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On the Symmetric K -User Interference
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Abstract— In this paper, we develop achievability schemes
for symmetric K -user interference channels with a rate-limited
feedback from each receiver to the corresponding transmitter.
We study this problem under two different channel models:
the linear deterministic model, and the Gaussian model. For
the deterministic model, the proposed scheme achieves a sym-
metric rate that is the minimum of the symmetric capacity
with infinite feedback, and the sum of the symmetric capacity
without feedback and the symmetric amount of feedback. For the
Gaussian interference channel, we use lattice codes to propose
a transmission strategy that incorporates the techniques of
Han–Kobayashi message splitting, interference decoding, and
decode and forward. This strategy achieves a symmetric rate,
which is within a constant number of bits to the minimum of
the symmetric capacity with infinite feedback, and the sum of
the symmetric capacity without feedback and the amount of
symmetric feedback. This constant is obtained as a function of the
number of users, K . We note that for the special case of Gaussian
IC with K = 2, our proposed achievability scheme results in a
symmetric rate that is within at most 21.085 bits/s/Hz of the
outer bound, which is the first constant gap bound despite the
constant gap claim in [1]. The symmetric achievable rate is used
to characterize the achievable generalized degrees of freedom,
which exhibits a gradual increase from no feedback to perfect
feedback in the presence of feedback links with limited capacity.

Index Terms— K -user symmetric interference channel,
rate-limited feedback, symmetric rate, achievability, generalized
degrees of freedom.

I. INTRODUCTION

THE interference channel (IC) has been studied in the
literature since 1970’s to understand performance limits

of multiuser communication networks [2]. Although the exact
characterization of the capacity region of a two-user Gaussian
IC is still unknown, several inner and outer bounds have
been obtained. These bounds have resulted in an approxi-
mate characterization of the capacity region, within one bit,
in [3] and [4]. Such characterization includes outer bounds
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on the capacity region for the two-user Gaussian IC, as well
as encoding/decoding strategies based on the Han-Kobayashi
scheme [5], which performs close to the optimum. On the
other hand, the K -user IC has been studied in [6] and [7]
for a symmetric scenario, where all direct links (from each
transmitter to its respective receiver) have the same gain, and
similarly, the gains of all cross (interfering) links are identical.
For such a K -user symmetric IC, the number of symmetric
generalized degrees of freedom (GDoF) is characterized in [6],
and an approximate sum capacity is given in [7].

It is well known that feedback does not increase the
capacity of point-to-point discrete memoryless channels [8].
However, feedback is beneficial in improving the capacity
region of multi-user networks (see [9] and references therein).
A number of works on ICs explore feedback strategies,
where each receiver feeds back the channel output to its own
transmitter [10]–[13], [13]–[18]. Several coding schemes for
the K -user Gaussian IC are developed in [16]. The effect
of feedback on the capacity region of the two-user IC is
studied in [10], where it is shown that feedback provides
a multiplicative gain in the sum capacity at high signal-to-
noise ratio (SNR), when the interference links are much
stronger than the direct links. The capacity region of the
two-user Gaussian IC with unlimited feedback is characterized
within a 2 bit gap in [11]. The K -user symmetric IC with
unlimited feedback is considered in [19], where the GDoF is
characterized. A more realistic feedback model is one where
the feedback links are rate-limited. The impact of rate-limited
feedback is studied for a two-user Gaussian IC in [1], where
it is shown that the maximum gain in the symmetric capacity
with feedback is the amount of symmetric feedback.

In this paper, we study the impact of rate-limited feedback
for a K -user IC. We first consider this problem for the linear
deterministic model proposed in [20] as an approximation to
the Gaussian model, and then treat the Gaussian model. For
the Gaussian model, we develop an achievability scheme that
employs the techniques of Han-Kobayashi message splitting,
interference decoding and decode-and-forward. In order to
effectively decode the interference, lattice codes are used such
that the sum of signals can be decoded without decoding
the individual signals. We also find the achievable symmetric
GDoF with rate-limited feedback.

Roughly speaking, except for the pairs of (SNR, INR)
where limSNR→∞ log INR

log SNR = 1, the effect of interference from
the other K − 1 users is as if there were only one interferer in
the network. This is analogous to the result of [6] and [19],
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where it is shown that for the cases of no feedback and
unlimited feedback, respectively, the symmetric GDoF of the
K -user IC is the same as that of a two-user IC.

In order to get the maximal benefit of feedback, we use an
encoding scheme which combines two well-known interfer-
ence management techniques, namely, interference alignment
and interference decoding. More precisely, the encoding at the
transmitters is such that all the interfering signals are aligned
at each receiver. However, a fundamental difference between
our approach and the conventional interference alignment
approach is that we need to decode interference to be able
to remove it from the received signal, whereas the aligned
interference is usually suppressed in conventional approaches.
A challenge here, which makes the K -user problem funda-
mentally different from the two-user problem [1], is that the
interference is a combination of multiple interfering messages
instead of a single message as in the two-user case, and
decoding all of them imposes strict bounds on the rate of the
interfering messages. A key idea is that instead of decoding
all the interfering messages individually, we will decode some
combination of them that corrupts the intended message of
interest. In the proposed scheme, the receiver decodes the
sum of certain interfering signals and the intended signal,
and sends it back to the transmitter. The transmitter, knowing
the intended signal, can then decode the sum of interfering
signals and transmits to the receiver in the next slot, to help
the receiver to decode the intended signal. In order to decode
the sum of certain intended/interfering signals, all transmitters
employ a common structured lattice code [21] which has
the property that the sum of different codewords is another
codeword from the same codebook.

Our new scheme generalizes the prior works in [1], [3],
[11], [19], [22] and [7] as follows. In this paper, we investigate
the cases of weak and strong regimes of interference channels.
It is because as it will be explained later in the paper, a regime
of medium interference level has been previously shown to not
to have a improvement via feedback. A two-user IC with rate-
limited feedback is considered in [1], while this paper develops
the achievability for a symmetric K -user IC. A two-user IC
without feedback is treated in [3], which is a special case of
the K -user IC without feedback in [22] and [7]. A two-user
IC with unlimited feedback is considered in [11], which is
a special case of [19] where the K -user IC with unlimited
feedback is treated. In this paper, we develop an achievability
scheme for a K -user IC with limited feedback, which for
the special cases of two-user, no feedback, and unlimited
feedback, results in schemes that are different from those
in [1], [7], and [19], respectively. This achievability scheme
achieves a rate which is approximately equal to the symmetric
capacity without feedback plus the symmetric amount of
feedback up to some saturation point, which corresponds to
reaching the symmetric capacity with infinite feedback which
leads us to conjecture an outer bound. The challenge in proving
that the conjectured upper bound is indeed an upper bound
lies in the fact that when feedback links are available, it is
not immediate that adding more interferers can only decrease
capacity. Thus, the two-user bounds based on genie-aided
information on all other users’ messages become hard to

extend since the other receivers can feed back certain signals,
and thus other transmitters can potentially help increase rate.
We further note that for the two-user case, the achievable
symmetric rate in [1] is not within a constant gap to the
upper bound for a certain interference region, and the result
in this paper fixes the results of [1] thus providing the correct
approximate capacity result for the case of K = 2.

For the achievability scheme for two-user IC in [1], the two
transmitters have different and asymmetric encoding opera-
tions, and it cannot be generalized to arbitrary number of
users. Also alignment of interfering signals and encoding them
by a lattice code is not considered, because each receiver
receives interference from only one transmitter. In our pro-
posed achievability scheme, all the transmitters employ the
same encoding operation and therefore all users are symmetric.
Moreover, each receiver receives interference from the other
K − 1 transmitters and we align and encode them using a
lattice code so that the sum signal can be decoded. On the
other hand, in the achievability scheme for the K -user IC
with infinite feedback in [19], each receiver simply sends back
all received signals to the corresponding transmitter whereas
in our scheme each receiver sends back a lattice codeword
(via the rate-limited feedback channel) with a strategy that
is chosen depending on the interference regime. Finally the
achievability scheme for the K -user IC with no feedback in [7]
only performs alignment on the interfering signals and does
not deal with feedback. A novelty in this paper is to decide
which part of the signal and interference should be aligned
to be decoded as a lattice codeword, to be fed back to the
transmitter with limited feedback. The proposed scheme in
this paper uses the concept of signal alignment with lattice
codes in addition to rate-limited feedback that has not been
jointly considered in [7], [19], and [1].

The remainder of this paper is organized as follows.
Section II gives the symmetric achievable rate for the deter-
ministic model, with some examples to illustrate the main
ideas of the proposed achievability scheme. Section III gives
our results for the Gaussian model, where the proposed achiev-
ability scheme is described and the achievable symmetric rate,
a conjectured upper bound, and the achievable GDoF are
given. Finally, Section IV concludes the paper. Some of the
proofs are given in appendices.

II. DETERMINISTIC MODEL

A. System Model and Problem Formulation

We first consider the linear deterministic K -user IC. This
model was proposed in [20] to focus on signal interactions
instead of the additive noise, and to obtain insights for the
Gaussian model. Let s ≥ K be a prime number and Fs be the
finite field over the set {0, . . . , s − 1} with sum and product
modulo s. Moreover, in this model there is a non-negative
integer nkj representing the channel gain from transmitter k
to receiver j , j, k ∈ {1, · · · , K }. We assume that n jk =
�logSNR

s � = n for j = k and n jk = �logINR
s � = m for j �= k.

Also, define q � max(m, n). We write the channel input at
transmitter k at time i as Xk,i = [X1

k,i , X2
k,i , . . . , Xq

k,i ] ∈ Fs
q ,

for k ∈ {1, 2, · · · , K }, such that X1
k,i and Xq

k,i represent
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Fig. 1. A linear deterministic IC with n = 5, m = 2 and p = 2.

the most and the least significant levels of the transmitted
signal, respectively. At each time i , the received signal at the
kth receiver is given by

Yk,i = Dq−n Xk,i +
∑

j �=k

Dq−m X j,i , (1)

where all the operations are performed modulo s. 1 Also, D
is a q × q shift matrix. We assume that there is a feedback
channel from the kth receiver to the kth transmitter which is of
capacity p, and that p is a multiple of log s because of using
the finite field of size s. The feedback is causal and hence at
time i the signal received till time i − 1 is available at each
receiver for encoding and feeding back to the corresponding
transmitter. Fig. 1 depicts a linear deterministic IC for n = 5
and m = 2. All the transmissions ai, j , 1 ≤ i ≤ K , 1 ≤ j ≤
max{n, m} are s-ary.

For a deterministic IC, a symmetric rate Rsym is said to be
achievable if there is a strategy such that all users can get a
rate Rsym . We further define α � m/n and β � p/n.

For the deterministic channel, in defining the achievable
rate and decoding process, the zero-error probability model is

1For any prime number s, it holds that the equation (s−1)x = a mod s has
a unique solution in {0, 1, ..., s − 1} and this property will be used frequently
in this paper.

assumed. Similarly, the notion of zero-error capacity is used
for the converse proofs as in [20].

B. Results for Linear Deterministic IC Model

In this section, we describe our proposed coding schemes
for the K -user linear deterministic IC with rate-limited feed-
back. The following theorem gives our achievability result.

Theorem 1: For the K -user linear deterministic IC, the
following symmetric rate is achievable:

Rsym/log s

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{n − m + p, n − m
2 }, if 0 ≤ m ≤ n

2 ,

min{m + p, n − m
2 }, if n

2 ≤ m ≤ 2n
3 ,

n − m
2 , if 2n

3 ≤ m < n,
n
K , if m = n,
m
2 , if n < m ≤ 2n,

min{n + p, m
2 }, if 2n ≤ m.

(2)

Remark 1: With infinite feedback, i.e., p = ∞, according
to [19, Th. 4], the symmetric capacity is

Csym,∞/log s =

⎧
⎪⎨

⎪⎩

n − m
2 , if 0 ≤ m < n,

n
K , if m = n,
m
2 , if n < m.

(3)

Corollary 1: With no feedback, i.e., p = 0, the symmetric
capacity is

Csym,0/log s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − m, if 0 ≤ m ≤ n
2 ,

m, if n
2 ≤ m ≤ 2n

3 ,

n − m
2 , if 2n

3 ≤ m < n,
n
K , if m = n,
m
2 , if n < m ≤ 2n,

n, if 2n ≤ m.

(4)

Proof: The achievability follows from Theorem 1 for
p = 0. The upper bound for 2n

3 ≤ m ≤ 2n follows from
Remark 1 and for 2n ≤ m it is a simple cutset bound. For
0 ≤ m ≤ 2n

3 , the proof is given as follows. Assume that
the kth transmitter transmits Xk = [ak,1, . . . , ak,n]T and let
Sk � [ak,1, . . . , ak,m ]T , for k ∈ {1, . . . , K }. The sum rate for
any two users (say 1 and 2) can be found by giving genie-
aided information on all other users’ messages, the two-user
bound still holds for any number of users. Thus,

R1 + R2

≤ I (X1; Y1, S1) + I (X2; Y2, S2)

= I (X1; S1) + I (X1; Y1|S1) + I (X2; S2) + I (X2; Y2|S2)

= h(S1) − h(S1|X1) + h(Y1|S1) − h(Y1|S1, X1) +
h(S2) − h(S2|X2) + h(Y2|S2) − h(Y2|S2, X2)

= h(S1) − h(S1|X1) + h(Y1|S1) − h(S2) +
h(S2) − h(S2|X2) + h(Y2|S2) − h(S1)

= h(Y1|S1) + h(Y2|S2), (5)

where for 0 ≤ m ≤ n
2 we have h(Yk |Sk) ≤ n − m, and also

for n
2 ≤ m ≤ 2n

3 we have h(Yk |Sk) ≤ m.
Since this holds for any two users, we can combine these

upper bounds to get the result as in the statement. �
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Fig. 2. Achievable symmetric rate of the deterministic IC with feedback.

Then, from (2)-(5) we have Rsym/log s = min{Csym,∞,
Csym,0 + p}. For K = 2, this result has been shown to be
tight in [1], i.e., Rsym is the symmetric capacity for K = 2,
and we conjecture that Rsym is the symmetric capacity for a
general K .

Fig. 2 illustrates the (normalized) symmetric rate as a
function of α, for different values of β = 0 (i.e., Corollary 1),
β = 0.1, β = 0.2, and β = ∞ (i.e., Remark 1).

The complete proof of Theorem 1 is given in Appendix IV.
In this section, we present several examples of the trans-
mission schemes that achieve the symmetric rate as claimed
in Theorem 1. For the range of 2

3 ≤ α ≤ 2, we have
Csym,0 = Csym,∞. So, with limited feedback the symmetric
capacity remains the same in this range. In the rest of this
section, we will illustrate the proposed coding schemes for
three ranges of α. Generalization of the proposed coding
strategy with specific channel parameter values for arbitrary
n, m, and p and its analysis is presented in Appendix IV.

1) Very Weak Interference Regime (α ≤ 1
2 ): In the very

weak interference regime, the goal is to achieve a symmetric
rate of Rsym/log s = min{n − m + p, n − m

2 } bits per user.
We propose an encoding scheme that operates on a block of
length 2. The basic idea can be seen from Fig. 3, where the
coding scheme is demonstrated for K = 3, n = 5, m = 2, and
p = 0.5.

As shown in Fig. 3, the proposed coding scheme is able to
convey seven intended symbols from each transmitter to its
respective receiver in two channel uses, i.e., 2Rsym = 7.

2) Weak Interference Regime ( 1
2 ≤ α ≤ 2

3 ): In the weak
interference regime, the goal is to achieve a symmetric rate of
Rsym/log s = min{m + p, n − m

2 } bits per user. We propose
an encoding scheme that operates on a block of length 2. The
basic idea can be seen from Fig. 4, where the coding scheme
is demonstrated for K = 3, n = 7, m = 4, and p = 0.5.

As shown in Fig. 4, the proposed coding scheme is able
to convey nine intended symbols from each transmitter to its
respective receiver in two channel uses, i.e., 2Rsym = 9.

3) Very Strong Interference Regime (α ≥ 2): In the very
strong interference regime, the goal is to achieve a symmetric
rate of Rsym/log s = min{n + p, m

2 } bits per user. We propose
an encoding scheme that operates on a block of length 2. The
basic idea can be seen from Fig. 5, where the coding scheme

is demonstrated for K = 3, n = 2, m = 6, and p = 0.5.
As shown in Fig. 5, the proposed coding scheme is able

to convey five intended symbols from each transmitter to its
respective receiver in two channel uses, i.e., 2Rsym = 5.

Remark 2: The feedback link is assumed to have a capacity
of C f b (or plog s in the deterministic model) bits per channel
use. However, the schemes described in the paper use 2C f b

(or 2 plog s) bits per channel use in odd slots while 0 bits in
even slots. We now show that the presented scheme where N
pairs of blocks are used, with feedback of 2C f b (or 2 plog s)
bits in the first slot, and no feedback in the second can be
adapted to a feedback of capacity C f b (or plog s) bits in
each slot. In order to see this, consider 2N slots in the
proposed scheme where a
i/2�,(i−1) mod 2+1, i = 1, · · · , 2N,
is transmitted in the forward direction where the first subscript
refers to one of the N blocks and the second subscript
represents the first transmission, where a j,2 is a function of
the 2C f b (or 2 plog s) bits of feedback which is based on a j,1,
j = 1, · · · , N. The feedback based on a j,1 is referred to as
{b j,1, b j,2} where each b j,t is of capacity C f b (or plog s) bits,
j = 1, · · · , N.

1) t = 1: The transmitter transmits a1,1 and the receiver
feeds back b1,1.

2) t = 2 j , for j ∈ {1, 2, . . .}: The transmitter transmits
a j+1,1. The receiver has already sent b j,1 and thus
has information to transmit b j,2. Thus, the receiver
sends b j,2.

3) t = 2 j + 1, for j ∈ {1, 2, . . .}: The transmitter has
received the feedback b j,1 and b j2 and thus can transmit
a j,2. The receiver has received a j+1,1 and thus sends
b j+1,1 as feedback.

We note that we can have aN+1,1 = 0 and thus N − 1 blocks
have been decoded, and as N → ∞, the same rate can be
achieved using C f b (or plog s) bits in each slot. Since the
same procedure is done at each transmitter and receiver, the
signals received at the destination will be the same to compute
the desired feedback signals in the above method.

III. GAUSSIAN INTERFERENCE CHANNEL

A. System Model and Problem Formulation

In this section, we describe the K -user symmetric Gaussian
IC which consists of K transmitters and K receivers. Trans-
mitter i has a message Wi that it wishes to send to receiver i .
At time t , transmitter i transmits a signal Xi [t] over the
channel with a power constraint tr(E(Xi X†

i )) ≤ 1 (A† is the
conjugate of A).

The received signal at receiver i at time t is denoted as Yi [t]
and can be written as

Yi [t] = √
SNRXi [t] +

K∑

j=1, j �=i

√
INRX j [t] + Zi [t], (6)

where Zi [t] ∼ CN(0, 1) is i.i.d. complex Gaussian noise,
SNR is the received signal-to-noise-ratio from transmitter i to
receiver i , and INR is the received interference-to-noise-ratio
from transmitter i to receiver j for i, j ∈ {1, ..., K }, i �= j .
In other words,

√
SNR is the power attenuation factor of the

direct links and
√

INR is the power attenuation factor of the
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Fig. 3. Proposed coding scheme for the linear deterministic model in the very weak interference regime (α ≤ 1
2 ), for K = 3, n = 5, m = 2 and p = 0.5.

interference links. Let CF B be the capacity of the feedback
link from receiver i to transmitter i , for all i ∈ {1, 2, · · · , K }.
We assume that the feedback channels are orthogonal
to each other and they are also orthogonal to the data
channels.

The encoding process at each node is causal, in the sense
that the feedback signal transmitted from receiver i at time t is
a function of whatever is received over the data channel up to
time (t −1); and the transmitted signal by transmitter i at time
t is a function of the message Wi and the feedback received
till time t . Each receiver decodes the message at t = T .
If a message Wi ∈ {1, . . . , 2T R} transmitted from transmitter
i is decoded at receiver i for each i ∈ {1, · · · , K } with error
probability ei,T = Pr( Ŵi �= Wi ) → 0 as T → ∞, we
say that the symmetric rate R is achievable. We assume that
SNR, INR > 1 and also define

α = log INR
log SNR

, and β = CF B

log SNR
. (7)

B. Results of Gaussian IC Model

1) Overview: In this section, we will describe the achiev-
ability scheme for the symmetric K -user Gaussian IC with
rate-limited feedback. This scheme will be shown to achieve
a symmetric rate within a constant gap to a conjectured
upper bound, which is the minimum of the symmetric rate
upper bound with infinite feedback, and the sum of the
symmetric rate upper bound without feedback and the amount
of symmetric feedback.

The feedback helps decode the interference which can
be useful for decoding the desired message. In addition,
feedback helps to decode a part of the intended message
that is conveyed from other transmitters through the feedback
path. In a K -user IC, the receivers hear interference signals
from multiple transmitters. Partial decoding of all interfering
messages would dramatically decrease the maximum rate of
the desired message. Thus, we decode the total interference
from all the other users, without resolving the individual
components of the interference. Our achievability strategy has
two key features, namely, 1) interfering signals are aligned,
and 2) the summation of interfering signals belong to a
message set of proper size which can be decoded at each
receiver. Here, the first property is satisfied since the network
is symmetric (all interfering links have the same gain), and
therefore, all interfering messages are received at the same
power level. In order to satisfy the second property, we use
a common lattice code for all transmitters, instead of random
Gaussian codebooks. The structure of a lattice codebook and
its closedness with respect to summation imply that the sum
of aligned interfering codewords observed at each receiver is
still a codeword from the same codebook. This allows us to
perform decoding by searching over a single codebook, instead
of the Cartesian product of all codebooks.

Lattice codes are a class of codes that can achieve the
capacity of the Gaussian channel [23]–[26], with lower
complexity as compared to the conventional random codes.
A T -dimensional lattice �T is a subset of T -tuples with
real elements, such that x, y ∈ �T implies −x ∈ �T
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Fig. 4. Proposed coding scheme for the linear deterministic model in the weak interference regime ( 1
2 ≤ α ≤ 2

3 ), for K = 3, n = 7, m = 4 and p = 0.5.

and x + y ∈ �T . For an arbitrary x ∈ R
T , we define

[x mod �T ] = x − Q(x), where Q(x) = arg mint∈�T ||x − t||,
is the closest lattice point to x . The Voronoi cell of �T ,
denoted by V�T , is defined as V�T = x ∈ R

T : Q(x) = 0.
The Voronoi volume V (V�T ) and the second moment σ 2(�T )
of the lattice are defined as V (V�T ) = ∫

V
�T

dx and

σ 2(�T ) =
∫
V

�T
||x ||2dx

T V (V�T )
, respectively. We further define the

normalized second moment of �T as G(�T ) = σ 2

V (V
�T )2/T =

∫
V

�T
||x ||2dx

T V (V
�T )

1+ 2
T

. A sequence of lattices {�T } is called a good

quantization code if limT →∞ G(�T ) = 1
2πe . On the other

hand, a sequence of lattices is known to be good for AWGN
channel coding if limT →∞ P[zT ∈ V�T ] = 1, where
zT ∼ N (

01×T , σ 2(�T )IT ×T
)

is a random noise. It is shown
in [27] that there exist sequences of lattices {�T } that are
simultaneously good for quantization and AWGN channel
coding.

For the achievability scheme, we use a nested lattice
code [21] which is generated using a good quantization lattice
for shaping and a good channel coding lattice. We start with

T -dimensional nested lattices �c ⊆ � f , where �c is a good
quantization lattice with σ 2(�c) = 1 and G(�c) ≈ 1/2πe,
and � f is a good channel coding lattice. We construct a
codebook C = � f ∩ V�c , where V�c is the Voronoi cell of
the lattice �c. Let s be the lattice codeword in � f ∩ V�c to
which the message is mapped, and build X = [s − d] mod �c

as the signal to be transmitted, where d is a random dither
uniformly distributed over V�c , and shared between all users
in the network. We will use the following properties of lattice
codes [24]:

1) Codebook C is a closed set with respect to summation
under the “mod �c” operation, i.e., if x1, x2 ∈ C are
two codewords, then (x1 + x2) mod �c ∈ C is also a
codeword.

2) Lattice code C can be used to reliably transmit up to
rate R = log(SNR) over a Gaussian channel modeled
by Y = √

SNRX + Z with Z ∼ N (0, 1).
2) Proposed Achievability Scheme: We will now describe

our achievability strategies for a K -user symmetric Gaussian
IC, which is inspired by the proposed schemes in Section II
for the deterministic IC. We split the result into three regions,
denoted as very weak interference where α ≤ 1/2, weak
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Fig. 5. Proposed coding scheme for the linear deterministic model in the very strong interference regime (2 ≤ α), for K = 3, n = 2, m = 6 and p = 0.5.

interference where 1/2 < α ≤ 2/3, and strong interference
where α ≥ 2. We do not consider the case of 2/3 < α < 2
since the upper bound for the symmetric capacity with perfect
feedback in [19, Th. 3] and the lower bound for the symmetric
capacity with no feedback in [7, Th. 1] are within a constant of
1
2 log 9+16+ K−1

2 +3 log K bits to each other for 2/3 < α < 1,
and are within a constant of 1

2 log 6 + 6 + K−1
2 + log K bits

to each other for 1 < α < 2. The achievability for α = 1
in [7] and [19] assumes that channel gains are outside an
outage set. We also assume for our theorems that the channel
gains are not in this outage set. We will use the notation
X (a:b) � X (a) + X (a+1) + · · · + X (b).

The next result gives the symmetric achievable rate for the
very weak interference regime (α ≤ 1/2).

Theorem 2: For α ≤ 1/2, a symmetric rate of Rsym = R(1:4)

2
is achievable, for any R(1), · · · , R(4) satisfying (8)–(15), as
shown at the top of the next page, for any non-negative set of
power values that satisfy P

′(1:3) = 1, P
′′(1) + P

′′(4) = 1, and
SNRP

′(3) = SNRα P
′(1).

Proof: Here, we will describe the achievability scheme
only for the first user. Due to the symmetry of the scheme,
the achievability for the other users is similar.

We take M1 = {M(1)
1 , M(2)

1 , M(3)
1 , M(4)

1 } as the messages to
be transmitted by the first transmitter. In order to encode M(i)

1 ,
for i ∈ {1, . . . , 4}, we use the common quantization lattice
(�ci = �c, i = 1, . . . , 4) but different channel coding
lattices (� fi ). The different codebooks Ci = � fi ∩ V�c are
assumed to be of size 2T R(i)

. [21, Sec. III] gives a detailed
construction of nested lattice codes. Let s(i)

1 be the lattice
codeword in � fi ∩ V�c to which M(i)

1 is mapped, and take
X (i)

1 = [s(i)
1 − d(i)

1 ] mod �c where d(i)
1 is a random dither

uniformly distributed over V�c , and shared between all users
in the network. The dithered lattice points can be treated as
Gaussian noise in the analysis as shown in [25, Appendix A].

We also take X1 = {X (1)
1 , X (2)

1 , X (3)
1 , X (4)

1 } as the set of
signals that the first user transmits during two consecutive
time-slots.

The encoded symbol X (i)
1 , for i ∈ {1, 2, 3, 4}, is of rate

R(i) using the lattice codes, for i ∈ {1, 2, 3, 4}. The overall
rate is thus R = R(1:4)

2 . Let P
′(i) be the power attenu-

ation of X (i)
1 transmitted in the first round, and P

′′(i) be
the power attenuation of the X (i)

1 transmitted in the second
round. The power allocations during the two rounds are
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R(1) ≤ log

(
1 + SNRP

′(1)

SNRP ′(2:3) + SNRα P ′(1:3)(K − 1) + 1

)
, (8)

R(2) ≤ log

(
1 + SNRP

′(2)

SNRP ′(3) + SNRα P ′(1:3)(K − 1) + 1

)
, (9)

R(3) ≤ log

(
1

K
+ SNRP

′(3)

SNRα P ′(2:3)(K − 1) + 1

)
, (10)

R(1) ≤ log

(
1

K
+ SNRα P

′(1)

SNRα P ′(2:3)(K − 1) + 1

)
, (11)

R(1) ≤ 2CF B − log K , (12)

R(3) ≤ 2CF B − log K , (13)

R(1) ≤ log

⎛

⎝ 1

K − 1
+

(
√

SNR
(

1
K−1

)
+ √

SNRα
(

K−2
K−1

)
)2 P

′′(1)

SNRP ′′(4) + SNRα(K − 1)P ′′(4) + 1

⎞

⎠ , (14)

R(4) ≤ log

(
1 + SNRP

′′(4)

SNRα(K − 1)P ′′(4) + 1

)
, (15)

chosen as

P
′(1) = μ(1)

μ(1:3)
, P

′(2) = μ(2)

μ(1:3)
,

P
′(3) = μ(3)

μ(1:3)
, P

′(4) = 0,

P
′′(1) = μ(1)

μ(1) + μ(4)
, P

′′(2) = P
′′(3) = 0,

P
′′(4) = μ(4)

μ(1) + μ(4)
. (16)

Transmission in the First Time-Slot: In the first time-slot,
the j th transmitter transmits

∑3
i=1

√
P ′(i) X (i)

j , where X (i)
j is

of length T , for j ∈ {1, · · · , K }.
Decoding and Feedback: The first receiver receives

Y (1)
1 = √

SNR
3∑

i=1

√
P ′(i) X (i)

1

+ √
INR

∑

j �=1

3∑

i=1

√
P ′(i) X (i)

j + Z (1)
1 . (17)

It decodes X (1)
1 , and consequently s(1)

1 , by treating the rest of
the signals as noise. The signal power is SNRP

′(1) and the
interference plus noise power is

1 + SNRP
′(2:3) + INRP

′(1:3)(K − 1), (18)

and thus the decoding can be performed since (8) holds.

After removing X (1)
1 , then X (2)

1 , and consequently s(2)
1 ,

is decoded by treating the rest as noise. Since the
signal power is SNRP

′(2) and the interference plus noise
power is

1 + SNRP
′(3) + INRP

′(1:3)(K − 1), (19)

X (2)
1 can be decoded since (9) holds.

The residual received signal after the contribution of X (1)
1

and X (2)
1 is removed is

√
SNR

√
P ′(3)X (3)

1 + √
INR

∑

j �=1

3∑

i=1

√
P ′(i) X (i)

j + Z (1)
1 . (20)

The signal I1 � X (3)
1 +∑

j �=1
X (1)

j can be recovered if (10) and

(11) hold, which follows from Lemma 6 by considering X (3)
1 ,

X (1)
2 , . . . , X (1)

K as the K signals in the statement of Lemma 6
which are all received at the same power level (SNRP

′(3) =
INRP

′(1)).
After obtaining I1, it is sent back to the transmitter. It can

be verified using Lemma 7 that the rate of the feedback signal
is smaller than the feedback capacity if (12) and (13) hold.

Transmission in the Second Time-Slot: The first transmitter
has received I1 = X (3)

1 + ∑
j �=1

X (1)
j from feedback. Since the

transmitter already knows X (3)
1 , and thus obtains

∑
j �=1

X (1)
j , and

consequently transmits√
P ′′(1)

K − 1

∑

j �=1

X (1)
j +

√
P ′′(4)X (4)

1 , (21)

and similarly, in general, the i th transmitter, ∀i ∈ {1, · · · , K },
sends √

P ′′(1)

K − 1

∑

j �=i

X (1)
j +

√
P ′′(4)X (4)

i , (22)

Decoding: The first receiver receives the signal

Y (2)
1 = √

SNR

⎛

⎝
√

P ′′(1)

K − 1

∑

j �=1

X (1)
j +

√
P ′′(4)X (4)

1

⎞

⎠

+ √
INR

∑

j �=1

⎛

⎝
√

P ′′(1)

K −1

∑

i �= j

X (1)
i +

√
P ′′(4)X (4)

j

⎞

⎠+Z (2)
1 .

(23)
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First, the receiver subtracts the X (1)
1 term from the received

signal and obtains

Y ′(2)
1 =

(√
SNR + (K − 2)

√
INR

) √
P ′′(1)

K − 1

∑

j �=1

X (1)
j

+ √
SNR

√
P ′′(4)X (4)

1 +√
INR

√
P ′′(4)

∑

j �=1

X (4)
j +Z (2)

1 .

(24)

Let I2 �
∑
j �=1

X (1)
j . The receiver obtains I2 treating

√
SNR

√
P ′′(4)X (4)

1 + √
INR

√
P ′′(4)

∑
j �=1

X (4)
j as noise. It can

be seen that I2 can be obtained if (14) holds for R1, which
follows from Lemma 6 (with X (1)

2 , . . . , X (1)
K as the (K − 1)

signals). Having decoded I1 and I2, then X (3)
1 can be decoded

since it is the difference of the two. Having I2 decoded, the
residual signal is

√
SNR

√
P ′′(4)X (4)

1 + √
INR

√
P ′′(4)

∑

j �=1

X (4)
j + Z (2)

1 , (25)

from which X (4)
1 can be decoded by treating
√

INR
√

P ′′(4)
∑

j �=1

X (4)
j + Z (2)

1 , (26)

as noise since (15) holds. �

The next result gives the symmetric achievable rate for the
weak interference regime (1/2 < α ≤ 2/3).

Theorem 3: For 1/2 < α ≤ 2/3, the symmetric rate of
Rsym = R(1:6)

2 is achievable, for any R(1), · · · , R(6) satisfying
(27)–(38), as shown at the bottom of this page, for any non-
negative set of power values that satisfy P

′(1:4) = 1, P
′′(2) +

P
′′(5:6) = 1, and SNRP

′(3) = SNRα P
′(2).

Proof: We take M1 = {M(1)
1 , M(2)

1 , M(3)
1 , M(4)

1 , M(5)
1 ,

M(6)
1 } as the messages to be transmitted by the first transmitter.

In order to encode M(i)
1 , for i ∈ {1, . . . , 6}, we use the

common quantization lattice but different channel coding
lattices (�ci = �c, i = 1, . . . , 6). The different codebooks
Ci = � fi ∩ V�c are assumed to be of size 2T R(i)

. Let
s(i)

1 be the lattice codeword in � fi ∩ V�c to which M(i)
1

is mapped, and take X (i)
1 = [s(i)

1 − d(i)
1 ] mod �c where

d(i)
1 is a random dither uniformly distributed over V�c , and

shared between all users in the network. We also take X1 =
{X (1)

1 , X (2)
1 , X (3)

1 , X (4)
1 , X (5)

1 , X (6)
1 } as the set of signals that the

first user transmits during two consecutive time-slots.
The encoded symbol X (i)

1 , for i ∈ {1, 2, 3, 4, 5, 6}, is of
rate R(i) using the lattice codes, for i ∈ {1, 2, 3, 4, 5, 6}. The
overall rate is thus R = R(1:6)

2 . Let P
′(i) be the power atten-

uation of X (i)
1 transmitted in the first round, and P

′′(i) be the
power attenuation of the X (i)

1 transmitted in the second round.

R(1) ≤ log

(
1 + SNRP

′(1)

SNRP ′(2:4) + SNRα(K − 1)P ′(1:4) + 1

)
, (27)

R(2) ≤ log

(
1 + SNRP

′(2)

SNRP ′(3:4) + SNRα(K − 1)P ′(1:4) + 1

)
, (28)

R(1) ≤ log

(
1

K − 1
+ SNRα P

′(1)

SNRP ′(3:4) + SNRα(K − 1)P ′(2:4) + 1

)
, (29)

R(3) ≤ log

(
1

K
+ SNRP

′(3)

SNRP ′(4) + SNRα(K − 1)P ′(3:4) + 1

)
, (30)

R(2) ≤ log

(
1

K
+ SNRα P

′(2)

SNRP ′(4) + SNRα(K − 1)P ′(3:4) + 1

)
, (31)

R(4) ≤ log

(
1 + SNRP

′(4)

SNRα(K − 1)P ′(3:4) + 1

)
, (32)

R(2) ≤ 2CF B − log K , (33)

R(3) ≤ 2CF B − log K , (34)

R(5) ≤ log

(
1 + SNRP

′′(5)

SNR(P ′′(2) + P ′′(6)) + SNRα(K − 1)(P ′′(2) + P ′′(5:6)) + 1 − SNRα P ′′(2)

)
, (35)

R(2) ≤ log

⎛

⎜⎝
1

K − 1
+
(√

SNR
(

1
K−1

)
+ √

SNRα
(

K−2
K−1

))2
P

′′(2)

SNRP ′′(6) + SNRα(K − 1)P ′′(5:6) + 1

⎞

⎟⎠ , (36)

R(5) ≤ log

(
1

K − 1
+ SNRα P

′′(5)

SNRP ′′(6) + SNRα(K − 1)P ′′(6) + 1

)
, (37)

R(6) ≤ log

(
1 + SNRP

′′(6)

SNRα(K − 1)P ′′(6) + 1

)
, (38)
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The power allocations during the two rounds are chosen as

P
′(1) = μ(1)

μ(1:4)
, P

′(2) = μ(2)

μ(1:4)
, P

′(3) = μ(3)

μ(1:4)
,

P
′(4) = μ(4)

μ(1:4)
, P

′(5) = P
′(6) = 0,

P
′′(1) = 0, P

′′(2) = μ(2)

μ(2) + μ(5:6)
, P

′′(3) = P
′′(4) = 0,

P
′′(5) = μ(5)

μ(2) + μ(5:6)
, P

′′(6) = μ(6)

μ(2) + μ(5:6)
. (39)

Transmission in the First Time-Slot: In the first time-slot,
the j th transmitter transmits

∑4
i=1

√
P ′(i) X (i)

j , where X (i)
j is

of length T , for j ∈ {1, · · · , K }.
Decoding and Feedback: The first receiver receives

Y (1)
1 = √

SNR
4∑

i=1

√
P ′(i) X (i)

1

+ √
INR

∑

j �=1

4∑

i=1

√
P ′(i) X (i)

j + Z (1)
1 . (40)

The receiver first decodes X (1)
1 , and consequently s(1)

1 , by
treating the rest of the signals as noise. Due to the rate
constraint (27), X (1)

1 can be decoded. After cancelling the
signals containing X (1)

1 , then X (2)
1 , and consequently s(2)

1 ,
can further be decoded by treating the remaining signals as
noise due to (28). After cancelling X (1)

1 and X (2)
1 , the receiver

obtains the lattice point
∑
i �=1

X (1)
i as the sum of (K − 1) lattice

points which are all received at the same power level, by
treating all the other signals as noise. The signal power is
INRP

′(1) and the interference plus noise power is

1 + SNRP
′(3:4) + INR(K − 1)P

′(2:4). (41)

The lattice point can be obtained if (29) holds which can
be seen using Lemma 6 (with X (1)

2 , . . . , X (1)
K as the (K − 1)

signals which are all received at the same power level). Then,
the residual signal is

√
SNR

4∑

i=3

√
P ′(i) X (i)

1 + √
INR

∑

j �=1

4∑

i=2

√
P ′(i) X (i)

j + Z (1)
1

= √
SNR

√
P ′(3)X (3)

1 + √
INR

√
P ′(2)

∑

j �=1

X (2)
j

+ √
SNR

√
P ′(4)X (4)

1 + √
INR

∑

j �=1

4∑

i=3

√
P ′(i) X (i)

j + Z (1)
1 .

(42)

Let I1 � X (3)
1 + ∑

j �=1
X (2)

j . We can obtain I1 treating
√

SNR
√

P ′(4)X (4)
1 + √

INR
∑
j �=1

∑4
i=3

√
P ′(i) X (i)

j as noise if

(30) and (31) hold using Lemma 6 (with X (3)
1 , X (2)

2 , . . . , X (2)
K

as the K signals) and SNRP
′(3) = INRP

′(2). After decoding
I1, it is sent back to the transmitter. It can be verified using
Lemma 7 that the rate of the feedback signal is smaller than

the feedback capacity if (33) and (34) hold. After cancelling

I1, and then X (4)
1 , s(4)

1 can be obtained due to (32).
Transmission in the Second Time-Slot: For the first trans-

mitter, X (3)
1 is known and I1 is given from the feedback, and

consequently the first transmitter obtains
∑
j �=1

X (2)
j . Using this,

it transmits
√

P ′′(2)

K − 1

∑

j �=1

X (2)
j +

6∑

i=5

√
P ′′(i) X (i)

1 . (43)

In general, the kth transmitter, ∀k ∈ {1, · · · , K }, transmits
√

P ′′(2)

K − 1

∑

j �=k

X (2)
j +

6∑

i=5

√
P ′′(i) X (i)

k . (44)

Decoding: The first receiver receives

Y (2)
1 = √

SNR

⎛

⎝
√

P ′′(2)

K − 1

∑

j �=1

X (2)
j +

6∑

i=5

√
P ′′(i) X (i)

1

⎞

⎠

+ √
INR

∑

j �=1

⎛

⎝ P
′′(2)

K − 1

∑

i �= j

X (2)
i +

6∑

i=5

√
P ′′(i) X (i)

j

⎞

⎠

+ Z (2)
1 . (45)

Based on this, the receiver cancels the signal X (2)
1 and obtains

√
SNR

⎛

⎝
√

P ′′(2)

K − 1

∑

j �=1

X (2)
j +

6∑

i=5

√
P ′′(i) X (i)

1

⎞

⎠

+ √
INR

P
′′(2)(K − 2)

K − 1

∑

j �=1

X (2)
j + √

INR
∑

j �=1

6∑

i=5

√
P ′′(i) X (i)

j

+ Z (2)
1 . (46)

From this residual signal, X (5)
1 can be decoded by treating the

other signals as noise due to (35). Let I2 �
∑
j �=1

X (2)
j . Note that

I2 is a lattice point in C2, and thus we can obtain I2 treating√
P ′′(6)X (6)

1 +√
INR

∑
j �=1

∑6
i=5

√
P ′′(i) X (i)

j as noise. Since the

term I2 is a lattice point in C2 which is a codebook of rate R2,
it can be obtained if (36) holds for R2, which follows from
Lemma 6 (with X (2)

2 , . . . , X (2)
K as the (K − 1) signals). From

I1 and I2, X (3)
1 can be obtained since it is the difference of

the two. Further,
∑
j �=1

X (5)
j can be obtained after cancelling I2

due to equation (37) and Lemma 6 (with X (5)
2 , . . . , X (5)

K as
the (K − 1) signals). After cancelling

∑
j �=1

X (5)
j , the residual

signal is
√

P ′′(6)X (6)
1 + √

INR
∑

j �=1

√
P ′′(6)X (6)

j + Z (2)
1 . (47)

From this, X (6)
1 can be decoded by treating X (6)

j , j �= 1 as
noise due to (38). �

The next result gives the symmetric achievable rate for the
strong interference regime (α ≥ 2).
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R(1) ≤ log

(
1

K − 1
+ INRP

′(1)

SNRP ′(1:2) + SNRα(K − 1)P ′(2) + 1

)
, (48)

R(2) ≤ log

(
1

K − 1
+ INRP

′(2)

SNRP ′(1:2) + 1

)
, (49)

R(1) ≤ log

(
1 + SNRP

′(1)

SNRP ′(2) + 1

)
, (50)

R(2) ≤ 2CF B − log (K − 1), (51)

R(3) ≤ log

(
1

K − 1
+ SNRα P

′′(3)

SNRα P ′′(2) + SNRP ′′(3) + 1

)
, (52)

R(2) ≤ log

(
1 + SNRα P

′′(2)

SNRP ′′(3) + 1

)
, (53)

R(3) ≤ log

(
1 + SNRP

′′(3)

1

)
, (54)

Theorem 4: For α ≥ 2, the symmetric rate of Rsym = R(1:3)

2
is achievable, for any R(1), · · · , R(3) satisfying (48)–(54), as
shown at the top of this page, for any non-negative set of
power values that satisfy P

′(1:2) = 1, and P
′′(2:3) = 1.

Proof: We take M1 = {M(1)
1 , M(2)

1 , M(3)
1 } as the messages

to be transmitted by the first transmitter. In order to encode
M(i)

1 , for i ∈ {1, 2, 3}, we use the common quantization lattice
(�ci = �c, i = 1, 2, 3) but different channel coding lattices
(� fi , i = 1, 2, 3). The different codebooks Ci = � fi ∩ V�c

are assumed to be of size 2T R(i)
. Let s(i)

1 be the lattice
codeword in � fi ∩ V�c to which M(i)

1 is mapped, and take
X (i)

1 = [s(i)
1 − d(i)

1 ] mod �c where d(i)
1 is a random dither

uniformly distributed over V�c , and shared between all users
in the network. We also take X1 = {X (1)

1 , X (2)
1 , X (3)

1 } as the set
of signals that the first user transmits during two consecutive
time-slots.

The encoded symbol X (i)
1 , for i ∈ {1, 2, 3}, is of rate R(i)

using the lattice codes, for i ∈ {1, 2, 3}. The overall rate
is thus R = R(1:3)

2 . Let P
′(i) be the power attenuation of

X (i)
1 transmitted in the first round, and P

′′(i) be the power
attenuation of the X (i)

1 transmitted in the second round. The
power allocations during the two rounds are chosen as

P
′(1) = μ(1)

μ(1:2)
, P

′(2) = μ(2)

μ(1:2)
, P

′(3) = 0,

P
′′(1) = 0, P

′′(2) = μ(2)

μ(2:3)
, P

′′(3) = μ(3)

μ(2:3)
. (55)

Transmission in the First Time-Slot: In the first time-slot, the
j th transmitter, ∀ j ∈ {1, . . . , K }, transmits

∑2
i=1

√
P ′(i) X (i)

j ,

where X (i)
j is of length T , for j ∈ {1, · · · , K }.

Decoding and Feedback: The first receiver receives

Y (1)
1 = √

SNR
2∑

i=1

√
P ′(i) X (i)

1

+ √
INR

∑

j �=1

2∑

i=1

√
P ′(i) X (i)

j + Z (1)
1 . (56)

Let I1 �
∑
j �=1

X (1)
j and I2 �

∑
j �=1

X (2)
j . Note that I1 is a

lattice point in C1, and thus we can obtain I1 treating the
rest of the signals as noise if (48) holds, which follows from
Lemma 6 (with X (1)

2 , . . . , X (1)
K as the (K − 1) signals which

are all received at the same power level). Further, I2 is a lattice
point in C2, and we can obtain I2 treating the rest of the signals
as noise if (49) holds, which follows from Lemma 6 (with
X (2)

2 , . . . , X (2)
K as the (K −1) signals which are all received at

the same power level). After cancelling I2, the residual signal
is

√
SNR

2∑

i=1

√
P ′(i) X (i)

1 + Z (1)
1 , (57)

from which X (1)
1 can be obtained by treating X (2)

1 as noise due
to (50).

Also, after obtaining I2, it is sent back to the transmitter.
It can be verified using Lemma 7 that the rate of the feedback
signal is smaller than the feedback capacity if (51) holds.

Transmission in the Second Time-Slot: The first transmitter
has received I2 and transmits

√
P ′′(2)

K − 1
I2 +

√
P ′′(3)X (3)

1 . (58)

In general, the j th transmitter transmits
√

P ′′(2)

K − 1

∑

i �= j

X (2)
i +

√
P ′′(3)X (3)

j . (59)

Decoding: The first receiver receives

Y (2)
1 = √

SNR

(√
P ′′(2)

K − 1
I2 +

√
P ′′(3)X (3)

1

)
(60)

+ √
INR

∑

j �=1

⎛

⎝
√

P ′′(2)

K − 1

∑

i �= j

X (2)
i +

√
P ′′(3)X (3)

j

⎞

⎠

+ Z (2)
1 . (61)
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Since the receiver knows I2, it can be subtracted to get the
residual signal

√
INR

√
P ′′(2)X (2)

1 + √
SNR

√
P ′′(3)X (3)

1

+ √
INR

√
P ′′(3)

∑

j �=1

X (3)
j + Z (2)

1 . (62)

From this,
∑
j �=1

X (3)
j can be obtained if (52) holds, which

follows from Lemma 6 (with X (3)
2 , . . . , X (3)

K as the (K − 1)
signals which are all received at the same power level).
Afterwards, the residual signal is

√
INR

√
P ′′(2)X (2)

1 + √
SNR

√
P ′′(3)X (3)

1 + Z (2)
1 . (63)

Then, X (2)
1 can be decoded by treating X (3)

1 as noise due
to (53). Finally, after cancelling X (2)

1 , then X (3)
1 can be decoded

due to (54). �
The following corollary improves the achievability region

in the above theorems for the case of K = 2.
Corollary 2: For the case of two-user channel (K = 2):

• Theorem 2 without extra log K terms in equations
(12)-(13) still holds.

• Theorem 3 without extra log K terms in equations
(33)-(34) still holds.

More formally, for the case of two-user channel (K = 2), the
region given in Theorem 2 is still achievable if we replace

R(1) ≤ 2CF B ,

R(3) ≤ 2CF B ,

with equations (12)-(13), and the region given in Theorem 3
is still achievable if we replace

R(2) ≤ 2CF B ,

R(3) ≤ 2CF B .

with equations (33)-(34).
Proof: Here we only provide the proof for the statement

on the case of K = 2 for Theorem 2. The statement
regarding Theorem 3 can be shown similarly. Since we have
set SNRP

′(3) = INRP
′(1), then X (3)

1 + X (1)
2 is a lattice point.

We consider a slightly modified achievability strategy than that

in Theorem 2, where after receiver 1 derives X (3)
1 + X (1)

2
by treating other codewords as noise, instead of sending
back X (3)

1 + X (1)
2 as in Theorem 2, we only feed back

[X (3)
1 + X (1)

2 ] �c to transmitter 1. The rate of the feedback
is lower than the capacity of the feedback link, R(i) ≤ 2CF B ,
i = 1, 3. Then, transmitter 1, given [X (3)

1 + X (1)
2 ] �c and X (3)

1 ,
can find X (1)

2 and the rest of the strategy is the same as that
in Theorem 2. �

Remark 3: Based on [26, Lemma 1], as long as constraints
(8)-(15), (26)-(37), and (47)-(53) hold in the statements of

Theorems 2, 3, and 4, respectively, in all places that sum of
codewords are declared decodable over modulo algebra in
proofs of these theorems, then consequently sum of codewords
are decodable over reals, too.

3) A Conjectured Upper Bound: According to [3, Th. 1],
an upper bound on the symmetric capacity without feedback
is given by

Ru
sym,0

= min

{
log(1 + SNR), log

(
1 + INR + SNR

1 + INR

)}
. (64)

Moreover, according to [19, Sec. VI], an upper bound on the
symmetric capacity with infinite feedback is given by

Ru
sym,∞ = 1

2
log

(
1 + SNR

1 + INR

)

+ 1

2
log (1 + SNR + INR) + K − 1

2
+ log K .

(65)

We conjecture that the following upper bound holds for a
K -user symmetric Gaussian IC with rate-limited
feedback

Ru
sym = min

{
Ru

sym,∞, Ru
sym,0 + CF B

}
. (66)

Note that the conjecture holds true for K = 2 as shown in [1].
The next result shows that the achievable symmetric rate

given in the last section is within a constant number of bits to
the conjectured upper bound Ru

sym for a particular choice of
the parameters for each interference regime.

Theorem 5: For the K -user symmetric Gaussian IC with
rate-limited feedback with INR

SNR /∈ ( 1
2 , 2

)
and SNR, INR ≥ 1,

there is an achievability scheme that achieves a symmetric rate
within a constant L bits to Ru

sym, where L is given in (67), as
shown at the bottom of this page.

Proof: The parameters μ(i) of the achievability scheme
that are chosen for this result are as follows.

Case 1 (α ≤ 1
2 ): We take μ(1) = 1

2INR min{22CF B , INR−1},
μ(2) = 1

INR − 1
2SNR min{22CF B , INR − 1}, and μ(4) = 1

INR in
Theorem 2.

Case 2 ( 1
2 ≤ α ≤ 2

3 ): We take μ(4) = 1
4INR max

{2−2CF B , INR3

SNR2 }, μ(6) = μ(3) = 1
3INR − 1

4INR max

{2−2CF B , INR3

SNR2 }, μ(1) = 1−μ(2:4), and μ(5) = 1−μ(2) −μ(6)

in Theorem 3.
Case 3 (2 ≤ α): We take μ(2) = SNR

2INR min{22CF B , INR
SNR2 },

and μ(1) = μ(3) = 1 − μ(2) in Theorem 4.
The rest of the proof follows by simple manipulations of

the gap, and is thus omitted. The reader can see the detailed
steps in [28]. �

Remark 4: For the special cases of no feedback and infinite
feedback, Ru

sym in (66) becomes the true symmetric upper

L = max

{
1

2
log

(
2304 (K − 1)2 K 2

(
K + 1

3

)(
K + 2

3

)2

(K + 2)2
(

K + 11

4

))
, log 3 + 16 + log K 3

}
+ K − 1

2
. (67)
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bounds given in [3] and [19], respectively. Furthermore, the
achievability schemes in [7] and [19] achieve symmetric rates
within constant gaps of 9+log(K 2) and 1

2 log(16K 4(K +1))+
K−1

2 bits to the corresponding upper bounds, for no feed-
back and infinite feedback, respectively. Although these
gaps are tighter, they are only for the two extreme
cases.

4) Achievable Symmetric GDoF: The symmetric GDoF
characterize the ratio of the symmetric capacity to log SNR as
SNR goes to infinity, i.e., GDoF = limSNR→∞

Csym
log SNR . Recall

that α = log INR
log SNR and β = CF B

log SNR . We have the following
result.

Theorem 6: The symmetric GDoF of a K -user symmetric
Gaussian IC with rate-limited feedback satisfies

GDoFsym

≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{1 − α + β, 1 − α
2 }, if 0 ≤ α ≤ 1

2 ,

min{α + β, 1 − α
2 }, if 1

2 ≤ α ≤ 2
3 ,

1 − α
2 , if 2

3 ≤ α < 1,

not well defined, if α = 1,
α
2 , if 1 < α ≤ 2,

min{1 + β, α
2 }, if 2 ≤ α.

(68)

Proof: Since the achievable symmetric rate is
within a constant gap to Ru

sym in (66), we can

write GDoFsym ≥ Rsym
log SNR = limSNR→∞

Ru
sym

log SNR =
min{GDoFsym,∞, GDoFsym,0 + β} where GDoFsym,0 and
GDoFsym,∞ are given in [6, Th. 3.1] and [19, Th. 1],
respectively. �

We note that if we normalize (2) by n and use the definitions
of α = m/n, β = p/n, then we obtain (68), except for
α = 1. There is a discussion on α = 1 in [19]. Hence
Fig. 2 describes the achievable symmetric GDoF of a K -user
symmetric Gaussian IC as well.

5) Comparison to Literature: References [6] and [19] con-
sidered the cases of no feedback and unlimited feedback of
K -user Gaussian IC, respectively. Also, the impact of rate-
limited feedback is introduced and studied for a two-user
Gaussian IC in [1].

Our achievability scheme is different from there in the
literature. Consider the achievability scheme for the two-user
symmetric Gaussian IC in [1] for the case of 1/2 < α < 2/3.

We set the feedback capacity as CF B = log
(

SNR2

INR3 − 1
)

.

In this case, the GDoFs corresponding to the six terms in
[1, eq. (55)] under the power allocation given by [1, eq. (84)]
are 1 − α, 0, 2α − 1, 1 − α, 0, and 2α − 1, respectively, with
a sum of 2α. However, the sum GDoF of the achievability
scheme which is the sum of these six terms, is claimed
in [1, eq. (87)] to be 2 − α = 2α + (2 − 3α) > 2α which
is incorrect. Since in this range of α, the upper bound on sum

rate satisfies limSNR→∞
2Ru

sym
log SNR = 2 −α, the gap between the

upper and lower bounds for high SNR is (2 − 3α) log SNR +
o(log SNR), i.e., it is unbounded. Our proposed achievability
scheme when specialized to K = 2, results in a symmetric
rate that is within a constant of 21.085 bits to the symmetric
rate upper bound, according to Theorem 5.

Also [19] treats only the case of perfect feedback,
i.e., CF B = ∞, whereas we treat the general case of
arbitrary CF B .

Our proposed conjectured upper bound is the best known
upper bound for the special cases; for the K -user IC without
feedback [7], K -user IC with infinite feedback [19], and
K = 2 with general CF B [1]. However, it remains open for
general K and CF B .

IV. CONCLUSIONS

We have developed achievability schemes for symmetric
K -user interference channels with rate-limited feedback, for
both the linear deterministic model, and the Gaussian model.
For the deterministic model, the achievable symmetric rate is
the minimum of the symmetric capacity with infinite feedback,
and the sum of the symmetric capacity without feedback and
the amount of symmetric feedback. And for the Gaussian
model, the achievable rate is within a constant gap to the
minimum of the symmetric capacity with infinite feedback,
and the sum of the symmetric capacity without feedback and
the amount of symmetric feedback. For the Gaussian model,
the proposed achievability scheme employs lattice codes
to perform Han-Kobayashi message splitting, interference-
decoding, and decode-and-forward. Further, the achievable
generalized degrees of freedom (GDoF) is characterized with
rate-limited feedback. It is shown that the per-user GDoF does
not depend on the number of users, so that it is the same
as that of the two-user interference channel with rate-limited
feedback.

We conjecture that the minimum of the upper bound of
the symmetric capacity with infinite feedback, and the sum of
the upper bound of the symmetric capacity without feedback
and the amount of symmetric feedback is an upper bound for
the symmetric capacity of the Gaussian IC with rate-limited
feedback for any number of users K . This conjecture has
been shown to hold for several special cases including the
K -user IC without feedback in [7], the K -user IC with infinite
feedback in [19], and K = 2 in [1]. However, it remains open
for general K and CF B . The achievability for α = 1 in [7]
and [19] assumes that channel gains are outside an outage set.
Investigating whether this outage set shrinks with feedback is
an interesting open problem.

APPENDIX A

PROOF OF THEOREM 1

In this section, we prove Theorem 1 by breaking the result
into three regimes. We denote that ai, j �

∑K
k=1,k �=i ak, j

Lemma 1: For the K -user linear deterministic IC, a sym-
metric rate of n min{1 − α + β, 1 − α

2 } is achievable for
0 ≤ α ≤ 1

2 .
Proof: Define l � (m − 2 p)+. For the i th transmitter,

i ∈ {1, ..., K }, we transmit ai,1, ..., ai,2n−m−l in two transmis-
sion slots.

First Round: 1. Transmission: In the first round, the i th

transmitter sends ai,1, ..., ai,n−l on the highest n − l trans-
mission levels, respectively, and nothing on the lowest l
transmission levels.
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2. Reception: Since 0 ≤ α ≤ 1
2 , the i th receiver receives

ai,1, ..., ai,n−m on the highest n − m reception levels, respec-
tively, and ai,n−m+1 +ai,1, ..., ai,n−l +ai,m−l on the next m − l
levels, respectively, and throws away whatever it receives on
the last l levels.

Feedback: Receiver i sends back ai,n−m+1+ai,1, ..., ai,n−l +
ai,m−l over the feedback channel to transmitter i (m−l levels).
Since 0 ≤ m−l ≤ 2 p, the feedback rate is p levels per channel
use. With this feedback, transmitter i decodes ai,1, ..., ai,m−l .
Since the feedback does not increase the achievable rate in the
statement of the Theorem beyond p = m/2, we only use m/2
levels of feedback if p > m/2.

Second Round: 1. Transmission: In the second round, the
i th transmitter sends ai,1, ..., ai,m−l on the highest m − l
transmission levels, respectively, nothing on the next lower
l levels, and new levels of ai,n−l+1, ..., ai,2n−m−l on the last
n − m levels, respectively.

2. Reception: The i th receiver receives ai,1, ..., ai,m−l

on the highest m − l levels, nothing on the next l lev-
els, ai,n−l+1, ..., ai,2n−2m−l on the next n − 2m levels,
ai,2n−2m−l+1 + (K − 2)ai,1 + (K − 1)ai,1, ..., ai,2n−m−2l +
(K − 2)ai,m−l + (K − 1)ai,m−l on the next m − l levels, and
ai,2n−m−2l+1, ..., ai,2n−m−l on the lowest l levels.

Decoding: Decoding by the i th receiver, i ∈ {1, ..., K },
is performed as follows. First, ai,1, ..., ai,n−m are decoded
from the highest n − m levels of the first reception.
Then, ai,1, ..., ai,m−l are decoded from the highest
m − l levels of the second reception. Then, having
ai,1, ..., ai,m−l , the receiver decodes ai,n−m+1, ..., ai,n−l

from ai,n−m+1 + ai,1, ..., ai,n−l + ai,m−l on the next
m − l levels of the first reception. Then, the receiver
decodes ai,n−l+1, ..., ai,2n−2m−l from the (m + 1)th

to (n − m)th highest levels of the second reception,
respectively. Then, having ai,1, ..., ai,m−l , and ai,1, ..., ai,m−l ,
the receiver decodes ai,2n−2m−l+1, ..., ai,2n−m−2l from
ai,2n−2m−l+1 + (K − 2)ai,1 + (K − 1)ai,1, ..., ai,2n−m−2l +
(K − 2)ai,m−l + (K − 1)ai,m−l on the next m − l lower
levels of the second reception. Finally, the receiver decodes
ai,2n−m−2l+1, ..., ai,2n−m−l from the lowest l levels of the
second reception.

Rate: With the above strategy, each user transmits 2n −
m − l levels in two uses of the channel which proves the
lemma because 1

2 (2n − m − l) = 1
2 (2n − m − (m − 2 p)+) =

1
2 min{2n − m, 2n − 2m + 2 p} = min{n − 1

2 m, n − m + p} =
n min{1 − α

2 , 1 − α + β}. �
Lemma 2: For the K -user linear deterministic IC, a sym-

metric rate of n min{α+β, 1− α
2 } is achievable for 1

2 ≤ α ≤ 2
3 .

Proof: Define l
′ � (2n − 3m − 2 p)+. For the i th trans-

mitter, i ∈ {1, ..., K }, we transmit ai,1, ..., ai,2n−m−l′ in two
transmission slots.

First Round: 1. Transmission: In the first round, the i th

transmitter sends ai,1, ..., ai,n−m−l′ on the highest n − m − l
′

transmission levels, nothing on the next lower 2m − n + l
′

levels, and ai,n−m−l′ +1, ..., ai,2n−2m−l′ on the lowest n − m
levels.

2. Reception: Since 1
2 ≤ α ≤ 2

3 , the i th receiver
receives ai,1, ..., ai,n−m−l′ on the highest n − m − l

′

reception levels, nothing on the next lower l
′

levels,
ai,1, ..., ai,2m−n on the next lower 2m−n levels, ai,n−m−l′ +1+
ai,2m−n+1, ..., ai,3n−4m−2l′ +ai,n−m−l′ on the next 2n−3m−l

′

levels, and ai,3n−4m−2l′ +1, ..., ai,2n−2m−l′ on the lowest 2m −
n + l

′
levels.

Feedback: Receiver i sends back ai,n−m−l′ +1 +
ai,2m−n+1, ..., ai,2n−3m−2l′ + ai,n−m−l′ over the feedback

channel to transmitter i (2n − 3m − l
′

levels). Since
0 ≤ 2n − 3m − l

′ ≤ 2 p, the feedback rate is p levels
per channel use. With this feedback, transmitter i decodes
ai,2m−n+1, ..., ai,n−m−l′ .

Second Round: 1. Transmission: In the second round, the i th

transmitter sends the new signals ai,2n−2m−l′ +1, ..., ai,n−l′ on
the highest 2m−n transmission levels, ai,2m−n+1, ..., ai,n−m−l′

on the next 2n − 3m − l
′

levels, nothing on the next lowest
2m −n+l

′
levels, and the new signals ai,n−l′ +1, ..., ai,2n−m−l′

on the lowest n − m levels.
2. Reception: In this round, the i th receiver receives

ai,2n−2m−l′ +1, ..., ai,n−l′ on the highest 2m − n reception

levels, ai,2m−n+1, ..., ai,n−m−l′ on the next 2n −3m − l
′

levels,

nothing on the next lower l
′

levels, ai,2n−2m−l′ +1, ..., ai,n−l′
on the next lower 2m−n levels, ai,n−l′ +1+(K −2)ai,2m−n+1+
(K − 1)ai,2m−n+1, ..., ai,3n−3m−2l′ + (K − 2)ai,2n−3m−l′ +
(K − 1)ai,2n−3m−l′ on the next lower 2n − 3m − l

′
levels,

and ai,3n−3m−2l′ +1, ..., ai,2n−m−l′ on the lowest 2m − n + l
′

levels.
Decoding: Decoding by the i th receiver, i ∈ {1, ..., K },

is performed as follows. First, ai,1, ..., ai,n−m−l′ are decoded

from the highest n − m − l
′

levels of the first reception.
Then, ai,3n−4m−2l′ +1, ..., ai,2n−2m−l′ are decoded from the

lowest 2m − n + l
′

levels of the first reception. Further,
ai,2n−2m−l′ +1, ..., ai,n−l′ are decoded from the highest 2m − n
levels of the second reception, and ai,2m−n+1, ..., ai,n−m−l′

are decoded from the next 2n − 3m − l
′

levels of the
second reception. Moreover, ai,3n−3m−2l′ +1, ..., ai,2n−m−l′ are

decoded from the lowest 2m − n + l
′

levels of the first
transmission, respectively.

Then, having ai,2m−n+1, ..., ai,n−m−l′ , the receiver
decodes ai,n−m−l′ +1, ..., ai,2n−3m−2l′ from ai,n−m−l′ +1 +
ai,2m−n+1, ..., ai,2n−3m−2l′ + ai,n−m−l′ in the first
reception. Finally, having ai,2m−n+1, ..., ai,2n−3m−l′ ,
and ai,2m−n+1, ..., ai,2n−3m−l′ , the receiver decodes
ai,n−l′ +1, ..., ai,3n−3m−2l′ from ai,n−l′ +1 +(K −2)ai,2m−n+1 +
(K − 1)ai,2m−n+1, ..., ai,3n−3m−2l′ + (K − 2)ai,2n−3m−l′ +
(K − 1)ai,2n−3m−l′ in the second reception.

Rate: With the above strategy, each user transmits 2n−m−l
′

levels in two uses of the channel which proves the lemma
because 1

2 (2n − m − l
′
) = 1

2 (2n − m − (2n − 3m − 2 p)+) =
1
2 min{2n − m, 2m + 2 p} = min{n − 1

2 m, m + p} = n min

{1 − α
2 , α + β}. �

Lemma 3: For the K -user linear deterministic IC, a sym-
metric rate of n min{1 + β, α

2 } is achievable for α ≥ 2.
Proof: Define l

′′ � (m − 2n − 2 p)+. For the i th trans-
mitter, i ∈ {1, ..., K }, we transmit ai,1, ..., ai,m−l′′ in two
transmission slots.
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First Round: 1. Transmission: In the first round, the i th

transmitter sends ai,1, ..., ai,m−n−l′′ on the highest m − n − l
′′

transmission levels, respectively, and nothing on the lower
n + l

′′
levels.

2. Reception: Since α ≥ 2, the i th receiver receives
ai,1, ..., ai,m−n−l′′ on the highest m − l

′′
reception levels,

nothing on the next lower l
′′

levels, and ai,1, ..., ai,n on the
lowest n levels.

Feedback: Receiver i sends back ai,n+1, ..., ai,m−n−l′′ over

the feedback channel to the i th transmitter (m−2n−l
′′

levels).
Since 0 ≤ m − 2n − l

′′ ≤ 2 p, the feedback rate is p levels per
channel use.

Second Round: 1. Transmission: In the second round, the
i th transmitter sends new levels ai,m−n−l′′ +1, ..., ai,m−l′′ on the
highest n transmission levels, ai,n+1, ..., ai,m−n−l′′ on the next

m − 2n − l
′′

levels, and nothing on the lower n + l
′′

levels.
2. Reception: The i th receiver receives

ai,m−n−l′′ +1, ..., ai,m−l′′ on the highest n reception levels,
(K − 1)ai,n+1 + (K − 2)ai,n+1, ..., (K − 1)ai,m−n−l′′ +
(K − 2)ai,m−n−l′′ on the next m − 2n − l

′′
levels, nothing on

the next lower l
′′

levels, and ai,m−n−l′′ +1, ..., ai,m−l′′ on the
lowest n levels.

Decoding: Decoding at the i th receiver, i ∈ {1, ..., K } is
performed as follows. First, ai,1, ..., ai,n are decoded from
the lowest n levels of the first reception, ai,n+1, ..., ai,m−n−l′′

are decoded from the (n + 1)th to (m − n − l
′′
)
th

highest
levels of the first reception, and ai,m−n−l′′ +1, ..., ai,m−l′′
are decoded from the lowest n levels of the second
reception. Then, having ai,n+1, ..., ai,m−n−l′′ , the receiver
decodes ai,n+1, ..., ai,m−n−l′′ from (K − 1)ai,n+1 +
(K −2)ai,n+1, ..., (K −1)ai,m−n−l′′ + (K −2)ai,m−n−l′′ in the
second reception.

Rate: With the above strategy, each user transmits m − l
′′

levels in two uses of the channel which proves the lemma
because 1

2 (m−l
′′
) = 1

2 (m−(m−2n−2 p)+) = 1
2 min{m, 2n+

2 p} = min{m
2 , n + p} = n min{α

2 , 1 + β}. �

APPENDIX B

V. SOME LEMMAS USED IN PROOFS OF ACHIEVABILITY

FOR GAUSSIAN CHANNEL

A. Lemmas for the Proof of Decodability of Forward
Transmission

In Lemmas 4-6 in the following, assume an interfer-
ence network with K transmitters and M receivers, where
the discrete-time real Gaussian channel has the vector
representation

ym =
K∑

k=1

hm,kxk + zm, (69)

with ym ∈ R
T , xk ∈ R

T , hm,k ∈ R denoting the channel output
of receiver m, channel input of transmitter k and the channel
gain, respectively. The Gaussian white noise with unit variance
is denoted by zm ∈ R

T . Also, assume the power constraint
E{‖xk‖2} ≤ T P on all the transmitters, and each transmitted
signal xk is built from the lattice points sk = φ(wk) and using
a dither as described in Section III-B.

The following lemma is taken from [29]:
Lemma 4: [29, Th. 2] For any given set of positive numbers

β1, . . . , βK , and the lattice codes C1, . . . , CK as described
in Section III-B, the capacity region is such that the desired
functions fm = ∑

k am,ksk , m ∈ {1, . . . , M} are obtainable at
destinations, with am,k ∈ Z and the set of rates (R1, . . . , RK )
satisfying

Rk < min{m|m∈Z,1≤m≤M,am,k �=0}⎡

⎣log

(
‖ãm‖2 − P(ht

m ãm)2

1 + P‖hm‖2

)−1

+ log β2
k

⎤

⎦
+
, (70)

for all k, where hm � [hm,1, . . . , hm,K ]t , ãm �
[β1am,1, . . . , βK am,K ]t and am,k ∈ Z for all k ∈ {1, . . . , K }.

The following lemma is also similar to [26, Lemma 1] with
some modifications:

Lemma 5: The receiver can make an estimate of the real
sum of codewords,

∑J
k=1 xk, with vanishing probability of

error so long as the rate constraints proposed in Lemma 4
hold.

Proof: In [26, Lemma 1], it is shown that if the conditions
in Lemma 4 hold and we are able to derive

∑
k aksk for

the case that the rates of all messages are equal, the real
sum of codewords,

∑
k akxk can be obtained. The proof in

[26, Lemma 1] can be easily extended to the case where the
message rates are different, thus giving the result as in the
statement of the lemma. �

Using the following lemma on the properties of lattice
codes, the achievability constraints of our theorems on recov-
ering the summation of lattices are obtained:

Lemma 6: Assuming h1 = · · · = h J = h, J ≤ K , we are
able to obtain

∑J
k=1 xk with vanishing probability of error as

T → ∞, if the following constraints hold:

Ri ≤ log

(
1

J
+ Ph2

P
∑K

j=J+1 h2
j + 1

)
, i ∈ {1, . . . , J }. (71)

Proof: In Lemma 4, assume β1 = · · · = βK = 1 and
a1 = · · · = aJ = 1 and aJ+1 = · · · = aK = 0. Then, the rate
constraints Ri , i ∈ {1, . . . , J }, need to satisfy:

Ri ≤ log

(
‖a‖2 − P(ht a)

2

P‖h‖2 + 1

)−1

= log

(
J − P(Jh)2

P
∑K

j=1 h2
j + 1

)−1

= log

(
J (P

∑K
j=1 h2

j + 1) − P(Jh)2

P
∑K

j=1 h2
j + 1

)−1

= log

(
P
∑K

j=1 h2
j + 1

J (P
∑K

j=1 h2
j + 1) − P(Jh)2

)

= log

(
1

J
+ Ph2

P
∑K

j=J+1 h2
j + 1

)
. (72)

Therefore, we are able to derive
∑J

k=1 sk using Lemma 4.
Then, by applying Lemma 5 it can be seen that the real sum
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of codewords,
∑J

k=1 xk , can be obtained which completes the
proof. �

B. A Lemma for the Proof of Decodability
of Feedback Transmission

Using the following lemma on the properties of lattice
codes, the achievability constraints of our theorems on feeding
back the summation of multiple lattices to the transmitters are
obtained:

Lemma 7: Assume that each transmitter k ∈ {1, . . . , K }, is
equipped with an encoder Ek of rate R which maps its message
into the channel input as xk that is chosen from a lattice and
is a discrete subgroup of R

T (as described in Section III-B).
If Rsum is the minimum rate needed for transmitting

∑K
k=1 xk

with error going to zero on feedback links as the block size
T → ∞, then Rsum ≤ R + log K .

Proof: Assume that each xk , k ∈ {1, . . . , K }, is a lattice
codeword, with rate R. Depending on the Voronoi region
which is in a T -dimensional space, the number of possible
values for each xk (the number of channel coding lattice points
in Voronoi cell) is |� f ∩ V�c | where �c is the quantiza-
tion lattice with channel coding lattice � f , and V�c is the
T -dimensional Voronoi cell of the lattice �c. Since if all of
the K lattices of xk’s are along the same direction, their sum
has the maximum length which is K times the length of each
individual xk , the number of possible values for the sum of
messages

∑K
k=1 xk is up to |� f ∩ (K TV�c

) |. Therefore, if
Rsum is the rate needed to transmit the sum of xk’s, given
2T Rsum

2T R ≤ |� f ∩
(
K TV�c

)|
|� f ∩V�c | , we have Rsum − R ≤ log K . �
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