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Abstract—In this paper, we give an achievable scheme for
a symmetric K-user linear deterministic interference channel
with a rate− limited feedback from each receiver to its respec-
tive transmitter. For this model, the proposed scheme achieves
a symmetric rate which is the minimum of symmetric capacity
with infinite feedback, and the sum of the symmetric capacity
without feedback and the symmetric amount of feedback.

I. INTRODUCTION

The interference channel (IC) has been studied in the
literature since 1970’s to understand performance limits of
multiuser communication networks [1]. Feedback in ICs has
been considered in order to achieve a possible improvement
in data rates. A large body of work on ICs explores feedback
strategies, where each receiver sends channel output feedback
to its own transmitter [2, 3]. Recent work considers a K-
user IC with infinite capacity feedback [4]. A more realistic
feedback model is one where feedback links are rate-limited.
Two user IC with rate-limited feedback is considered in [5].
In this paper, we consider a K-user IC with rate-limited
feedback, and give novel achievable schemes.

In this paper, we will use the linear deterministic IC model
proposed in [6]. This model has been used to give insights
into approximate capacity results for Gaussian ICs without
feedback [7–9], Gaussian ICs with unlimited feedback links
[2, 4], and two user Gaussian IC with rate-limited feedback
links [5]. Impact of rate-limited feedback is studied for the
2-user IC in [5], where it was shown that the maximum gain
in the symmetric capacity with feedback is the amount of
symmetric feedback. In this paper, we take this lead to find an
achievable strategy for K-user IC with rate-limited feedback
which achieves a symmetric capacity which is the minimum
of symmetric capacity with perfect feedback and the sum
of symmetric capacity with no feedback and the amount of
rate-limited symmetric feedback for the linear deterministic
model.

In order to get the maximal benefit of feedback, we use an
encoding scheme which combines two well-known interfer-
ence management ideas, namely, interference alignment and
interference decoding as were also used in prior works [4,
5]. More precisely, the encoding at the transmitters is such

that all the interfering signals are aligned at each receiver.
However, a fundamental difference between our approach
and the standard interference alignment approach is that
we need to decode interference to be able to remove it
from the received signal, while the aligned interference is
usually suppressed in standard approaches. A challenge here,
which makes this problem fundamentally different from the
two-user inference channel [5], is that the interference is a
combination of interfering messages, and decoding all of
them induces strict bounds on the rate of the interfering
messages. However, each transmitter does not need to de-
code all the interfering messages individually, instead, upon
receiving feedback, it only decodes the combination of them
that corrupts the intended signal of interest. We note that
the scheme in [5] for two-user model cannot be directly
extended to the channel with more number of users. In the
proposed scheme, the receiver decodes sums of certain terms
of interfering and intended signal, and send back to the
transmitter. The transmitter, knowing the intended signal can
help the receiver to decode the sum of interfering signals and
thus helps the receiver decode the intended signal.

The rest of this paper is organized as follows. We present
the channel models for the deterministic and Gaussian IC in
Section II. Section III gives the symmetric rate for the de-
terministic model, with some examples to help to understand
the main idea on achievability scheme. Section IV gives the
proof of the main theorem in Section III. Section V concludes
the paper.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we will describe the linear deterministic
IC. This model was proposed in [6] to focus on signal
interactions instead of the additive noise, and obtain insights
for the Gaussian model. In this model, there is a non-negative
integer nkj representing channel gain from transmitter k to
receiver j, j, k ∈ {1, · · · ,K}. We assume that njk = n for
j = k and njk = m for j 6= k. We write the channel input to
the transmitter k at time i as Xk,i = [X1

k,i, X
2
k,i, · · · , X

q
k,i] ∈

F2
q , for k ∈ {1, 2, · · · ,K}, such that X1

k,i and Xq
k,i represent

the most and the least signicant bits of the transmitted signal
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respectively. Also, q is the maximum of the channel gains
in the network, i.e., q = max(m,n). At each time i, the
received signal at kth receiver is given by

Yk,i = Dq−nXk,i +
∑
j 6=k

Dq−mXj,i, (1)

where all the operations are performed modulo 2 and D
is q × q shift matrix, for all k ∈ {1, 2, · · · ,K}. In this
paper, we consider a feedback from the jth receiver to jth

transmitter which is of capacity p. This feedback is causal
and hence encodes the signal received till time i to send to
the transmitter.

For a deterministic IC, a symmetric achievable rate of
Rsym is said to be achievable if there is a strategy that all of
the users can get a rate of Rsym. We further define α = m/n
and β = p/n.

III. MAIN RESULT

In this Section, we describe our main result on the impact
of rate-limited feedback on the symmetric rate of the linear
deterministic IC.

Theorem 1. For the linear deterministic IC with K ≥ 2, the
following symmetric rate is achievable:

Rsym =



min{n−m+ p, n− m
2 }, if 0 ≤ m ≤ n

2 ,
min{m+ p, n− m

2 }, if n
2 ≤ m ≤

2n
3 ,

n− m
2 , if 2n

3 ≤ m < n,
n
K , if m = n,
m
2 , if n < m ≤ 2n,
min{n+ p, m2 }, if 2n ≤ m.

(2)

Remark 1. We note that the achievable symmetric rate is
the minimum of

1) the symmetric capacity with infinite feedback, Csym,∞,
and

2) the sum of the symmetric capacity without feedback,
Csym,0, and the amount of symmetric feedback, p,

where with infinite feedback, i.e., p = ∞, according to
Theorem 4 of [4], the symmetric capacity is

Csym,∞ =

 n− m
2 , if 0 ≤ m < n,

n
K , if m = n,
m
2 , if n < m.

(3)

and with no feedback, i.e., p = 0, according to Corollary 1
of [10], the symmetric capacity is

Csym,0 =



n−m, if 0 ≤ m ≤ n
2 ,

m, if n
2 ≤ m ≤

2n
3 ,

n− m
2 , if 2n

3 ≤ m < n,
n
K , if m = n,
m
2 , if n < m ≤ 2n,
n, if 2n ≤ m.

(4)

This result has been shown to be tight for K = 2 by the outer
bound in [5], and we conjecture that this is the symmetric
capacity for a general K.

Complete proof can be seen in Section IV. In this section,
we present several examples of the transmission scheme that
achieve the symmetric rate as claimed in Theorem 1. Let
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Fig. 1. Achievable symmetric rate of the deterministic IC for β = 0,
β = 0.125, and β =∞.

β , p/n. Fig. 1 illustrates the (normalized) per-user rate
capacity as a function of α, for different values of β = 0 (i.e.,
no feedback could be achieved with an scheme similar to the
one for Gaussian in [8]), and β =∞ (i.e., infinite feedback
[4]), and β = 0.125. For 2

3 ≤ α ≤ 2, the sum capacity
is the same for both the cases of no feedback and infinite
feedback. So, any limited feedback gives the same result in
this range. In the rest of the Section, we will demonstrate the
proposed scheme in three examples with specific parameters,
through which the basic ideas and intuition can be illustrated.
Generalization of the proposed coding strategy and scheme
for arbitrary n, m, and p and its analysis is presented in
Section IV.

1) Very Weak Interference Regime (α ≤ 1
2 ): In the very

weak interference regime, the goal is to achieve a symmetric
rate of Rsym = min{n − m + p, n − m

2 } bits per user.
We propose an encoding scheme that operates on a block
of length 2. The basic idea can be seen from Fig. 2, wherein
the coding scheme is demonstrated for K = 3, n = 5, m = 2
and p = 0.5 which implies 2Rsym = 7 in a block of length
2. As shown in Fig. 2, the proposed coding scheme is able
to convey seven intended symbols from each transmitter to
its respective receiver in two channel uses. The information
symbols intended for user one are denoted by a1,1, ..., a1,7.
Each transmitter sends four fresh symbols in its first channel
use. Receivers get three interference-free symbols, and one
more equation, including their intended symbol as well as
interference. The equation received at the least significant
bit is ignored. The fourth output signals are sent to the
transmitters over the feedback link, in order to be used for the
next transmission. In the second channel use, each transmitter
forwards the interfering parts of its received feedback on its
top level. The next lower level should be empty and the three
lowest levels will be used to transmit the remaining fresh
symbols.

Now, consider the received signals at the first receiver
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𝑇𝑥1 𝑅𝑥1 

𝑇𝑥2 𝑅𝑥2 

𝑇𝑥3 𝑅𝑥3 

𝑇 = 2 𝑇 = 1 𝑇 = 1 𝑇 = 2 

𝑎2,1 + 𝑎3,1 𝑎1,1 

− 

𝑎1,5 

𝑎1,6 

𝑎1,7 

𝑎1,2 

𝑎1,3 

𝑎1,4 

− 

𝑎1,4 + (𝑎2,1 + 𝑎3,1) 

𝑎2,1 + 𝑎3,1 

− 

𝑎1,5 

𝑎1,6 + 2𝑎1,1 + (𝑎2,1 + 𝑎3,1) 

𝑎1,7 

𝑎1,1 

𝑎1,2 

𝑎1,3 

𝑎1,4 + (𝑎2,1 + 𝑎3,1) 

(𝑎2,2 + 𝑎3,2) 

𝑎1,1 + 𝑎3,1 𝑎2,1 

− 

𝑎2,5 

𝑎2,6 

𝑎2,7 

𝑎2,2 

𝑎2,3 

𝑎2,4 

− 

𝑎1,1 + 𝑎2,1 𝑎3,1 

− 

𝑎3,5 

𝑎3,6 

𝑎3,7 

𝑎3,2 

𝑎3,3 

𝑎3,4 

− 

𝑎1,1 + 𝑎3,1 

− 

𝑎2,5 

𝑎2,6 + 2𝑎2,1 + (𝑎1,1 + 𝑎3,1) 

𝑎2,7 

𝑎2,1 

𝑎2,2 

𝑎2,3 

𝑎2,4 + (𝑎1,1 + 𝑎3,1) 

(𝑎1,2 + 𝑎3,2) 

𝑎1,1 + 𝑎2,1 

− 

𝑎3,5 

𝑎3,6 + 2𝑎3,1 + (𝑎1,1 + 𝑎2,1) 

𝑎3,7 

𝑎3,1 

𝑎3,2 

𝑎3,3 

𝑎3,4 + (𝑎1,1 + 𝑎2,1) 

(𝑎1,2 + 𝑎2,2) 

𝑎2,4 + (𝑎1,1 + 𝑎3,1) 

𝑎3,4 + (𝑎1,1 + 𝑎2,1) 

Fig. 2. Coding scheme for the linear deterministic model in the very weak
interference regime (α ≤ 1

2
), for K = 3, n = 5, m = 2 and p = 0.5.

in two channel uses. The receiver received eight linearly
independent equations, involving nine variables, which seems
to be unsolvable at first glance. However, we do not need to
decode all the symbols. Instead, we can solve the system
of linear equations in a1,1, ..., a1,7 and a2,1 + a3,1 which
can be solved for the intended variables. Similarly, the
transmitted message can be seen to be decoded at other
receivers too. Hence, a symmetric rate of 7

2 symbols/channel-
use is achievable with this rate-limited feedback.

2) Weak Interference Regime ( 12 < α ≤ 2
3 ): In the weak

interference regime, the goal is to achieve a symmetric rate
of Rsym = min{m + p, n − m

2 } bits per user. We propose
an encoding scheme that operates on a block of length 2.
The basic idea can be seen from Fig. 3, wherein the coding
scheme is demonstrated for K = 3, n = 7, m = 4 and
p = 0.5 which implies 2Rsym = 9 in a block of length
2. As shown in Fig. 3, the proposed coding scheme is able
to convey nine intended symbols from each transmitter to
its respective receiver in two channel uses. The information
symbols intended for user one are denoted by a1,1, ..., a1,9.
Each transmitter sends five fresh symbols in its first channel
use; two symbols on the highest two levels, nothing on
the next two levels, and three more on the lowest three
levels. Receivers get four interference-free symbols, and one
more equation, including their intended symbol as well as
interference which should be sent to the transmitters over the
feedback link, in order to be used for the next transmission.
In the second channel use, each transmitter forwards the
interfering parts of its received feedback on its second top
level. The highest level and the three lowest levels will be
used to transmit the remaining fresh symbols and nothing is
transmitted on the other two levels.

𝑇𝑥ଵ 𝑅𝑥ଵ 

𝑇 = 2 𝑇 = 1 𝑇 = 1 𝑇 = 2 
𝑎ଵ,ଷ + (𝑎ଶ,ଶ + 𝑎ଷ,ଶ) 

𝑇𝑥ଶ 𝑅𝑥ଶ 

𝑎ଶ,ଷ + (𝑎ଵ,ଶ + 𝑎ଷ,ଶ) 

𝑇𝑥ଷ 

𝑎ଵ,ଵ 

𝑎ଶ,ଶ + 𝑎ଷ,ଶ 

− 

𝑎ଵ,଻ 

𝑎ଵ,଼ 

𝑎ଵ,ଽ 

𝑎ଵ,ଶ 

𝑎ଵ,ଷ 

𝑎ଵ,ସ 

− 

− 

𝑎ଵ,ହ 

− 

𝑎ଵ,଺ 

𝑎ଷ,ଷ + (𝑎ଵ,ଶ + 𝑎ଶ,ଶ) 

𝑎ଵ,ଷ + (𝑎ଶ,ଶ + 𝑎ଷ,ଶ) 

𝑎ଵ,ଵ 

(𝑎ଶ,ଶ + 𝑎ଷ,ଶ) 
− 

(𝑎ଶ,଺ + 𝑎ଷ,଺) 
𝑎ଵ,଻ + 2𝑎ଵ,ଶ + (𝑎ଶ,ଶ + 𝑎ଷ,ଶ) 

𝑎ଵ,଼ 

𝑎ଵ,ଶ 

− 

(𝑎ଶ,ଵ + 𝑎ଷ,ଵ) 

𝑎ଵ,ସ 

𝑎ଵ,ହ 𝑎ଵ,ଽ 

𝑎ଵ,଺ 

𝑎ଶ,ଵ 

𝑎ଵ,ଶ + 𝑎ଷ,ଶ 

− 

𝑎ଶ,଻ 

𝑎ଶ,଼ 

𝑎ଶ,ଽ 

𝑎ଶ,ଶ 

𝑎ଶ,ଷ 

𝑎ଶ,ସ 

− 

− 

𝑎ଶ,ହ 

− 

𝑎ଶ,଺ 

𝑎ଷ,ଵ 

𝑎ଵ,ଶ + 𝑎ଶ,ଶ 

− 

𝑎ଷ,଻ 

𝑎ଷ,଼ 

𝑎ଷ,ଽ 

𝑎ଷ,ଶ 

𝑎ଷ,ଷ 

𝑎ଷ,ସ 

− 

− 

𝑎ଷ,ହ 

− 

𝑎ଷ,଺ 

𝑎ଶ,ଵ 

(𝑎ଵ,ଶ + 𝑎ଷ,ଶ) 
− 

(𝑎ଵ,଺ + 𝑎ଷ,଺) 
𝑎ଶ,଻ + 2𝑎ଶ,ଶ + (𝑎ଵ,ଶ + 𝑎ଷ,ଶ) 

𝑎ଶ,଼ 

𝑎ଶ,ଶ 

− 

(𝑎ଵ,ଵ + 𝑎ଷ,ଵ) 

𝑎ଶ,ସ 

𝑎ଶ,ହ 𝑎ଶ,ଽ 

𝑎ଶ,଺ 

𝑎ଷ,ଵ 

(𝑎ଵ,ଶ + 𝑎ଶ,ଶ) 
− 

(𝑎ଵ,଺ + 𝑎ଶ,଺) 
𝑎ଷ,଻ + 2𝑎ଷ,ଶ + (𝑎ଵ,ଶ + 𝑎ଶ,ଶ) 

𝑎ଷ,଼ 

𝑎ଷ,ଶ 

− 

(𝑎ଵ,ଵ + 𝑎ଶ,ଵ) 

𝑎ଷ,ସ 

𝑎ଷ,ହ 𝑎ଷ,ଽ 

𝑎ଷ,଺ 

𝑎ଶ,ଷ + (𝑎ଵ,ଶ + 𝑎ଷ,ଶ) 

𝑎ଷ,ଷ + (𝑎ଵ,ଶ + 𝑎ଶ,ଶ) 
𝑅𝑥ଷ 

Fig. 3. Coding scheme for the linear deterministic model in the weak
interference regime ( 1

2
< α ≤ 2

3
), for K = 3, n = 7, m = 4 and

p = 0.5.

Now, consider the received signals at the first receiver in
two channel uses. It has received twelve linearly independent
equations, involving fifteen variables, which seems to be
unsolvable at first glance. However, we do not need to decode
all of them. Variables a1,1, a1,2, a1,4, a1,5, a1,6, a1,8, a1,9 will
be decoded directly from the received equations and also
(a2,2+a3,2) is decoded from another level. Having a1,2 and
(a2,2 + a3,2) decoded, a1,3 and a1,7, also, can be decoded
having equations a1,3 + (a2,2 + a3,2) and a1,7 + 2a1,2 +
(a2,2 + a3,2). Also, (a2,1 + a3,1) and (a2,6 + a3,6) will be
received, too, though they are not needed in the decoding.
Similar decoding is performed at the other receivers. Hence,
a per-user rate of 9

2 symbols/channel-use is achievable with
this rate-limited feedback.

3) Very Strong Interference Regime (α > 2): In the very
strong interference regime, the goal is to achieve a symmetric
rate of Rsym = min{n + p, m2 } bits per user. We propose
an encoding scheme that operates on a block of length 2.
The basic idea can be seen from Fig. 4, wherein the coding
scheme is demonstrated for K = 3, n = 2, m = 6 and
p = 0.5 which implies 2Rsym = 5 in a block of length
2. As shown in Fig. 4, the proposed coding scheme is able
to convey five intended symbols from each transmitter to
its respective receiver in two channel uses. The information
symbols intended for user one are denoted by a1,1, ..., a1,5.
Each transmitter sends three fresh symbols in its first channel
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𝑇𝑥ଵ 𝑅𝑥ଵ 

𝑇 = 2 𝑇 = 1 𝑇 = 1 𝑇 = 2 
(𝑎ଶ,ଷ + 𝑎ଷ,ଷ) 

𝑇𝑥ଶ 𝑅𝑥ଶ 

𝑇𝑥ଷ 𝑅𝑥ଷ 

𝑎ଵ,ଵ 

𝑎ଶ,ଷ + 𝑎ଷ,ଷ 

𝑎ଵ,ଶ 

− 

− 

𝑎ଵ,ଷ 

− 

𝑎ଵ,ସ 

𝑎ଵ,ହ 

− 

− − 

  (𝑎ଵ,ଷ + 𝑎ଷ,ଷ) 

𝑎ଶ,ଵ 

𝑎ଵ,ଷ + 𝑎ଷ,ଷ 

𝑎ଶ,ଶ 

− 

− 

𝑎ଶ,ଷ 

− 

𝑎ଶ,ସ 

𝑎ଶ,ହ 

− 

− − 

𝑎ଷ,ଵ 

𝑎ଵ,ଷ + 𝑎ଶ,ଷ 

𝑎ଷ,ଶ 

− 

− 

𝑎ଷ,ଷ 

− 

𝑎ଷ,ସ 

𝑎ଵ,ହ 

− 

− − 

𝑎ଵ,ଵ 

𝑎ଶ,ଵ+ 𝑎ଷ,ଵ 

𝑎ଶ,ଶ+ 𝑎ଷ,ଶ 

𝑎ଶ,ଷ+  𝑎ଷ,ଷ 

− 

𝑎ଵ,ଶ 

𝑎ଵ,ସ 

𝑎ଶ,ସ+ 𝑎ଷ,ସ 

𝑎ଶ,ହ+ 𝑎ଷ,ହ 

2𝑎ଵ,ଷ + (𝑎ଶ,ଷ+  𝑎ଷ,ଷ) 
− 

𝑎ଵ,ହ 

𝑎ଶ,ଵ 

𝑎ଵ,ଵ+ 𝑎ଷ,ଵ 

𝑎ଵ,ଶ+ 𝑎ଷ,ଶ 

𝑎ଵ,ଷ+  𝑎ଷ,ଷ 

− 

𝑎ଶ,ଶ 

𝑎ଶ,ସ 

𝑎ଵ,ସ+ 𝑎ଷ,ସ 

𝑎ଵ,ହ+ 𝑎ଷ,ହ 

2𝑎ଶ,ଷ + (𝑎ଵ,ଷ+  𝑎ଷ,ଷ) 
− 

𝑎ଶ,ହ 

𝑎ଷ,ଵ 

𝑎ଵ,ଵ+ 𝑎ଶ,ଵ 

𝑎ଵ,ଶ+ 𝑎ଶ,ଶ 

𝑎ଵ,ଷ+  𝑎ଶ,ଷ 

− 

𝑎ଷ,ଶ 

𝑎ଷ,ସ 

𝑎ଵ,ସ+ 𝑎ଶ,ସ 

𝑎ଵ,ହ+ 𝑎ଶ,ହ 

2𝑎ଷ,ଷ + (𝑎ଵ,ଷ+  𝑎ଶ,ଷ) 
− 

𝑎ଷ,ହ 

  (𝑎ଵ,ଷ + 𝑎ଶ,ଷ) 

Fig. 4. Coding scheme for the linear deterministic model in the very strong
interference regime (α > 2), for K = 3, n = 2, m = 6 and p = 0.5.

use on the three highest levels and nothing on the lower
three levels. Receivers get three interference equations, one
empty level, and also two interference-free symbols in the
lower two levels. The third output signals are sent to the
transmitters over the feedback link, in order to be used for the
next transmission. In the second channel use, each transmitter
forwards its received feedback on its third top level. The next
three lower levels are kept empty. Two highest levels will be
used to transmit the remaining fresh symbols.

Now, consider the received signals at the first receiver in
two channel uses. It has received ten linearly independent
equations, involving fifteen variables, which seems to be
unsolvable at first glance. However, we do not need to decode
all of them. Variables a1,1, a1,2, a1,4, a1,5 will be decoded
directly from the received equations and also (a2,3 + a3,3)
is being decoded from another level. Having (a2,3 + a3,3)
decoded, a1,3, also, will be decoded having equation 2a1,3+
(a2,3 + a3,3). Similar decoding is performed at the other
receivers. Hence, a per-user rate of 5

2 symbols/channel-use
is achievable with this rate-limited feedback.

IV. PROOF OF THEOREM 1

In this section, we prove Theorem 1 by breaking the result
into three regimes. We denote that ai,j ,

∑K
k=1,k 6=i ak,j

Lemma 1. For the linear deterministic IC, a symmetric rate
of nmin{1− α+ β, 1− α

2 } is achievable for 0 ≤ α ≤ 1
2 .

Proof. We use a one-time 2p bits feedback for each two uses
of the channel (rate of p). Define l , (m− 2p)

+. With a two-
round strategy, each user transmits 2n−m− l bits for each
two uses of the channel which proves the lemma. Here we
only use m − l bits of the feedback (0 ≤ m − l ≤ 2p).
Since the feedback does not increase the achievable rate
in the statement of the Theorem beyond p = m/2, we
only use m/2 bits of feedback if p > m/2. For the ith

transmitter (i ∈ {1, ...,K}), we transmit ai,1, ..., ai,2n−m−l
in two transmission slots. Also, m−l bits of feedbacks being
used after the first transmission slot.

First Round:
1. Transmission: In the first round, ith transmitter sends

ai,1, ..., ai,n−l on the highest n− l levels of the transmission,
respectively, and nothing on the lowest l levels of the
transmission.

2. Reception: ith receiver receives ai,1, ..., ai,n−m on the
highest n − m levels of the reception, respectively, and
ai,n−m+1+ai,1, ..., ai,n−l+ai,m−l on the next m− l levels,
respectively, and throws away whatever that receives on the
last l levels.

Feedback:
Receiver i sends back ai,n−m+1+ai,1, ..., ai,n−l+ai,m−l

over feedback to transmitter i (m−l bits). With this feedback,
transmitter i decodes ai,1, ..., ai,m−l.

Second Round:
1. Transmission: In the second round, ith transmitter sends

ai,1, ..., ai,m−l on the highest m−l levels of the transmission,
respectively, and nothing on the next lower l levels of
transmission and new bits of ai,n−l+1, ..., ai,2n−m−l on the
last n−m levels, respectively.

2. Reception: ith receiver receives ai,1, ..., ai,m−l on the
highest m − l levels of the reception, nothing on the next
l levels of the reception, ai,n−l+1, ..., ai,2n−2m−l on the
next n − 2m levels, ai,2n−2m−l+1 + (K − 2)ai,1 + (K −
1)ai,1, ..., ai,2n−m−2l + (K − 2)ai,m−l + (K − 1)ai,m−l on
the next m − l levels, and ai,2n−m−2l+1, ..., ai,2n−m−l on
the lowest l levels of the reception.

Decoding:
Decoding for the ith user (i ∈ {1, ...,K}) is performed as

follows. First, ai,1, ..., ai,n−m will be decoded from the high-
est n−m levels of the first reception. Then, ai,1, ..., ai,m−l
will be decoded from the highest m− l levels of the second
reception. Then, having ai,1, ..., ai,m−l, the receiver decodes
ai,n−m+1, ..., ai,n−l from ai,n−m+1+ai,1, ..., ai,n−l+ai,m−l
on the next m − l levels of the first reception. Then, the
receiver decodes ai,n−l+1, ..., ai,2n−2m−l from the (m+ 1)

th

to (n−m)
th highest levels of the second reception, re-

spectively. Then, having ai,1, ..., ai,m−l, and ai,1, ..., ai,m−l,
ith receiver decodes ai,2n−2m−l+1, ..., ai,2n−m−2l from
ai,2n−2m−l+1 +(K − 2)ai,1 +(K − 1)ai,1, ..., ai,2n−m−2l+
(K − 2)ai,m−l + (K − 1)ai,m−l on the next m − l lower
levels of the second reception. Finally, the receiver decodes
ai,2n−m−2l+1, ..., ai,2n−m−l from the lowest l levels of the
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second reception.

Lemma 2. For the linear deterministic IC, a symmetric rate
of nmin{α+ β, 1− α

2 } is achievable for 1
2 < α ≤ 2

3 .

Proof. We use a one-time 2p bits feedback for each two uses
of the channel (rate of p). Define l

′
, (2n− 3m− 2p)

+.
With a two-round strategy, each user transmits 2n−m− l′

bits for each two uses of the channel which proves the lemma.
Here, we only use 2n−3m−l′ bits of the feedback (0 ≤ 2n−
3m − l′ ≤ 2p). For the ith transmitter (i ∈ {1, ...,K}), we
transmit ai,1, ..., ai,2n−m−l′ in two transmission slots. Also,
2n − 3m − l

′
bits of feedbacks being used after the first

transmission slot.
First Round:
1. Transmission: In the first round, ith transmitter sends

ai,1, ..., ai,n−m−l′ on the highest n − m − l
′

levels of the
transmission, nothing on the next lower 2m − n + l

′
levels

of the transmission, and ai,n−m−l′+1, ..., ai,2n−2m−l′ on the
lowest n−m levels of the transmission.

2. Reception: ith receiver receives ai,1, ..., ai,n−m−l′ on
the highest n−m− l′ levels of the reception, nothing on the
next lower l

′
levels of the reception, ai,1, ..., ai,2m−n on the

next lower 2m − n levels of the reception, ai,n−m−l′+1 +
ai,2m−n+1, ..., ai,3n−4m−2l′ + ai,n−m−l′ on the next 2n −
3m − l′ levels, and ai,3n−4m−2l′+1, ..., ai,2n−2m−l′ on the
lowest 2m− n+ l

′
levels of the reception.

Feedback:
Receiver i sends back ai,n−m−l′+1 +

ai,2m−n+1, ..., ai,2n−3m−2l′ + ai,n−m−l′ over feedback
to transmitter i (2n − 3m − l

′
bits). With this feedback,

transmitter i decodes ai,2m−n+1, ..., ai,n−m−l′ .
Second Round:
1. Transmission: In the second round, ith transmitter sends

the new bits ai,2n−2m−l′+1, ..., ai,n−l′ on the highest 2m−n
levels of the transmission, ai,2m−n+1, ..., ai,n−m−l′ on the
next 2n − 3m − l

′
levels, nothing on the next lowest

2m − n + l
′

levels of the transmission, and the new bits
of ai,n−l′+1, ..., ai,2n−m−l′ on the lowest n − m levels of
the transmission.

2. Reception: ith receiver receives
ai,2n−2m−l′+1, ..., ai,n−l′ on the highest 2m−n levels of the
reception, ai,2m−n+1, ..., ai,n−m−l′ on the next 2n−3m− l′

levels, nothing on the next lower l
′

levels of the transmission,
ai,2n−2m−l′+1, ..., ai,n−l′ on the next lower 2m − n levels
of the reception, ai,n−l′+1 + (K − 2)ai,2m−n+1 + (K −
1)ai,2m−n+1, ..., ai,3n−3m−2l′ +(K−2)ai,2n−3m−l′ +(K−
1)ai,2n−3m−l′ on the next lower 2n − 3m − l

′
levels of

the transmission, and ai,3n−3m−2l′+1, ..., ai,2n−m−l′ on the
lowest 2m− n+ l

′
levels of the transmission.

Decoding:
Decoding for the ith user (i ∈ {1, ...,K}) is per-

formed as follows. First, ai,1, ..., ai,n−m−l′ will be decoded

from the highest n − m − l
′

levels of the first recep-
tion. Then, ai,3n−4m−2l′+1, ..., ai,2n−2m−l′ will be decod-
ed from the lowest 2m − n + l

′
levels of the first re-

ception. Further, ai,2n−2m−l′+1, ..., ai,n−l′ will be decoded
from the highest 2m − n levels of the second reception,
and ai,2m−n+1, ..., ai,n−m−l′ will be decoded from the next
2n − 3m − l

′
levels of the second reception. Moreover,

ai,3n−3m−2l′+1, ..., ai,2n−m−l′ is decoded from the lowest
2m− n+ l

′
levels of the first transmission, respectively.

Then, having ai,2m−n+1, ..., ai,n−m−l′ , the receiver
decodes ai,n−m−l′+1, ..., ai,2n−3m−2l′ from ai,n−m−l′+1 +
ai,2m−n+1, ..., ai,2n−3m−2l′ + ai,n−m−l′ In the first
reception. Finally, having ai,2m−n+1, ..., ai,2n−3m−l′ ,
and ai,2m−n+1, ..., ai,2n−3m−l′ , the receiver decodes
ai,n−l′+1, ..., ai,3n−3m−2l′ from ai,n−l′+1 + (K −
2)ai,2m−n+1 + (K − 1)ai,2m−n+1, ..., ai,3n−3m−2l′ +
(K − 2)ai,2n−3m−l′ + (K − 1)ai,2n−3m−l′ In the second
reception.

Lemma 3. For the linear deterministic IC, a symmetric rate
of nmin{1 + β, α2 } is achievable for α > 2.

Proof. We use a one-time 2p bits feedback for each two uses
of the channel (rate of p). Define l

′′
, (m− 2n− 2p)

+. With
a two-round strategy, each user transmits n+m− l′′ bits for
each two uses of the channel which proves the lemma. Here,
we only use m−2n− l′′ bits of the feedback (0 ≤ m−2n−
l
′′ ≤ 2p). For the ith transmitter (i ∈ {1, ...,K}), we transmit
n+m− l′′ in two transmission slots. Also, m− 2n− l′′ bits
of feedbacks being used after the first transmission slot.

First Round:
1.Transmission: In the first round, ith transmitter sends

ai,1, ..., ai,m−n−l′′ on the highest m − n − l′′ levels of the
transmission, respectively, and nothing on the lower n + l

′′

levels of the transmission.
2. Reception: ith receiver receives ai,1, ..., ai,m−n−l′′ on

the highest m − l′′ levels of the reception, nothing on the
next lower l

′′
levels of the reception, and ai,1, ..., ai,n on the

lowest n levels of the reception.
Feedback:
Receiver i sends back ai,n+1, ..., ai,m−n−l′′ over feedback

to the ith transmitter (m− 2n− l′′ bits).
Second Round:
1.Transmission: In the second round, ith transmitter sends

new bits of ai,m−n−l′′+1, ..., ai,m−l′′ on the highest n levels
of the transmission, ai,n+1, ..., ai,m−n−l′′ on the next m −
2n− l′′ levels, and nothing on the lower n+ l

′′
levels of the

transmission.
2. Reception: ith receiver receives

ai,m−n−l′′+1, ..., ai,m−l′′ on the highest n levels of
the reception, (K − 1)ai,n+1 + (K − 2)ai,n+1, ..., (K −
1)ai,m−n−l′′ + (K − 2)ai,m−n−l′′ on the next m− 2n− l′′

levels, nothing on the next lower l
′′

levels of the reception,
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and ai,m−n−l′′+1, ..., ai,m−l′′ on the lowest n levels of the
reception.

Decoding:
Decoding for the ith user (i ∈ {1, ...,K}) is performed as

follows. First, ai,1, ..., ai,n will be decoded from the lowest
n levels of the first reception, ai,n+1, ..., ai,m−n−l′′ will

be decoded from the (n+ 1)
th to (m− n− l′′)

th
highest

levels of the first reception, and ai,m−n−l′′+1, ..., ai,m−l′′

will be decoded from the lowest n levels of the second
reception. Then, having ai,n+1, ..., ai,m−n−l′′ , the receiver
decodes ai,n+1, ..., ai,m−n−l′′ from (K − 1)ai,n+1 + (K −
2)ai,n+1, ..., (K − 1)ai,m−n−l′′ + (K − 2)ai,m−n−l′′ In the
second reception.

V. CONCLUSION

This paper gives an achievable scheme for a symmetric
K-user linear deterministic IC. The symmetric rate achieved
by the scheme is the minimum of the symmetric capacity
with infinite feedback, and the sum of the symmetric capacity
without feedback and the amount of symmetric feedback.
We note that the achievability scheme in [5] for two-user
model cannot be directly extended for general K. The
achievability in the paper lets the receiver decode sums of
certain combination of interfering and intended signal, and
send back to the transmitter via a limited feedback channel.
We conjecture that the derived achievable rate is tight for
all K ≥ 2. The strategies propeosed in this paper can be
extended to a Gaussian model [10].
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