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Abstract—This paper studies the degrees of freedom (DoF) of
two-way 2 × 2 × 2 MIMO interference networks, a class of two-
way four-unicast networks. We first provide upper and lower
bounds on the sum DoF of general two-way 2 × 2 × 2 MIMO
interference networks with any number of antennas in each node.
We then investigate the special case where all user nodes have M
antennas and relay nodes have N antennas, and provide the simpli-
fied bounds on the sum DoF. We show that our proposed achievable
rate for this special case is higher than the achievable rates recently
proposed in [1]. Moreover, for this special case, we obtain the exact
DoF = 4M when N ≥ 2M , and DoF = 4N when M ≤ 2N .

Index Terms—Degrees of freedom, four-unicast channels, two-
way relay, 2 × 2 × 2 network, MIMO interference network.

I. INTRODUCTION

TWO-WAY relay is an effective approach to improving
spectral efficiency in wireless networks [2], [3], where

a pair of user nodes exchange information via the intermediate
relay node in two phases: the multiple-access phase and broad-
cast phase. Specifically, in the multiple-access phase, the two
user nodes transmit their messages simultaneously to the relay
node; while in the broadcast phase the relay node broadcasts
the superimposed signal to the two user nodes. Each user node
extracts its intended information through self-interference can-
cellation. Multi-pair two-way relay has also been considered
where a common relay node is used to facilitate simultaneous
information exchanges of multiple user pairs. To mitigate the
inter-pair interference, either some orthogonal multiple-access
scheme is employed to assign different user pairs to different
orthogonal resources [4], [5], or the MIMO technique such as
beamforming [6], [7] or interference alignment [8] is applied. In
this paper, our objective is to investigate the fundamental perfor-
mance limit of a two-way MIMO relay network with two pairs
of user nodes and two relays, known as a 2 × 2 × 2 network, in
terms of its degrees of freedom.

Even though the one-way 2 × 2 × 2 SISO interference net-
work has two degrees of freedom (DoF), reccently in [9] we
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showed that the DoF of the two-way 2 × 2 × 2 SISO interfer-
ence network is no larger than 8/3 indicating that the bidirec-
tional links cannot double the DoF for this network. Finite-
field two-way 2 × 2 × 2 SISO models are also studied in [10],
[11], which is however not applicable to Gaussian models. The
two-way 2 × 2 × 2 interference network is a class of two-way
four-unicast networks, also known as the two-way layered in-
terference channel.

In this paper, we study the DoF for the two-way 2 × 2 × 2
MIMO interference network. It is shown in [12] that for the
one-way 2 × 2 × 2 interference network with M antennas at all
terminals, the DoF is 2M . And in [13] the DoF of the general
one-way 2 × 2 × 2 MIMO interference network is obtained.
Also, the DoF of a symmetric one-way 2 × 2 × 2 MIMO in-
terference network with a non-symmetric delayed feedback is
investigated in [14]. Moreover, recently in [1], three different
achievability strategies are proposed for the two-way 2 × 2 × 2
MIMO interference network where all user nodes have M an-
tennas and relay nodes have N antennas.

The main contribution of this paper is to provide upper and
lower bounds on the DoF for the general two-way 2 × 2 × 2
MIMO interference network with arbitrary number of anten-
nas at each node. Specifically, a new achievability scheme is
proposed that performs an interference neutralization scheme,
which exploits side-information inherent to two-way commu-
nications so as to obtain both interference neutralization gain
and network coding gain. For the case where all user nodes
have M antennas and relay nodes have N antennas, we show
that our proposed achievability strategy outperforms all achiev-
ability strategies in [1]. For this special case, for some cases
that N or M is the bottleneck for the transmission, we found
the exact DoF, i.e., if M ≥ 2N , DoF = 4N and if N > 2M ,
DoF = 4M .

The remainder of this paper is as follows. In Section II,
the two-way 2 × 2 × 2 interference channel model is given. In
Sections III and IV, we present upper and lower bounds on the
DoF of the two-way 2 × 2 × 2 MIMO interference network,
respectively. We specialize these bounds to the case where the
user nodes have M nodes and the relay nodes have N nodes in
Section V. Finally, Section VI concludes the paper.

II. CHANNEL MODEL

As shown in Fig. 1, the two-way 2 × 2 × 2 MIMO interfer-
ence network consists of four transceiver nodes and two relays
R1, R2. Transceiver node i is equipped with Mi antennas and
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Fig. 1. A two-way 2 × 2 × 2 MIMO interference network.

consists of transmitter (source) Si and receiver (destination)
Dq(i) , where qi = i + 2 for i = 1, 2 and qi = i − 2 for i = 3, 4.
Each transmitter Si has one message that is intended for its
designated receiver Di , i ∈ {1, . . . , 4}. The relay Rk comprises
of Nk antennas, k ∈ {1, 2}. Fig. 2 shows the two hops of this
system separately. In the first hop (Fig. 2(a)), the signal received
at relay Rk , k ∈ {1, 2}, in time slot m is expressed as

yRk
[m] =

4∑

i=1

Hi,Rk
xi [m] + zRk

[m], (1)

where Hi,Rk
is the Nk × Mi complex channel matrix from

transmitter Si to relay Rk , xi [m] is the Mi × 1 signal vec-
tor transmitted from Si , yRk

[m] is the Nk × 1 signal vector
received at relay Rk and zRk

[m] is the Nk × 1 circularly sym-
metric complex Gaussian noise vector with i.i.d. zero mean and
unit variance entries, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. In the second
hop (Fig. 2(b)), the signal received at receiver Di in time slot m
is given by

yi [m] = HR1,ixR1 [m] + HR2,ixR2 [m] + zi [m], (2)

for i ∈ {1, . . . , 4}, where HRk ,i is the Mq(i) × Nk complex
channel matrix from relay Rk to receiver Di , xRk

[m] is the
Nk × 1 signal vector transmitted from Rk , yi [m] is the Mq(i) ×
1 signal received at receiver Di and zi [m] is the Mq(i) × 1
circularly symmetric complex Gaussian noise vector with i.i.d.
zero mean and unit variance entries, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}.
We assume that the channel coefficient values are drawn i.i.d.
from a continuous distribution and their magnitudes are bounded
from below and above by Hmin and Hmax respectively as in
[15]. Furthermore, the relays are assumed to be causal, which
means that the signals transmitted from the relays depend only
on the signals received in the past and not on the current received
signals and can be described as

xRk
[m] = f(Ym−1

Rk
,Xm−1

Rk
), (3)

where Xm−1
Rk

� (xRk
[1], . . . ,xRk

[m − 1]), Ym−1
Rk

� (yRk
[1],

. . . ,yRk
[m − 1]). We assume that each source Si knows only

channels Hi,Rk
, k ∈ {1, 2}; each relay knows all the channels;

and each destination Di knows only channels HRk ,i , k ∈ {1, 2}.

Fig. 2. The channels from and to relays in a two-way 2 × 2 × 2 MIMO
interference network.

The source Si has a message Wi that is intended for destina-
tion Di . |Wi | denotes the size of the message Wi . The rates
Ri = log |Wi |

n , i ∈ {1, 2, 3, 4} are achievable during n chan-
nel uses when n is large enough, if the probability of error
can be arbitrarily small for all four messages simultaneously.
The capacity region C = {(R1,R2,R3,R4)} represents the set
of all achievable quadruples. The sum-capacity is the maxi-
mum sum-rate that is achievable, i.e., CΣ(P ) =

∑4
i=1 Rc

i where
(Rc

1,Rc
2,Rc

3,Rc
4) = arg max(R1,R2,R3,R4)∈C

∑4
i=1 Ri and P is

the transmit power at each node (source or relay). The degrees
of freedom (DoF) is defined as

DoF � lim
P →∞

CΣ(P )
log P

=
4∑

i=1

lim
P →∞

Rc
i

log P
=

4∑

i=1

di, (4)

where di � limP →∞
Rc

i

log P is the DoF of source Si , for i ∈
{1, 2, 3, 4}.
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III. DOF UPPER BOUNDS

In [9], an upper bound on the DoF of two-way 2 × 2 × 2
SISO interference networks is given. Next we generalize that
bound to the MIMO case with any number of antennas in each
node.

Theorem 1: For the general two-way 2 × 2 × 2 MIMO
interference network, DoF ≤ 2

3 max{M1 + M3, N1 + N2} +
2
3 max{M2 + M4, N1 + N2}.

Proof: For the upper bound, we assume that the relays have
access to each other’s message as side information. Consider
n time slots of the channel use and assume that nRi rep-
resents the maximum rate achievable for transmitter i in the
total n time slots. Define Yn

i � (yi [1], . . . ,yi [n]) and Xn
i �

(xi [1], . . . ,xi [n]). We also define Hj,R � [Hj,R1 Hj,R2 ],
Yn

R � [Yn
R1

Yn
R2

], and Zn
R � [Zn

R1
Zn

R2
], where Yn

Rk
�

(yRk
[1], . . . ,yRk

[n]) and Zn
Rk

� (zRk
[1], . . . , zRk

[n]). Then,
we have:

nR3

(a)
≤ I(W3;Yn

3 ) + nεn

(b)
≤ I(W3;Yn

3 |W1) + nεn

(c)
≤ I(W3;Yn

R |W1) + nεn

= h(Yn
R |W1) − h(Yn

R |W1,W3) + nεn

= h(Yn
R |W1) − I(Yn

R ;W2,W4|W1,W3)

− h(Yn
R |W1,W3,W2,W4) + nεn

(d)
= h(Yn

R |W1) − I(Yn
R ;W2,W4|W1,W3) − h(Zn

R )

+ nεn

= h(Yn
R |W1) − H(W2,W4|W1,W3)

+ H(W2,W4|W1,W3,Yn
R ) − 2n(N1 + N2) log (2πe)

+ nεn

(e)
≤ h(Yn

R |W1) − H(W2,W4)

+ H(W2,W4|Yn
R − H1,RXn

1 − H3,RXn
3 )

− 2n(N1 + N2) log (2πe) + nεn

= h(Yn
R |W1) − H(W2,W4)

+ H(W2,W4|H2,RXn
2 + H4,RXn

4 + Zn
R )

− 2n(N1 + N2) log (2πe) + nεn

(f )
≤ h(Yn

R |W1) − H(W2,W4) − 2n(N1 + N2) log (2πe)

+ (M2 + M4 − N1 − N2)
+ (

log
(
2πe(2H2

maxP )
)n)

+ nε
′
n + nεn

(g )
≤ h(Yn

R ) − H(W2,W4) − 2n(N1 + N2) log (2πe)

+ (M2 + M4 − N1 − N2)
+ (

log
(
2πe(2H2

maxP )
)n)

+ nε
′′
n

(h)
≤ h(Yn

R1
) + h(Yn

R2
) − H(W2,W4)

− 2n(N1 + N2) log (2πe)

+ (M2 + M4 − N1 − N2)
+ (

log
(
2πe(2H2

maxP )
)n)

+ nε
′′
n

(i)
≤ (N1 + N2)

(
log

(
2πe(4H2

maxP + 1)
)n)

− H(W2,W4) − 2n(N1 + N2) log (2πe)

+ (M2 + M4 − N1 − N2)
+ (

log
(
2πe(2H2

maxP )
)n)

+ nε
′′
n , (5)

where (a) follows since the transmission rate is less than or equal
to the mutual information between the message and the received
signal, and εn can be arbitrarily small by increasing n; (b) fol-
lows since I(W3;Yn

3 |W1) − I(W3;Yn
3 ) = I(W3;Yn

3 ;W1) ≥
−min{I(W3;Yn

3 ), I(W1;Yn
3 ), I(W3;W1)} = 0 (as I(W3;

W1) = 0); (c) holds since W3 → Yn
R → Yn

3 ; (d) follows since
by subtracting the contributions of Xn

i , i = 1, . . . , 4 from Yn
R ,

we will only have Gaussian noise at the relays; (e) follows
from Lemma 1 below; (f) follows from Lemma 2 below; (g)
holds because conditioning decreases the entropy; (h) holds
since h(X,Y ) ≤ h(X) + h(Y ); and (i) holds since yRi

is in
the form of (1), with |Hi,Rk

[m]| ≤ Hmax , and Xi ∼ CN (0, P ).
Lemma 1: The following inequality holds:

H(W2,W4|W1,W3,Yn
R )

≤ H(W2,W4|Yn
R − H1,RXn

1 − H3,RXn
3 ). (6)

Proof: For any X and Y , the following relations hold:

H(X|Y ) = H(X|Y, f(Y )) ≤ H(X|f(Y )), (7)

where the equality follows from the fact that f(Y ) is only a
function of Y and the inequality follows from the fact that
conditioning reduces entropy. Therefore, since Xn

1 and Xn
3 are

functions of W1, W3, and Yn
R , it can be seen that (6) follows

from (7). �
Lemma 2: The following inequality holds:

H(W2,W4|H2,RXn
2 + H4,RXn

4 + Zn
R )

≤ (M2 + M4 − N1 − N2)
+ (

log
(
2πe(2H2

maxP )
)n)

+ nε
′
n .
(8)

Proof: The signal H2,RXn
2 + H4,RXn

4 + Zn
R includes

N1 + N2 equations, but [Xn
2 Xn

4 ] includes streams from M2 +
M4 antennas. If we consider another (M2 + M4 − N1 − N2)

+

sets of equations as H
′
2,RXn

2 + H
′
4,RXn

4 such that all of the

entries of H
′
i,R are chosen independently from the same con-

tinuous distribution as Hi,R , then having M2 + M4 streams of
signals H2,RXn

2 + H4,RXn
4 together with H

′
2,RXn

2 + H
′
4,RXn

4
allows us to decode the transmitted M2 + M4 streams, i.e.,
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[Xn
2 Xn

4 ], with probability one. Therefore we can write:

H(W2, W4|H2,RXn
2 + H4,RXn

4 + Zn
R )

= I(H
′
2,RXn

2 + H
′
4,RXn

4 ; W2, W4|H2,RXn
2 + H4,RXn

4 + Zn
R )

+ H(W2, W4|H2,RXn
2 + H4,RXn

4 + zn
R , H

′
2,RXn

2 + H
′
4,RXn

4 )

(a)
≤ I(H

′
2,RXn

2 + H
′
4,RXn

4 ; W2, W4|H2,RXn
2 + H4,RXn

4 + Zn
R )

+ nε
′
n

(b)
≤ h(H

′
2,RXn

2 + H
′
4,RXn

4 ) + nε
′
n

(c)
≤ (M2 + M4 − N1 − N2)

+
(
log

(
2πe(2H2

maxP )
)n)

+ nε
′
n , (9)

where (a) follows from Fano’s inequality and the fact that prob-
ability of error in decoding W2 and W4 given Xn

2 and Xn
4 with a

limited noise goes to zero based on the the discussion at the be-
ginning of the proof for high SNR; (b) follows from the fact that
the mutual information between two signals is less than or equal
to the entropy of each individual signal; and (c) holds since each
of the M2 + M4 − N1 − N2 streams in H

′
2,RXn

2 + H
′
4,RXn

4 is
with channel entries upper bounded by Hmax , and the transmit-
ted signals from each antenna has distribution CN (0, P ). �

Dividing both sides of (5) by n log P , and using
n(R2 + R4 − ε

′′′
n ) ≤ I(W2;Y2) + I(W4;Y4) = H(W2) −

H(W2|Y2) + H(W4) − H(W4|Y4) ≤ H(W2) + H(W4) =
H(W2,W4), results in:

R3

log P

≤ (N1 + N2) log
(
2πe(4H2

maxP + 1)
)n

n log P

− (R2 + R4 − ε
′′′
n )

log P
− 2n(N1 + N2) log (2πe)

n log P

+
(M2 + M4 − N1 − N2)

+ log
(
2πe(2H2

maxP + 1)
)n

n log P

+
ε
′′
n

log P
, (10)

and with n → ∞ and P → ∞, we obtain the following bound:

d2 + d3 + d4 ≤ (N1 + N2) + (M2 + M4 − N1 − N2)
+

= max{M2 + M4, N1 + N2}. (11)

Similarly, we also have

d1 + d2 + d3 ≤ max{M1 + M3, N1 + N2}, (12)

d1 + d2 + d4 ≤ max{M2 + M4, N1 + N2}, (13)

d1 + d3 + d4 ≤ max{M1 + M3, N1 + N2}. (14)

Summing up (11)–(14) we get 3(d1 + d2 + d3 + d4) ≤
2 max{M1 + M3, N1 + N2} + 2 max{M2 + M4, N1 + N2}
which completes the proof of Theorem 1. �

Remark 1: When Mi = 1, i = 1, 2, 3, 4, Nk = 1, k = 1, 2,
we obtain DoF = 8/3 which is the upper bound given in [9].

The following two theorems are simple cut-set bounds:
Theorem 2: For the general two-way MIMO 2 × 2 × 2 relay

network, DoF ≤ 2(N1 + N2).
Proof: The proof follows from the fact that the DoF in each

direction is upper bounded by the number of relays N1 + N2.�
Theorem 3: For the general two-way MIMO 2 × 2 × 2 relay

network, DoF ≤ M1 + M2 + M3 + M4.
Proof: The proof follows from the fact that the DoF is

bounded by the total number of transmit antennas. �

IV. DOF LOWER BOUNDS

We first give the following two lower bounds on the DoF of
two-way 2 × 2 × 2 MIMO interference networks.

Theorem 4: For the general two-way 2 × 2 × 2 MIMO in-
terference network we have DoF ≥ 2 min{N1 + N2,max{min
{M1,M3},min{M2,M4}}}.

Proof: If nodes S2 and S4 in Fig. 1 are silent, then the chan-
nel can be seen as a two-way 1 × 1 × 1 MIMO interference
network formed by S1, a super relay node consisting of R1

and R2 together, and S3. This channel can achieve the DoF of
min{N1 + N2,M1,M3} in each direction by simply forward-
ing the sum of the received signals at the super relay node,
which is the sum of the two messages from S1 and S3 (with a
total DoF of 2 min{N1 + N2,M1,M3}). By using S2 and S4

instead of S1 and S3, the DoF of 2 min{N1 + N2,M2,M4}
is achievable. Therefore, the maximum of these two bounds,
i.e., 2 min{N1 + N2,max{min{M1,M3},min{M2,M4}}} is
achievable, as well. �

Theorem 5: For the general two-way 2 × 2 × 2 MIMO
interference network, we have DoF ≥ min{max{N1, N2},
2 min{M1,M3} + 2 min{M2,M4}}.

Proof: Without loss of generality, assume N1 ≤ N2. We di-
vide the proof into two parts:

1) If N2 ≥ 2 min{M1,M3} + 2 min{M2,M4}, i.e., the total
number of transmit antennas is no more than N2, assume nodes
S1 and S3 transmit only from their top min{M1,M3} antennas
and nodes S2 and S4 transmit only from their top min{M2,M4}
antennas. The relay R2 is able to decode all messages by solving
a set of linear equations since the number of received signals
is no less than the number of messages. Then, R2 broadcasts
the decoded messages to the destinations, and achieves the DoF
of 2 min{M1,M3} + 2 min{M2,M4}, as it is no more than
min{N2,

∑4
i=1 Mi} suggested by Lemma 3 below.

2) If N2 < 2 min{M1,M3} + 2 min{M2,M4}, then only a
total of N2 antennas in sources transmit and using the same
argument as above, it can be seen that the signals will be
decoded in relay R2 and then in their corresponding desti-
nations, as the DoF of N2 is suggested by Lemma 3 be-
low (since N2 < 2 min{M1,M3} + 2 min{M2,M4}, we get
min{N2,

∑4
i=1 Mi} = N2). �

Lemma 3: [16] The DoF of a broadcast channel with N
antennas at the transmitter and Mi antennas at receiver i,
i = 1, . . . ,K, is min{N,

∑K
i=1 Mi}.
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The following theorem provides a lower bound on the DoF
of the 2 × 2 × 2 MIMO interference network based on the DoF
for each source-destination pair.

Theorem 6: If d1, d2, d3, d4 are non-negative integers that
satisfy the following conditions:

� d1, d3 ≤ min{M1,M3, N1 + N2},
� d2, d4 ≤ min{M2,M4, N1 + N2},
� d1 + d2, d3 + d4 ≤ N1 + N2,
� 2(d1d4 + d1d2 + d3d4 + d2d3) ≤ N 2

1 + N 2
2 − 1,

then the DoF of
∑4

i=1 di is achievable.
Proof: We show that if all the conditions in the theorem state-

ment hold, each source-destination pair (Si,Di), i ∈ {1, . . . , 4}
can achieve the DoF of di . The first two conditions in the the-
orem statement ensure that the DoF for each link is no more
than the number of transmit antennas, the number of receive
antennas, and also the number of antennas in the relay between
them. The third condition ensures that the DoF in each direction
is no more than the number of relay antennas. In the follow-
ing, we show that by adding the fourth condition, the DoF of
(d1, d2, d3, d4) is achievable.

The received signals at relays are given in (1). Then, each
relay Ri , i ∈ {1, 2}, performs amplify-and-forward by trans-
mitting ViyRi

[m] using an Ni × Ni precoding matrix Vi , and
the received signals at the destinations are given by:

yi [m] = HR1,iV1yR1 [m] + HR2,iV2yR2 [m] + zi [m], (15)

for i ∈ {1, . . . , 4}. Substituting (1) into (15) results in:

yi [m] = HR 1,iV1

⎛

⎝
4∑

j=1

Hj,R1xj [m] + zR 1 [m]

⎞

⎠

+ HR 2,iV2

⎛

⎝
4∑

j=1

Hj,R2xj [m] + zR 2 [m]

⎞

⎠ + zi [m],

(16)

for i ∈ {1, . . . , 4}. We assume that each transmitter Si transmits
signals from the top di antennas and nothing from the rest of the
antennas. We will show the existence of V1 and V2 such that
each receiver Di can decode the di information streams from its
corresponding transmitter Si , and then the proof of achievability
will be complete.

Now, we analyze the interfering signals that should be nulled.
For destination D1, the signal x1[m] is the intended signal and
the receiver knows x3[m] as it is transmitter S3 as well. There-
fore, the interference from the signals x2[m] and x4[m] should
be nulled at destination D1.

1) The interfering signal from x4[m] to D1:

q4→1[m] =
(
HR 1,1V1H4,R1 + HR 2,1V2H4,R2

)
︸ ︷︷ ︸

�G 4→1

×
[
x

(1)
4 [m], . . . , x(d4)

4 [m], 0, . . . , 0
]T

; (17)

where x
(j )
i [m] represents the jth entry of vector xi [m].

2) The interfering signal from x2[m] to D1:

q2→1[m] = (HR1,1V1H2,R1 + HR2,1V2H2,R2)︸ ︷︷ ︸
�G 2→1

×
[
x

(1)
2 [m], . . . , x(d2)

2 [m], 0, . . . , 0
]T

;

(18)

We will choose V1 and V2 such that the top d1 antennas
at D1 contain the d1 intended data streams, by enforcing that
first d1 elements of both q4→1[m] and q2→1[m] does not contain
elements of x4[m] and x2[m], respectively. That is, we force the
corresponding submatrices in (17) and (18) to be zero, i.e.,

G4→1[1 : d1, 1 : d4] = 0,

G2→1[1 : d1, 1 : d2] = 0. (19)

(19) consists of d1(d2 + d4) linear equations of elements of V1

and V2.
Also, the interference from the signals x1[m] and x3[m]

should be nulled at destination D2, which are defined as

q1→2[m] = (HR1,2V1H1,R1 + HR2,2V2H1,R2)︸ ︷︷ ︸
�G 1→2

×
[
x

(1)
1 [m], . . . , x(d1)

1 [m], 0, . . . , 0
]T

, (20)

q3→2[m] = (HR1,2V1H3,R1 + HR2,2V2H3,R2)︸ ︷︷ ︸
�G 3→2

×
[
x

(1)
3 [m], . . . , x(d3)

3 [m], 0, . . . , 0
]T

. (21)

Therefore, the followings should hold:

G1→2[1 : d2, 1 : d1] = 0,

G3→2[1 : d2, 1 : d3] = 0. (22)

(22) consists of d2(d1 + d3) linear equations of elements of V1

and V2.
Similarly, x2[m] and x4[m] should be nulled at destination

D3, which are defined as

q2→3[m] = (HR1,3V1H2,R1 + HR2,3V2H2,R2)︸ ︷︷ ︸
�G 2→3

×
[
x

(1)
2 [m], . . . , x(d2)

2 [m], 0, . . . , 0
]T

, (23)

q4→3[m] = (HR1,3V1H4,R1 + HR2,3V2H4,R2)︸ ︷︷ ︸
�G 4→3

×
[
x

(1)
4 [m], . . . , x(d4)

4 [m], 0, . . . , 0
]T

. (24)

Therefore, the followings should hold:

G2→3[1 : d3, 1 : d2] = 0,

G4→3[1 : d3, 1 : d4] = 0. (25)

(25) consists of d3(d2 + d4) linear equations of elements of V1

and V2.
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Finally, x1[m] and x3[m] should be nulled at destination D4,
which are defined as

q1→4[m] = (HR1,4V1H1,R1 + HR2,4V2H1,R2)︸ ︷︷ ︸
�G 1→4

×
[
x

(1)
1 [m], . . . , x(d1)

1 [m], 0, . . . , 0
]T

, (26)

q3→4[m] = (HR1,4V1H3,R1 + HR2,4V2H3,R2)︸ ︷︷ ︸
�G 3→4

×
[
x

(1)
3 [m], . . . , x(d3)

3 [m], 0, . . . , 0
]T

. (27)

Therefore, the followings should hold:

G1→4[1 : d4, 1 : d1] = 0,

G3→4[1 : d4, 1 : d3] = 0. (28)

(28) consists of d4(d1 + d3) linear equations of elements of V1

and V2.
Combining (19), (22), (25) and (28) we have in total 2(d1 +

d3)(d2 + d4) linear equations of the form Gv = 0 of the N 2
1 +

N 2
2 elements of V1 and V2. When the fourth condition in the

theorem holds, then with probability 1 there exists a non-zero
solution of V1 and V2. �

V. SPECIAL CASE

We now apply the upper and lower bounds in the previous sec-
tions to a special case of 2 × 2 × 2 MIMO interference networks
where Mi = M , i ∈ {1, . . . , 4}, and Nk = N , k ∈ {1, 2}. The
following theorem provides the bounds on the DoF for the such
networks.

Theorem 7: For the 2 × 2 × 2 MIMO interference net-
work where each relay node has N antennas and each user
has M nodes, we have 2 min{2N,M} + min{	 N 2−1

2 min{2N,M } 
,
4N − 2 min{2N,M}, 2M} ≤ DoF ≤ min{ 8

3 max{N,M},
4M, 4N}.

Proof: The upper bound of 8
3 max{N,M} follows from

Theorem 1, the upper bound of 4N follows from Theorem 2,
and the upper bound of 4M follows from Theorem 3.

The lower bound is obtained by finding the highest one among
the lower bounds given by Theorem 6.

In particular, we want to maximize
∑4

i=1 di with di being
non-negative integers subject to

di ≤ M, i ∈ {1, . . . , 4}, (29)

d1 + d2 ≤ 2N, (30)

d3 + d4 ≤ 2N, (31)

(d1 + d3)(d2 + d4) ≤ (N 2 − 1). (32)

Solving (29)–(31) for obtaining the largest achievable
bound

∑4
i=1 di with preference on maximizing d1 + d3

can be performed using Lemma 4 below. It results d
′

1 =
min{2N,M}, d

′
3 = min{2N,M}, d

′
2 = min{2N − d

′
1 ,M},

and d
′

4 = min{2N − d
′

3 ,M}. It is easy to see that these val-
ues lead to the largest

∑4
i=1 di based on (29)–(31), without

considering (32). To solve for (d1, d2, d3, d4), given that d
′

1 =
d

′
3 ≥ d

′
2 , d

′
4 , we choose d1 = d

′
1 = min{2N,M}, d3 = d

′
3 =

min{2N,M} and solve

d2 ≤ min{2N − min{2N,M},M},
d4 ≤ min{2N − min{2N,M},M},

d2 + d4 ≤
⌊

(N 2 − 1)
2 min{2N,M}

⌋
≤ (N 2 − 1)

(d1 + d3)
,

using Lemma 4 with a = min{2N − min{2N,M},M}, b =
	 (N 2−1)

2 min{2N,M } 
 ≤ (N 2−1)
2 min{2N,M } , x = d2, y = d4 to maximize

d2 + d4. Therefore, we obtain

d2 = min
{⌊

(N 2 − 1)
2 min{2N, M}

⌋
, 2N − min{2N, M}, M

}
,

d4 = min
{⌊

(N 2 − 1)
2 min{2N, M}

⌋
− d2, 2N − min{2N, M}, M

}
.

(33)

Moreover, we also have

d1 = d3 = min{2N,M}. (34)

Finally, Lemma 5 below completes the proof of Theorem 7. �
Lemma 4: Assume that for constants a and b, the inequalities

x, y ≤ a and x + y ≤ b hold. Then, we have max{x + y} =
min{2a, b} and the pair x0 = min{a, b}, y0 = min{a, b − x0}
satisfies this.

Proof: It is easy to see that max{x + y} cannot be more than
min{2a, b} due to the constraints. Therefore, if we can obtain
this value, it is optimal.

On the other hand, x0, y0 ≤ a hold. So it is enough to show
that x0 + y0 = min{2a, b}. We have x0 + y0 = min{a, b} +
min{a, b − min{a, b}} = min{2a, a + b, a + b − min{a, b},
2b−min{a, b}}=min{2a, a + b,max{a, b}, 2b−min{a, b}}.
Let divide the proof into 3 cases as below.

� 2a ≥ b ≥ a: In this case, x0 + y0 = min{2a, b, 2b − a} =
min{2a, b}.

� a ≥ b: In this case, x0 + y0 = b = min{2a, b}.
� b ≥ 2a: In this case, x0 + y0 = 2a = min{2a, b}. �
Lemma 5: (d1, d2, d3, d4) in (33)–(34) maximizes

∑4
i=1 di

with di being non-negative integers subject to (29)–(32).
Proof: The proof is given in Appendix A. �
The achievable DoF given in [1, Theorem 1] is max{min

{4N, 2M},min{2N, 2	 4
3M
},min{2N − 1, 4M}}. The fol-

lowing corollary shows that our lower bound in Theorem 7 is
higher than the one given in [1]:

Corollary 1: The lower bound in Theorem 7 is better than
the one proposed in [1, Theorem 1].

Proof: The proof is given in Appendix B. �
Theorem 7 also results in the following corollary.
Corollary 2: For the two-way 2 × 2 × 2 MIMO interference

network where each relay node has N antennas and each user
node has M antennas, if M ≥ 2N holds, then DoF = 4N . And
if N > 2M , then DoF = 4M .
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Fig. 3. Comparison of the bounds given in Theorem 7 and the lower bound
in [1].

Proof: If M ≥ 2N , the lower bound in Theorem 7 can be
written as

2 min{2N,M} + min
{{⌊

N 2 − 1
2 min{2N,M}

⌋}
, 4N

− 2 min{2N,M}, 2M

}

= 4N + min
{{⌊

N 2 − 1
2 min{2N,M}

⌋}
, 4N

− 2 min{2N,M}, 2M

}

= 4N + min
{{⌊

N 2 − 1
4N

⌋}
, 4N − 4N, 2M

}
= 4N.

(35)

Fig. 4. Comparison of the bounds given in Theorem 7 and the lower bound
in [1].

And the upper bound can be written as

min
{

8
3

max{N,M}, 4M, 4N

}

= min
{

8
3
M, 4M, 4N

}
= 4N. (36)

Similarly, if N > 2M , both the lower and upper bounds become
4M . �

The above corollary states that when M ≥ 2N , then the bot-
tleneck on the DoF is the number of relay antennas and since
there are a total of 2N antennas in relays, in each direction
the DoF is 2N (with a total of 4N in two directions). Similarly,
when N > 2M , then the bottleneck on the DoF is the number of
transmitter antennas and since there are a total of 4M antennas
in transmitters, the DoF is 4M .
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Fig. 5. The upper and lower bounds on DoF given in Theorem 7, in comparison
with the one-way DoF.

Now, we will briefly compare our results with the one-way
model. It is shown in [13] that the DoF of the one-way 2 × 2 ×
2 MIMO interference network where each relay node has N
antennas and each user node has M antennas is 2 min{M,N}.

Comparing this result with Theorem 7 we see that the two-
way communication capability in general can increase the DoF,
with the actual gain depending on the values of M and N . In

Fig. 6. A comparison of the DoF bounds and the achievable DoF with caching
for two-way 2 × 2 × 2 networks with single-antenna user nodes and multiple-
antenna relays.

particular for the cases of M ≥ 2N and N > 2M , Corollary 2
indicates that two-way transmission doubles the DoF.

The bounds given in Theorem 7 are illustrated in Figs. 3 and
4 for different values of M , N . In Fig. 3(a) the tight results
for M = 1 and M ≥ 6 follow from Corollary 2. Similarly the
tight results in Figs. 3(b)–4(b) also follow from Corollary 2. We
observe that for all values of M and N in Figs. 3 and 4 there is
an improvement in the lower bound of DoF in comparison with
the one-way DoF. Moreover, our lower bound is better than that
given in [1]. In Fig. 5, we plot the upper and lower bounds given
in Theorem 7 as well as the one-way DoF as a function of M
and N .

Finally, we consider the case of multi-antenna relays and
single-antenna source/destination nodes, i.e., Mi = 1, i =
1, . . . , 4. It is shown in [9] that if each relay is equipped with
cache, then DoFc ≥ 4(N1+N2)

N1+N2+1 which is plotted in Fig. 6. On the
other hand, by applying the upper and lower bounds given by
Theorems 1–6 to the special case of Mi = 1, i = 1, 2, 3, 4, we
obtain 2 ≤ DoF ≤ max{ 4

3 (N1 + N2), 4} which is also plotted
in Fig. 6. It is seen that with caching the DoF approaches the
upper bound of 4 as N1 + N2 → ∞, indicating that caching
could potentially increase the DoF.

VI. CONCLUSIONS

We have considered the two-way 2 × 2 × 2 MIMO interfer-
ence network, a class of two-way four-unicast MIMO interfer-
ence networks. We have obtained upper and lower bounds on
the sum DoF of the two-way 2 × 2 × 2 MIMO interference net-
work with any number of antennas in each node. We have also
considered the special case where there are M antennas at each
user node and N antennas at each relay node and obtained a
better achievable DoF than that in the literature.

This work is also a first step towards the study of general two-
way relay-assisted networks. Another future work direction is
studying the impact of practical considerations such as channel
estimation error.
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APPENDIX A
PROOF OF LEMMA 5

We divide the proof into five cases:
1) N < M < 2N and 	 (N 2−1)

2M 
 > 4N − 2M .

2) N < M < 2N and 	 (N 2−1)
2M 
 ≤ 4N − 2M .

3) M ≤ N and 	 (N 2−1)
2M 
 ≥ 2M .

4) M ≤ N and 	 (N 2−1)
2M 
 < 2M .

5) M ≥ 2N .
The achieved DoF set (d1, d2, d3, d4) obtained in Theorem 7

is such that d2 + d4 = min{	 (N 2−1)
2 min{2N,M } 
, 4N − 2 min{2N,

M}, 2M} and d1 + d3 = 2 min{2N,M}.
For cases 1, 3 and 5 it is easy to show that

∑4
i=1 di cannot be

increased:
� N <M <2N and 	 (N 2−1)

2M 
 > 4N − 2M : We get d1 + d3

=2 min{2N,M}=2M and d2+d4 =min{	 (N 2−1)
2 min{2N,M }
,

4N − 2 min{2N,M}, 2M}=min{	 (N 2−1)
2M 
, 4N−2M}

= min{	 (N 2−1)
2M 
, 4N − 2M} = 4N − 2M . Hence

∑4
i=1

di = 4N which is optimal given (30)–(31).
� M ≤ N and 	 (N 2−1)

2M 
 ≥ 2M : We get d1 + d3 = 2 min

{2N,M} = 2M and d2 + d4 = min{	 (N 2−1)
2 min{2N,M } 
, 4N

− 2 min{2N,M}, 2M} = min{	 (N 2−1)
2M 
, 2M} = 2M .

Hence
∑4

i=1 di = 4M which is optimal given (29).
� M ≥ 2N : We get d1 = d3 = 2N and d2 = d4 = 0. Hence

gets
∑4

i=1 di = 4N which is optimal given (30)–(31).
For cases 2 and 4, we show the optimality by contradic-

tion. Assume that the DoF set (d
′
1, d

′
2, d

′
3, d

′
4) = (d1 − p, d2 +

n, d3 − q, d4 + m) with integers m,n, p, q is achievable such
that m + n > p + q and thus

∑
d

′
i >

∑
di . Define a � m +

n and b � p + q (and therefore a > b). Note that p, q ≥ 0
(and therefore b ≥ 0) since d

′
1 and d

′
3 cannot be more than

min{2N,M} (see (29)–(31)). We show that this does not sat-
isfy the bound (32). Let first simplify (d

′
1 + d

′
3)(d

′
2 + d

′
4) for

these two cases as below:
� N < M < 2N and 	 (N 2−1)

2M 
 ≤ 4N − 2M :

(d
′
2 + d

′
4)(d

′
1 + d

′
3)

=
(

min
{⌊

(N 2 − 1)
2 min{2N,M}

⌋
, 4N − 2 min{2N,M},

2M

}
+ a

)
(2 min{2N,M} − b)

=
(

min
{⌊

(N 2 − 1)
2M

⌋
, 4N − 2M, 2M

}
+ a

)

× (2M − b)

=
(

min
{⌊

(N 2 − 1)
2M

⌋
, 4N − 2M

}
+ a

)

× (2M − b)

=
(⌊

(N 2 − 1)
2M

⌋
+ a

)
(2M − b) . (37)

� M ≤ N and 	 (N 2−1)
2M 
 < 2M :

(d
′
2 + d

′
4)(d

′
1 + d

′
3)

=
(

min
{⌊

(N 2 − 1)
2 min{2N,M}

⌋
, 4N − 2 min{2N,M},

2M

}
+ a

)
(2 min{2N,M} − b)

=
(

min
{⌊

(N 2 − 1)
2M

⌋
, 2M

}
+ a

)
(2M − b)

=
(⌊

(N 2 − 1)
2M

⌋
+ a

)
(2M − b) . (38)

Therefore, for these two cases we have (d
′
2 + d

′
4) =

(	 (N 2−1)
2M 
 + a). Given (29)–(31), we get (d

′
2 + d

′
4) ≤

2 min{2N,M} = 2M which results (	 (N 2−1)
2M 
 + a) ≤ 2M .

Then, for these two cases we get:

(d
′
2 + d

′
4)(d

′
1 + d

′
3)

=
(⌊

(N 2 − 1)
2M

⌋
+ a

)
(2M − b)

=
(

2M

⌊
(N 2 − 1)

2M

⌋
+ 2aM − b

⌊
(N 2 − 1)

2M

⌋
− ab

)

(a)
≥

(
2M

⌊
(N 2 − 1)

2M

⌋
+ 2aM − b (2M − a) − ab

)

= 2M

⎛

⎜⎝
⌊

(N 2 − 1)
2M

⌋
+ (a − b)︸ ︷︷ ︸

≥1

⎞

⎟⎠

> (N 2 − 1), (39)

where (a) follows from
(⌊

(N 2−1)
2M

⌋
+ a

)
≤ 2M as mentioned

above.

APPENDIX B
PROOF OF COROLLARY 1

We only need to show that all three terms in the lower bound
in [1, Theorem 1] have a solution (d1, d2, d3, d4) that satisfy
(29)–(32).

� The first term, min{4N, 2M}, is achievable with d1 =
d3 = min{2N,M} and d2 = d4 = 0 which satisfies (29)–
(32).

� The second term, min{2N, 2	 4
3M
}, is achievable as fol-

lows.
– If N ≤ 	 4

3M
 choose d1 = min{M,N} − 1, d2 =
min{M,N}, d3 = N − min{M,N}, and d4 = N +
1 − min{M,N}.
∗ (29) holds since N + 1 − min{M,N} ≤ M is

true as:
. If min{M,N} = M : It is enough to show N ≤

2M − 1 which holds as 	 4
3M
 ≤ 2M − 1.
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. If min{M,N} = N : It is easy to verify in this
case as 1 ≤ M .

∗ It is easy to see that (30)–(31) hold.
∗ (32) holds since (d1 + d3)(d2 + d4) = N 2 − 1.

– If N > 	 4
3M
, we choose d1 = min{M, 2N}, d2 =

	 4
3M
 − min{M, 2N}, d3 = 	 4

3M
 − min{M, 2N},
and d4 = min{M, 2N}.

∗ (29) holds since 	 4
3M
 − min{M, 2N} ≤ M is

true, as 1
2	M

3 
 ≤ 	 4M
3 
 ≤ N ⇒ 	M

3 
 ≤ 2N ⇒
	M3 
≤min{2N,M}⇒	4M

3 
≤M+min{2N,M}.
∗ (30)–(31) hold since 	 4

3M
 < 2N .

∗ (32) holds as 	 4
3M
 < N results 	 4

3M
2 ≤ N 2

− 1.
� The third term, min{2N − 1, 4M}, is achievable as fol-

lows.
– If 2N − 1 < 4M , we choose d1 = min{M,N}, d2 =

min{M,N} − 1, d3 = N − min{M,N}, and d4 =
N − min{M,N}.
∗ (29) holds since N − min{M,N} ≤ M is true,

which is due to the following:
. If min{M,N} = M : It is enough to show N −

M ≤ M . We have 2N − 1 < 4M , and since M
and N are integers we have 2N ≤ 4M .

. If min{M,N} = N : It holds since 0 ≤ M .
∗ (30)–(31) hold since 2 min{M,N} − 1 ≤ 2N and

2N − 2 min{M,N} ≤ 2N .
∗ (32) holds since N(N − 1) < N 2 − 1.

– If 2N − 1 > 4M , we choose d1 = d2 = d3 = d4 = M .
∗ It is trivial that (29) holds.
∗ (30)–(31) hold since M < 2N −1

4 < N .
∗ (32) holds since M < 2N −1

4 results 4M 2 <
(

2N −1
2

)2 = N 2 − N + 1
4 . Since M and N are in-

tegers, then 4M 2 ≤ N 2 − N < N 2 − 1.
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