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Abstract—This paper gives degrees of freedom region of
two user MIMO interference channels with limited receiver
cooperation. For the symmetric interference channel, we also
find the amount of receiver cooperation beyond which the
degrees of freedom do not improve.

I. INTRODUCTION

Wireless networks with multiple users are interference-
limited rather than noise-limited. Interference channel (IC)
is a good starting point for understanding the performance
limits of the interference limited communications. In spite of
research spanning over three decades, the capacity of the IC
has been characterized only for some special cases [1–7].

Interference channels model practical cellular networks.
However, since the cellular base stations are connected via
backhaul, making efficient use of the backhaul is an impor-
tant practical problem. This backhaul can lead to coopera-
tion between transmitters in the downlink and cooperation
between the receivers in the uplink [8–13]. Cooperation be-
tween transmitters or receivers can help mitigate interference
by forming distributed MIMO systems which provides a gain
in throughput. The rate at which they cooperate, however, is
limited, due to physical constraints. In this paper, we ask the
fundamental question of the efficient use of limited capacity
backhaul for multiple-input multiple-output (MIMO) uplink
interference channels (with receiver cooperation). Recently,
many results have shown that transmitter and receiver coop-
eration can be employed in ICs to achieve an improvement
in data rates [14–21]. However, most of the existing works
on ICs with cooperation are limited to discrete memoryless
channels or to single-input single-output (SISO) channels.
This paper analyzes the degrees of freedom region for a
two-user MIMO Gaussian interference channels with limited
receiver cooperation.

Interference channel with limited receiver cooperation was
considered in [14] for the case of single antennas at each
terminal, where the authors found the approximate capacity
region with limited receiver cooperation. This paper considers
the degrees of freedom region for the two user interference

channel with limited receiver cooperation for the case of
multiple antennas at each of the terminal. We find the degrees
of freedom region improve with receiver cooperation from
that of no cooperation to complete cooperation with limited
cooperation. For the case of symmetric antennas, we find
that the symmetric degrees of freedom improve with the
amount of receiver cooperation, till the amount of receiver
cooperation is min(N, (2M − N)+), where M and N are
the number of transmit and receive antennas respectively.

The symmetric degrees of freedom region formed when
both the transmitters have M antennas and both the receivers
have N antennas each, is a pentagon with only individual and
sum degrees of freedom bound for all cases except when
N < M < 2N . Thus, when the number of antennas at all
the nodes are the same, the degrees of freedom is a pentagon.
However, in the case when N < M < 2N , we note that the
degrees of freedom region have constraints of 2d1 + d2 and
d1+2d2. These constraints are known to not hold when there
is no cooperation in which case the channel model becomes
interference channel with no cooperation [5], and when there
is infinite cooperation in which case the channel model is
equivalent to a multiple access channel [22]. In this paper, we
find that the extra bounds on 2d1+d2 and that on d1+2d2 are
dominant for a finite limited cooperation (when cooperation
is less than a certain amount) for N < M < 2N . We note
that this result shows that the role of transmit and receive
antennas cannot be interchanged to get the reciprocity result
which exists in the case of no cooperation [5].

The remainder of the paper is organized as follows. Sec-
tion II introduces the model for a MIMO IC model with
limited receiver cooperation and the DoF region. Sections III
describe our results on degrees of freedom region. Section
IV concludes the paper.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe the channel model consid-
ered in this paper. A two-user MIMO IC consists of two
transmitters and two receivers. Transmitter i is labeled as Ti
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and receiver j is labeled as Dj for i, j ∈ {1, 2}. Further,
we assume Ti has Mi antennas and Di has Ni antennas,
i ∈ {1, 2}. Henceforth, such a MIMO IC will be referred to as
the (M1, N1,M2, N2) MIMO IC. We assume that the channel
matrix between transmitter Ti and receiver Dj is denoted by
Hij ∈ CNj×Mi , for i, j ∈ {1, 2}. We shall consider a time-
invariant or fixed channel where the channel matrices remain
fixed for the entire duration of communication. We also
incorporate a non-negative power attenuation factor, denoted
as ρij , for the signal transmitted from Ti to Dj . At time-
instant t, transmitter Ti chooses a vector Xi(t) ∈ CMi×1

and transmits
√
PiXi(t) over the channel, where Pi is the

average transmit power at transmitter Ti.

The received signal at receiver Di at time instant t is
denoted as Yi(t) for i ∈ {1, 2}, and can be written as

Y1(t) =
√
ρ11H11X1(t) +

√
ρ21H21X2(t) + Z1(t),(1)

Y2(t) =
√
ρ12H12X1(t) +

√
ρ22H22X2(t) + Z2(t),(2)

where Zi(t) ∈ CNi×1 is independent and identically dis-
tributed (i.i.d.) CN(0, INi

) (complex Gaussian noise), ρii is
the received SNR at receiver Di and ρij is the received
interference-to-noise-ratio at receiver Dj for i, j ∈ {1, 2},
i 6= j. A MIMO IC with limited receiver cooperation is
fully described by four parameters. The first is the num-
ber of antennas at each transmitter and receiver, namely
(M1, N1,M2, N2). The second is the set of channel gains,
H = {H11, H12, H21, H22}. The third is the set of average
link qualities of all the channels, ρ = {ρ11, ρ12, ρ21, ρ22}.
The fourth parameter is C = {C12, C21} where Cji is the
capacity of the cooperation link from the other receiver of
Dj to Di. We assume that these parameters are known to
all transmitters and receivers. In this paper, we assume that
ρij = SNR for all i, j ∈ {1, 2}.

The receiver-cooperative links are noiseless with finite
capacities. Encoding must satisfy causality constraints in the
sense that the signal transmitted from Dj at time n is a
function of whatever is received over the channel, or on the
cooperation link till time n − 1. In addition, the decoded
signal at Di, m̂i, is a function of the received signal from the
channel, Yi(t), and the cooperation signal transmitted from
receiver j to receiver i, Cji, for i ∈ {1, 2}. Thus, the decoding
functions of the two receivers are given as

m̂i = fit(Cji, Yi(t)), i ∈ {1, 2}, (3)

where fit is the decoding function of Di. Let us assume
that Ti transmits information at a rate of Ri to receiver
Di using the codebook Ci,n of length-n codewords with
|Ci,n| = 2nRi . Given a message mi ∈ {1, . . . , 2nRi}, the
corresponding codeword Xn

i (mi) ∈ Ci,n satisfies the power
constraint mentioned before. From the received signal Y ni
and the received cooperation from the other receiver, Cji, the
receiver obtains an estimate m̂i of the transmitted message
mi using a decoding function. Let the average probability of

error be denoted by ei,n = Pr( m̂i 6= mi).
A rate pair (R1, R2) is achievable if there exists a family

of codebooks Ci,n, i = {1, 2}n and decoding functions such
that maxi{ei,n} goes to zero as the block length n goes
to infinity. The capacity region C(H, ρ) of the IC with
parameters H and ρ is defined as the closure of the set of
all achievable rate pairs.

We define DoF of the user ith as di = limSNR→∞
Ri

log SNR
and define DoF region for the MIMO interference channel
as D = {(d1, d2) ∈ R2

+ : di = limSNR→∞
Ri

log SNR}

III. DEGREES OF FREEDOM OF MIMO INTERFERENCE
CHANNEL WITH FEEDBACK

In this section, we find the DoF region for the two user
MIMO interference channel with limited receiver coopera-
tion.

Theorem 1. The DoF region for a general MIMO IC with
limited receiver cooperation is given as follows:

d1 ≤ min {M1, N1}+
min{min{N2, (M1 −N1)

+}, Cd21}, (4)
d2 ≤ min {M2, N2}+

min{min{N1, (M2 −N2)
+}, Cd12}, (5)

d1 + d2 ≤ min{N1, (M1 −N2)
+ +M2}+

min{N2, (M2 −N1)
+ +M1}+ Cd12 +

Cd21, (6)
d1 + d2 ≤ min{N1, (M1 −N2)

+}+
min{N2,M1 +M2}+ Cd12, (7)

d1 + d2 ≤ min{N2, (M2 −N1)
+}+

min{N1,M1 +M2}+ Cd21, (8)
d1 + d2 ≤ min{N1 +N2,M1 +M2}, (9)

2d1 + d2 ≤ min{N2, (M2 −N1)
+ +M1}+

min{N1, (M1 −N2)
+}+

min{N1,M1 +M2}+ Cd12 + Cd21, (10)
d1 + 2d2 ≤ min{N1, (M1 −N2)

+ +M2}+
min{N2, (M2 −N1)

+}+
min{N2,M2 +M1}+ Cd12 + Cd21, (11)

2d1 + d2 ≤ min{N1 +N2,M1}+
min{N1,M1 +M2}+ Cd21, (12)

d1 + 2d2 ≤ min{N1 +N2,M2}+
min{N2,M1 +M2}+ Cd12. (13)

Proof. The proof is given in Appendix A.

For the symmetric case, the DoF region simplifies as
follows.

Corollary 1. The symmetric DoF region where Cd12 = Cd21 =
Cd, N1 = N2 = N , and M1 = M2 = M , is given as
follows:

1153



(a) M ≤ N (b) 2N ≤ M (c) N ≤ M ≤ 2N , where D = min(M,N+

Cd), E = M+N+Cd

2
, and F = min(M +

Cd, 2N)

Fig. 1. DoF region for symmetric MIMO IC with limited receiver cooperation (grey area).

For M ≤ N :

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ N + Cd. (14)

For 2N ≤M :

d1 ≤ N + Cd,

d2 ≤ N + Cd,

d1 + d2 ≤ 2N. (15)

For N ≤M ≤ 2N :

d1 ≤ min{M,N + Cd},
d2 ≤ min{M,N + Cd},

d1 + d2 ≤ min{M + Cd, 2N},
2d1 + d2 ≤ N +M + Cd,

d1 + 2d2 ≤ N +M + Cd. (16)

Figure 1 shows the symmetric DoF region. We note that
for Cd = 0, we get the same degrees of freedom region as
in [5]. For this case, the degrees of freedom region do not
have bounds on 2d1+d2 and d1+2d2, and has reciprocity in
M and N . However, both these properties do not hold with
limited receiver cooperation. With infinite cooperation, the
degrees of freedom region reduces to a MIMO MAC region
as given in [22] where the bounds on 2d1+ d2 and d1+2d2
are not dominant. We note here that for N ≤M ≤ 2N and
0 < Cd < min(N, (2M−N)+), these bounds are dominant.

Lemma 1. For the symmetric case when Cd12 = Cd21 = Cd,
N1 = N2 = N , and M1 = M2 = M , DoF region with
cooperation of Cd + ε is strictly better than that with Cd

for any ε > 0 if 0 ≤ Cd < min{N, (2M −N)+}. However,
cooperation beyond min{N, (2M −N)+} does not improve
the DoF region which implies that the DoF region with a
cooperation of Cd = min{N, (2M − N)+} is the same

that for a multiple access channel obtained with infinite
cooperation.

Proof. For M ≤ N it can be seen from (14) that the
cooperation improves the DoF region until Cd ≤ (2M −
N)+ = min{N, (2M −N)+}.

Also, for 2N ≤ M it can be seen from (15) that the
cooperation improves the DoF region until Cd ≤ N =
min{N, (2M −N)+}.

For N ≤M ≤ 2N , we divide the proof into four different
cases:

Case 1:

Cd ≤ M −N,
Cd ≤ 2N −M. (17)

In this case, the symmetric DoF region reduces to

d1 ≤ N + Cd,

d2 ≤ N + Cd,

d1 + d2 ≤ Cd,

2d1 + d2 ≤ N +M + Cd,

d1 + 2d2 ≤ N +M + Cd. (18)

In this region, Cd is always less than min{N, (2M −N)+}
because Cd ≤M−N ≤ N = min{N, (2M−N)+}. In this
case, it is easy to see increasing the Cd always enlarges the
region.

Case 2:

Cd ≥ M −N,
Cd ≤ 2N −M. (19)

1154



In this case, the symmetric DoF region reduces to

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ M + Cd,

2d1 + d2 ≤ N +M + Cd,

d1 + 2d2 ≤ N +M + Cd. (20)

In this region, Cd is always less than min{N, (2M −N)+}
because Cd ≤ 2N −M ≤ N = min{N, (2M − N)+}. In
this case, it is easy to see increasing the Cd always enlarges
the region. According to Figure 2(c), while Cd ≤ 2N −M ,
we get 2E ≤ 3N and F ≤ 2N which shows none of the
red, green and blue lines could include the point (d1, d2) =
(M,M) below them in this case. Also, increasing the Cd,
results the increase of E and F in Figure 2(c) and as a result,
enlarges the symmetric DoF region.

Case 3:

Cd ≤ M −N,
Cd ≥ 2N −M. (21)

In this case, the symmetric DoF region reduces to

d1 ≤ N + Cd,

d2 ≤ N + Cd,

d1 + d2 ≤ 2N,

2d1 + d2 ≤ N +M + Cd,

d1 + 2d2 ≤ N +M + Cd. (22)

In this region, Cd is always less than min{N, (2M −N)+}
because Cd ≤ M − N ≤ N = min{N, (2M − N)+}. In
this case, it is easy to see increasing the Cd always enlarges
the region. According to Figure 2(c), while Cd ≤ M − N ,
we get D,E ≤ M ≤ 2N = F and also, increasing the Cd,
results the increase of D and E in Figure 2(c) and as a result,
enlarges the symmetric DoF region.

Case 4:

Cd ≥ M −N,
Cd ≥ 2N −M. (23)

In this case, the symmetric DoF region reduces to

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ 2N,

2d1 + d2 ≤ N +M + Cd,

d1 + 2d2 ≤ N +M + Cd. (24)

In this region, changing Cd only changes E in Figure 2(c).
Also, we can easily see that black line and red line have
intersection on (d1, d2) = (M, 2N−M). Green line includes
this intersection while Cd ≥ N and will be below this point
while Cd ≤ N which means increasing the Cd improves the

DoF region until Cd ≤ N = min{N, (2M −N)+}.

.

IV. CONCLUSIONS

This paper finds the degrees of freedom region for the
two user MIMO interference channel with limited receiver
cooperation. We find that the degrees of freedom region im-
proves with cooperation. For the symmetric case, we find the
maximum amount of cooperation needed to get the degrees
of freedom region the same as that will full cooperation.
Limited receiver cooperation gives two additional bounds on
2d1+d2 and d1+2d2, which do not exist in the cases of no
cooperation as well as full cooperation.

APPENDIX A
PROOF OF THEOREM 1

The degrees of freedom region is given as the limit of the
capacity region divided by log(SNR) as SNR goes to infinity.
We will first describe the approximate capacity region for the
two-user MIMO IC with limited receiver cooperation.

Let Ro be the convex hull of the region formed by
(R1, R2) satisfying the following constraints.

R1 ≤ log det(IN1 + ρ11H11H
†
11) + min{log

det(IN2 + ρ12H12H
†
12 − ρ12ρ11H12H

†
11

(IN1 + ρ11H11H
†
11)
−1H11H

†
12), C21}, (25)

R2 ≤ log det(IN2 + ρ22H22H
†
22) + min{log

det(IN1 + ρ21H21H
†
21 − ρ21ρ22H21H

†
22

(IN2 + ρ22H22H
†
22)
−1H22H

†
21), C12}, (26)

R1 +R2 ≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

−ρ11ρ12H11H
†
12(IN2 + ρ12H12H

†
12)
−1

H12H
†
11) + log det(IN2 + ρ22H22H

†
22 +

ρ12H12H
†
12 − ρ22ρ21H22H

†
21{(IN1 +

ρ21H21H
†
21)
−1}H21H

†
22) + C12 + C21,(27)

R1 +R2 ≤ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11

H†12(IN2 + ρ12H12H
†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12)

+C12, (28)
R1 +R2 ≤ log det(IN2 + ρ22H22H

†
22 − ρ22ρ21H22

H†21(IN1 + ρ21H21H
†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21)

+C21, (29)

R1 +R2 ≤ log det

(
IN1+N2 +

[ √
ρ11H11√
ρ12H12

]
[
√
ρ11H

†
11

√
ρ12H

†
12] +

[ √
ρ21H21√
ρ22H22

]
[
√
ρ21H

†
21

√
ρ22H

†
22]
)
, (30)
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2R1 +R2 ≤ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11

H†12(IN2 + ρ12H12H
†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12

−ρ22ρ21H22H
†
21(IN1 + ρ21H21H

†
21)
−1

H21H
†
22) + log det(IN1 + ρ11H11H

†
11

+ρ21H21H
†
21) + C12 + C21, (31)

R1 + 2R2 ≤ log det(IN2 + ρ22H22H
†
22 − ρ22ρ21H22

H†21(IN1 + ρ21H21H
†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

−ρ11ρ12H11H
†
12(IN2 + ρ12H12H

†
12)
−1

H12H
†
11) + log det(IN2 + ρ22H22H

†
22

+ρ12H12H
†
12) + C21 + C12, (32)

2R1 +R2 ≤ log det

(
IN1+N2

+

[ √
ρ22H22√
ρ21H21

]
(IM2

−

ρ21H
†
21(IN1

+ ρ21H21H
†
21)
−1H21)

[
√
ρ22H

†
22

√
ρ21H

†
21] +

[ √
ρ12H12√
ρ11H11

]
[
√
ρ12H

†
12

√
ρ11H

†
11]
)
+ log det(IN1

+

ρ11H11H
†
11 + ρ21H21H

†
12) + C21, (33)

R1 + 2R2 ≤ log det

(
IN1+N2

+

[ √
ρ11H11√
ρ12H12

]
(IM1

−

ρ12H
†
12(IN2

+ ρ12H12H
†
12)
−1H12)

[
√
ρ11H

†
11

√
ρ12H

†
12] +

[ √
ρ21H21√
ρ22H22

]
[
√
ρ21H

†
21

√
ρ22H

†
22]
)
+ log det(IN2

+

ρ22H22H
†
22 + ρ12H12H

†
12) + C12. (34)

Then, the approximate capacity region is given as follows.

Lemma 2. The capacity region for the two-user MIMO IC
with limited receiver cooperation CRC is bounded from above
and below as

Ro 	 ([0, N1 +N2]× [0, N1 +N2]) ⊆ CRC ⊆ Ro, (35)

where the inner and outer bounds are within N1 +N2 bits.

Proof. The proof is omitted in this paper due to shortage of
space, and can be seen in [23].

Now, we will find the limit of Ro/ log SNR as SNR→∞
to get the result as in the statement of the Theorem 1. Before
going over each of the above terms and finding their high
SNR limit, we first give some Lemmas that will be used for
the proof.

Lemma 3 ( [4]). Let H1 ∈ CN×M1 , H2 ∈ CN×M2 ,...,
and Hk ∈ CN×Mk be k full rank and independent channel

matrices. Then, the following holds

log det(IN + ρH1H
†
1 + ρH2H

†
2 + ...+ ρHkH

†
k)

= log det(IN + ρ[H1 ... Hk][H1 ... Hk]
†)

= min{N,M1 +M2 + ...+Mk}log SNR +

o(log SNR ). (36)

Lemma 4 ( [24]). Let Hii ∈ CNi×Mi and Hij ∈ CNi×Mj be
two channel matrices with each entry independently chosen
from CN(0, 1). Then, the following holds with probability 1
(over the randomness of channel matrices).

log det(INi + ρHiiH
†
ii − ρHiiH

†
ij(INj + ρHijH

†
ij)
−1

ρHijH
†
ii) = min{Ni, (Mi −Nj)+}log SNR +

o(log SNR ). (37)

Lemma 5. Let Hii ∈ CNi×Mi and Hij ∈ CNj×Mi be two
channel matrices with each entry independently chosen from
CN(0, 1). Then, the following holds with probability 1 (over
the randomness of channel matrices).

log det(INj + ρHijH
†
ij − ρHijH

†
ii(INi + ρHiiH

†
ii)
−1

ρHiiH
†
ij) = min{Nj , (Mi −Ni)+}log SNR +

o(log SNR ). (38)

Proof. The proof is similar to that of Lemma 4, and is thus
ommitted.

Now we find the DoF bounds equivalent to the capacity
bounds that we need for the proof of the Theorem 2.

First term (4): According to the first bound in Ro, we have

log det(IN1 + ρ11H11H
†
11) + min{log

det(IN2 + ρ12H12H
†
12 − ρ12ρ11H12H

†
11

(IN1 + ρ11H11H
†
11)
−1H11H

†
12), C21}

= log det(IN1 + ρH11H
†
11) + min(log det

(IN2 + ρH12H
†
12 − ρH12H

†
11

(IN1 + ρH11H
†
11)
−1ρH11H

†
12), C21)

(a)
= (min{M1, N1}+min{min{N2, (M1 −N1)

+},
Cd21})log SNR + o(log SNR )), (39)

where (a) is obtained from Lemma 3 and Lemma 5. Now,
dividing both sides by log SNR, the first DoF bound results.

Second term (5): The second bound is similar to the first
bound by replacing 1 and 2 in the indices.

Third term (6): According to the third bound in Ro, we
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have

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

−ρ11ρ12H11H
†
12(IN2 + ρ12H12H

†
12)
−1

H12H
†
11) + log det(IN2 + ρ22H22H

†
22 +

ρ12H12H
†
12 − ρ22ρ21H22H

†
21{(IN1 +

ρ21H21H
†
21)
−1}H21H

†
22) + C12 + C21

= log det(IN1 + ρH11H
†
11 + ρH21H

†
21 −

ρH11H
†
12(IN2 + ρH12H

†
12)
−1ρH12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12 −

ρH22H
†
21(IN1 + ρH21H

†
21)
−1ρH21H

†
22) +

C12 + C21

(a)
= (min{N1, (M1 −N2)

+ +M2}+
min{N2, (M2 −N1)

+ +M1}+
Cd12 + Cd21)log SNR + o(log SNR )), (40)

where (a) is obtained from Lemma 3 and Lemma 4. Now,
dividing both sides by log SNR, the third DoF bound results.

Fourth term (7): According to the fourth bound in Ro, we
have

log det(IN1
+ ρ11H11H

†
11 − ρ11ρ12H11

H†12(IN2
+ ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2
+ ρ22H22H

†
22 + ρ12H12H

†
12)

+C12

= log det(IN1
+ ρH11H

†
11 − ρH11H

†
12

(IN2 + ραH12H
†
12)
−1ρH12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12) + C12

(a)
= (min{N1, (M1 −N2)

+}+min{N2,M1 +M2}
+Cd12)log SNR + o(log SNR ), (41)

where (a) is obtained from Lemma 3 and Lemma 5. Now,
dividing both sides by log SNR, the fourth DoF bound results.

Fifth term (8): The fifth term is similar to the fourth term
by replacing 1 and 2 in the indices.

Sixth term (9): According to the sixth bound in Ro, using
Lemma 3 we have

log det(IN1+N2
+

[ √
ρ11H11√
ρ12H12

]
[
√
ρ11H

†
11

√
ρ12H

†
12]

+

[ √
ρ21H21√
ρ22H22

]
[
√
ρ21H

†
21

√
ρ22H

†
22])

= log det(IN1+N2
+ ρ

[
H11

H12

]
[H†11 H

†
12] +

ρ

[
H21

H22

]
[H†21 H

†
22])

= min(N1 +N2,M1 +M2)log SNR + o(log SNR ).(42)

Seventh term (10): According to the seventh bound in Ro,

we have

log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11

H†12(IN2 + ρ12H12H
†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12

−ρ22ρ21H22H
†
21(IN1 + ρ21H21H

†
21)
−1

H21H
†
22) + log det(IN1 + ρ11H11H

†
11

+ρ21H21H
†
21) + C12 + C21

= log det log det(IN1 + ρH11H
†
11 − ρH11H

†
12

(IN2 + ρH12H
†
12)
−1ρH12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12 −

ρH22H
†
21(IN1 + ρH21H

†
21)
−1ρH21H

†
22) +

log det(IN1 + ρH11H
†
11 + ρH21H

†
21) + Cd12 + Cd21

(a)
= min{N2, (M2 −N1)

+ +M1}+
min{N1, (M1 −N2)

+}+
min{N1,M1 +M2}+ Cd12 + Cd21, (43)

where (a) is obtained from Lemma 3, Lemma 3 and Lemma
4. Now, dividing both sides by log SNR, the seventh DoF
bound results.
Eighth term (11): The eighth term is similar to the seventh
term by replacing 1 and 2 in the indices.
Ninth term (12): According to the ninth bound in Ro, we
have

log det(IN1+N2
+

[ √
ρ22H22√
ρ21H21

]
(IM2

− ρ12H†21

(IN1
+ ρ21H21H

†
21)
−1H21)[

√
ρ22H

†
22

√
ρ21H

†
21]

+

[ √
ρ12H12√
ρ11H11

]
[
√
ρ12H

†
12

√
ρ11H

†
11]) + log det

(IN1
+ ρ11H11H

†
11 + ρ21H21H

†
12) + C21

= log det(IN1+N2 + ρ

[
H22

H21

]
(IM2 − ρH

†
21

(IN1 + ρH21H
†
21)
−1H21)[H

†
22 H

†
21]

+ρ

[
H12

H11

]
[H†12 H

†
11]) + log det(IN1

+ ρH11H
†
11

+ρH21H
†
12) + C21

= (min{N1 +N2,M1}+min{N1,M1 +M2}+ Cd21)

log SNR + o(log SNR ). (44)

Tenth term (13): The tenth term is similar to the ninth term
by replacing 1 and 2 in the indices.

This completes the proof for all the ten terms in the
statement of the Theorem.
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