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On the Capacity Region and the Generalized Degrees
of Freedom Region for the MIMO Interference

Channel With Feedback
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Abstract—In this paper, we study the effect of feedback on the
two-user MIMO interference channel. The capacity region of the
MIMO interference channel with feedback is characterized within
a constant number of bits, where this constant is independent of
the channel matrices. Further, it is shown that the capacity region
of theMIMO interference channel with feedback and its reciprocal
interference channel are within a constant number of bits. Finally,
the generalized degrees of freedom region for the MIMO interfer-
ence channel with feedback is characterized.

Index Terms—Capacity region, feedback, generalized degrees of
freedom, Han–Kobayashi message splitting, MIMO interference
channel, reciprocal interference channel.

I. INTRODUCTION

W IRELESS networks with multiple users are interfer-
ence limited rather than noise limited. The interference

channel (IC) is a good starting point for understanding the
performance limits of the interference limited communications
[1]–[7]. Feedback can be employed in the ICs to achieve an
improvement in the data rates [8]–[13]. However, most of
the existing works on the ICs with feedback are limited to
discrete memoryless channels, or the single-input single-output
(SISO) channels. This paper analyzes the multiple-input mul-
tiple-output (MIMO) Gaussian IC with feedback.
In this paper, we consider the two-user MIMO IC with per-

fect channel state knowledge at the transmitters and receivers.
In large wireless networks, having global knowledge of the
channel state is infeasible and thus Lozano et al. [14] found
a saturation effect in the system capacity. In this paper, we
assume that all the nodes know the channel state information of
all the links to find the impact of feedback to the transmitters,

Manuscript received December 05, 2012; revised August 30, 2013; accepted
September 11, 2013. Date of publication October 25, 2013; date of current ver-
sion November 19, 2013. This work was supported in part by the U.S. National
Science Foundation under Grant CIF1064575 and in part by the U.S. Office of
Naval Research under Grant N000141210043. This paper was presented in part
at the 2013 IEEE International Symposium on Information Theory.
M. Ashraphijuo is with the Department of Electrical Engineering, Columbia

University, New York, NY 10027 USA (e-mail: mehdi@ee.columbia.edu).
V. Aggarwal is with AT&T Labs-Research, Florham Park, NJ 07932 USA

and also with Columbia University, New York NY 10027 USA (e-mail:
vaneet@alumni.princeton.edu).
X. Wang is with the Department of Electrical Engineering, Columbia Uni-

versity, New York, NY 10027 USA, and also with King Abdulaziz University,
Jeddah 22254, Saudi Arabia (e-mail: wangx@ee.columbia.edu).
Communicated by A. Lozano, Associate Editor for Communications.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2282317

which is a fundamental question on its own. While the over-
head of gathering global channel state information must not be
neglected, it has been repeatedly shown (cf. [15], [16]) that this
overhead is manageable in the presence of a reduced number of
users. This overhead increases as the number of users increases,
and thus some authors have considered knowledge of channel
state in a local neighborhood [17], [18]. With the local network
connectivity and channel state information, subnetworks can
be scheduled where each subnetwork is operated using an
information-theoretic optimal scheme [19], [20]. Thus, even
with the knowledge of the local channel state information, un-
derstanding of small networks can help to improve throughput
of large networks.
Finding a capacity achieving scheme for an ICwithmore than

two users is an open problem, and assumptions like treating in-
terference as noise have been used [14], [21], [22]. An approx-
imate capacity region for the two-user SISO IC was given in
[1], which has been further extended to the MIMO IC in [4].
Even an approximate capacity region is an open problem be-
yond two-user IC, although capacity regions have been found
in some special cases like double-Z [23], one-to-many [24],
many-to-one [24], and cyclic [25] ICs. In the presence of feed-
back, an approximate capacity region for the two-user SISO IC
was recently given in [8], where the capacity region is charac-
terized within two bits. It was shown that the capacity regions
of Gaussian ICs increase unboundedly with feedback unlike the
Gaussian multiple-access channel where the gains are bounded
[26]. The degrees of freedom for a symmetric SISOGaussian IC
with feedback is also found in [8]. In this paper, we find an outer
bound and an inner bound for the capacity region that differ by
a constant number of bits, and also evaluate the generalized de-
grees of freedom (GDoF) region for a general MIMO IC with
feedback.
The first main result of this paper is the characterization

of the capacity region of a MIMO IC with feedback within
bits, where and are the num-

bers of receive antennas at the two receivers. An outer-bound
is obtained by first outer bounding the covariance matrices of
both input signals and representing the outer bound as a region
in terms of the covariance matrix between the two input signals.
This is further outer-bounded by a larger region that does not
involve the covariance matrix. The achievability strategy is
based on block Markov encoding, backward decoding, and
Han-Kobayashi message-splitting. This achievable rate and the
outer bound are within bits of each
other thus characterizing the capacity region of the two-user
IC within constant number of bits where the constant is in-
dependent of the channel matrices. The achievability scheme
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that is used to prove the constant gap result assumes that the
transmitted signals from the two transmitters in a time slot
are uncorrelated, unlike [8] where the signals were assumed
correlated in the achievability. Thus, our achievable rate region
is within 3 bits rather than 2 bits as in [8] of the capacity region
of a SISO IC with feedback. An achievability scheme without
correlated inputs was also shown to achieve within constant
gap of the capacity region in [12] for a SISO IC with feedback.
However, our gap between the inner and the outer bounds is
smaller as compared to [12].
We note that the achievability strategies for a SISO IC in [8]

and [12] emphasize that the private part from a transmitter using
the Han–Kobayashi message splitting is such that it is received
at the other receiver at the noise floor. However, for a MIMO
IC with feedback, it is not clear what its counterpart would be.
The Han–Kobayashi message splitting used in this paper gives
the notion of receiving the signal at the noise floor for a MIMO
IC with feedback. Many matrix-based results are derived in this
paper to show a constant gap between the outer and the inner
bounds of the capacity region of a MIMO IC with feedback,
which may be of independent interest.
The second main result of this paper is to show that the ca-

pacity region of a MIMO IC with feedback and that of its corre-
sponding reciprocal channel are within constant number of bits
of each other, where the constant is independent of channel ma-
trices. The reciprocal IC was considered in [4], where the au-
thors showed that the capacity region of a MIMO IC without
feedback is within constant number of bits of its corresponding
reciprocal IC. This paper shows that the constant gap between a
MIMO IC and its reciprocal channel also holds in the presence
of feedback.
Most developments on the IC take place in the high-power

regime, and the GDoF region characterizes the capacity region
in the limit of high power. Thus, we further extend our results to
high-power regime to get more understanding on the improve-
ment in the capacity region with feedback. The GDoF region
has been characterized in the symmetric case without feedback
[27] and with feedback [28] for a -user SISO IC. For a gen-
eral MIMO IC without feedback, the GDoF region is found for
a two-user IC in [5].
The third main result of this paper is a complete characteriza-

tion of the GDoF region of a general MIMO IC with feedback
when the average signal quality of each link, say for link
from transmitter to receiver , varies with a base SNR param-
eter, say , as , where can be
different for each link with . In other words, the
average link quality of each link can potentially have different
exponents of a base SNR. As a special case, we consider a sym-
metric IC where the number of antennas at both transmitters is
the same, the number of antennas at both receivers is the same,
and the SNRs for the direct links and the cross links are and

, , respectively. We find the GDoF (the maximum
symmetric point in the GDoF region) for a given and show
that the GDoF is a “V”-curve rather than a “W”-curve corre-
sponding to the GDoF without feedback as in [5]. Similar result
was obtained for a SISO IC in [8] while this paper extends it to
a MIMO system.

The remainder of this paper is organized as follows. Section II
introduces the model for a MIMO IC with feedback, reciprocal
IC and the GDoF region. Sections III and IV describe our re-
sults on the capacity region and the GDoF region, respectively.
Section V concludes this paper. The detailed proofs of various
results are given in Appendices A–E.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe the channel model considered in
this paper. A two-user MIMO IC consists of two transmitters
and two receivers. Transmitter is labeled as and receiver
is labeled as for . Further, we assume has

antennas and has antennas, . Henceforth,
such a MIMO IC will be referred to as the
MIMO IC. We assume that the channel matrix between trans-
mitter and receiver is denoted by , for

.We shall consider a time-invariant or fixed channel
where the channel matrices remain fixed for the entire duration
of communication. At each discrete time instance, indexed by

, transmitter transmits a vector
over the channel with a power constraint (
denotes the conjugate transpose of the matrix ).
Let for . We say

if is a positive semidefinite (p.s.d.) matrix and we say
if . The identity matrix of size is denoted

by . Further, we define . We also note that
according to [29, Th. 7.7.3] since

. By definition of , we see that . Moreover, we

have , where results from the fact

that every matrix in the form of is p.s.d. and
results from which gives

with a similar argument as we had for . We will
sometimes denote when it does not lead to confusion.
We also incorporate a nonnegative power attenuation factor,

denoted as , for the signal transmitted from to . The re-
ceived signal at receiver at discrete time instance is denoted
as for , and can be written as

(1)

(2)

where is i.i.d. (complex Gaussian
noise), is the received SNR at , and is the received
interference-to-noise-ratio at for . A
MIMO IC is fully described by three parameters. The first is
the number of antennas at each transmitter and receiver, namely

. The second is the set of channel gains,
. The third is the set of average link quali-

ties of all the channels, .We assume that
these parameters are known to all transmitters and receivers.
For MIMO IC with feedback, the transmitted signal at
is a function of the message and the previous channel

outputs at for . Thus, the encoding functions of the
two transmitters are given as

(3)
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where is the encoding function of , is the message
of , and . Similarly, we de-
note . Let us assume that trans-
mits information at a rate of to using the codebook
of length- codewords with . Given a message

, the corresponding codeword
satisfies the power constraint mentioned before. From the re-
ceived signal , the receiver obtains an estimate of the
transmitted message using a decoding function. Let the av-
erage probability of error be denoted by .
A rate pair is achievable if there exists a family of

codebooks and decoding functions such that
goes to zero as the block length goes to infinity. The capacity
region of the IC with parameters and is defined as
the closure of the set of all achievable rate pairs.
Consider a 2-D rate region . Then, the region

denotes the region formed by
for some . Simi-

larly, the region denotes the region formed
by
for some . Further, we define the notion of an achiev-
able rate region that is within a constant number of bits of the
capacity region as follows.
Definition 1: An achievable rate region is said to be

within bits of the capacity region if and
.

In this paper, we will use the GDoF region to characterize the
capacity region of the MIMO IC with feedback in the limit of
high SNR. This notion generalizes the conventional degrees of
freedom (DoF) region metric by additionally emphasizing the
signal level as a signaling dimension. It characterizes the simul-
taneously accessible fractions of spatial and signal-level dimen-
sions (per channel use) by the two users when all the average
channel coefficients vary as exponents of a nominal SNR pa-
rameter. Thus, we assume that

(4)

where for all . In the limit of high SNR,
the capacity region diverges.
The GDoF region is defined as the region formed by the set of

all such that
1 is inside the capacity region. Thus, the GDoF is

a function of link quality scaling exponents . We note that
since the channel matrices are of full ranks with probability 1,
we will have the GDoF with probability 1 over the randomness
of channel matrices.
The property of maintaining the same performance even

if the direction of information flow is reversed is known as
the reciprocity of the channel. For a MIMO IC with param-
eters , , and

, the reciprocal MIMO IC has param-
eters , , and

.

1 indicates that .

III. CAPACITY REGION OF MIMO IC WITH FEEDBACK

In this section, we will describe our results on the capacity
region of the two-user MIMO IC with feedback.
Our first result gives an outer bound on the capacity region

of the two-user MIMO IC with feedback. Let be the
region formed by satisfying the following constraints
for some covariance matrix :

(5)

(6)

(7)

(8)

(9)
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(10)

Further, let be the convex hull of for all covariance
matrices . The following theorem outer bounds the capacity
region of the two-user MIMO IC with feedback.
Theorem 1: The capacity region of the two-user MIMO IC

with perfect feedback is bounded from above as follows:

(11)

Proof: The proof is given in Appendix A.
From the definition of , by substituting and

after some simplifications, we get that is the region
formed by satisfying the following:

(12)

(13)

(14)

(15)

(16)

(17)

The following result gives an inner bound to the capacity re-
gion of the two-user MIMO IC with feedback.

Theorem 2: The capacity region for the two-user MIMO IC
with perfect feedback is bounded from below as

(18)

Proof: The proof is provided in Appendix B.
The inner bound uses the achievable region for a two-user

discrete memoryless IC with feedback as in [8]. The achiev-
ability scheme employs block Markov encoding, backward de-
coding, and Han–Kobayashi message-splitting. This result for
a discrete memoryless channel is extended to MIMO IC with
feedback using a specific message splitting by power allocation.
The transmitted signal from is given as

(19)

where and denote the private and public messages of
, respectively. We assume that and are independent

for , 2. However, these transmitted signals are correlated
over time due to blockMarkov encoding. The private signal
is chosen to be , and the public signal
is chosen to be , where

(20)

and

(21)

for .
We will show in Appendix B that the power allocation is fea-

sible by showing and . Further, this mes-
sage split is such that the private signal is received at the other
receiver with power bounded by a constant. More specifically,
we have , thus showing that the effec-
tive received signal covariance matrix at corresponding to
the private signal from is at or below the noise floor.
This power allocation is different from that given in [8] even

for a SISO channel. Note that the power split levels in the
achievability scheme of [8] do not sum to 1 and thus do not
satisfy the total power constraint. For the special case of SISO
IC with feedback, the above gives a fix to the results in [8].
This power allocation assumes uncorrelated signals transmitted
by the two users at each time slot. Sahai et al. [12] also used
uncorrelated signals for SISO but had a larger gap between the
inner and outer bounds for SISO IC with feedback than that
achieved by our achievability strategy.
Having considered the inner and outer bounds for the capacity

region of the two-user IC with feedback, the next result shows
that the inner bound and the outer bound are within

bits thus finding the capacity region of the two-
user IC with feedback, approximately.
Theorem 3: The capacity region for the two-user MIMO IC

with perfect feedback is bounded from above and below
as

(22)
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where the inner and outer bounds are within
bits.

Proof: The inner bound follows from Theorem 2. For outer
bound, we outer-bound the region as

in Appendix C. Hence,
. Thus, using in gives an ap-

proximate capacity region with the approximation gap as in the
statement of the theorem.
Suh and Tse [8] found the capacity region for the SISO IC

with feedback within 2 bits. The above theorem generalizes the
result to find the capacity region of MIMO IC with feedback
within bits. Note that the approxi-
mate capacity region without feedback in [4] involves bounds
on which do not appear in our approximate capacity
region with feedback. In addition, in [8], the approximate ca-
pacity region for the SISO IC with feedback involves the covari-
ance matrix of the inputs in the inner and outer bounds, whereas
our approximate capacity region for the MIMO IC with feed-
back does not.
Fig. 1 gives a pictorial representation for the result of The-

orem 3. The inner and the outer bounds for the capacity region
for MIMO IC with feedback are within a constant number of
bits from the region and thus the inner and outer bound
regions are within a constant number of bits of each other.
In Fig. 2, we see the improvement in the capacity region for

a MIMO IC with feedback. The parameters chosen for the IC
are , , , , ,

,

(23)

The inner and outer bounds without feedback are taken from [4].
We note that the inner bound with feedback contains the outer
bound without feedback.
Having characterized the approximate capacity region for the

MIMO IC with feedback, we next explore the relation of ca-
pacity region of the MIMO IC with feedback with that of the
corresponding reciprocal MIMO IC with feedback. The next
theorem shows that the capacity region of the MIMO IC with
feedback is approximately the same as that of its corresponding
reciprocal channel with feedback.

Fig. 1. Inner and outer bounds for the capacity region of MIMO IC with feed-
back are within a constant number of bits. The arrows from the corners and
in toward their respective corners on outer bound have vertical length

of and horizontal length of . The arrows from the corners and in
toward their respective corners on inner bound have the vertical and hor-

izontal length of each.

Fig. 2. Inner and outer bounds for the capacity region of MIMO IC with feed-
back and without feedback.

Theorem 4: The capacity region for the two-user MIMO
IC with feedback and the capacity region for its corre-
sponding reciprocal IC with feedback are within constant
gaps from each other. More precisely, the following expressions
holds:

(24)

(25)

Then, we get

(26)

(27)
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Fig. 3. Inner and outer bounds for the capacity region of MIMO IC with feed-
back specified in (23) and inner and outer bounds for its reciprocal channel.

Proof: In Appendix D, we show that the region for
theMIMO IC is the same as the corresponding region for
the corresponding reciprocal MIMO IC. Thus, (24)–(25) follow
from Theorem 3. Moreover, (26)–(27) follow from simple ma-
nipulations on (24)–(25).
Thus, we see that the capacity region of a two-user

MIMO IC with feedback and the corresponding reciprocal
channel with feedback are within

bits.
In Fig. 3, we compare the inner and outer bounds for the ca-

pacity region of the MIMO IC with feedback specified in (23),
and inner and outer bounds for its reciprocal channel. For this
figure, the parameters for the IC are the same as those used for
Fig. 2. We note that the capacity region of the MIMO IC with
feedback and that of its reciprocal channel with feedback are
within a constant gap.

IV. GDOF REGION OF MIMO IC WITH FEEDBACK

This section describes our results on the GDoF region of the
two-user MIMO IC with feedback. The GDoF gives the high
SNR characterization of the capacity region. Since the inner and
outer bounds on the capacity region are within a constant gap,
we characterize the exact GDoF region of the MIMO IC with
feedback. Define

(28)

The following result characterizes the GDoF for general
MIMO IC with feedback for general power scaling parameters
.

Theorem 5: The GDoF region of the two-user MIMO IC with
feedback is given by the set of satisfying

(29)

(30)

(31)

(32)

(33)

(34)

Proof: According to Theorem 3, we can see that
, which is evaluated in Appendix E

to get the result as in the statement of the theorem.
Since the capacity region of the MIMO IC with feedback and

the corresponding reciprocal IC with feedback are within con-
stant gap, the GDoF region of the MIMO IC with feedback and
that of the corresponding reciprocal IC with feedback are the
same, as given in the next corollary.
Corollary 6: The GDoF region for the reciprocal IC with per-

fect feedback is given by the set of satisfying (29)–(34).
We will now consider a special case of Theorem 5 where

, , , and
. This MIMO IC is called a symmetric MIMO

IC. We also define GDoF as the supremum over all such
that is in the GDoF region. The GDoF for the symmetric
MIMO IC with feedback is given as follows.
Corollary 7: The GDoF for a two-user symmetric MIMO IC

with feedback for is given as follows:

if

if
(35)

Since the expressions are symmetric in and by Corollary
6, the GDoF for follows by interchanging the roles of
and .
Proof: For the symmetric MIMO IC, we have

(36)
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We will split the proof for in two cases.
Case 1 ( ): We will go over all equations (29)–(34)
and evaluate them for the symmetric case with .
Equations (29) and (30) can be simplified using (36) as
follows:

(37)

Equations (31) and (32) can be simplified as

(38)

Equations (33) and (34) can be simplified as

(39)

We note that the minimum of the right-hand sides of (37),
(38), and (39) would give us the GDoF. The minimum of
these three terms is (39) which proves the result for .
Case 2 ( ): In this case, (29) and (30) can be simplified
as

(40)

Equations (31) and (32) can be simplified as

(41)

Equations (33) and (34) can be simplified as

(42)

We note that the minimum of the right-hand sides of (40),
(41), and (42) would give us the GDoF. The minimum of
these three terms is (42) which proves the result for .

Karmakar and Varanasi [5] found the GDoF for the two-user
symmetric MIMO IC without feedback as follows for
(We can interchange the roles of and if .)

if

if

if

if

(43)

We note that the GDoF with and without feedback are the
same for . Fig. 4 compares the GDoF for the two-user
symmetric MIMO IC with and without feedback. In Fig. 4(a),
the “W”-curve obtained without feedback delineates the very
weak , weak , moderate

, strong , and very strong
interference regimes. In the presence of feedback, the

“W”-curve improves to a “V”-curve which delineates the weak
and strong interference regimes for all

choices of and . For , we see that the GDoF
with feedback is strictly greater than that without feedback for

and for . For , we
see that the GDoF with feedback is strictly greater than that
without feedback for . The GDoF improvement indicates
an unbounded gap in the corresponding capacity regions as the
SNR goes to infinity.
Interestingly, from Fig. 4(b) we can see that if we increase
when , the GDoF does not change. This can be

interpreted as that while , act as a bottleneck and
increasing does not increase the GDoF. As a special case
consider a MISO IC for which we note that the GDoF is the
same for all . Thus, increasing the transmit antennas be-
yond 2 does not increase the GDoF. However, increasing the
transmit antennas from 1 to 2 gives a strict improvement in
GDoF for all . Similar result also holds for SIMO sys-
tems where increasing the receive antennas from 1 to 2 helps
increase GDoF while increasing the receive antennas beyond 2
does not increase the GDoF.

V. CONCLUSION

This paper gives the capacity region of the MIMO IC with
feedback within bits. The achievability
is based on the block Markov encoding, backward decoding,
and Han–Kobayashi message-splitting. The capacity region for
the MIMO IC with feedback is shown to be within a constant
number of bits from the capacity region of the corresponding re-
ciprocal IC. Further, the GDoF region for the general MIMO IC
is characterized. It is found that for the symmetric IC with feed-
back, the GDoF form a “V”-curve rather than the “W”-curve
without feedback.
Vahid et al. [13] considered a SISO IC with two rate-limited

feedback links. Further, Sahai et al. [12] considered nine canon-
ical feedbackmodels in the SISO IC, ranging from one feedback
link to four feedback links in various configurations. Extension
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Fig. 4. GDoF for symmetric MIMO IC with perfect feedback (PF), and
no-feedback (NF) for , and (a)

(b) .

of this paper for different feedback models proposed in [12] for
rate-limited feedback links is an important future work, and is
still open. Further, the extension to the general -user IC is also
open.

APPENDIX A
PROOF OF OUTER BOUND FOR THEOREM 1

In this Appendix, we will show that for some
covariance matrix .
The set of upper bounds to the capacity region will be de-

rived in two steps. First, the capacity region is outer-bounded
by a region defined in terms of the differential entropy of
the random variables associated with the signals. These outer
bounds use genie-aided information at the receivers. Second,
we outer-bound this region to prove the outer bound as de-
scribed in the statement of Theorem 1.
The following result outer bounds the capacity region of two-

user MIMO IC with feedback.
Lemma 8: Let be defined as .

Then, the capacity region of a two-userMIMO ICwith feedback
is outerbounded by the region formed by satisfying

(44)

(45)

(46)

(47)

(48)

(49)

Proof: The proof follows the same lines as
[8, Proof of Th. 3], replacing SISO channel gains by
MIMO channel gains and is thus omitted here.
The rest of the section outer-bounds this region to get the

outer bound in Theorem 1. For this, we will introduce some
useful Lemmas.
The next result outer-bounds the entropies and the condi-

tional entropies of two random variables by their corresponding
Gaussian random variables.

Lemma 9 ([30]): Let and be two random vectors, and
let and be Gaussian vectors with covariance matrices
satisfying

(50)

Then, we have
(51)

(52)

The next result gives the determinant of a blockmatrix, which
will be used extensively in the sequel.

Lemma 10 ([31]): For block matrix with

matrices A, B, C, and D, we have

if is invertible,
if is invertible.

(53)

Now, we introduce a lemma that is a key result which will be
used to upper-bound a conditional entropy term in this section
and also to show an upper bound in Appendix C.

Lemma 11: Let be defined as

(54)

for some p.s.d. Hermitianmatrix and some
matrix . Then, if for some Hermitian matrices

and , we have

(55)

Proof: Wenote that since is p.s.d., is invertible
for all . Given , let

. We need to show that .
We first show that for all . From Woodbury

matrix identity ([32, Appendix C.4.3]), we have that if is in-
vertible, .
Thus, we have
by substituting as , as and as in the
above identity.
Thus,

. Since and are Hermitian p.s.d. matrices with
, it easily follows that .

Having shown that for all , we will now prove
the continuity of at . For this, we take the partial
derivative of at and show that it is not unbounded
thus proving that is continuous at . Thus, we have

(56)
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Thus, it is enough to show that is
bounded. We have

(57)

which is bounded. Hence, is continuous at . Further,
since and are Hermitian, we see that is Hermitian
and thus normal. From the Wielandt–Hoffman theorem [33],
we note that the norm of the difference in eigen-values (or-
dered in a particular way) of two normal matrices is bounded by
the Frobenium norm of the difference of the two matrices. This
shows that since and as , we
have that the eigen-values of approach the eigen-values of

as . Therefore, all the eigen-values of are non-
negative which proves that is positive semidefinite thus
proving the result.
The next three Lemmas outer-bounds entropy and conditional

entropies of some random variables.
Lemma 12: The entropy of the received signal at the th

receiver is outer-bounded as follows:

(58)

for , .
Proof:

(59)

where (a) follows from Lemma 9, and (b) follows from the fact
that is a monotonically increasing function on the
cone of positive definite matrices and we have for

.
Taking out of the above determinant in the last part, gives

the result as in the statement of the Lemma.
Lemma 13: The conditional entropy of the received signal

at the th receiver given the transmitted signal from the th trans-
mitter, is outer-bounded as follows:

(60)

where is the cross covariance between and and
is the covariance matrix for .

Proof: Let be defined as in (61), given at the bottom
of the page where

(62)

and
(63)

According to Lemma 9, we get

(64)

Due to the reason that ’s elements are chosen from a con-
tinuous space, it is invertible with probability of 1. In addition,
according to [29, Corollary 7.7.4(a)], if we have ,

. Using Lemma 10 with and ,
we get

(65)

(61)
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where is obtained by using (61) and some simplifications,
and follows from the fact that is a monotonically
increasing function on the cone of positive definite matrices and
we have and according to [29, Corollary
7.7.4(a)] for .
Substituting (65) in (64) gives the result as in the statement

of the lemma.
Lemma 14: The conditional entropy of the received

signal at the th receiver given and , is
outer-bounded as follows:

(66)

Proof: Let and be defined as in (67) and (68),
given at the bottom of the page.
Further, let . Then,

(69)

where (a) follows from Lemma 9 by taking the two vectors
and of lengths and , respectively, together as a single
vector of length of and then, used Lemma 9.
Substituting and in Lemma 10, we get

(70)

Note that since , using Lemma 10 we can see that
outer-bounds the determinant of

Since implies , we have that
outer-bounds the expression of the right-hand side of (70).

Thus,

(71)

(67)

(68)
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Next, we will show that maximizes (71).
Let us define , ,

and

(72)

We can check that

(73)

Hence,

(74)

We know that . So,

according to Lemma 11 with as and as

, we have . Thus, we use
this outer bound by replacing by to get

(75)

Substituting this in (69), we get

(76)

The rest of the section considers the six terms in Lemma 8 and
outer-bounds each of them to get the terms in the outer bound
of Theorem 1.
First term: For the first term in Lemma 8,

(77)

where follows from Lemma 12 and follows from the fact
that .
Second term: The second bound is similar to the first bound

by exchanging 1 and 2 in the indices.
Third term: For the third bound in Lemma 8, it is sufficient

to replace upper bounds of and from
Lemmas 13 and 14 as follows:
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(78)

where is obtained by using Lemmas 13 and 14 and fol-
lows from the fact that , for , 2.
Fourth term: The fourth term is similar to the third term by

exchanging 1 and 2 in the indices.
Fifth term: According to the fifth bound in Lemma 8, it is

sufficient to replace upper bounds of and
from Lemmas 14 and 12, respectively, and get the fifth bound
of Theorem 1 as follows:

(79)

where is obtained by using Lemmas 14 and 12 and fol-
lows from the fact that , for , 2.
Sixth term: The sixth term is similar to the fifth term by ex-

changing 1 and 2 in the indices.

APPENDIX B
PROOF OF ACHIEVABILITY FOR THEOREM 2

In this section, we prove the achievability for Theorem 2.
More precisely, we will show the following.

Lemma 15: For a given set of , the feedback capacity
region of a two-user MIMO Gaussian IC can achieve all rate
pairs such that

(80)

(81)

(82)

(83)

(84)

(85)

In order to prove this result, we will use the result in [8]
for a discrete memoryless channel. We will then give some
Lemmas that would help in further inner-bounding these terms
for a MIMO IC and finally go over each expression for the dis-
crete memoryless channel to prove the result.

Lemma 16: The feedback capacity region of the two-user
discrete memoryless IC includes the set of such that

(86)

(87)

(88)

(89)

(90)

(91)

over all joint distributions .
Proof: This result is a special case of [8, Lemma 1], ob-

tained by substituting the auxiliary variable .
To achieve this rate region, Suh and Tse [8] developed an

infinite-staged achievable scheme that employs block Markov
encoding, backward decoding, and Han–Kobayashi message
splitting.
The rest of the section inner-bounds this region to get the

inner bound in Theorem 2. For this, we will introduce some
useful lemmas.
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Lemma 17: The following holds for any matrix :

(92)

Proof: It holds since it can be written as for
and , which is p.s.d. because is p.s.d.

Lemma 18: The following holds for any matrix
:

(93)

Proof: Let us define , we get

(94)

where follows from the fact that is p.s.d., and its
eigenvalues are nonnegative. So, the eigenvalues of
are greater than or equal to 1. As a result, eigenvalues of

are between 0 and 1, i.e., they satisfy . So

(95)

which proves (93).
As we said before, our achievability scheme has a power al-

location according to (20) and (21). We note that this power al-
location is feasible since by Lemma 17 sub-
stituting into .
We will now expand the achievability in Lemma 16 using

for . Before expanding each term in Lemma
16, we evaluate some entropies as follows:

(96)

and

(97)

In addition, we have

(98)

Moreover, we have

(99)

where follows from Lemma 18 by substituting in
. This shows that is upper-bounded by .
In our achievability, appeared with a minus

sign. So, without loss of generality we can replace it with its
bound for the achievability.
The rest of the section considers the six terms in Lemma 16

and uses each of them to get the terms in the inner bound of
Lemma 15.
First term: For the first term in Lemma 16, we have

(100)

where follows from (96) and follows from (99).
Second term: The second bound is similar to the first bound

by exchanging 1 and 2 in the indices.
Third term: For the third bound in Lemma 16, we have

(101)

where is obtained from (97) and (98) and follows from
(99).
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Fourth term: The fourth term is similar to the third term by
exchanging 1 and 2 in the indices.
Fifth term: For the fifth bound in Lemma 16, we have

(102)

(103)

(104)

(105)

where is obtained from (96) and (98), and follows from
(99).
Sixth term: The sixth term is similar to the fifth term by ex-

changing 1 and 2 in the indices.

APPENDIX C
PROOF OF OUTER BOUND FOR THEOREM 2

In this section, we prove that covariance matrix is
approximately optimal for the capacity region of the MIMO IC
with feedback. As mentioned in Section III, it is enough to prove
that

(106)

for any covariance matrix .
Now, we give three important inequalities that would be used

in the main proof.

Define .
The first inequality is as follows:

(107)

where is as in (54), follows since the inverse can
be verified easily, follows from finding the product of ma-
trices, follows from the definition of in (54), and
(d) follows from Lemma 11.
The second inequality is as follows:

(108)

The third inequality is as follows:

(109)

where follows from
by substituting and

in and , respectively, follows from the fact that .
Thus, we proved that among these three expansions, the first

two expansions we started with are maximized by
while the third one is outer-bounded by the corresponding ex-
pression with plus .
Now, we consider each of the six expressions in the definition

of the region and outer-bound each expression to find
the gap with being constant thus proving that

which proves the result.
Let the right-hand sides of the six expressions in the definition

of in (5)–(10) be labeled as , , , ,
, and , respectively. Then, the constant gap outer-

bound is shown in the following Lemma.
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Lemma 19: We have

(110)

(111)

(112)

(113)

(114)

(115)

Proof: We start with (110)

(116)

where follows from (109).
Proof of (111) is similar to (110) by exchanging 1 and 2 in the

indices.
For the proof of (112), we have

(117)

where follows since the first expression is outer-bounded as
in (108) and the outer bound for the second expression can be
shown on similar lines as (107).
Proof of (113) is similar to (112) by exchanging 1 and 2 in

the indices.

For the proof of (114), we have

(118)

where follows from (109) and using similar steps as in (107).
Proof of (115) is similar to (114) by exchanging 1 and 2 in

the indices.

APPENDIX D
PROOF OF RECIPROCITY IN

In this section, we prove that replacing and by and
, respectively, and interchanging and for antennas at

the nodes gives the same expressions in .
We shall prove this in two steps. In the first step, we shall

prove

(119)

where and in the second step we
shall prove that

(120)

Clearly, the above two equalities prove the lemma.
Let the right-hand sides of the six expressions in the definition

of in (12)–(17) be labeled as , , , , , and ,
respectively.
First Step: In this step, we prove that

(121)

(122)

(123)

(124)

(125)

(126)
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where is obtained from by interchanging and , re-
placing with , and replacing with .
Since and are both bounds for , , and are both

bounds for , and and are both bounds for ,
(121)–(126) will prove that .
We start with proving (121). For simplicity, we define

, , and
. We get

(127)

(128)

(129)

where , , and follow from Sylvester’s determinant the-
orem [34]. Equation (122) can be proved similarly due to sym-
metry. In addition, (123) and (124) can be obtained in the re-
verse direction similarly.
We move toward the proof of (125). We should prove

(130)

where

(131)

and

(132)

If we define

(133)

(134)

(135)

(136)

then, it is sufficient to prove or .
Since (127) is equal to (128), we have

(137)

Using similar method, we can see that

(138)
and

(139)

which according to Sylvester’s determinant theorem [34] are
equal. This proves the .
Equation (126) can be proved similar to the proof of (125)

due to symmetry.
Second Step: It can be proved with a similar discussion as in

[4, Appendix E]. A brief sketch of the proof is given below for
completeness.
Suppose is a p.s.d. matrix and represents its complex

conjugate, i.e., the matrix obtained by replacing all its entries
by the corresponding complex conjugates. Then, it is easy to
see that

(140)

However, note that all the terms in the different bounds of
are of the form of . This in turn proves that if we
replace all the channel matrices of a two-user MIMO IC with
feedback by their complex conjugates the set of upper bounds
remain the same. From this fact, it easily follows that

(141)
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APPENDIX E
PROOF OF THEOREM 5

In this section, we will find the limit of as
to get the result as in the statement of the The-

orem 5 when ( represents that
). This follows from Theorem 3 since

the capacity region is inner- and outer-bounded by with
constant gaps which would vanish for the degrees of freedom.
Before going over each of the terms in and finding its

high SNR limit, we first give some Lemmas that will be used
for the proof of the Theorem.

Lemma 20 ([4]): Let be a full rank channel
matrix. Then, the following holds:

(142)

where .
Lemma 21 ([4]): Let and

be two full rank channel matrices such that is also full
rank. Then, the following holds:

(143)

where is defined in (28) and .
Lemma 22: Let be a diagonal matrix with

elements where and
be a diagonal matrix with elements , then

(144)

Proof: We will split the proof in two cases, depending on
whether or .

Case 1 ( ): In this case, we have

. . . . . .

. . .

. . .

. . .

(145)

Case 2 ( ): In this case, we have

. . .

. . .

. . .

. . .

. . .

(146)

Lemma 23: Let and be two
channel matrices with each entry independently chosen from

. Then, the following holds with probability 1 (over the
randomness of channel matrices):

(147)

where .
Proof: Let the singular value decomposition (SVD) of the

channel matrix be given by , where
and are unitary matrices and
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is a rectangular matrix containing the singular values
along its diagonal. Using the SVD of the matrix we get

(148)

(149)

where results from SVD of the matrix and follows
from Lemma 22.
Let us decompose into two parts,
and such that , where

and .
Then, we get

(150)

where , is a diagonal matrix containing
the nonzero eigenvalues of .
We note that is invertible and when is large, we can

bound from above and below as,
. We will only pursue the direc-

tion where and can see that both the
directions produce the same result and thus replacing the inner
and outer bounds by equality. In what follows, even though

, we will substitute
since by the inner and outer-bounding approach,

it can be seen that the limit will be exactly the same thus not
causing any difference in the result. Thus, we have

(151)

where follows from the fact that if is less than
zero we have

(152)

follows from Lemma 21 and that ,

and are all full rank with probability 1;
follows from some simple manipulations.
The rest of the section considers the six terms in in

(12)–(17), and finds the GDoF region for the MIMO IC with
feedback.
First term: According to the first bound in , we have

(153)

where is obtained from (21). Now, dividing both sides by
, we get the first GDoF expression.

Second term: The second bound is similar to the first bound
by exchanging 1 and 2 in the indices.
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Third term: According to the third bound in , we have

(154)

where is obtained from Lemmas 20 and 23. Now, dividing
both sides by , the third GDoF bound results.
Fourth term: The fourth term is similar to the third term by

exchanging 1 and 2 in the indices.
Fifth term: According to the fifth bound in , we have

(155)

where is obtained from Lemmas 21 and 23. Now, dividing
both sides by , the fifth GDoF bound results.
Sixth term: The sixth term is similar to the fifth term by ex-

changing 1 and 2 in the indices.
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