �= ∅,
W j,s � 0,

∀ j ∈ {1, 2, ..., M}, ∀s ∈ {1, 2, ..., Sj }, (9)

where H̃ j,k = h j,khH
j,k . Problem P1(γ ) is known as the

SDR of problem P(γ ), where the name stems from the fact
that P1(γ ) is an instance of SDP, which can be solved, to

2Our problem is a QCQP problem and any 0–1 integer program (which is
NP-hard) can be formulated as a QCQP problem. Also in [2] it is discussed
that a degenerative case of our problem is NP-hard.

any arbitrary accuracy, in a numerically stable and efficient
fashion.

Due to the relaxation, the matrices {W j,s} obtained by
solving P1(γ ) will not be rank-one necessarily. If they are all
rank-one, then we can write W j,s = w j,swH

j,s , and w j,s will
be a feasible – and in fact optimal – solution to problem P(γ ).
If not, then tr(W j,s) is a lower bound on the optimal solution
to P(γ ). If the rank of any W j,s is larger than 1, then we
must extract from it, in an efficient manner, a vector w j,s that
is feasible for P(γ ).

In the following, after a review of the previous works,
in Section III-D we will propose an efficient method for
obtaining near-optimal rank-one solutions.

C. Relationship With Previous Works

1) Formulations: The existing works on multicast
beamforming design do not consider advanced interference
management techniques, and only treat interference as noise.
Therefore they can be considered as degenerative cases of
our general formulation with SGD. One case is where the
number of users is equal to the total number of transmitted
messages (at all BSs), i.e., K = ∑M

j=1 Sj , and each user
desires a distinct messages. Then, the degenerative case of
our model3 reduces to the unicast transmission model, which
has been considered in [20] and [21] for single-cell and
multi-cell networks, respectively. In particular, in [20] the
beamforming design problem is solved using the standard
conic optimization package and in [21] since the strong
duality holds, the problem is solved by a convex solver. In
addition, in [22] the case of only one transmitter with multiple
messages (one for each individual user) is investigated where
the SDR for beamforming design is employed. Due to the
simplicity of the problem, the solution is always rank-one
and therefore optimal. Another case is where there is only
one message to be transmitted from each BS, i.e., Sj = 1,
∀ j ∈ {1, 2, . . . , M}, each user intends to decode only one
message and multiple users can intend to decode the same
message. Such degenerative case becomes the multi-cell
multicast model considered in [3], where a decentralized
algorithm based on SDR is proposed.

In [7] a rate splitting method is applied for multicast beam-
forming design, where the message of each user is divided
into only two parts of public and private. More specifically,
part of the interference is broadcasted to all groups such that
it is decoded and canceled. In this paper, each BS divides its
message into multiple parts, and each unintended user decides
if it wants to decode any of these parts.

2) Rank-One Solution Extraction: Existing approaches to
extracting rank-one solutions from the solution to the SDR
problem is based on “randomization” [27]–[29]. In the first
method (rand-A), it was proposed in [1] to perform eigen-
decomposition on Wi,s = Ui,s�i,s Ui,s and then form wi,s =
Ui,s�i,s

1
2 ei,s , where [ei,s ]� = e jθi,s,� , with θi,s,�’s being inde-

pendent and uniformly decentralized on [0, 2π). In the second
method (rand-B), inspired by [28], wi,s is formed according

3For example, if the kth user aims to decode the sth message transmitted
from the j th BS, then we have Q(k) = {( j, s)}.
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to [wi,s ]� =
√[Wi,s ]��[ei,s ]�. The third method (rand-C) [30]

forms wi,s = Ui,s�i,s
1
2 vi,s , where vi,s ∼ CN (0, I).

These randomization methods are applicable to a special
case of P(γ ) where on the left-hand-sides of the constraints
in (8) (which are in the form of fractions), wi,s ’s do not appear
in the denominators. In other words, randomization methods
are applicable to maximum-likelihood decoding. For this case,
after randomization, a set of feasible beamforming vectors can
be found by simply scaling to the minimum norm necessary
so that all constraints are satisfied. For example, for the case
where there is only one transmitter with only one message and
there are multiple receivers [1], randomization gives a feasible
solution. However, such randomization can lead to infeasible
solution for the general formulation P(γ ) considered in this
paper, because scaling can increase both the numerator and
denominator on the left-hand-side of the constraints in (8) and
does not necessarily increase the value of the fraction.

3) Algorithm Design: There are also recent methods other
than SDR for solving multicast beamforming problems in the
literature [5], [11], [31], [32]. In specific, in [5], [11], and [31],
iterative algorithms are proposed by solving a sequence of
convex approximations of the original non-convex QCQP
problem, which is known as successive convex approxima-
tion (SCA) or convex-concave procedure (CCP). These convex
approximation methods need a feasible point as initialization.
The SLR-SDR we shall propose in the next subsection can pro-
vide effective initial feasible solution when employed together
with RLT or SCA methods which need a feasible point as
initialization. Also, [32] proposed an algorithm for non-convex
QCQPs, where any QCQP with only one constraint can be
optimally solved. Moreover, the consensus ADMM can be
used to solve general QCQPs, in such a way that each update
requires to solve a number of QCQPs with only one constraint.
For the ADMM proposed in this paper, in contrast to [32], all
local problems have closed-form solutions which makes the
algorithm very fast.

D. Successive Linearly Regularized Semi-Definite
Relaxation (SLR-SDR)

The basic idea of our proposed approach is to use an
alternative objective function and the same set of constraints in
the SDR, so that the chance of obtaining rank-one solutions is
higher. In particular, we propose to solve a sequence of SDR
of the following form by introducing the new set of linear
regularization matrices {A}:

P2(γ , A) : min
{W j,s }M, S j

j=1,s=1

M∑
j=1

S j∑
s=1

tr{A j,sW j,s}

s.t.
∑

( j,s,�)∈Ji

tr{H̃ j,kW j,s} − f (γ Ji
)Lσ 2

k

− f (γ Ji
)

∑
( j,s,�)∈Qi(k)

tr{H̃ j,kW j,s} ≥ 0,

∀k ∈ {1, 2, . . . , K }, ∀i ∈ {1, 2, . . . , pk},
∀Ji ⊆ Qi (k), Ji �= ∅,
W j,s � 0,

∀ j ∈ {1, 2, ..., M}, ∀s ∈ {1, 2, ..., Sj }.
(10)

At the beginning, we have A j,s = IM j and P2(γ , A) is the
same as P1(γ ). We then iteratively adjust {A j,s} and solve
the corresponding P2(γ , A). Since the constraints are always
the same, every solution of P2(γ , A) is feasible for P1(γ ).
We propose a method to adjust the matrices {A j,s} in order to
make the solution of P2(γ , A) rank-one, which would also
provide a rank-one, feasible and near-optimal solution for
P1(γ ), if the deviation in the objective function from P1(γ )
is small.

Consider an optimal solution to the relaxed problem P1(γ ).
Since the mapping from {W j,s} to tr{H̃ j,kW j,s} is not bijec-
tive, there can be many optimal matrix solutions with different
rank values. In this case, a solution found by a generic SDP
solver would normally have a high rank value, although there
may exist a rank-one solution.

To this end, SLR-SDR aims to search for a linear regulariza-
tion term of the form

∑M
j=1

∑S j
s=1 tr{A j,sW j,s} that produces

rank-one solutions. Observe that choosing A j,s = IM j leads
to the simple trace regularizer and alternatively choosing
A j,s = IM j − 1M j leads to the maximization of the sum of
off-diagonal values of W j,s , where 1m is an all-1 matrix of
size m. In SLR-SDR we incorporated two distinct heuristics
in choosing {A j,s} as we will elaborate in the following.

1) Penalizing the Trace Function: We propose a regular-
ization term that promotes low-rank solutions by penalizing
the trace function which is in fact the convex envelope of the
nonsmooth rank function [33], [34].

Successive Linearly Regularized Semi-Definite Relaxation
(SLR-SDR) for Solving P1(γ )

1: Choose the thresholds Ta, Tb > 0 and
constants α > 1 and β > 0.

2: Initialize a j,s = 1 and b j,s = 0 for
all j ∈ {1, . . . , M} and s ∈ {1, . . . , Sj }.

3: Set A j,s ← a j,sIM j − b j,s(1M j − IM j ).
4: Solve the relaxed problem P2(γ , A) in a centralized

way using a general SDP solver, or in a
decentralized way using ADMM-BF in Section IV.

5: If all matrices {W j,s} are rank-one, then exit.
6: For every ( j, s) such that rank(W j,s) > 1,

If a j,s < Ta , set a j,s ← αa j,s ; go to step 3,
Else if b j,s < Tb, set b j,s ← β + b j,s; go to step 3,
Else terminate and declare failure.

Example: Consider a simple case where the objective func-
tion in the relaxed problem is min{a.tr{W1}+b.tr{W2}} where
a and b are some positive values. If the solution to this relaxed
problem is of rank-one for W1 and of higher rank for W2,
by increasing the value of b, we put a stronger emphasize
on minimizing tr{W2} (in comparison with tr{W1}) which
increases the chance of getting a rank-one solution for tr{W2}
since the trace function is the convex envelope of the rank
function.4

In SLR-SDR, the term a j,s is to increase the diagonal
entries of A j,s which magnifies the minimization of tr{W j,s}.
This is due to the fact that the trace of the product of two

4We should be careful to not to increase b too much which may increase
the rank of W1 as a consequence.
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matrices can be interpreted as the inner product of their entries,
and changing an element in A j,s changes the corresponding
component in W j,s in the opposite direction.

2) Penalizing the Off-Diagonal Elements: An alternative
technique for obtaining low rank solutions is to uplift the off-
diagonal values of matrix variables in addition to minimizing
the diagonal values. To be more specific, we apply a regular-
ization term that is a combination of both diagonal and off-
diagonal entries in this work. We start the off-diagonal method
with an illustrative example.

Example: Consider a 2× 2 positive semi-definite matrix X
with fixed diagonal entries a and b and variable off-diagonal
entries X12 = X21 = x . If we maximize x subject to X � 0,
then it would admit the value x = √ab, which makes the
matrix X rank-one. Motivated by this, we apply the idea of
lifting the off-diagonal entries of positive semi-definite matrix
variables to obtain a low-rank solution.

It is known that every low-rank matrix solution to an SDP
problem belongs to the boundary of the feasible set as opposed
to the interior, c.f. [35, Sec. 2.9]. Consider a matrix solution
W∗j,s � 0, with at least one zero eigenvalue. Let v belong
to the null space of W∗j,s . Then for any ε > 0, the matrix
W∗j,s − ε × vvT � 0 which means that W∗j,s belongs to the
boundary of feasible set. Having these explanations, suppose
that the entry [W j,s]i,k of a matrix solution does not appear
in the objective function of the relaxed problem P1(γ ) where
i �= k. In this case, [W j,s]i,k is a free parameter and the
relaxed problem P1(γ ) may have infinitely many solutions
with different values of [W j,s]i,k . Note that only a subset of
these solutions belong to the boundary and the rest lie within
the interior of the feasible set. In short, the motivation behind
our proposed off-diagonal regularization term is to incorporate
all of the entries (not only the diagonal entries) in the objective
and to direct the solution to the boundary of the feasible set.

In SLR-SDR, the term b j,s is to decrease the off-diagonal
entries of A j,s which causes the off-diagonal entries of W j,s

to increase.
Remark 3: It is not difficult to find a set of appropriate

parameters. We can start with some initial values for α, β,
Ta , and Tb. Then, if the step sizes α and β are chosen too
large, the ranks may even increase; and if they are too small,
there may not be any change in ranks. (We only need to try
a few values for α and β to find some proper values.) The
parameters Ta and Tb determine the total number of iterations
and can be determined when more iterations do not decrease
the rank any more.

IV. DECENTRALIZED ALGORITHM

In this section, we develop a decentralized algorithm to
solve P2(γ , A) such that each BS j calculates its beamformers
{W j,s, s = 1, . . . , Sj } locally, with the coordination of a
central controller. To that end, we make use of the alternating
direction method of multipliers (ADMM), a first-order convex
optimization algorithm [36], [37] to solve large-scale problems
in a decentralized or parallel way [38], [39].

A. Background on ADMM

Consider the following optimization problem with a sepa-
rable objective function and linear constraints:

min
x∈Rn,z∈Rm

f (x)+ g(z) s.t. Ax + Bz = c, (11)

where f (x) and g(z) are convex functions, A, B are known
matrices, and c is a given vector of appropriate dimension.

The first method for solving (11) is “dual decomposition,”
which uses the Lagrangian function

L(x, z, y) = f (x)+ g(z)+ yT (Ax + Bz − c)

= f (x)+ yT Ax︸ ︷︷ ︸
F(x,y)

+ g(z)+ yT Bz︸ ︷︷ ︸
G(z,y)

−yT c, (12)

where y is the Lagrange multiplier corresponding to the
constraint (11). The above Lagrangian function can be sep-
arated into two distinct functions F(x, y) and G(z, y). The
dual decomposition method updates x , z and y separately,
according to the following iterations

xt+1 ← arg minx F(x, yt), (13)

zt+1 ← arg minz G(z, yt ), (14)

yt+1 ← yt + ρt (Axt+1 + Bzt+1 − c), (15)

for t = 0, 1, 2, . . . , with an arbitrary initialization (x0, z0, y0),
where ρt is a step size.

Despite its decomposability, the dual decomposition method
has robustness and convergence issues. The “method of multi-
pliers” can be used to remedy these difficulties, which is based
on the augmented Lagrangian function

Lρ(x, z, y) = f (x)+ g(z)

+ yT (Ax + Bz − c)+ ρ

2
‖Ax + Bz − c‖2,

(16)

where ρ is a nonnegative constant. Notice that (16) is
obtained by augmenting the Lagrangian function in (12) with
a quadratic penalty term in order to increase the smallest
eigenvalue of the Hessian of the Lagrangian with respect to
(x, z). However, this augmentation creates a coupling between
x and z. The method of multipliers performs the following
iterations

(xt+1, zt+1) → arg min(x,z)Lρ(x, z, yt ), (17)

yt+1 → yt + ρ(Axt+1 + Bzt+1 − c). (18)

In order to avoid solving a joint optimization with respect
to x and z at every iteration, the ADMM first updates x by
freezing z at its latest value, and then updates z based on the
most recent value of x . This leads to the following 2-block
ADMM [39]:

block 1 update: xt+1 ← arg minx Lρ(x, zt , yt ), (19)

block 2 update: zt+1 ← arg minzLρ(xt , z, yt ), (20)

dual variable update: yt+1 ← yt + ρ(Axt+1 + Bzt+1 − c).

(21)
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B. Decentralized Beamforming Based on ADMM

We now consider the ADMM approach to solving the
relaxed beamforming problem P2(γ , A) in (10). Since the
standard ADMM does not allow inequalities, we add slack
variables  = { j,s,k ∈ R} and δ = {δk,Ji ∈ R} to only have
equality constraints. We also introduce another set of slack
variables W̃ = {

W̃ j,s ∈ CM j×M j and is Hermitian
}
, to make

the local computation at each BS in closed-form, rather than
solving an SDP (See Remark 4). Moreover, define I+(A) = 0
if A � 0 and +∞ otherwise. Then, P2(γ , A) can be rewritten
equivalently in the form of (11) as

P3(W, W̃, , δ) :

min
W, W̃, , δ

M∑
j=1

S j∑
s=1

tr{A j,sW j,s}

+
K∑

k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

I+(δk,Ji )+
M∑

j=1

S j∑
s=1

I+(W̃ j,s)

s.t. tr{H̃ j,kW j,s} =  j,s,k,

∀ j ∈ {1, . . . , M}, ∀s ∈ {1, . . . , Sj },
∀k ∈ {1, 2, ..., K }, (22)

δk,Ji =
∑

( j,s,�)∈Ji

 j,s,k − f (γ Ji
)

∑
( j,s,�)∈Qi(k)

 j,s,k

− f (γ Ji
)Lσ 2

k ,

∀k ∈ {1, . . . , K }, ∀i ∈ {1, . . . , pk},
∀Ji ⊆ Qi (k), Ji �= ∅, (23)

W̃ j,s =W j,s,

∀ j ∈ {1, . . . , M}, ∀s ∈ {1, . . . , Sj }. (24)

Now, by introducing the Lagrange multipliers λ={λ j,s,k ∈ R},
ν = {νk,Ji ∈ R}, and κ = {

κ j,s ∈ CM j×M j and is Hermitian
}

of the constraints (22), (23) and (24), respectively, we can
write the augmented Lagrangian of P3(W, W̃, , δ) as in (16),
given by

Lρ(W, W̃, , δ,λ, κ, ν)

=
M∑

j=1

S j∑
s=1

tr
{
A j,sW j,s

}

+
K∑

k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

I+(δk,Ji )+
M∑

j=1

S j∑
s=1

I+(W̃ j,s)

+
M∑

j=1

S j∑
s=1

K∑
k=1

λ j,s,k

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)

+
M∑

j=1

S j∑
s=1

tr{κT
j,s(W̃ j,s −W j,s)}

+
K∑

k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

νk,Ji

⎛
⎝δk,Ji + f (γ Ji

)Lσ 2
k

+ f (γ Ji
)

∑
( j,s,�)∈Qi(k)

 j,s,k −
∑

( j,s,�)∈Ji

 j,s,k

⎞
⎠

+ ρ

2

M∑
j=1

S j∑
s=1

K∑
k=1

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)2

+ ρ

2

M∑
j=1

S j∑
s=1

‖W̃ j,s −W j,s‖2

+ ρ

2

K∑
k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

⎛
⎝δk,Ji + f (γ Ji

)Lσ 2
k

+ f (γ Ji
)

∑
( j,s,�)∈Qi(k)

 j,s,k −
∑

( j,s,�)∈Ji

 j,s,k

⎞
⎠

2

. (25)

Then following the two-block ADMM as in (19)-(21),
we alternatively minimize Lρ in terms of two sets of variables
{W̃, , δ} and {W}, as well as the dual variables {λ, ν, κ}.
In particular we have

block 1 update:(W̃t+1, t+1, δt+1)

← argminW̃,δ,  Lρ(Wt , W̃, , δ,λt , ν t , κ t ), (26)

block 2 update:Wt+1

← argminW Lρ(W, W̃t+1, t+1, δt+1,λt , ν t , κ t ). (27)

In what follows, we solve the two optimization
problems (26) and (27).

1) Block 1 Update: Define L1
ρ as the terms of Lρ in (25)

that includes {W̃, , δ}, i.e.,

L1
ρ(W, W̃, , δ,λ, κ, ν)

=
K∑

k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

I+(δk,Ji )

+
M∑

j=1

S j∑
s=1

K∑
k=1

λ j,s,k

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)

+
K∑

k=1

pk∑
i=1

∑
Ji⊆Qi (k)

Ji �=∅

νk,Ji

⎛
⎝δk,Ji + f (γ Ji

)Lσ 2
k

+ f (γ Ji
)

∑
( j,s,�)∈Qi(k)

 j,s,k −
∑

( j,s,�)∈Ji

 j,s,k

⎞
⎠

+ ρ

2

M∑
j=1

S j∑
s=1

K∑
k=1

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)2
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+ ρ

2

K∑
k=1

pk∑
i=1

∑
Ji⊆Qi (k)
[4pt ]Ji �=∅

⎛
⎝δk,Ji + f (γ Ji

)Lσ 2
k

+ f (γ Ji
)

∑
( j,s,�)∈Qi(k)

 j,s,k −
∑

( j,s,�)∈Ji

 j,s,k

⎞
⎠

2

︸ ︷︷ ︸
�L1,1

ρ (W,,δ,λ,ν)

+
M∑

j=1

S j∑
s=1

I+(W̃ j,s)+
M∑

j=1

S j∑
s=1

tr{κT
j,s(W̃ j,s −W j,s)}

+ρ

2

M∑
j=1

S j∑
s=1

‖W̃ j,s −W j,s‖2.
︸ ︷︷ ︸

�L1,2
ρ (W,W̃,κ)

(28)

Note that L1,1
ρ includes only the terms with  and δ,

and L1,2
ρ includes only the terms with W̃. Therefore, (26)

involves two decoupled optimizations and {, δ} and each
{W̃} can be solved separately which we discuss in the
following.

Solving min,δ L1,1
ρ (W, , δ,λ, ν): Note that

L1,1
ρ (W, , δ,λ, κ, ν) contains only linear and positive

quadratic terms of  and δ and therefore its minimization
over  and δ ≥ 0 can be easily solved, e.g., using a standard
convex solver.

Solving minW̃ L1,2
ρ (W, W̃, κ): Note that the optimization

of {W̃ j,s} can be carried out independently and in parallel,
since

L1,2
ρ (W, W̃, κ) =

M∑
j=1

S j∑
s=1

L1,2
ρ, j,s(W j,s, W̃ j,s, κ), (29)

where

L1,2
ρ, j,s(W j,s, W̃ j,s , κ)

� I+(W̃ j,s)+ ρ

2
‖W̃ j,s −W j,s‖2 + tr

{
κT

j,s(W̃ j,s −W j,s)
}

= I+(W̃ j,s)+ ρ

2
tr

{(
W̃ j,s −W j,s + 1

ρ
κ j,s

)H

(
W̃ j,s −W j,s + 1

ρ
κ j,s

)}
− 1

2ρ
tr

{
κT

j,sκ j,s

}
. (30)

Then the optimal W̃ j,s is obtained by performing
an eigenvalue decomposition on W j,s − 1

ρ κ j,s

and replacing all negative eigenvalues by zero,
i.e.,

W̃∗j,s = arg minW̃ j,s
L1,2

ρ, j,s(W j,s, W̃ j,s, κ)

=
(

W j,s − 1

ρ
κ j,s

)
+

. (31)

2) Block 2 Update: Define L2
ρ as the terms of Lρ in (25)

that includes W, i.e.,

L2
ρ(W, W̃, ,λ, κ)

=
M∑

j=1

S j∑
s=1

tr
{
A j,sW j,s

}

+
M∑

j=1

S j∑
s=1

K∑
k=1

λ j,s,k

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)

+
M∑

j=1

S j∑
s=1

tr{κT
j,s(W̃ j,s −W j,s)}

+ ρ

2

M∑
j=1

S j∑
s=1

K∑
k=1

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)2

+ ρ

2

M∑
j=1

S j∑
s=1

‖W̃ j,s −W j,s‖2

=
M∑

j=1

S j∑
s=1

L2
ρ, j,s(W j,s, W̃ j,s, ,λ, κ), (32)

where

L2
ρ, j,s(W j,s, W̃ j,s, ,λ, κ)

� tr
{
A j,sW j,s

}

+
K∑

k=1

λ j,s,k

(
tr

{
H̃ j,kW j,s

}
−  j,s,k

)

+ tr{κT
j,s(W̃ j,s −W j,s)} + ρ

2
‖W̃ j,s −W j,s‖2

+ ρ

2

K∑
k=1

(tr
{

H̃ j,kW j,s

}
−  j,s,k)

2. (33)

Note that block 2 update is an unconstrained optimization
and (33) is quadratic in terms of W j,s . Taking the deriv-
ative of (33) with respect to W j,s and setting it zero, we
have (Recall that for complex valued matrices A and X of
appropriate dimensions, d tr(AX)

d X = AT [40])

AT
j,s +

K∑
k=1

λ j,s,kH̃T
j,k − κ j,s − ρ

K∑
k=1

 j,s,kH̃T
j,k

+ ρ

K∑
k=1

tr{H̃ j,kW j,s}H̃T
j,k + ρ

(
W j,s − W̃ j,s

) = 0.

(34)

Define

K j,s � −
(

1

ρ

)

×
(

AT
j,s +

K∑
k=1

λ j,s,kH̃T
j,k − κ j,s − ρ

K∑
k=1

 j,s,kH̃T
j,k

−ρW̃ j,s

)
. (35)
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Then (34) simplifies to

W j,s +
K∑

k=1

tr{H̃ j,kW j,s}H̃T
j,k = K j,s . (36)

Define the row concatenation operator ṽec(H) = [vec(HT )]T
and the inverse operator ṽec−1(.) such that ṽec−1

(ṽec(H)) = H. Then (36) can be written as

ṽec
(
W j,s

)+
K∑

k=1

diag
(

ṽec
((

H̃T
j,k

)))
1M2

j

× ṽecT (H̃T
j,k)ṽec(W j,s) = ṽec

(
K j,s

)
. (37)

�⇒ W∗j,s = ṽec−1
(

L j,s ṽec
(
K j,s

) )
. (38)

where

L j,s

�
(

IM2
j
−

K∑
k=1

diag
(

ṽec
((

H̃T
j,k

)))
1M2

j
ṽecT

(
H̃T

j,k

))−1

.

(39)

Note that the term L j,s is constant and therefore can be
pre-computed. The decentralized beamforming algorithm is
summarized in a table as ADMM-BF.

Theorem 1: ADMM-BF solves the problem P2(γ , A)
in (10) exactly.

Proof: The conditions for the 2-block ADMM to solve
the optimization problem in (11) exactly are given in [39] and
they hold true here, i.e., the cost function of P2(γ , A) and
those in block 1 and block 2 are all convex. �

Remark 4: Introducing the slack variables {W̃ j,s} into
the ADMM helped us to solve the local problems,
i.e., (30) and (33), in a closed-form manner rather than needing
to solve an SDP for each agent ( j, s) in each iteration.
Specifically, without introducing {W̃ j,s}, the block 2 update,
i.e., (27) would have the constraints W j,s � 0 for each ( j, s)
which does not admit a closed-form solution and hence an
SDP needs to be solved for each agent ( j, s) in each iteration.

Remark 5: We note the following implementation details
regarding ADMM-BF:

• Channel information: The local agents in each BS need
to know only the channels from that BS to all users.

• Decoding orders: The local agents do not need to know
the decoding orders. Only the central agent knows it.

• Information exchange: The central agent shares each
t+1

j,s,k with local agent ( j, s), and each local agent shares

each Wt+1
j,s and λt+1

j,s,k with the central agent.

Remark 6: Here we briefly compare our decentralized
method with the centralized one. In the centralized method,
the beamformers for all BSs must be calculated all together
by a central agent and then the corresponding beamformers
of each BS are given to it. In contrast, in the decentralized
method each BS calculates its own beamformers with some
coordination of the central agent. Another important feature
of the decentralized algorithm is that all calculations in each
individual BS are in closed-form (rather than solving an SDP

ADMM-BF for Solving P2(γ , A)

1: Choose the step size ρ, the stopping criterion ε
and the maximum number of iterations tmax.

2: Set the initial values W0, λ0, κ0, ν0 and t ← 0.
3: Calculate {L j,s} in (38).
4: Repeat
5: Block 1 update:

-The central agent solves the quadratic problem
(t+1, δt+1)← arg min

δ, 
L1,1

ρ (Wt , , δ,λt , ν t )

and shares each t+1
j,s,k with local agent ( j, s).

-Every local agent ( j, s) computes
W̃t+1

j,s ←
(

Wt
j,s − 1

ρ κ t
j,s

)
+

6: Block 2 update:
-Every local agent ( j, s) computes K j,s in (35)
and Wt+1

j,s ← ṽec−1
(
L j,s ṽec

(
K j,s

))
7: Dual variable update:

-Every local agent ( j, s) computes
λt+1

j,s,k ← λt
j,s,k + ρ

(
tr

{
H̃ j,kWt+1

j,s

}
− t+1

j,s,k

)
.

κ t+1
j,s ← κ t

j,s + ρ
(

W̃t+1
j,s −Wt+1

j,s

)
and

shares each Wt+1
j,s and λt+1

j,s,k with central agent.
-Central agent computes
νt+1

k,Ji
← νt

k,Ji
+ ρ

(
δt+1

k,Ji
+ f (γ Ji

)Lσ 2
k+

f (γ Ji
)
∑

( j,s,�)∈Qi(k) t+1
j,s,k −

∑
( j,s,�)∈Ji

t+1
j,s,k

)
.

8: t ← t + 1.
9: Until ‖Wt −Wt−1‖ ≤ ε or t > tmax.
10: If ‖Wt −Wt−1‖ ≤ ε output Wt .

Else declare failure.

as in the centralized method). It takes several iterations for the
decentralized algorithm to converge to the centralized solution,
and the convergence is guaranteed.

V. JOINT BEAMFORMING AND RATE

OPTIMIZATION WITH SGD

In the previous two sections, we discussed beamformer
optimization with SGD given the achievable rate vector. Once
the beamformers are optimized for the given rate vector, if we
run SGD(a)-(b) again, we will obtain an improved rate vector,
for which we can further optimize the beamformers. Such a
process can iterate until it converges, as shown in Fig. 1. The
first two initialization steps are done locally at each BS. The
rate calculation step involves computing the local rate at each
user using algorithm SGD(a) and then the user coordination
using algorithm SGD(b) through the BSs. More details can be
found in [18]. The beamformer optimization step through the
SLR-SDR algorithm can be implemented in either centralized
or decentralized way, as discussed in Sections III and IV,
respectively.

Note that since the initial rate vector r0 is computed based
on the initial beamformers {w0

j,s}, it is achievable. Then by
running SGD(a)-(b) we obtain an improved rate vector r that
is also achievable by {w0

j,s}. Next for the achievable rate
vector r, by running SLR-SDR we obtain an improved set
of beamformers {w j,s} that results in less total transmission
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Fig. 1. Iterative procedure for joint beamformer and rate optimization for
SGD.

power. Hence in each iteration, the rate increases and the total
power decreases and the procedure will converge.

In this work, we initialize the beamformers as the average of
matched filters. Specifically we set w0

j,s =
∑

k∈K j,s
h j,k/|K j,s|

where K j,s represents the set of receivers that intend to decode
the signal ( j, s). Then assuming all interference is treated as
noise, the initial rate is given by

r0
j,s,�

= 1

L

× min
k∈K j,s

⎧⎨
⎩log

⎛
⎝1+ |hH

j,kw j,s |2∑
( j ′,s ′)∈M\( j,s) |hH

j ′,kw j ′,s ′ |2 + σ 2
k

⎞
⎠
⎫⎬
⎭,

for all j ∈ {1, . . . , M}, s ∈ {1, . . . , Sj }, � ∈ {1, . . . , L}.
(40)

VI. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the proposed centralized and decentral-
ized beamforming design algorithms, and also illustrate the
advantage of using SGD over traditional linear receivers. After
performing an SDR followed by solving a convex optimization
P1(γ ) in (9) over {W j,s}M, S j

j=1,s=1, we compute the eigenvalues

of each W j,s , λ
j,s
1 ≥ λ

j,s
2 ≥ · · · ≥ λ

j,s
M j

. Then, we check to

see whether or not
λ

j,s
1

λ
j,s
2

≥ 108 holds for all ( j, s). If it holds,

we declare all {W j,s} are rank-one and optimal; otherwise we
implement SLR-SDR (the linear regularized SDP) to decrease
the ranks of the non-rank-one matrices W j,s . Throughout

this section, we use the following parameters in SLR-SDR:
α = 10, β = 1, Ta = α7 and Tb = 7β. The group size μk = μ
for all k in SGD. In all simulations, all channel vectors {h j,k}
are independent and each contains i.i.d. CN (0, 1) entries. For
all simulations, 200 channel realizations are simulated and
100 randomizations are generated if any of the randomization
methods are needed.

A. Comparison With Randomization Methods

As noted in Section III-C.2, there are three randomization
methods to obtain a rank-one solution from a non-rank-
one solution to the SDR [1]. However, for the problem
considered in this paper, i.e., P1(γ ) in (9), the rank-one
solutions given by these methods may not be feasible.
In fact, since the number of constraints in (9) is usually
large, the randomization methods, together with scaling, yield
infeasible solutions most of the time, as will be shown
in Fig. 4.

To show the advantage of our proposed reduced-rank
method using linear regularized SDP, we consider two simple
systems that do not employ SGD. The first system consists of
M = 2 BSs, each with M j = 5 antennas and transmitting
Sj = 1 message, j = 1, 2, and K = 3 ML users each
intending to decode both messages. We assume the same
predetermined desired rate for both signals, i.e., r1 = r2 = r .
Also, we assume that the noise variance at each user is σ 2

k = 1,
k = 1, 2, 3.

For this example there are 3 constraints for each receiver
k ∈ {1, 2, 3}:

log
(

1+ |hH
1,kw1|2

)
≥ r1,

log
(

1+ |hH
2,kw2|2

)
≥ r2,

log
(

1+ |hH
1,kw1|2 + |hH

2,kw2|2
)
≥ r1 + r2. (41)

Then, if the solution to the SDR, or that returned by
SLR-SDR does not meet the rank-one condition, by applying
one of the randomization methods followed by scaling, we
always obtain a feasible solution. Fig. 2 depicts a com-
parison of total power consumption between SLR-SDR and
simple SDP (i.e., solving P1 directly without linear regu-
larization) together with different randomization methods. It
is seen that SLR-SDR results in ∼5 dB reduction in total
power consumption than the simple SDP. This is mostly
due to the fact that in many of the channel realizations
that the SDP is not exact, applying SLR-SDR results in
a close to optimal solution for the total power (usually
more optimal than the randomization plus scaling). Here
we also compared the solutions with the lower bound, i.e.,
the solution to P1(γ ), where the rank-one constraints are
dropped.

The second system consists of M = 2 transmitters and
K = 6 receivers. Each transmitter has M j = 10 antennas
and sends Sj = 1 message, j = 1, 2. We assume that the
sets of messages to be decoded by the receivers are A(1) =
A(2) = A(3) = {1}, A(4) = A(5) = A(6) = {2} and also
L = 1. Each receiver simply treats the unintended message as
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Fig. 2. Comparison of the power consumption between SLR-SDR and simple
SDP together with different randomization methods.

noise. Similar to the previous example, we consider the same
predetermined desired rate for both signals, i.e., r1 = r2 = r .
Also, we assume that the noise variance at each receiver is
σ 2

k = 1, ∀k. Therefore, there are six constraints, one for the
decodability of each user, as below:

log

⎛
⎝1+ |hH

j,kw j |2

|hH
j ′,kw j ′ |2 + 1

⎞
⎠ ≥ r j ,

( j, j ′, k) ∈ {
(1, 2, k ′)|k ′ ∈ {1, 2, 3}}

∪ {
(2, 1, k ′′)|k ′′ ∈ {4, 5, 6}} .

(42)

Fig. 3 depicts a comparison of probability of obtaining fea-
sible rank-one solution by the randomization methods and
SLR-SDR. It is seen that when the target rate r is low,
randomization can increase the probability of feasible rank-
one solutions compared with the simple SDP. But as the
rate increases, the improvement becomes smaller5. However,
SLR-SDR can significantly increase the probability of rank-
one solutions compared with randomization methods for all
rate ranges.

B. Performance of Centralized Algorithm
for SGD (SLR-SDR)

Throughout the rest of this section, we assume the
following parameters: M = 2, K = 4, Sj = 2, M j = 4,
∀ j ∈ {1, . . . , M}. We also set A(1) = {(1, 1), (2, 1)},
A(2) = {(1, 2), (2, 2)}, A(3) = {(1, 1), (2, 1)}, and A(4) =
{(1, 1), (2, 2)}. Also, we assume that the noise variance in
each receiver is σ 2

k = 1
2 , ∀k. First the beamforming and rate

5This could be due to the fact that by increasing the target rates, the
feasible set becomes smaller and, consequently, the randomization methods
have lower chances to find a feasible solution in realizations that SDP is not
exact (because of their randomized nature).

Fig. 3. Comparison of the probability of feasible rank-one solution of
different randomization methods and SLR-SDR.

Fig. 4. Comparison of the probability of feasible rank-one solutions between
SLR-SDR, simple SDP and rand-A.

initialization methods in Section V are implemented and then
using {w0

j,s} and {r0
j,s,�} by applying SGD(a)-(b), we obtain

the rate vector {r j,s,�} and the group decoding schedules
{Q(k)} which are used to formulate problem P1(γ ) in (9)
and P2(γ , A) in (10).

Fig. 4 illustrates the probability of getting feasible rank-one
solutions by SLR-SDR in comparison with the simple SDP and
the rand-A method. It is seen that in this case, randomization
has little effect in getting feasible rank-one solutions compared
with the simple SDP6; whereas SLR-SDR provides significant
improvement over the simple SDP.

6This is due to the fact that we have a lot of constraints in (8) because of
SGD(a)-(b), and randomization methods become less effective in finding a
feasible solution.
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Fig. 5. Comparison of the total power of SLR-SDR with the lower bound.

Fig. 6. Probability of non-rank-1 solution by SLR-SDR over iterations.

Fig. 5 illustrates the efficiency of SLR-SDR for the cases
of L ∈ {1, 2} and μ ∈ {1, 2}, by comparing its solution
with the lower bound. The lower bound is the SDP solution
to the relaxed problem, i.e., the problem without the rank-1
constraints. In this plot we only consider the channel realiza-
tions where the solutions obtained by SLR-SDR are rank-one.
It can be seen that SLR-SDR achieves a performance that is
very close to the optimum.

Fig. 6 depicts the probability of non-rank-1 solution
by SLR-SDR over iterations for different values of
(L, μ). It is seen that the probability of non-rank-1 solu-
tion drops steadily over iterations and it stabilizes after
9 iterations.

Fig. 7 depicts the number of iterations to reach rank-1
solutions (up to 12 iterations). For each pair of (L, μ), the
percentages of channel realizations that take different number

Fig. 7. Percentages of different number of iterations to reach rank-1 solutions.

Fig. 8. Convergence behavior of the decentralized beamformer design
algorithm (ADMM-BF).

of iterations to reach rank-1 solutions are plotted. It can be
observed that around 75% of the rank-1 solutions are obtained
in the first iteration and 25% required additional iterations. The
average number of iterations to obtain rank-1 solutions for all
pairs of (L, μ), is only 2.13.

C. Convergence of Decentralized Algorithm (ADMM-BF)

Fig. 8 depicts the convergence of ADMM-BF to the solution
of the centralized SDR, i.e., solution to problem P2(γ , A)
over iterations, for one channel realization, for L = μ = 1
and L = μ = 2 assuming A = I. The group decoding
schedules and the rate initialization algorithm described in
Section VI-B is applied here, as well. Also, we set ρ = 2
in the augmented Lagrangian. As it was discussed in Section
IV, the proposed decentralized algorithm always converges
to its optimal value and the simulation result corroborates
this fact. Also we can see that at the first few iterations,
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Fig. 9. Performance of the iterative procedure for joint beamformer and rate
optimization for SGD.

the algorithm converges very fast and achieves the major
part of the optimal value. Note that since in ADMM-BF the
local problems are solved in closed-form each iteration runs
very fast.

D. Performance of Joint Beamformer and
Rate Optimization for SGD

In Fig. 9, we show the rate and power improvements by the
iterative procedure for joint beamformer and rate optimization
given in Section V. The system setup is the same as that
in Section VI-B and the stopping criterion is that the total
rate increment is smaller than 0.01. Fig. 9(a) depicts the
total power in each iteration and Fig. 9(b) depicts the total
rate in each iteration. The 0th iteration corresponds to the
initialization in Fig. 1. It is seen that the major improvement
is due to a single step of beamformer optimization and
rate optimization in the 1st iteration. For almost all channel

realizations the stopping criterion is satisfied after the second
iteration.

Note that the 0th iteration corresponds to the conven-
tional linear receivers typically assumed in existing works on
multicast beamforing with channel-matched-filter precoders.
We can employ our proposed beamformer design SLR-SDR
to optimize the beamformers based on the initial rates. Then
we obtain the power corresponding to optimized multicast
beamforing with conventional linear receivers [3], [20]–[22].
These values are shown as the two horizontal lines in Fig. 9(a)
for L = 1 and L = 2. It can be seen that the performance
with SGD and optimal beamformer is superior to that of
linear receiver with optimal beamformer. Hence employing the
successive group decoding, both significant rate improvement
and energy savings can be achieved.

VII. CONCLUSIONS

We have treated the problem of multicast beamforming
design in multicell networks where advanced interference
mitigation techniques are employed. In particular, each BS
transmits multiple messages, each using a distinct beamformer
and destined for several users. Each message is composed
of several sub-messages that enables the receivers to per-
form partial interference decoding. Each receiver performs
successive group decoding (SGD) where the desired message
and a subset of interferers are decoded. The goal of beam-
former design is to minimize the total power consumption
while guaranteeing that all the receivers can decode their
desired signals. This problem is non-convex and we have
proposed an efficient algorithm based on solving a sequence
of linearly regularized SDR of the problem that provides
feasible and near-optimal solution with high probability. We
have also proposed a very fast decentralized algorithm based
on ADMM with provable convergence to the centralized
solution. Finally, we have provided an iterative procedure
for joint beamformer and rate optimization under the SGD
framework.

APPENDIX

SEQUENTIAL GROUP DECODING

The search complexity for identifying the best set of sub-
messages to be decoded at each step (Steps 4, 8 and 13
in SGD(a)) can be made polynomial in the total number
of codebooks |M ∗|, by a successive decoding approach and
leveraging the matroid structure of the achievable rate regions
[18, Lemma 2]. The total number of iterations within SGD(a)
is at most |M ∗|. In SGD(a), 1D denotes a vector in which all
entries corresponding to the elements in set D are equal to 1
and the rest are 0, and ◦ denotes the Hadamard product of two
vectors.

In SGD(a), the kth user computes the rate increment xk

for all transmitted signals such that the new rate vector
rk = r0

k + xktk for A∗(k) remains decodable at the kth user.
Based on such rate increment suggestions by all users, SGD(b)
determines the final rate increment by taking the minimum
of {xk}.
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SGD(a) - Computing the optimal SGD schedule and local rate
increment for the kth user

1: Input Hk , {w j,s}, {r0
j,s,�} and A(k).

2: Initialize U = M ∗, V = ∅, i = 1.

3: Repeat
4: Find Vi (k) = arg minD �=∅,D⊆U⎛

⎜⎜⎝
log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,kw j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠,

and δi (k) = minD �=∅,D⊆U⎛
⎜⎜⎝

log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,kw j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠.

5: If �( j, s, �) ∈ A∗(k) such that ( j, s, �) ∈ Vi (k)

U← U\Vi (k) and V ← V ∪ Vi (k) and i ← i + 1.
End if

6: Until ∃( j, s, �) ∈ A∗(k) such that ( j, s, �) ∈ Vi (k)

7: Repeat
8: Find Vi (k) = arg minD �=∅,D⊆U

|D|≤μk⎛
⎜⎜⎝

log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,kw j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠,

and δi (k) = min D �=∅,D⊆U
[1pt ]|D|≤μk⎛

⎜⎜⎝
log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,kw j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠.

9: If �( j, s, �) ∈ A∗(k) such that ( j, s, �) ∈ Vi (k)

U← U\Vi (k) and V ← V ∪ Vi (k) and i ← i + 1.

End if
10: Until ∃( j, s, �) ∈ A∗(k) such that ( j, s, �) ∈ Vi (k)

11: q = i .

12: Repeat
13: Find Qi−q+1(k) = arg minD �=∅,D⊆U

|D|≤μk⎛
⎜⎜⎝

log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,k w j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠,

and δi (k) = minD �=∅,D⊆U
|D|≤μk⎛

⎜⎜⎝
log

(
1+

1
L

∑
( j,s,�)∈D |hH

j,k w j,s |
2

1
L

∑
( j,s,�)∈V |hH

j,k w j,s |
2+σ2

k

)
−∑( j,s,�)∈D r0

j,s,�

‖t◦1D‖1

⎞
⎟⎟⎠.

14: U← U\Qi−q+1(k) and i ← i + 1.
15: Until �( j, s, �) ∈ A∗(k) such that ( j, s, �) ∈ U.
16: Set xk = δq(k) and pk = i − q .
17: Output Q(k) = {Q1(k), . . . , Q pk (k)} and xk .

SGD(b) - User coordination to obtain final rates

1: Initialize r0.
2: Each user k runs SGD(a) to determine

Q(k) and xk .
3: Output r = r0 +min1≤k≤K {xk}t and {Q(k)}Kk=1.

SGD(c) - Performing the SGD for the kth User
1: Input Hk , {w j,s,�}, {r j,s,�} and

Q(k) = {Q1(k), . . . , Q pk (k)}.
2: For i = 1 to pk :
3: Initialize U = Qi (k) and V = M ∗\ ∪i

j=1 Q j (k).
4: Check condition rU ∈ Ck(Hk, U, V ).
5: If check is true,

a) x̂U = arg minXU∣∣∣∣yk −
√

1
L

∑
( j,s,�)∈U hH

j,kw j,s x j,s,�

∣∣∣∣ ;

b) yk ← yk −
√

1
L

∑
( j,s,�)∈U hH

j,kw j,s x j,s,�.
6: Else,

a) declare outage and quit.
7: End if
8: End for
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