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Abstract—We consider an energy harvesting point-to-point
communication system where the transmitter is powered by an
energy arrival process and is equipped with a battery of finite
capacity Bmax, which could be used for saving energy for future
use. We assume a discrete i.i.d. energy arrival process where at
each time step, energy of amount Ai is harvested with probabil-
ity pi ∀i ∈ {1, 2, . . . , K } independent of the other time steps. We
provide upper and lower bounds on the capacity of this channel.
These bounds are shown to be within a constant gap for K ≤ 3 for
all parameters, and for K > 3 when the battery capacity Bmax is
small or large enough, where this constant does not depend on any
energy or battery parameters.

Index Terms—Energy harvesting, channel capacity, achievabil-
ity, upper bound, energy arrival process.

I. INTRODUCTION

W IRELESS communication networks that are composed
of devices that can harvest energy from nature, repre-

sent the green future of wireless systems. The simplest model
that captures the communication scenario is a discrete-time
AWGN channel. In most communication systems, the transmis-
sion power is a major cost [1]–[4]. This cost can be partially
alleviated by using energy harvesting devices [5]–[8]. For
transmitters that are powered by energy harvesters, energy is
typically replenished by the energy harvester and expended for
communications or other processes; any unused energy is then
stored in an energy storage, such as a rechargeable battery [9],
[10]. The i.i.d. arrival process of the incoming energy in energy
harvesting is a good starting point for general results and is a
common assumption in literature [5]–[7], [10], [11]. However,
unlike conventional communications where devices are only
subject to a power constraint or a total energy constraint, trans-
mitters with energy harvesting capabilities are subject to addi-
tional energy harvesting constraints [11]–[14]. It is noteworthy
to mention other directions in the literature on characterizing
the energy harvesting communication system capacity such as
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packet scheduling optimality [15], [16] and throughput anal-
ysis with unreliable energy sources [17], [18]. Specifically, in
every time step, the transmitter is constrained to use at most the
amount of stored energy that is currently available, although
more energy may become available in the future slots. Thus,
a causality constraint is imposed on the use of the harvested
energy. This raises many interesting issues in the design of effi-
cient energy harvesting communication schemes. In this paper,
we study the bounds on the capacity of AWGN channel where
the transmit node is powered by stochastic energy arrivals, and
is equipped with the capability of storing and drawing energy
from a finite capacity battery.

The capacity of a single-user channel with infinite battery
capacity is obtained in [19], where it is shown that the capacity
equals to that of a classical AWGN channel with an aver-
age power constraint equal to the average energy harvesting
rate. Despite the recent significant efforts to characterize the
capacity of the energy harvesting channel in the finite battery
case [20]–[22], there is still a lack of complete understand-
ing. For example, [22] provides a formulation of the capacity
and derives a lower bound on the capacity that is only numer-
ically computable. However, it is difficult to obtain useful
insights from numerical evaluations. Even in the case of no
battery, where [23] provides an exact single-letter character-
ization of the capacity in terms of an optimization problem,
the corresponding optimization is difficult to solve and requires
numerical evaluations. The authors of [24] investigated the case
of constant input energy with a limited battery. Recently, the
approximate capacity of a single-user energy harvesting sys-
tem with discrete energy arrivals has been characterized in [18],
where it is assumed that all the incoming energy is stored
in the battery and the transmission energy is taken from the
battery.

We note that [18] considers a similar energy harvesting
model with the difference that the incoming energy cannot be
used directly when it arrives at the transmitter and consequently
if there is not enough space in the battery it will be wasted. In
contrast, we assume that the incoming energy can be used for
transmission and consequently increases the flexibility of the
transmitter, which provides the possibility of achieving better
rates. The results in [18] have been further extended to fading
channels in [25], [26].

We assume that the energy arrival is an i.i.d. discrete ran-
dom process that takes K values of A1, . . . , AK , where energy
Ai arrives with probability pi . The incoming energy in part
is used for transmission and in part is stored into the battery,
which has a capacity Bmax. We provide upper and lower bounds
on the capacity of such channel when the receiver does not
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know the energy arrival process. These bounds are within a
constant gap for K ≤ 3 (1.04 bits for K = 1, 2.884 bits for
K = 2 and 4.426 bits for K = 3), where the constant does not
depend on any energy or battery parameters. For K > 3, the gap
between the bounds is shown to be a constant that is indepen-
dent of all parameters in the cases of small enough (Bmax ≤
(A2 − A1)p1) and large enough (Bmax ≥ AK −∑K

i=1 pi Ai )

battery sizes. Our approximate capacity characterizations pro-
vide important insights on the optimal design of energy har-
vesting communication systems. For lower bound, we introduce
multiple strategies and choose the best for each set of sys-
tem model parameters which makes our results different from
that in [18] where the lower bound is based on a single strat-
egy. For each strategy, we derive a unique energy allocation
policy that is time invariant and the consumption of each arriv-
ing energy package is decreasing over time with a geometric
parameter across different epochs. The proposed upper bound
accounts for the flexibility of incoming harvested energy, and
thus needs to decide how much incoming energy to store in
battery, and how much to utilize for transmission in each time
instant which makes our results more complex than that in
[18] where all the incoming energy can only be stored in the
battery.

The remainder of this paper is organized as follows.
Section II introduces the model for a point-to-point commu-
nication system, equipped with an energy harvesting device.
Sections III and IV give the results on the upper and lower
bounds of the capacity, respectively. These bounds are shown to
be within a constant gap in several cases in Section V. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

We consider a point-to-point channel with a single transmit-
ter, equipped with an energy harvesting device that has a battery
with a capacity of Bmax. If the battery is not full, the harvested
energy is in part stored in the battery and in part used for trans-
mission; if the battery is full, the transmitter can directly use all
the harvested energy. In both cases, some additional amount of
energy that is stored in the battery can also be used for transmis-
sion. Let Xt denote the scalar real input to the channel at time t .
We consider a discrete-time AWGN channel, where the output
of the channel is given by Yt = Xt + Nt , where Nt ∼ N(0, 1)

is the additive white Gaussian noise. At each time t , the system
harvests Et units of energy that is causally known at the trans-
mitter (i.e., at time t the transmitter knows Et , Et−1, . . .) but is
not known at the receiver.

Let Bt be the available energy in the battery at time t . We
assume that at each time, the system first harvests energy and
then transmits the signal Xt .

The square of Xt is constrained by the available energy Bt

plus the harvested energy Et , i.e.,

Xt
2 ≤ Bt + Et . (1)

And the available battery energy Bt is updated as

Bt+1 = min{Bmax, Bt + Et − Xt
2}. (2)

Note that in order to not waste the harvested energy, we should
choose Xt such that Bt + Et − Xt

2 ≤ Bmax, which leads to the
lower bound on Xt

2, i.e.,

Bt + Et − Bmax ≤ Xt
2. (3)

Here, we consider the case that the harvested energy Et is a
K -level i.i.d. process as

Et = Ak with probability pk, k = 1, . . . , K , (4)

where 0 ≤ A1 < . . . < AK ,
∑K

k=1 pk = 1 and p1, . . . ,

pK > 0.
Definition 1: The encoding functions ft , t = 1, · · · , n and

the decoding function g are defined as

ft : M × Et → X, t = 1, · · · , n, (5)

g : Yn → M, (6)

where X = Y = R, E = {A1, · · · , AK } and M = {1, · · · , M}
is the set of messages to be transmitted. To transmit mes-
sage w ∈ M, at time t = 1, · · · , n, the transmitter sends Xt =
ft (w, {Ei }t

i=0). The battery state Bt is a deterministic func-
tion of ({Xi }t

i=0, {Ei }t
i=0), therefore also of (w, {Ei }t

i=0). The
functions ft must satisfy the energy constraints (1) and (3):

Bt
(
w, {Ei }t

i=0

)+ Et − Bmax

≤ ( ft
(
w, {Ei }t

i=0

))2 ≤ Bt
(
w, {Ei }t

i=0

)+ Et . (7)

The receiver estimates ŵ = g
({Yi }n

i=0

)
. The probability of

error is

P(n)
e = 1

M

M∑
w=1

P
(
ŵ �= w|w was transmitted

)
. (8)

The rate of an (M, n) code is log M
n . We say rate R is

achievable if for every δ > 0 there exists, for all sufficiently
large n, an (M, n) code with rate log M

n > R − δ, and error

P(n)
e → 0. The capacity C of the above system with parameters

A1, . . . , AK , p1, . . . , pK and Bmax is defined as the supremum
of all achievable rates.

Remark 1: For the special case of Bmax = ∞, the capacity of
the above system has been characterized in [19]. It is shown that
in the optimal transmission scheme, nothing is transmitted for
the first few time slots so that enough energy is accumulated.
This is followed by transmission using the average harvested
energy in every time step. Hence, the capacity is characterized
by the average energy arrival rate. [3] also characterized the
capacity with infinite buffer size using a different approach.

Remark 2: In [18], for the Bernoulli energy arrival, i.e., K =
2, A1 = 0, the approximate capacity is characterized under a
different battery model where the transmission energy can only
be taken from the battery and thus even if A2 > Bmax, the extra
energy, (A2 − Bmax), cannot be utilized.

Remark 3: In the remainder of the paper, we assume K > 1
since for K = 1 (i.e., constant input energy), 1

2 log(1 + A1) is
an upper bound on the capacity (since A1 is the average power).
Further, a lower bound on the capacity is 1

2 log(1 + A1) − 1.04,
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which can be achieved by the amplitude-constrained AWGN
channel [18, Lemma 1], leading to a maximal gap of 1.04 bits
between the upper and lower bounds. The authors of [24] inves-
tigated the case of constant input energy with a finite-capacity
battery and obtained better bounds on capacity, where the lower
bound and upper bound are quite close.

III. UPPER BOUND

An upper bound on the capacity of the discrete-time AWGN
channel with an energy harvesting transmitter is given as
follows.

Theorem 1: For K ≥ 2, 0 ≤ A1 < . . . < AK ,
∑K

k=1 pk = 1,
p1, . . . , pK > 0 and Bmax ≥ 0, the capacity is upper bounded
by Cub,K which is the solution to the following optimization
problem:

Cub,K = max
z2,...,zK

SK (z2, . . . , zK )

subject to zi ≤ min{Bmax, Ai },∀i = 2, . . . , K ,

K∑
i=2

pi zi ≥ 0, (9)

where SK (z2, . . . , zK ) �
∑K

i=2
pi
2 log (1 + Ai − zi ) + p1

2 log(
1 + A1 +

∑K
i=2 pi zi

p1

)
.

Proof: The claimed upper bound holds intuitively,
because at times of energy arrival Ai , i > 1, if the average
energy that is put in the battery is zi , then the capacity in these
time slots is upper bounded by 1

2 log(1 + Ai − zi ). The energy
zi taken out from the incoming energy and stored in the bat-
tery can be utilized in the time slots with energy arrival of A1.
And consequently, an average power constraint forms the upper
bound.

Define g(t) � X2
t as the power allocation strategy that max-

imizes the long-term average transmission rate over the class
of feasible online policies (1) and (2) and also define gi (t) �
g(t)1Et =Ai . Then, the capacity is upper bounded as

C ≤ lim inf
N→∞ E

[
1

N

N∑
t=1

1

2
log(1 + g(t))

]

(a)= lim inf
N→∞ E

[
K∑

i=1

1

N

N∑
t=1

1

2
log(1 + gi (t))

]
(b)≤ lim inf

N→∞ E

[
K∑

i=1

Ni

2N
log(1 + 1

Ni

N∑
t=1

gi (t))

]
,

(c)=
K∑

i=1

pi

2
log

(
1 + E

[
gi (t)

]
pi

)
, (10)

where Ni is the number of occurrences of Et = Ai for t ∈
{1, . . . , N }, and as N → ∞, Ni ≈ N pi . In the above, (a)

follows by separating the incoming energies by their lev-
els, (b) follows from the concavity of the log function and
(c) follows from the law of large numbers. Suppose that
an average of xi energy is stored into the battery and yi

energy is drawn from the battery when the energy arrival is
Ai for i > 1, then E(gi (t)) = pi (Ai − xi + yi ) for i > 1 and
E(g1(t)) = p1 A1 +∑K

i=2 pi (xi − yi ). As N → ∞, using the
law of large numbers, it can be concluded that the capacity is
upper bounded by

C ≤ max
0≤xi ,yi ,xi −yi ≤Bmax,

0≤∑K
i=2 pi (xi −yi )

{
K∑

i=2

pi

2
log(1 + Ai − xi + yi )

+ p1

2
log

(
1 + A1 +

∑K
i=2 pi (xi − yi )

p1

)}
. (11)

By defining zi � xi − yi we get the result stated in the
theorem. �

The following two results follow from Theorem 1.
Corollary 1: For the case of K = 2, the upper bound can be

reduced to

Cub,2 = max
0≤x≤Bmax

{
p2

2
log(1 + A2 − x)

+ p1

2
log

(
1 + A1 + p2

p1
x

)}
. (12)

The optimal value of x in (12) is x∗ = min{Bmax,

(A2 − A1)p1}.
The optimum solution to (9) for general K is given

explicitely by the following theorem. The proof is given in
Appendix A.

Theorem 2: The explicit upper bound is given as follows for
different ranges of Bmax.

A) For Bmax ≤ (A2 − A1)p1,

Cub,K =
K∑

�=2

p�

2
log(1 + A� − Bmax)

+ p1

2
log

(
1 + A1 + Bmax

∑K
j=2 p j

p1

)
. (13)

B) For As

(∑s−1
r=1 pr

)
−∑s−1

i=1 pi Ai ≤ Bmax ≤ As+1(∑s
r=1 pr

)−∑s
i=1 pi Ai , 2 ≤ s ≤ K − 1,

Cub,K =
K∑

�=s+1

p�

2
log(1 + A� − Bmax) +

(
1 −∑K

i=s+1 pi

2

)

log

(
1 +

∑s
i=1 pi Ai + Bmax

∑K
j=s+1 p j

1 −∑K
m=s+1 pm

)
. (14)

C) For AK −∑K
i=1 pi Ai ≤ Bmax,

Cub,K = 1

2
log

(
1 +

K∑
i=1

pi Ai

)
. (15)

IV. THE LOWER BOUND

The insights developed in derivation of the upper bound can
be used to give an achievability scheme, which achieves the rate
given in the following theorem.
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Fig. 1. Illustration of the energy allocation policy for C3
lb,4(x) with q = q3 and r = 1 − q3. Note that the energy control policy is reset each time a packet A3 or

A4 arrives.

Theorem 3: For K ≥ 2, 0 ≤ A1 < . . . < AK ,
∑K

k=1 pk = 1,
p1, . . . , pK > 0, and Bmax ≥ 0 define qk =∑K

i=k pi . Then,
the rate of max

k=2,...,K
max

0≤xk≤min{Bmax,Ak }
Ck

lb,K (xk) can be achieved,

where

Ck
lb,K (x) =

K∑
j=k

p j

2
log
(
1 + A j − x

)
+

k−1∑
h=1

ph

2
log

(
1 + Ah + xqk

1 − qk

)
− 1.884 − log K − 0.4571K>2. (16)

The rest of this section proves this theorem. We show
the achievability of Ck

lb,K (x), for any k ∈ {2, . . . , K } and
x ∈ [0, min{Bmax, Ak}]. Let the time slots of two consecutive
energy arrivals of at least Ak be T1 and T2, i.e., ET1 , ET2 ≥ Ak

and Et < Ak for T1 < t < T2. Then, the energy of ET1 − x is
used at time T1 and the energy of x goes into the battery. At
any time t between T1 and T2, the energy of qk Bt is extracted
from the battery, and thus the energy of Et + qk Bt can be
used for transmission, where Et < Ak , and the residual energy
at time (t + 1) in the battery is Bt+1 = (1 − qk)Bt . Thus, the
energy usage from the battery at time t ∈ {T1 + 1, . . . , T2 − 1}
is qk(1 − qk)

t−T1−1x . We note that this is a geometric random
variable with parameter qk , and thus has the mean 1

qk
. We ignore

the battery energy residue at T2, and consider the next interval
starting at T2 to find the energy usage after T2. This policy can
be evaluated to give the desired bound.

The energy utilization strategy g̃k(t) proposed above is of
the form g̃k(t) = φk( j), where j = t − max{τ : Eτ = Ai , i ≥
k,∀τ ≤ t}, i.e., the strategy is invariant across time and the
allocated energy depends on the number of time steps since
the last energy arrival Ai , i ≥ k. The random variable φk( j) is
defined as

φk( j) �

⎧⎪⎪⎨⎪⎪⎩
qk(1 − qk)

j−1x + A1, w.p. p1
1−qk

,

...

qk(1 − qk)
j−1x + Ak−1, w.p. pk−1

1−qk
,

,

for all j ≥ 1, (17)

and

φk(0) �

⎧⎪⎨⎪⎩
Ak − x, w.p. pk

qk
,

...

AK − x, w.p. pK
qk

,

. (18)

Fig. 1 depicts an example of energy allocation policy for
C3

lb,4(x).
The idea for the achievability scheme is that if both the

transmitter and receiver know at each time arrival what energy
packet A j arrives, they can agree on an energy allocation
strategy ahead of time.

Communication proceeds as follows: At each time step t , the
transmitter sees the realization of the energy process Et , let j =
t − max{t ′ ≤ t : Et ′ ≥ Ak}, i.e., the number of time steps since
the last time battery was recharged with energy packet arrival
A j , j ≥ k. Let φk(i) denote the amount of energy allocated to
transmission, i channel uses after the last time the battery was
recharged via packet arrivals A j , j ≥ k, i = 0, 1, · · · . We con-
centrate on an energy allocation policy φk(i) that is invariant
across different epochs (the period of time between two adja-
cent packet arrivals A j and A j ′ , j, j

′ ≥ k). In other words, if
energy A j , j ≥ k arrives at the current channel use, we allocate
φk(0) amount of energy for transmission; if energy A j , j ≥ k
arrived in the previous channel use but not the current channel
use, then we allocate φk(1) amount of energy for transmission,
and so on till the next arrival of energy A j ′ , j

′ ≥ k.
Consider n consecutive time slots of energy arrivals where

n is large enough. Denote n(i), i ≥ 0 as the number of times
slots t that their corresponding j = t − max{t ′ ≤ t : Et ′ ≥ Ak}
is equal to i . If n goes to infinity it can be shown that n(i), i ≥ 0
goes to infinity, as well. The transmitter and the receiver agree
on a sequence of M + 1 codebooks: C(0)

k ,C
(1)
k ,C

(2)
k , · · · ,C

(M)
k

with large enough M , each codebook C
(i)
k consisting of 2n(i) R(i)

codewords where R(i) is the rate of the codebook and code-
book C

(i)
k is amplitude-constrained to φk(i), i.e., the symbols

of each codeword in C
(i)
k are such that Xt

2 ≤ φk(i) if i =
t − max{t ′ ≤ t : Et ′ ≥ Ak}. This ensures that the symbol trans-
mitted at the corresponding time will not exceed the energy
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constraint φk(i). The transmitter chooses a codeword ck,i ∈
C

(i)
k , ∀i ∈ {0, 1, · · · , M} to communicate to the receiver. More

specifically, in the l th occurrence of i , the transmitter sends the
l th symbol of codeword ck,i , i.e., upon the arrival of the first
energy packet A j , j ≥ k, the transmitter sends the first symbol

of ck,0 ∈ C
(0)
k ; if there is no energy packet arrival A j , j ≥ k in

the next channel use, it transmits the first symbol of ck,1 ∈ C
(1)
k

in the next channel use, etc. Once the second energy packet
A j , j ≥ k arrives, the transmitter transmits the second sym-
bol of ck,0, then the second symbol of ck,1, etc. If j > M , the
transmitter transmits zero symbol. Communication ends when

the transmitter observes the arrival of the (n(0) + 1)
th

energy
packet of energy A j , j ≥ k. (We assume that communication
starts with the arrival of the first energy packet of energy A j ,
j ≥ k).

We assume that H(Et ) bits is used to communicate the
incoming energy level Et to the receiver. The receiver can
track the codebook used by the transmitter and decode each
codeword separately by knowing the energy arrival Et in the
transmitter.

Let {Sk(�)}L
�=1 be the inter-arrival times between the �th and

(� + 1)th energy arrivals of Et ≥ Ak , where Lk is the total num-
ber of energy arrivals of Et ≥ Ak between t = 1 and t = N ,
i.e.,

∑Lk
�=1 Sk(�) ≤ N <

∑Lk+1
�=1 Sk(�). Notice that Sk(�)’s are

i.i.d. geometric random variables with parameter qk , and thus
has the mean 1

qk
. We can lower bound the rate achieved by g̃k(t)

in terms of these new variables as

lim inf
N→∞

1

N

N∑
t=1

E

[
1

2
log(1 + g̃k(t))

]

≥ lim inf
Lk→∞

∑Lk
�=1

∑Sk(�)−1
j=0 E[ 1

2 log(1 + φk( j))]∑Lk+1
�=1 Sk(�)

(a)=
E

[∑Sk (1)−1
j=0 E

[
1
2 log(1 + φk( j))

]]
E[Sk(1)]

(b)= qk

∞∑
i=1

P(Sk(1) = i)
i−1∑
j=0

E

[
1

2
log(1 + φk( j))

]

= qk

∞∑
i=1

qk(1 − qk)
i−1

i−1∑
j=0

E

[
1

2
log(1 + φk( j))

]

=
∞∑
j=0

∞∑
i= j+1

q2
k (1 − qk)

i−1
E

[
1

2
log(1 + φk( j))

]

=
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
, (19)

where (a) follows from the law of large numbers and (b) fol-
lows from E[Sk(1)] = 1

qk
. Using Eqn. (19) and the discussed

energy allocation strategy before it, the rate in Lemma 2 below
could be achieved, which will be further lower bounded to get
the bound in the statement of the theorem. First, we give the
following lemma which will be used in the proof of Lemma 2.

Lemma 1: [18, Lemma 1] (Lower bound on amplitude-
constrained AWGN capacity)

max
p(x):X2≤A

I (X; Y ) ≥ 1

2
log (1 + A) − 1.04. (20)

Lemma 2: The capacity C of a system with i.i.d. energy
arrival process that is only causally known at the transmitter
but not at the receiver is lower bounded by

C ≥
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
− 1.04 − H(p1, . . . , pK ). (21)

Proof: We showed that (19) is achievable for an AWGN
channel with channel state information (i.e., energy arrival pro-
cess) at the receiver. For the model in this paper, the gap of 1.04
is due to amplitude-constrained AWGN given in Lemma 1, and
H(p1, . . . , pK ) is due to having no channel state information
at the receiver (since the energy level can be communicated to
the receiver in H(p1, . . . , pK ) bits). �

The next result further lower bounds the achievable rate in
Lemma 2. The proof is given in Appendix B.

Lemma 3: The following inequality holds for all 0 ≤ x ≤
min{Bmax, Ak}:

RHS of (21) ≥
K∑

j=k

p j

2
log
(
1 + A j − x

)
+

k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)
− 1.884 − log K − 0.457 1K>2. (22)

Using Lemma 2 and Lemma 3, Theorem 3 then follows.

V. THE GAP BETWEEN THE BOUNDS

In this section, we show that the gap between the upper and
lower bounds is bounded by some constant in several cases,
where the constant does not depend on any energy or battery
parameters.

A. Case of K = 2

From Theorems 1 and 3, the following corollary follows.
Corollary 2: For K = 2, the upper and lower bounds on the

capacity are within a constant gap. More formally,

Cub,2 − C2
lb,2(x∗

2 ) ≤ 2.884 bits (23)

for ∀p1, p2, A1, A2 and Bmax ≥ 0.

Proof: From Theorem 3, we get the lower bound

C2
lb,2(x) = p2

2
log (1 + A2 − x) + p1

2
log

(
1 + A1 + xp2

p1

)
− 1.884 − log 2, (24)

for all 0 ≤ x ≤ min{Bmax, A2}. The upper bound is given by
Corollary 1, i.e., Eq. (12) that together with (24) gives (23). �
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Fig. 2. Comparison of the bounds of the proposed model with those in [18] for
K = 2.

We can further consider a more general case where the
usage of the battery is not free. In this model, the cost of
storing energy into the battery is denoted through the coef-
ficient 0 < rin ≤ 1. Similarly, the cost of taking energy out
the battery is denoted through the coefficient 0 < rout ≤ 1.
Then Eqns. (1) and (2) become Xt

2 ≤ rout Bt + Et and Bt+1 =
Bt + rin(Et − Xt

2)+ − 1
rout

(Xt
2 − Et )

+, respectively. And the
upper bound in Corollary 1 and the constant gap result in
Corollary 2 can be generalized as follows. The proof is given in
Appendix C.

Theorem 4: For the case of K = 2 with the battery efficiency
parameters rin and rout, we have the following upper bound on
the capacity

Cub,2 = max
0≤x≤Bmax

{
p2

2
log(1 + A2 − x)

+ p1

2
log

(
1 + A1 + p2

p1
routrinx

)}
. (25)

where x∗ = min

{
Bmax,

(
A2 − A1 − 1−routrin

routrin

)+
p1

}
. We also

have

Cub,2 − 2.884 ≤ C ≤ Cub,2, (26)

For K = 2, assuming p1 = p2 = 1
2 , A1 = 0 and A2 = 105,

in Fig. 2 we plot the upper and lower bounds for rin = rout = 1
and rin = rout = 0.8, respectively, as well as the bounds in
[18] for varying values of Bmax. The bounds decrease with a
decrease in efficiencies rin and rout. Recall that [18] assumes a
different system model from the one used in this paper, where
the harvested energy cannot be directly used without being
stored in the battery first. Since the achievability scheme in
[18] is also a feasible strategy for our model, the gap can be
improved by choosing the maximum of the achievable rate in
this paper and that in [18].

Fig. 3. Comparison of upper and lower bounds of the proposed model
for K = 3.

B. Case of K = 3

The next result gives the gap between the lower and upper
bounds for K = 3.

Theorem 5: For K = 3, the gap between the upper and the
lower bounds is bounded by 4.426 bits. More formally

Cub,3 − max
{

C2
lb,3(x∗

2 ), C3
lb,3(x∗

3 )
}

≤ 4.426 bits (27)

for ∀p1, p2, p3, A1, A2, A3 and Bmax ≥ 0.

Proof: We note that for K = 3 there is a constant of
−1.884 − log K − 0.457 1K>2 = −3.926 in (16), and we can
show that the gap between the upper bound Cub,3 given in
Theorem 2 and the maximum of the lower bounds C2

lb,3(x∗
2 ) and

C3
lb,3(x∗

3 ) given in (16) is at most 0.5 plus the above 3.926 bits.
In order to show this gap of 0.5 bit, we consider 5 cases depend-
ing on the values of Bmax, A1, A2 and A3. The detailed gap
evaluation for these five cases is given in Appendix D. �

For K = 3, assuming p1 = p2 = p3 = 1
3 , A1 = 0, A2 =

103 and A3 = 106, in Fig. 3 we plot the upper and lower
bounds as a function of Bmax. It is seen that both bounds
increase with the battery capacity; the upper bound saturates
at 1

2 log(1 +∑3
i=1 pi Ai ) = 9.174 bit/s and the lower bound

saturates at 4.748 bit/s.

C. Case of K > 3

The proposed achievability scheme can achieve a rate that is
within a constant gap to the upper bound of the capacity for
general K for parts A and C of Theorem 2 as shown in the
following theorem.

Theorem 6: The following constant gap results for general
K hold:

1) For Bmax ≤ (A2 − A1)p1, we have

Cub,K − C2
lb,K (Bmax) ≤ 2.341 + log K . (28)
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2) For AK −∑K
i=1 pi Ai ≤ Bmax, we have

Cub,K − Cu
lb,K

⎛⎝Au

u−1∑
j=1

p j

⎞⎠ ≤ 2.341 + 3

2
log K , (29)

where u � arg maxi Ai
∑K

j=i p j .

Proof: Part 1: Follows from (13) and (16) that

Cub,K − C2
lb,K (Bmax) = 2.341 + log K . (30)

Part 2: Using (15) we have

Cub,K = 1

2
log

(
1 +

K∑
i=1

pi Ai

)

≤ 1

2
log

⎛⎝1 +
K∑

i=1

Ai

K∑
j=i

p j

⎞⎠
(a)≤ 1

2
log

⎛⎝1 + K Au

K∑
j=u

p j

⎞⎠

≤ 1

2
log

⎛⎝1 + Au

K∑
j=u

p j

⎞⎠+ 1

2
log K , (31)

where (a) follows from the fact that u = arg maxi Ai
∑K

j=i p j .
Moreover, using (16) we have

Cu
lb,K

⎛⎝Au

u−1∑
j=1

p j

⎞⎠
=

u−1∑
j=1

p j

2
log

⎛⎝1 + A j +
(

Au
∑u−1

n=1 pn

)∑K
m=u pm∑u−1

k=1 pk

⎞⎠
︸ ︷︷ ︸

≥1+
(

Au
∑u−1

n=1 pn
)∑K

m=u pm∑u−1
k=1 pk

+
K∑

�=u

p�

2
log

⎛⎝1 + A� − Au

u−1∑
j=1

p j

⎞⎠
︸ ︷︷ ︸

≥1+Au−Au
∑u−1

j=1 p j

−2.341 − log K

≥ 1

2
log

⎛⎝1 + Au

K∑
j=u

p j

⎞⎠− 2.341 − log K . (32)

�
For K = 5, assuming p1 = 1

2 , p2 = · · · = p5 = 1
8 , A1 = 0,

Ai = (0.5i)105, i ∈ {2, . . . , 5}, in Fig. 4, we plot the upper
and lower bounds for a range of values of Bmax. For Bmax ≤
(A2 − A1)p1 = 5 × 104, an upper bound is given in Case A
of Theorem 2 and its gap to the achievable rate is shown
to be within 4.6629 bits in Part 1 of Theorem 6. Also, for
Bmax ≥ AK −∑K

i=1 pi Ai = 1.625 × 105, an upper bound is

H =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p2

2(1+A2−z2)
2 + −p2

2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−p2 p3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −p2 pK

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

−p3 p2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−p3

2(1+A3−z3)
2 + −p2

3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −p3 pK

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

...
...

. . .
...

−pK p2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−pK p3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −pK

2(1+AK −zK )2 + −p2
K

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)≺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p2
2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−p2 p3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −p2 pK

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

−p3 p2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−p2

3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −p3 pK

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

...
...

. . .
...

−pK p2

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2
−pK p3

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2 · · · −p2
K

2p1

(
1+A1+

∑K
�=2 p�z�

p1

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −1

2p1

(
1 + A1 +

∑K
�=2 p�z�

p1

)2
[p2, . . . , pK ]T [p2, . . . , pK ] � 0, (33)



2678 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 12, DECEMBER 2015

Fig. 4. Comparison of upper and lower bounds of the proposed model
for K = 5.

given in Case C of Theorem 2 and its gap to the achiev-
able rate is shown to be within 5.8239 bits in Part 2 of
Theorem 6. In addition, for (A2 − A1)p1 < Bmax < AK −∑K

i=1 pi Ai , an upper bound is given in Case B of Theorem

2 and C3
lb,5

(
min{A3

∑2
j=1 p j , Bmax}

)
is considered as the

lower bound. Further, it can be seen that both bounds increase
with the battery capacity, and the upper bound saturates at
1
2 log(1 +∑5

i=1 pi Ai ) = 8.4658.

VI. CONCLUSIONS

We have considered an energy-harvesting communication
system where a transmitter powered by an exogenous energy
arrival process, modeled as a discrete random process, and
equipped with a battery of finite capacity, communicates over
a discrete-time AWGN channel. We have developed upper and
lower bounds on the capacity of such systems, which are shown
to be within a constant gap for K ≤ 3, and some cases of
K > 3. Extension to fading channels is a future work.

APPENDIX A
PROOF OF THEOREM 2

We first show that SK (z2, . . . , zK ) is concave by showing its
Hessian matrix is negative-semidefinite. The Hessian is given
by (33), as shown at the bottom of the previous page, where (a)

follows from the fact that −pi

2(1+Ai −zi )
2 < 0, for all i = 2, . . . , K .

Define the following functions corresponding to the constraints

gi (z2, . . . , zK ) � zi − Bmax ≤ 0, i = 2, . . . , K , (34)

hi (z2, . . . , zK ) � zi − Ai ≤ 0, i = 2, . . . , K , (35)

u(z2, . . . , zK ) � −p2z2 − . . . − pK zK ≤ 0. (36)

We also define μgi , μhi ,∀i ∈ {2, . . . , K }, μu as the
corresponding Lagrangian multipliers of these constraints,
respectively.

A solution (z∗
2, . . . , z∗

K ) is optimum if it has the following
properties:

∇SK (z∗
2, . . . , z∗

K ) =
K∑

i=2

μgi ∇gi (z
∗
2, . . . , z∗

K )

+
K∑

i=2

μhi ∇hi (z
∗
2, . . . , z∗

K ) + μu∇u(z∗
2, . . . , z∗

K ), (37)

μu ≥ 0, μgi ≥ 0, μhi ≥ 0, for all i = 2, . . . , K ,

μgi gi (z
∗
2, . . . , z∗

K ) = 0, for all i = 2, . . . , K , (38)

μhi hi (z
∗
2, . . . , z∗

K ) = 0, for all i = 2, . . . , K ,

μuu(z∗
2, . . . , z∗

K ) = 0. (39)

Now we prove the theorem for the given 3 cases:
A) For Bmax ≤ (A2 − A1)p1 we show the optimality of

z∗
� = Bmax, ∀� ∈ {2, . . . , K } which by substituting in the upper

bound (9) results in (13). We have u(z∗
2, . . . , z∗

K ) = −(1 −
p1)Bmax < 0 and also for all i = 2, . . . , K

hi (z
∗
2, . . . , z∗

K ) = Bmax − Ai ≤ (A2 − A1)p1 − Ai
(a)
< 0,

(40)

where (a) follows from the fact that A2 p1 < A2 < A3 <

. . . < AK . So, we should have μhi = 0,∀i ∈ {2, . . . , K }, μu =
0. Also, gi (z∗

2, . . . , z∗
K ) = 0,∀i ∈ {2, . . . , K }. To show the

optimality, it is sufficient to show that μgi ≥ 0, for all i =
2, . . . , K . Using these and (37), we get

μgi = pi

2

⎛⎝ 1

1 + A1 + Bmax

(
1−p1

p1

) − 1

1 + Ai − Bmax

⎞⎠ ,

for all i = 2, . . . , K . Moreover, we have μgi ≥ 0, for all i =
2, . . . , K , since

μgi

pi
= 1

2

⎛⎝ 1

1 + A1 + Bmax

(
1−p1

p1

) − 1

1 + Ai − Bmax

⎞⎠
= (Ai − A1)p1 − Bmax

2p1

(
1 + A1 + Bmax

(
1−p1

p1

))
(1 + Ai − Bmax)

(a)≥ (A2 − A1)p1 − Bmax

2p1

(
1 + A1 + Bmax

(
1−p1

p1

))
(1 + Ai − Bmax)

(b)≥ 0,

where (a) follows from A2 < A3 < . . . < AK and (b) follows
from Bmax ≤ (A2 − A1)p1.

B) For As

(∑s−1
r=1 pr

)
−∑s−1

i=1 pi Ai < Bmax ≤ As+1(∑s
r=1 pr

)−∑s
i=1 pi Ai we show the optimality of

z∗
� = A� −

∑s
m=1 pm Am+∑K

n=s+1 pn Bmax∑s
�=1 p�

, ∀� ∈ {2, . . . , s} and

z∗
m = Bmax, ∀� ∈ {s + 1, . . . , K } which by substituting in
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the upper bound (9) results in (14). For all i = 2, . . . , s
we have

gi (z
∗
2, . . . , z∗

K ) = z∗
i − Bmax

= Ai −
∑s

m=1 pm Am +∑K
n=s+1 pn Bmax∑s

�=1 p�

− Bmax
(a)
< 0,

where (a) follows from A2

(∑s−1
r=1 pr

)
−∑s−1

i=1 pi Ai < . . . <

As

(∑s−1
r=1 pr

)
−∑s−1

i=1 pi Ai < Bmax. We also have

hi (z
∗
2, . . . , z∗

K ) = z∗
i − Ai

= −
∑s

m=1 pm Am +∑K
n=s+1 pn Bmax∑s

�=1 p�

< 0, (41)

for all i = 2, . . . , s. It can be also seen that for all i =
s + 1, . . . , K

hi (z
∗
2, . . . , z∗

K ) = z∗
i − Ai = Bmax − Ai

≤ As+1

(
s∑

r=1

pr

)
−

s∑
i=1

pi Ai − As+1

= −As+1

⎛⎝ K∑
r=s+1

pr

⎞⎠−
s∑

i=1

pi Ai < 0. (42)

In addition, we have

u(z∗
2, . . . , z∗

K ) = −
K∑

j=1

p j z
∗
j

= −Bmax(K − s −
K∑

j=s+1

p j ) < 0. (43)

So, we should have μg j = 0,∀ j ∈ {2, . . . , s}, μhi = 0,∀i ∈
{2, . . . , K }, and μu = 0. Also, gi (z∗

2, . . . , z∗
K ) = 0,∀i ∈ {s +

1, . . . , K }. It is sufficient to show that μgi ≥ 0, for all

μgi

pi
= 1

2

⎛⎜⎝ 1

1 +
∑s

m=1 pm Am+∑K
n=s+1 pn Bmax∑s

�=1 p�

− 1

1 + Ai − Bmax

⎞⎟⎠
=

Ai − Bmax −
∑s

m=1 pm Am+∑K
n=s+1 pn Bmax∑s

�=1 p�

2

(
1 +

∑s
m=1 pm Am+∑K

n=s+1 pn Bmax∑s
�=1 p�

)
(1 + Ai − Bmax)

= Ai (
∑s

�=1 p�) −∑s
m=1 pm Am − Bmax

2
∑s

�=1 p�

(
1 +

∑s
m=1 pm Am+∑K

n=s+1 pn Bmax∑s
�=1 p�

)
(1 + Ai − Bmax)

(a)≥ As+1(
∑s

�=1 p�) −∑s
m=1 pm Am − Bmax

2
∑s

�=1 p�

(
1 +

∑s
m=1 pm Am+∑K

n=s+1 pn Bmax∑s
�=1 p�

)
(1 + Ai − Bmax)

(b)≥ 0, (44)

i = s + 1, . . . , K . Using these and (37), we get that the first
s − 1 elements of ∇SK (z∗

2, . . . , z∗
k ) are 0 and also

μgi = pi

2⎛⎜⎝ 1

1 +
∑s

m=1 pm Am+∑K
n=s+1 pn Bmax∑s

�=1 p�

− 1

1 + Ai − Bmax

⎞⎟⎠ ,

for all i = s + 1, . . . , K . Moreover, we have μgi ≥
0, for all i = s + 1, . . . , K , since (44), shown at the
bottom of the page, holds where (a) follows from
As+1 < As+2 < . . . < AK and (b) follows from
Bmax ≤ As+1

(∑s
r=1 pr

)−∑s
i=1 pi Ai .

C) For AK −∑K
i=1 pi Ai ≤ Bmax we show the optimality of

z∗
� = A� −∑K

i=1 pi Ai , ∀� ∈ {2, . . . , K } which by substituting
in the upper bound (9) results (15). For this set of z∗

i ’s, we get
∇SK (z∗

2, . . . , z∗
K ) = 0 which shows the optimality.

APPENDIX B
PROOF OF LEMMA 3

We divide the proof into two parts; K > 2 and K = 2.

A. Proof for K > 2

For the case of K > 2, we divide the proof into three cases.
The first case is when qk x

1−qk
+ A1 > A, the second one is when

qk x
1−qk

+ Ak−1 ≤ A, and the third one is when qk x
1−qk

+ Aq−1 ≤
A ≤ qk x

1−qk
+ Aq , for 1 < q < k and A = 1.24. Let choice of A

is a result of performing a minimization of a function that will
be mentioned in Remark 4.

I) For the case qk x
1−qk

+ Aq−1 ≤ A ≤ qk x
1−qk

+ Aq , for 1 < q < k.
We have

K∑
j=k

p j

2
log
(
1 + A j − x

)+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

≤
K∑

j=k

p j

2
log
(
1 + A j − x

)+
q−1∑
j=1

p j

2
log (1 + A)

+
k−1∑
h=q

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)
, (45)
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and

∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
(a)= qk

2

K∑
n=k

pn

qk
log (1 + An−x ) +

∞∑
j=1

qk(1 − qk)
j

k−1∑
h=1

ph

1 − qk

1

2
log

(
1 + qk(1 − qk)

j−1x + Ah︸ ︷︷ ︸
)

> qk
(
1 − qk

) j−1x + Ah
≥ qk

(
1 − qk

) j−1x + Ah(
1 − qk

) j = (1 − qk
) j
(

qk x
1−qk

+ Ah

)

(46)

≥
∞∑
j=1

qk(1 − qk)
j−1

︸ ︷︷ ︸
=1

k−1∑
h=q

ph

2
log

(
qk

1 − qk
x + Ah

)

+
∞∑
j=1

jqk(1 − qk)
j−1

k−1∑
h=q

ph

2
log (1 − qk)

+
K∑

n=k

pn

2
log (1 + An−x ) , (47)

where (a) follows from (17) and (18).
Using (45) and (46) we get

K∑
j=k

p j

2
log
(
1 + A j − x

)
+

k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]

≤
q−1∑
j=1

p j

2
log (1 + A) +

k−1∑
h=q

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
k−1∑
h=q

ph

2
log

(
qk x

1 − qk
+ Ah

)

−
∞∑
j=1

jqk(1 − qk)
j−1

k−1∑
h=q

ph

2
log (1 − qk)

=
q−1∑
j=1

p j

2
log (1 + A) +

k−1∑
h=q

ph

2
log

(
1 + 1

qk x
1−qk

+ Ah

)

−
∞∑
j=1

jqk(1 − qk)
j−1

k−1∑
h=q

ph

2
log (1 − qk)

(a)≤
q−1∑
j=1

p j

2
log (1 + A) +

k−1∑
h=q

ph

2
log

(
1 + 1

qk x
1−qk

+ Ah

)
+ 0.72

≤
q−1∑
j=1

p j

2
log (1 + A) +

k−1∑
h=q

ph

2 ln 2

(
1

qk x
1−qk

+ Ah

)
+ 0.72

≤
q−1∑
j=1

p j

2
log (1 + A) +

k−1∑
h=q

ph

2 ln 2

(
1

A

)
+ 0.72 (48)

(b)≤
q−1∑
j=1

p j

2
log (1 + 1.24) +

k−1∑
h=q

ph

2 ln 2

(
1

1.24

)
+ 0.72

≤
k−1∑
q=1

p j (0.581) + 0.72 ≤ 1.301, (49)

where (a) follows since −∑∞
j=1 jqk(1 − qk)

j log (1 − qk)
(c)=

1−qk
2qk

log
(

1
1−qk

) (d)≤ 0.72, and (b) follows from A = 1.24. To

show (c), we use the identity
∑∞

j=0 jqk(1 − qk)
j = (1 − qk)

E[X ] = 1−qk
qk

, where X ∼ geometric(qk), and
∑∞

j=0 qk

(1 − qk)
j = 1 and (d) follows from the fact that G(qk) �

1−qk
2qk

log
(

1
1−qk

)
is a continuous bounded function of qk ∈

(0, 1). Furthermore, it is monotonically decreasing and is upper
bounded by limqk→0 G(qk) = 1

2 ln(2)
= 0.72.

Remark 4: The choice of A = 1.24 is made since it min-
imizes the RHS of (48). In other words, for p �

∑q−1
j=1 p j ,

arg minA

{
max0≤p≤1

{
p
2 log (1 + A) + 1−p

2 ln 2

(
1
A

)}}
= 1.24, and

thus choosing A = 1.24 results in the best bound using (48).
II) For the case qk x

1−qk
+ A1 > 1.24, we have:

∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]

+
K∑

j=k

p j

2
log
(
1 + A j − x

)+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

− (a)≤
k−1∑
h=1

ph

2

⎡⎣log

(
1 + qk x

1 − qk
+ Ah

)
− log

(
qk x

1 − qk
+ Ah

)
︸ ︷︷ ︸

⎤⎦
=log

(
1+ 1

qk x
1−qk

+Ah

)

−
∞∑
j=1

jqk(1 − qk)
j−1 log (1 − qk)

=
k−1∑
h=1

ph

2
log

(
1 + 1

qk x
1−qk

+ Ah

)

−
∞∑
j=1

jqk(1 − qk)
j 1

2
log (1 − qk)

≤ 1 − qk

2
log

(
1 + 1

qk x
1−qk

+ A1

)

−
∞∑
j=1

jqk(1 − qk)
j 1

2
log (1 − qk) (50)
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(b)≤ 1 − qk

2
log

(
1 + 1

qk x
1−qk

+ A1

)
+ 0.72

≤ 1 − qk

2 ln 2

(
1

qk x
1−qk

+ A1

)
+ 0.72

≤ 1

2 ln 2

(
1

1.24

)
+ 0.72 = 1.301, (51)

where (a) follows from (46) and (b) follows from Step (a) used
in (48).

III) For the case qk x
1−qk

+ Ak−1 ≤ 1.24 we have:

K∑
j=k

p j

2
log
(
1 + A j − x

)+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
(a)=

k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=1

qk(1 − qk)
j−1

k−1∑
h=1

ph

2

log
(

1 + qk(1 − qk)
j−1x + Ah

)
≤

k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)
(52)

≤
k−1∑
h=1

ph

2
log (1 + 1.24)

≤ 1

2
log (1 + 1.24) = 0.581, (53)

where (a) follows from (46).
So, we get

K∑
j=k

p j

2
log
(
1 + A j − x

)+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
≤ 1.301, (54)

which together with H(p1, · · · , pK ) ≤ log K completes the
proof for K > 2, i.e., by comparing this to the statement of
the lemma and the fact that 1.884 + log K + 0.457 − 1.04 −
H(p1, . . . , pK ) = 1.301 + log K − H(p1, . . . , pK ) ≥ 1.301,
the result is proven.

B. Proof for K = 2

For the case of K = 2, we divide the proof into two cases.
The first case is when p2x

p1
+ A1 > A and the second one is

when p2x
p1

+ A1 ≤ A, where A = 2.224. The choice of constant
2.224 is explained in Remark 5.

I) For the case p2x
p1

+ A1 > A we have:

K∑
j=k

p j

2
log
(
1 + A j − x

)

+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
+ H(p1, p2)

(a)= 1 − qk

2
log

(
1 + 1

qk x
1−qk

+ A1

)

+ 1 − qk

2qk
log

(
1

1 − qk

)
+ H(p1, p2)

= p1

2
log

(
1 + 1

p2x
p1

+ A1

)

+ (1 − p2)

2p2
log

(
1

1 − p2

)
+ H(p1, p2)

≤ p1

2 ln(2)

1
p2x
p1

+ A1
+ (1 − p2)

2p2
log

(
1

1 − p2

)
+ H(p1, p2)

≤ 1

2 ln(2)

1

A
+ (1 − p2)

2p2
log

(
1

1 − p2

)
+ H(p1, p2)

= 1

2 ln(2)

1

A
+ (1 − p2)

2p2
log

(
1

1 − p2

)
+ H(p1, p2)

= 1

2 ln(2)

1

A
+ (1 − p2)

2p2
log

(
1

1 − p2

)
+ (1 − p2) log

(
1

1 − p2

)
+ p2 log

(
1

p2

)
(b)≤ 1

2 ln(2)

1

A
+ 1.52 = 1.844, (55)

where (a) follows from (50), (b) is due to the fact that the
expression is a continuous bounded function of p2 ∈ (0, 1).
Furthermore, it is concave and attains a maximum value of

1
2 ln(2)

1
A + 1.52 at p2 = 0.413.
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II) For the case p2x
p1

+ A1 ≤ A we have:

K∑
j=k

p j

2
log
(
1 + A j − x

)
+

k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
+ H(p1, p2)

(a)≤
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)
+ H(p1, p2)

(b)= p1

2
log

(
1 + p2x

p1
+ A1

)
+ H(p1, p2)

≤ p1

2
log (1 + A) + H(p1)

≤ 1

2
log (1 + A) + 1 = 1.844, (56)

where (a) follows from (52) and (b) follows from the fact that
K = k = 2.

Remark 5: If the gap result in the two cases is kept as
function of A (rather than substituting the value as in the
proof above), 1

2 ln(2)
1
A + 1.52 (from (55)) is a strictly decreas-

ing function of A and 1
2 log (1 + A) + 1 (from (56)) is a

strictly increasing function of A. Since the gap is the maxi-
mum of two gaps, optimizing the maximum of the gaps gives
A = 2.224 using which we get both the RHS of (55) and the
RHS of (56) = 1.844 to be equal.

So, for K = 2 we get

K∑
j=k

p j

2
log
(
1 + A j − x

)+
k−1∑
h=1

ph

2
log

(
1 + qk x

1 − qk
+ Ah

)

−
∞∑
j=0

qk(1 − qk)
j
E

[
1

2
log(1 + φk( j))

]
+ H(p1, p2)

≤ 1.844, (57)

which together with H(p1) ≤ log 2 = 1 completes the proof
for K = 2, i.e., by comparing this to the statement of the
lemma and the fact that 1.884 + log 2 − 1.04 = 1.844, the
result follows.

APPENDIX C
PROOF OF THEOREM 4

We divide the proof of Theorem 4 into two parts, correspond-
ing to the upper and lower bounds, respectively.

C. Upper Bound

Similar to the proof of Theorem 1, suppose that an average
of x2 energy is stored into the battery and y2 energy is drawn
from the battery when the energy arrival is A2, then E(g2(t)) =
p2(A2 − x2 + rout y2) and E(g1(t)) = p1 A1 + p2(routrinx2 −

1
rin

y2). As N → ∞, using the law of large numbers, we see
that the capacity is upper bounded by

C ≤ max
0≤x2≤Bmax ,

0≤p2(routrinx2− 1
rin

y2)

{ p2

2
log(1 + A2 − x2 + rout y2)

+ p1

2
log

(
1 + A1 + p2(routrinx2 − 1

rin
y2)

p1

)}
. (58)

Now, we replace the variable x2 by x
′
2 � x2 −

min{x2, y2routrin} and also the variable y2 by y
′
2 �

y2 − 1
rout

min{x2, y2routrin}. We see that

p2

2
log
(

1 + A2 − x
′
2 + rout y

′
2

)
+ p1

2
log

(
1 + A1 + p2

p1

(
routrinx

′
2 − 1

rin
y

′
2

))
= p2

2
log (1 + A2 − x2 + rout y2)

+ p1

2
log

(
1 + A1 + p2

p1

(
routrinx2 − 1

rin
y2

)
+
(

1

routrin
− routrin

)
min{x2, y2routrin}

)
≥ p2

2
log (1 + A2 − x2 + rout y2)

+ p1

2
log

(
1 + A1 + p2

p1

(
routrinx2 − 1

rin
y2

))
. (59)

Thus, Cub,2 with x2 and y2 is less than or equal to Cub,2 with
x

′
2 and y

′
2 if min{x2, y2routrin} > 0. So, for optimal x2 and

y2, min{x2, y2routrin} = 0. Since routrinx2 − 1
rin

y2 ≥ 0, we get
y2 = 0 and thus the upper bound in (25) follows.

D. Lower Bound

To show the achievability given in (26), we show that the rate
of max

0≤x≤min{Bmax,A2}
C2

lb,2(x) can be achieved, where

C2
lb,2(x) = p2

2
log (1 + A2 − x)

+ p1

2
log

(
1 + A1 + rinroutxp2

p1

)
− 2.884. (60)

Let the time slots of two consecutive energy arrivals of A2 be
T1 and T2, i.e., ET1 , ET2 = A2 and Et = A1 for T1 < t < T2.
Then, the energy of ET1 − x is used at time T1 and the energy
of rinx goes into the battery is. At any time t between T1 and T2,
the energy of p2 Bt is extracted from the battery, and thus the
energy of Et + rout p2 Bt can be used for transmission, where
Et = A1, and the residual energy at time (t + 1) in the bat-
tery is Bt+1 = p1 Bt . Thus, the energy usage from the battery
at time t ∈ {T1 + 1, . . . , T2 − 1} is rinrout p2 pt−T1−1

1 x . We note
that this is a geometric random variable with parameter p2, and
thus has the mean 1

p2
. We ignore the battery energy residue

at T2, and consider the next interval starting at T2 to find the
energy usage after T2.
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The energy utilization strategy g̃(t) proposed above is of the
form g̃(t) = φ( j), where j = t − max{τ : Eτ = A2,∀τ ≤ t},
i.e., the strategy is invariant across time and the allocated energy
depends on the number of time steps since the last energy arrival
of A2. The random variable φ( j) is defined as

φ( j) � rinrout p2 p j−1
1 x + A1, for all j ≥ 1, and

φ(0) � A2 − x . (61)

The rest of the proof is straightforward and in the same lines
as in the case of rin = rout = 1 as in Section IV, with the only
difference that in the proof of Lemma 3 in Appendix VI the
choice of two cases change as follows. The first case is when
p2rinroutx

p1
+ A1 > 2.224 and the second one is when p2rinroutx

p1
+

A1 ≤ 2.224.

APPENDIX D
PROOF OF THEOREM 5

1) Case 1: Bmax ≤ p1(A2 − A1): The upper bound in
(13) can be achieved within 3.926 bits using the achievability
scheme C2

lb,3(Bmax) in Theorem 3.

2) Case 2: Bmax ≥ (p1 + p2)(A3 − A1): We have

A1 p1 + A2 p2 + A3 p3

≤ A1(2p1 + p2)

+ A2(p2 + p3) + A3 p3

= (A2 − A1)(p2 + p3) + A1

+ (A3 − A1)p3 + A1

≤ 2 max{(A2 − A1)(p2 + p3)

+ A1, (A3 − A1)p3 + A1}. (62)

Then using (15) we get

Cub,3 ≤ 1

2
log(1 + A1 p1 + A2 p2 + A3 p3)

≤ 1

2
+ 1

2
log(1 + max{(A2 − A1)(p2 + p3) + A1,

(A3 − A1)p3 + A1}). (63)

Also, we have the following two achievable rates

C2
lb,3 (p1(A2 − A1))

= p3

2
log (1 + A3 − (A2 − A1)p1)

+ p2

2
log (1 + A2 − (A2 − A1)p1)

+ p1

2
log

(
1 + A1 + (p2 + p3)p1(A2 − A1)

p1

)
− 3.926

≥ 1

2
log (1 + (A2 − A1)(p2 + p3) + A1) − 3.926, (64)

and

C3
lb,3 ((p1 + p2)(A3 − A1))

= p3

2
log(1 + (A3 − A1)p3 + A1)

+ p2

2
log

(
1 + A2 + p3(p1 + p2)(A3 − A1)

p1 + p2

)
+ p1

2
log

(
1 + A1 + p3(p1 + p2)(A3 − A1)

p1 + p2

)
− 3.926

≥ 1

2
log (1 + (A3 − A1)p3 + A1) − 3.926. (65)

So, the maximum of the rates in (64) and (65) is achievable
(because of Bmax ≥ (p1 + p2)(A3 − A1) ≥ p1(A2 − A1)) and
it is seen from (63) that their maximum is within a constant gap
of 4.426 bits to the upper bound.

3) Case 3: p1(A2 − A1) < Bmax < (p1 + p2)(A3 − A1)

and (A2 − A1)(p2 + p3) + A1 ≥ (A3 − A1)p3 + A1: For this
case, similar to the previous case, we get

Cub,3 ≤ 1

2
log(1 + A1 p1 + A2 p2 + A3 p3)

≤ 1

2
+ 1

2
log(1 + max{(A2 − A1)(p2 + p3) + A1,

(A3 − A1)p3 + A1})
= 1

2
+ 1

2
log(1 + (A2 − A1)(p2 + p3) + A1), (66)

and the rate in (64) is achievable (because of Bmax ≥ p1(A2 −
A1)) and from (66) the maximum is within a constant gap of
4.426 bits to the upper bound.

4) Case 4: p1(A2 − A1) < Bmax < A3 −∑3
i=1 pi Ai and

(A2 − A1)(p2 + p3) + A1 < (A3 − A1)p3 + A1: In this case
for the upper bound in Theorem 1, we have z∗

3 = Bmax. So,

Cub,3 = max
0≤x2≤Bmax

{
p2

2
log(1 + A2 − x2)

+ p3

2
log(1 + A3 − Bmax)

+ p1

2
log

(
1 + A1 + p2x2 + p3 Bmax

p1

)}
= p3

2
log(1 + A3 − Bmax) +

(
p1 + p2

2

)
log

(
1 + A1 + p2(A2 − A1) + p3 Bmax

p1 + p2

)
. (67)

Now, divide the achievability scheme into two parts:
A) p2 A2 ≤ p3 Bmax: The scheme C3

lb,3(x) with
x = min{Bmax, A3} = Bmax gives the capacity within
4.426 bits to the upper bound (67) because C3

lb,3(Bmax)

equates shown at the bottom of the next page.
B) p2(A2 − A1) > p3 Bmax: For this set of of parameters, we

have p2 > p1 p3. This is because if p2 ≤ p1 p3, it results
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p1(A2 − A1) ≥ p2(A2−A1)
p3

> Bmax which is a contradic-
tion to the initial assumption of p1(A2 − A1) ≤ Bmax.

Use the strategy C3
lb,3((A2 − A1)p1) for the achievability.

Then, we get

Cub,3 − C3
lb,3((A2 − A1)p1) − 3.926

≤ p1 + p2

2

⎛⎜⎜⎜⎝log

⎛⎜⎜⎜⎝1 + A1 +

≤2p2(A2−A1)︷ ︸︸ ︷
p2(A2 − A1) + p3 Bmax

p1 + p2

⎞⎟⎟⎟⎠
− log (1 + (A2 − A1)(1 − p1) + A1))

≤ p1 + p2

2
log

(
1 + A1 + 2p2(A2−A1)

p1+p2

1 + A1 + (A2 − A1)(p2 + p3)

)

≤ p1 + p2

2
log

⎛⎝ 1 + A1 + (A2 − A1)
(

p2
p1+p2

)
1 + A1 + (A2 − A1)(p2 + p3)

⎞⎠
+ p1 + p2

2
log 2 (68)

(a)≤ p1 + p2

2
log 2 ≤ 1

2
. (69)

where (a) follows since

(
p2

p1+p2

)
(p2+p3)

≤ 1 which can be easily
shown.

5) Case 5:
∑3

i=1 pi Ai < Bmax < (p1 + p2)(A3 − A1) and
(A2 − A1)(p2 + p3) + A1 < (A3 − A1)p3 + A1: Take the
upper bound Cub,3 = 1

2 log(1 + p1 A1 + p2 A2 + p3 A3). For

achievability consider C3
lb,3(A3 −∑3

i=1 pi Ai ). We could see

that p3x
p1+p2

=∑3
i=1 pi Ai − p1

p1+p2
A1 − p2

p1+p2
A2, so we will

have

C3
lb,3

(
A3 −

3∑
i=1

pi Ai

)
= −3.926

+ p3

2
log

(
1 +

3∑
i=1

pi Ai

)

+ p2

2
log

(
1 +

3∑
i=1

pi Ai − p1

p1 + p2
A1 + p1

p1 + p2
A2

)

+ p1

2
log

(
1 +

3∑
i=1

pi Ai + p2

p1 + p2
A1 − p2

p1 + p2
A2

)
,

C3
lb,3 (Bmax) = −3.926 + p3

2
log(1 + A3 − Bmax)+

p2

2
log

(
1 + A2 + p3 Bmax

p1 + p2

)
+ p1

2
log

(
1 + A1 + p3 Bmax

p1 + p2

)
.︸ ︷︷ ︸

≥ p1+p2
2 log(1 + A1 + p3 Bmax

p1+p2
) ≥ p1+p2

2 log(1 + A1 + 2p3 Bmax
p1+p2

) − 1
2

≥ p1+p2
2 log(1 + A1 + p2(A2−A1)+p3 Bmax

p1+p2
) − 1

2

and we get

Cub − C3
lb,3

(
A3 −

3∑
i=1

pi Ai

)
− 3.926

≤ − p2

2
log

⎛⎜⎜⎜⎝1 + p1(A2 − A1)

(p1 + p2)(1 +
3∑

i=1
pi Ai )

⎞⎟⎟⎟⎠

− p1

2
log

⎛⎜⎜⎜⎝1 − p2(A2 − A1)

(p1 + p2)(1 +
3∑

i=1
pi Ai )

⎞⎟⎟⎟⎠ (70)

(a)≤ − p2

2
log

(
1 + p1 A2

(p1 + p2)(2 + p2 A2 + p3 A3)

)
− p1

2
log

(
1 − p2 A2

(p1 + p2)(1 + p2 A2 + p3 A3)

)
(b)≤ lim

A2→∞

{
− p2

2
log

(
1 + p1 A2

(p1 + p2)(1 + p2 A2 + p3 A3)

)
− p1

2
log

(
1 − p2 A2

(p1 + p2)(1 + p2 A2 + p3 A3)

)}
= lim

A2→∞

{
− p2

2
log

(
1 + p1 A2

(p1 + p2)(p2 A2 + p3 A3)

)
− p1

2
log

(
1 − p2 A2

(p1 + p2)(p2 A2 + p3 A3)

)}
(71)

(c)≤ max
p2+p3

p3
≤e

{
− p2

2
log

(
1 + p1

(p1 + p2)(p2 + p3e)

)

− p1

2
log

(
1 − p2

(p1 + p2)(p2 + p3e)

)}
(72)

(d)= − p2

2
log

(
1 + p1

(p1 + p2)(2p2 + p3)

)
− p1

2
log

(
1 − p2

(p1 + p2)(2p2 + p3)

)
, (73)

where (a) follows from the fact that the function g(x) =
− p2

2 log(1 + p1x) − p1
2 log(1 − p2x) is increasing and also

(A2−A1)

(p1+p2)(1+∑3
i=1 pi Ai )

≤ A2
(p1+p2)(1+p2 A2+p3 A3)

and (b) follows

from the fact that (71) has a positive derivative respect to A2,
(c) follows from p2+p3

p3
≤ A3

A2
and (d) follows from the fact

that (72) has a negative derivative respect to e and e∗ = p2+p3
p3

in (73).
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It remains to show that (73) ≤ 1/2. We divide the proof into
two parts:

A) p2 ≤ p1: Let take p1 = m + n, p2 = m and p3 =
1 − 2m − n. Then, we get p2

(p1+p2)(2p2+p3)
= m

(2m+n)(1−n)
=

m
2m+np3

≤ 1
2 .

So, we have − p2
2 log

(
1 + p1

(p1+p2)(2p2+p3)

)
−

p1
2 log

(
1 − p2

(p1+p2)(2p2+p3)

)
≤ − p1

2 log
(

1 − p2
(p1+p2)(2p2+p3)

)
≤ − 1

2 log
(

1 − 1
2

)
= 1

2 .

B) p2 > p1: Let take p1 = m, p2 = m + n and p3 = 1 −
2m − n. Then, we get

− p2

2
log

(
1 + p1

(p1 + p2)(2p2 + p3)

)
− p1

2
log

(
1 − p2

(p1 + p2)(2p2 + p3)

)
≤ − p1

2
log

(
1 − p2

(p1 + p2)(2p2 + p3)

)
= − m

2
log

(
1 − m + n

(1 + n)(2m + n)

)
= − m

2
log

(
m + n(2m + n)

(1 + n)(2m + n)

)
=m

2
log

(
(1 + n)(2m + n)

m + n(2m + n)

)
=m

2
log

(
1 + m + n

m + n(2m + n)

)
≤ max

n

{
m

2
log

(
1 + m + n

m + n(2m + n)

)}
. (74)

We see that optimal n, n∗ = √
m(1 − m) − m. Then,

RHS of (74) is equal to m
2 log

(
1 +

√
m(1−m)

m+m(1−m)−m2

)
=

m
2 log

(
1 + 1

2
√

m(1−m)

)
, where 0 < m ≤ 1

2 . It can be seen that

m
2 log

(
1 + 1

2
√

m(1−m)

)
is an increasing function with respect

to m, and is thus ≤ 1
2 log

(
1 + 1

2
√

1
2 ( 1

2 )

)
= 1

2 .
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