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Abstract—We consider an energy harvesting point-to-point
communication system where the transmitter is powered by an
energy arrival process and is equipped with a finite battery
of size Bmax, which has limited efficiencies for storing energy
into the battery and withdrawing energy from the battery. We
assume a discrete i.i.d. energy arrival process where at each
time step, energy of size Ai is harvested with probability pi,
∀i ∈ {1, 2, · · · ,K}, independent of the other time steps. We
provide upper and lower bounds on the information-theoretic
capacity of this channel. These bounds are within a constant gap
for K = 2 and a special case (with perfect battery efficiencies)
for K = 3.

I. INTRODUCTION

Wireless communication networks composed of devices
that can harvest energy from nature represent the green
future of wireless. The simplest model that captures the
communication scenario is a discrete time AWGN channel.
In most communication systems, the transmission power is a
major cost [1, 2]. This cost can be partially alleviated by using
energy harvesting devices [3–5]. For transmitters that are
powered by energy harvesters, typically energy is replenished
by the energy harvester, while expended for communications
or other processing; any unused energy is then stored in
an energy storage, such as a rechargeable battery [6, 7].
However, unlike conventional communication devices that
are subject only to a power constraint or a total energy
constraint, transmitters with energy harvesting capabilities
are subject to additional energy harvesting constraints [8,
9]. Specifically, in every time-slot, the transmitter is con-
strained to use at most the amount of stored energy currently
available, although more energy may become available in the
future slots. Thus, a causality constraint is imposed on the use
of the harvested energy. This raises many interesting issues
in the design of efficient energy harvesting communication
schemes. In this paper, we study the bounds on the capacity
of AWGN channel where the transmit node is powered with
stochastic energy arrivals, and is equipped with a limited
capacity battery with storage and withdrawal efficiencies.

The capacity of a single-user channel with infinite battery
capacity is obtained in [10], where it is shown that the
capacity equals to that of a classical AWGN channel with
an average power constraint equal to the average energy
harvesting rate. Despite significant recent effort [11–13] to
characterize the capacity of the energy-harvesting channel

in the finite battery case, there is still a lack of complete
understanding. For example, [13] provides a formulation of
the capacity and derives a lower bound on the capacity that
is only numerically computable. However, it is difficult to
obtain useful insights from numerical evaluations. Even in
the case of zero-capacity battery, where [14] provides an
exact single-letter characterization of the capacity in terms
of an optimization problem, the corresponding optimization
is difficult to solve and requires numerical evaluations. The
authors of [15] investigated the case of constant input energy
input with a limited battery. Recently, the approximate capac-
ity of a single-user energy harvesting system with discrete
energy arrivals has been characterized in [16], where it is
assumed that the incoming energy is stored in the battery and
the transmission energy is taken from the battery. Since the
transmission power is only used from the battery, if battery
capacity is zero, i.e. Bmax = 0, the capacity will be zero
according to [16], while we assume that the unused energy
is stored in the battery and thus may get a non-zero capacity.
The results in [16] have been further extended to fading
channels in [17, 18].

We assume that the energy arrival is a discrete random
process that can take K values A1, · · · , Ak where the incom-
ing energy is Ai with probability pi. The incoming energy
is used in part for transmission and is in part stored into
the battery, which has finite battery size Bmax, and limited
efficiencies for storing energy into the battery (rin) and for
taking energy out of the battery (rout). We provide upper
and lower bounds on the information-theoretic capacity of
the channel for general K when the receiver does not know
the energy arrival process, and provide an approximation to
the capacity region for K = 2, 3. For K = 2, we have the gap
between the upper and the lower bound as 3.013 bits for any
values of the system parameters involved (pi’s, Ai’s, rin, rout
and Bmax). For K = 3, we have the capacity within 4.818
bits when the efficiencies for storing energy into the battery
and withdrawing energy from the battery are both 1 for all
the other parameters (pi’s, Ai’s and Bmax). Our approximate
capacity characterizations provide important insights on the
optimal design of energy harvesting communication systems.
For lower bound, we introduce multiple strategies and choose
the best for each set of system model parameters which
makes our results different from that in [16] where the lower
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bound is based on a single strategy. For each strategy, we
derive a unique energy allocation policy that is time invariant
and the consumption of each arriving energy package is
decreasing over time with a geometric parameter across
different epochs. The proposed upper bound accounts for the
flexibility of incoming harvested energy, and thus needs to
decide how much incoming energy to store in battery, and
how much to utilize for transmission in each time instant
which makes our results more complex than that in [16]
where all the incoming energy can only be stored in the
battery.

The remainder of this paper is organized as follows.
Section II introduces the model for a point-to-point commu-
nication system which is equipped with an energy harvesting
device. Section III gives our results on the inner and the outer
bounds of the capacity, which are within a constant gap in
some special cases.

II. SYSTEM MODEL

We consider a point-to-point channel with a single trans-
mitter, which is equipped with an energy harvesting device.
The energy harvesting device has a battery with a capacity of
Bmax. If the battery is not full, the harvested energy is stored
in part in the battery and in part used for the transmission;
if the battery is full, the transmitter can directly use the
harvested energy. In both the cases, some additional amount
of energy from that stored in the battery can also be used
for transmission. The usage of the battery is not free. The
cost of storing energy into the battery is denoted through
the coefficient 0 < rin ≤ 1. Similarly, the cost of taking
energy out the battery is denoted through the coefficient
0 < rout ≤ 1. Let Xt denote the scalar real input to
the channel in time step t. We consider a discrete time
AWGN channel, where the output of the channel is given
by Yt = Xt + Nt, where Nt ∼ N (0, 1) is the additive
noise. At each time slot t, the system harvests Et energy
units that is causally known at the transmitter (i.e., at time t
the transmitter knows Et, Et−1, ....) but is not known at the
receiver.

Let Bt be the available energy in the battery in time step
t. We assume that at each time step, the system first harvests
energy and then transmits the signal Xt. The square of |Xt|
is constrained by the available energy routBt (accounting for
the withdrawal efficiency of the battery) plus the harvested
energy Et, i.e.,

|Xt|2 ≤ routBt + Et. (1)

By considering the cost rin of storing energy into the battery,
we have that the available battery energy for transmission Bt

is updated as

Bt+1 = Bt +

rin(Et − |Xt|2)+ −
1

rout
(|Xt|2 − Et)

+. (2)

Note that in order to not waste the harvested energy, we

should choose Xt such that

Bt + rin(Et − |Xt|2)+ −
1

rout
(|Xt|2 − Et)

+ ≤ Bmax. (3)

Here, we consider the case that the harvested energy Et

is a K-level i.i.d. process as

Et =
{
Ai, w.p. pi, i = 1, · · · ,K. (4)

where 0 ≤ A1 ≤ · · · ≤ AK ,
∑K

k=1 pk = 1 and p1, · · · , pK ≥
0.

Definition 1. The encoding functions ft, t = 1, · · · , n and
the decoding function g are defined as

ft : M×Et → X , t = 1, · · · , n, (5)
g : Yn →M, (6)

where X = Y = R, E = {A1, · · · , AK} and M =
{1, · · · ,M} is the set of messages to be transmitted. To
transmit message w ∈ M, at time t = 1, · · · , n, the
transmitter sends Xt = ft(w , {Ei}ti=0). The battery state Bt

is a deterministic function of ({Xi}ti=0, {Ei}ti=0), therefore
also of (w , {Ei}ti=0). The functions ft must satisfy the energy
constraints (1)-(3):

Bt

(
w , {Ei}ti=0

)
+ Et −Bmax

≤
(
ft

(
w , {Ei}ti=0

))2
≤ Bt

(
w , {Ei}ti=0

)
+ Et.(7)

The receiver estimates ŵ = g ({Yi}ni=0). The probability of
error is

P (n)
e =

1

M

M∑
w=1

P (ŵ 6= w |w was transmitted) . (8)

The rate of an (M,n) code is logM
n . We say rate R is

achievable if for every δ > 0 there exists, for all sufficiently
large n, an (M,n) code with rate logM

n > R − δ, and
error P (n)

e → 0. The capacity C of the above system with
parameters A1, . . . , AK , p1, . . . , pK and Bmax is defined as
the supremum of all achievable rates.

Remark 1. For the special case of Bmax =∞, the capacity
of the above systems has been characterized in [10]. It
is shown that in the optimal transmission scheme, nothing
is transmitted for the first few time slots so that enough
energy is accumulated. This is followed by transmission using
the average harvested energy in every time slot. Hence the
capacity is characterized by the average energy arrival rate.
[19] also characterized the capacity with infinite buffer size
using a different approach.

Remark 2. In [16], for the Bernoulli energy arrival, the
approximate capacity is characterized under a slightly dif-
ferent model where energy can only be used from battery
and thus even if A2 − A1 > Bmax, the extra energy,
(A2 −A1 −Bmax), cannot be utilized. Further, in [16], it
is assumed that rin = rout = 1 which restricts their results
to model with no efficiencies.
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III. MAIN RESULTS

In this section, we will first give the outer and the inner
bound on the capacity. Then, the gap between the two will
be found in some special cases.

A. Outer Bound

An outer bound on the capacity of discrete time AWGN
channel with energy harvesting device can be given as
follows.

Theorem 1. For 0 ≤ A1 ≤ · · · ≤ AK ,
∑K

k=1 pk = 1,
p1, · · · , pK ≥ 0, rin, rout ∈ (0, 1] and Bmax ≥ 0, the
capacity is outer bounded by

Cub,K

=

K∑
i=2

pi
2
log(1 +Ai − zi) +

p1
2

log(
1 +A1 +

rinrout
∑K

i=2 pi(zi)
+ −

∑K
i=2 pi(−zi)+

p1

)
s.t. zi ≤ Bmax, ∀1 ≤ i ≤ K, (9)

rinrout

K∑
i=2

pi(zi)
+ −

K∑
i=2

pi(−zi)+ ≥ 0, (10)

where {z2, · · · , zK} = argmaxz2,··· ,zK{Cub,K}.

Proof: The upper bound holds intuitively because on the
time slots of energy arrivals Ai, i > 1, if the average energy
that is put in the battery is zi, then the capacity in these slots
is upper bounded by 1

2 log(1 + Ai − zi). With zi taken out
from the incoming energy on an average, an average of rinzi
energy is stored in the battery which can be utilized in the
remaining time slots when there is A1 energy arrival, and an
average power constraint forms the upper bound.

Let g(t) , |Xt|2 and gi(t) , g(t)(1Et=Ai
) is the power

allocation strategy that maximizes the capacity. Then, the
capacity is upper bounded by

lim
N→∞

inf
1

N

N∑
t=1

1

2
log(1 + g(t))

(a)
= lim

N→∞

(
K∑
i=1

1

N

N∑
t=1

1

2
log(1 + gi(t))

)
(b)

≤ lim
N→∞

(
K∑
i=1

Ni

2N
log(1 +

1

Ni

N∑
t=1

gi(t))

)
,

where Ni is the number of occurrences of Et = Ai, and as
N →∞, Ni ≈ Npi. In the above, (a) follows by separating
the incoming energies by their level, and (b) follows since
logarithm is a concave function. Suppose that an average of
xi energy is stored into the battery and yi is withdrawn from
the battery when the energy arrivals are Ai for i > 1, then
E(gi(t)) = piAi − pixi + routyi for i > 1 and E(g1(t)) =
p1A1 +

∑K
i=2 pirout(rinxi − yi). As N →∞, using law of

large numbers, we have that the capacity is upper bounded

by

C ≤ max
0≤xi≤Bmax,

0≤
∑K

i=2 pi(rinxi−yi)

K∑
i=2

pi
2
log(1 +Ai − xi + routyi)

+
p1
2

log

(
1 +A1 +

∑K
i=2 pirout(rinxi − yi)

p1

)
,

(11)

For this optimization, we find that min{xi, yi} = 0 for all

i > 1. Defining zi =
{
xi, when xi > 0,
−routyi, when xi = 0.

, we get

the result as in the statement of the theorem.

We get the following corollaries from Theorem 1.

Corollary 1. For the case of K = 2, the outer bound can
be reduced to

Cub = max
0≤x≤Bmax

p2
2

log(1 +A2 − x) +
p1
2

log(1 +A1 +
p2
p1
routrinx) (12)

The optimal value of x in (12) is x∗ =

min

{
Bmax,

(
A2 −A1 − 1−routrin

routrin

)+
p1

}
.

Remark 3. In general, the optimization for finding
argmaxz2,··· ,zK{Cub,K} in Theorem 1 can be found recur-
sively.

Corollary 2. The upper bound in (9) can be simplified as
following in different ranges of Bmax for rin = rout = 1.

A) For Bmax ≤ (A2 −A1)p1, we have

Cub,K =

K∑
`=1

p`
2
log(1 +A` −Bmax) +

(p1
2

)
log

(
1 +A1 +

Bmax

∑K
j=2 pj

p1

)
. (13)

B) For As

(∑s−1
r=1 pr

)
−
∑s−1

i=1 piAi ≤ Bmax ≤
As+1 (

∑s
r=1 pr)−

∑s
i=1 piAi, ∀ 2 ≤ s ≤ K − 1, we have

Cub,K =

K∑
`=s+1

p`
2
log(1 +A` −Bmax) +(

1−
∑K

i=s+1 pi

2

)

log

(
1 +A1 +

∑s
i=2 piAi +Bmax

∑K
j=s+1 pj

1−
∑K

m=s+1 pm

)
.(14)

C) For AK −
∑K

i=1 piAi ≤ Bmax, we have

Cub,K =
1

2
log

(
1 +

K∑
i=1

piAi

)
. (15)

B. The Lower Bound

The insights developed in the upper bound can be used
to give an achievability scheme, which achieves the rate as
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given in the following theorem.

Theorem 2. For 0 ≤ A1 ≤ · · · ≤ AK ,
∑K

k=1 pk = 1,
p1, · · · , pK ≥ 0, rin, rout ∈ (0, 1] and Bmax ≥ 0, the rate of
maxKk=2 max0≤xk≤min{Bmax,Ak} C

k
lb,K(xk) can be achieved,

where

Ck
lb,K(x) =

K∑
j=k

pj
2
log (1 +Aj − x)+

+

k−1∑
h=1

ph
2

log

(
1 +Ah +

(
∑K

`=k p`)rinroutx∑k−1
i=1 pi

)
− 2.013− logK − 0.72(1K>2). (16)

The rest of the subsection proves this theorem. We show
the achievability for Ck

lb,K(x), where k ∈ {2, · · · ,K} which
would show the result in the statement of the theorem. This
scheme considers the time slots between two consecutive
energy arrivals of more than or equal to Ak at slots T1
and T2. Then, energy of Aj − x, ∀j ∈ {k, · · · ,K}, is
used at time T1 and the effective energy that goes into the
battery is rinx. Then, at any time step t between T1 and
T2, the energy of

∑K
i=k piBt is extracted from the battery,

and thus we can use At + rout
∑K

i=k piBt energy in time
t and the residual energy for slot (t + 1) in the battery is
Bt+1 = (1 −

∑K
i=k pi)Bt. Thus, energy usage after time

T1 is rinrout(
∑K

i=k pi)(1−
∑K

i=k pi)
t−T1−1

x. We note that
the inter-arrival time is a geometric random variable with
parameter

∑K
i=k pi, and thus has the mean of 1∑K

i=k pi
and

on average all xi’s will be used. We ignore the energy left
out of x at T2, and consider the next interval starting at T2 to
find the energy usage after T2. This policy can be evaluated
to give the desired bound. Define g

′
(t) as the energy that is

used in time t using this strategy.
The strategy g

′
(t) we consider is of the form g

′
(t) = g̃(j),

where j = t−max{t′ : E(t
′
) = Ai, i ≥ k, ∀t

′ ≤ t}, i.e., the
strategy is invariant across different epochs and the allocated
energy depends on the number of time steps since the last
energy arrival Ai, i ≥ k. So, we get

g̃(j) ,

(
∑K

`=k p`)rinrout(1−
∑K

m=k pm)
j−1

x+A1,
w.p. p1∑k−1

`=1 p`
,

· · ·
(
∑K

`=k p`)rinrout(1−
∑K

m=k pm)
j−1

x+Ak−1,
w.p. pk−1∑k−1

`=1 p`
,

,

for all j ≥ 1. (17)

Also

g̃(0) ,


Ak − x, w.p. pk∑K

`=k p`
,

· · ·
AK − x, w.p. pK∑K

`=k p`
,
. (18)

The idea for the achievability scheme is that if both the
transmitter and receiver know at each time arrival what
energy packet Aj arrives, they can agree on an energy

allocation strategy ahead of time.

Communication proceeds as follows: At each time step t,
the transmitter sees the realization of the energy process Et,
let j = t−max{t′ ≤ t : Et′ ≥ Ak}, i.e., the number of time
steps since the last time battery was recharged with energy
packet arrival Aj , j ≥ k. Let φk(i) denote the amount of
energy allocated to transmission, i channel uses after the last
time the battery was recharged via packet arrivals Aj , j ≥ k,
i = 0, 1, · · · . We concentrate on an energy allocation policy
φk(i) that is invariant across different epochs (the period
of time between two adjacent packet arrivals Aj and Aj′ ,
j, j
′ ≥ k). In other words, if energy Aj , j ≥ k arrives at

the current channel use, we allocate φk(0) amount of energy
for transmission; if energy Aj , j ≥ k arrived in the previous
channel use but not the current channel use, then we allocate
φk(1) amount of energy for transmission, and so on till the
next arrival of energy Aj′ , j

′ ≥ k.

Consider n consecutive time slots of energy arrivals where
n is large enough. Denote n(i), i ≥ 0 as the number of times
slots t that their corresponding j = t−max{t′ ≤ t : Et′ ≥
Ak} is equal to i. If n goes to infinity it can be shown
that n(i), i ≥ 0 goes to infinity, as well. The transmitter
and the receiver agree on a sequence of M + 1 codebooks:
C(0)k , C(1)k , C(2)k , · · · , C(M)

k with large enough M , each code-
book C(i)k consisting of 2n

(i)R(i)

codewords where R(i) is
the rate of the codebook and codebook C(i)k is amplitude-
constrained to φk(i), i.e., the symbols of each codeword in
C(i)k are such that Xt

2 ≤ φk(i) if i = t − max{t′ ≤ t :
Et′ ≥ Ak}. This ensures that the symbol transmitted at the
corresponding time will not exceed the energy constraint
φk(i). The transmitter chooses a codeword ck,i ∈ C(i)k ,
∀i ∈ {0, 1, · · · ,M} to communicate to the receiver. More
specifically, in the lth occurrence of i, the transmitter sends
the lth symbol of codeword ck,i, i.e., upon the arrival of the
first energy packet Aj , j ≥ k, the transmitter sends the first
symbol of ck,0 ∈ C(0)k ; if there is no energy packet arrival
Aj , j ≥ k in the next channel use, it transmits the first
symbol of ck,1 ∈ C(1)k in the next channel use, etc. Once
the second energy packet Aj , j ≥ k arrives, the transmitter
transmits the second symbol of ck,0, then the second symbol
of ck,1, etc. If j > M , the transmitter transmits zero
symbol. Communication ends when the transmitter observes
the arrival of the (n(0) + 1)

th
energy packet of energy Aj ,

j ≥ k. (We assume that communication starts with the arrival
of the first energy packet of energy Aj , j ≥ k).

We assume that H(Et) bits is used to communicate the
incoming energy level Et to the receiver. The receiver can
track the codebook used by the transmitter and decode each
codeword separately by knowing the energy arrival Et in the
transmitter.

Let {Ti}Li=1 be the inter-arrival times between the ith and
i+ 1th energy packets of Ai, i ≥ k, where L is the total
number of packets of Ai, i ≥ k received by time instance
N , i.e.

∑L
i=1 Ti ≤ N <

∑L+1
i=1 Ti. Notice that Ti’s are i.i.d.

Geometric random variables. We can lower bound the rate
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achieved by g
′
(t) in terms of these new variables as

lim
N→∞

inf
1

N

N∑
t=1

1

2
log(1 + g

′
(t))

≥ lim
L→∞

inf

∑L
i=1

∑Ti−1
j=0 E[ 12 log(1 + g̃(j))]∑L+1

i=1 Ti

=

E
[∑T1−1

j=0
1
2 log(1 + g̃(j))

]
E[T1]


=E

( K∑
`=k

p`

) ∞∑
i=1

P(T1 = i)

i−1∑
j=0

1

2
log(1 + g̃(j))


=E

( K∑
`=k

p`

) ∞∑
i=1

(
K∑
`=k

p`

)(
1−

(
K∑
`=k

p`

))i−1

i−1∑
j=0

1

2
log(1 + g̃(j))


=E

 K∑
r=k

pr

∞∑
j=0

∞∑
i=j+1

(
K∑
`=k

p`

)(
1−

(
K∑
`=k

p`

))i−1

1

2
log(1 + g̃(j))

]

=E

 ∞∑
j=0

(
K∑
`=k

p`

)(
1−

(
K∑
`=k

p`

))j

1

2
log(1 + g̃(j))

 .
(19)

Using the discussed energy allocation strategy in this
subsection and Eqn. (19), the rate in the following lemma
could be achieved, which will be further lower bounded to
get the statement in the Theorem.

Lemma 1. The capacity of a system with i.i.d. energy arrival
process only causally known at the transmitter, but not at the
receiver, is lower bounded by

C ≥ E

 ∞∑
j=0

(
K∑
`=k

p`

)(
1−

(
K∑
`=k

p`

))j

1

2
log(1 + g̃(j))


− 1.04− logK. (20)

Proof: The proof follows on the same lines as [16,
Lemma 2], using (19). The gap of 1.04 + logK is due to
amplitude-constrained AWGN, and having no channel state
information at the receiver.

The next result further lower bounds the achievable rate in
Lemma 1.

Lemma 2. We have the following inequality:
K∑

j=k

pj
2
log (1 +Aj − x)+

+

k−1∑
h=1

ph
2

log

(
1 +

(
∑K

`=k p`)rinroutx∑k−1
i=1 pi

+Ah

)
− 0.973− 0.72(1K>2) ≤

E

 ∞∑
j=0

(
K∑
`=k

p`

)(
1−

(
K∑
`=k

p`

))j

1

2
log(1 + g̃(j))

 .
(21)

Proof: We divide the proof into three cases. The first
case is when (

∑K
`=k p`)rinroutx∑k−1

i=1 pi
+ A1 > 2.85, the second one

is when (
∑K

`=k p`)rinroutx∑k−1
i=1 pi

+Ak−1 ≤ 2.85, and the third one is

when (
∑K

`=k p`)rinroutx∑k−1
i=1 pi

+Aq−1 ≤ 2.85 ≤ (
∑K

`=k p`)rinroutx∑k−1
i=1 pi

+

Aq . In the first two cases, (21) can be shown without the
presence of 0.72 while in the third case, (21) can be shown
with an additional 0.72. Thus, when 1 = K − 1, the third
case does not matter and hence the result as in the statement
of the lemma follows. The detailed proof can be seen in [20].

Using Lemma 1 and Lemma 2, the result in Theorem 2
follows directly.

C. Gap between the bounds

In this subsection, we show that the gap between the
bounds are constant in some special cases. We first consider
two-levels energy arrival process (K = 2). From Theorems
1 and 2, the following corollary follows.

Corollary 3. We have the following inequality that

Cub,2 − C2
lb,2(x

∗
2) ≤ 3.013 bits (22)

for ∀p1, p2, A1, A2, rin, rout ∈ (0, 1) and Bmax ≥ 0.

The next result shows the gap between the inner and outer
bound for three-level energy arrival process for the case of
rin = rout = 1.

Theorem 3. When rin = rout = 1 and K = 3, the gap
between the upper and the lower bounds is limited by 4.818
bits, i.e., we have the following inequality

Cub,3 −max{C2
lb,3(x

∗
2), C

3
lb,3(x

∗
3)} ≤ 4.818 bits (23)

for ∀p1, p2, p3, A1, A2, A3 and Bmax ≥ 0.

Proof: We note that there is a −4.318 in the statement of
Theorem 2 for K = 3, and among the remaining expression,
we can show that the gap between the outer bound and one
of the inner bounds is at most 1/2 bit. In order to show this
gap of 1/2 bit, we divide the region of Bmax, A1, A2 and A3

into multiple cases. The details can be seen in [20].

IV. CONCLUSIONS

We consider an energy harvesting communication system
where a transmitter powered by an exogenous energy ar-
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rival process (modeled as a discrete random process) and
equipped with a battery of finite capacity communicates over
a discrete-time AWGN channel. The efficiency of storing
energy in the battery and withdrawing energy from the battery
are used to give bounds on the capacity. These bounds are
shown to be within a constant gap for K = 2 and a special
case (with perfect battery efficiencies) for K = 3. Extension
to fading channels is a future work.
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