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Abstract—In this paper, we study the capacity regions of
two-way linear deterministic diamond channels. We show that
the capacity of the diamond channel in each direction can be
simultaneously achieved for all values of channel parameters,
where the forward and backward channel parameters are not
necessarily the same. We propose a relay strategy called ‘reverse
amplify-and-forward’ strategy and show that this strategy and
its variants combined with proper transmission strategies achieve
the capacity of linear deterministic diamond channel.

I. INTRODUCTION
Two-way communication between two nodes was first stud-

ied by Shannon [1]. There have been many attempts recently
to demonstrate two-way communications experimentally [2,
3]. The two-way relay channel where two nodes communicate
to each other in the presence of a single relay, has been widely
studied [4, 5]. In this paper, we will consider the two-way
diamond channel, where two nodes communicate to each other
in the presence of two relays. Also, [6, 7] consider different
kinds of collaboration between the nodes.

The diamond channel was first introduced in [8], and
consists of one transmitter, two relays and a receiver. The two-
way half-duplex K-relay channel has been studied using the
amplify-and-forward strategy at the relays [9, 10]. The design
of relay beamformers based on minimizing the transmit power
subject to the received signal-to-noise ratio constraints was
considered in [10]. Furthermore, achievability schemes using
time-sharing are investigated in [11] for a symmetric reciprocal
diamond channel with half-duplex nodes and the inner and
outer bounds are compared using simulations. However, we
show that the achievability scheme in [11] has an unbounded
gap from the capacity. None of the prior works gave a capacity
achieving strategy for a two-way full-duplex diamond channel.

In this paper, we consider a linear deterministic model
which was proposed in [12], and has been shown to lead to ap-
proximate capacity results for Gaussian channels in [5, 13, 14].
We study the capacity region of a two-way linear deterministic
diamond channel where the forward and backward channel
gains are not necessarily the same. We find that the capacity
in each direction can be simultaneously achieved. Thus, each
user can transmit at a rate which is not affected by the fact
that the relays receive the superposition of the signals.

In order to achieve the capacity in each direction separately,
we develop new transmission strategies by the transmitters and
the relays. The strategies proposed for the one-way diamond
channel in [12] do not directly work for two-way channels. The

reason is that they are dependent on the channel parameters
in the forward direction; but for two-way channels we need
a strategy that is optimal for both directions. For the special
case when the diamond channel reduces to a two-way relay
channel (channel gains to and from one of the relays are
zeros), our proposed strategy reduces to a reverse amplify-
and-forward strategy, where the relay reverses the order of the
received signals to form the transmitted signal. The proposed
strategy in this case is different from the one in [5] for two-
way relay channels, since the relay strategy in [5] depends on
the channel parameters, while ours simply reverses the order
of the input. On the other hand, the transmission strategy at
the source nodes in our approach is dependent on the channel
parameters unlike that in [5]. Thus, the proposed strategy in
this paper makes the relay strategy simpler by compensating
in the transmission strategy at the source nodes.

For a general two-way diamond channel, we give different
strategies based on the parameters of both the forward and
backward channels. Depending on the forward and backward
channel gains we consider four cases; these cases are further
subdivided. Two special cases are Cases 3.1.2 and 4.1.2. Our
first main result is that if neither the forward, nor the backward
channel is of one of these two cases, then the proposed reverse
amplify-and-forward strategy at the relays is optimal.

We next consider the case that exactly one of the forward
and backward channels is of Case 3.1.2 or 4.1.2. Without loss
of generality, we assume that the forward channel is of one
of the two mentioned cases. For each of these two cases, we
give four new strategies at the relay which involve various
modifications to the reverse amplify-and-forward strategy,
such as repeating some of the streams on multiple levels
or changing the order of transmission at some levels at one
of the relays. Furthermore, the transmission strategy for the
forward direction is rather straightforward by simply sending
capacity number of bits at the lowest levels. We show that all
these modified strategies achieve the capacity in the forward
direction. The choice of the strategies then depends on the
parameters in the backward direction. We show that for each
case of the backward channel, at least one of the four proposed
strategies achieves the capacity for the backward direction.
Finally, the case when both the forward and backward channels
are of Case 3.1.2 or 4.1.2 is considered. Here, a modified form
of the relay strategies proposed above is used to achieve the
capacity in both directions.
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II. CHANNEL MODEL

The linear deterministic channel model was proposed in [12]
to focus on signal interactions instead of the additive noise,
and to obtain insights for the Gaussian channel. A two-way
diamond channel consists of two nodes (denoted by A and B)
who wish to communicate to each other through two relays
(denoted by R1 and R2). We use non-negative integers nAk,
nBk, nkA, and nkB , to represent the channel gains from node
A to Rk, node B to Rk, Rk to node A, and Rk to node B,
respectively, for k ∈ {1, 2}. In this paper, the links in the
direction from A to B are said to be in the forward direction
and those from B to A are in the backward direction.

Let us define qAR , maxk{nAk}, qRB , maxk{nkB},
qBR , maxk{nBk}, qRA , maxk{nkA}, qIk ,
max{nAk, nBk}, and qOk , max{nkA, nkB} for k ∈
{1, 2}. Furthermore, denote the channel input at trans-
mitter u, for u ∈ {A,B}, at time i as Xu,i =
[XquR

u,i , · · · , X2
u,i, X

1
u,i]

T ∈ F2
quR , such that X1

u,i and XquR

u,i

represent the least and the most significant bits of the
transmitted signal, respectively. Also, we define XR

uk,i =

[XquR

u,i , · · · , XquR−nuk+2
u,i , XquR−nuk+1

u,i , 0, ..., 0︸ ︷︷ ︸
qIk−nuk

]T , for k ∈

{1, 2}. At each time i, the received signal at Rk is given by

Yk,i = D
qIk−nAk

qIk
XR

Ak,i + D
qIk−nBk

qIk
XR

Bk,i mod 2, (1)

where DqIk
is a qIk × qIk shift matrix as Eq. (9) in [12].

Also if we have Yk,i = [Y
qIk
k,i , · · · , Y 2

k,i, Y
1
k,i]

T , define Vk,i =

[0, · · · , 0, Y min(qIk,q
O
k )

k,i , · · · , Y 2
k,i, Y

1
k,i]

T , for k ∈ {1, 2}, where
the first (qOk − qIk)+ elements of Vk,i are zero.

Furthermore, define Tk,i , fk,i(Vk,1, ..., Vk,i−1) where

fk,i :
(
RqOk

)i−1

→ RqOk is a function at Rk which converts
Vk,1, ..., Vk,i−1 to the output signal at time i. We represent

Tk,i’s elements as Tk,i =
[
T 1
k,i, T

2
k,i, · · · , T

qOk
k,i

]T
. Also, we de-

fine T ′ku,i = [T 1
k,i, T

2
k,i, · · · , T

nku

k,i , 0, ..., 0︸ ︷︷ ︸
qRu−nku

]T for u ∈ {A,B}.

At each time i, the received signal at the receivers u ∈ {A,B}
is given by

Yu,i =
2∑

k=1

DqRu−nku
qRu

T ′ku,i mod 2. (2)

Source u picks a message Wu that it wishes to communi-
cate to ū (u, ū ∈ {A,B}, u 6= ū), and transmits signal
at each time i which is a function of Wu and Y i−1

u =
{Yu,i−1, Yu,i−2, ..., Yu,1}. Each destination ū uses a decoder,
which is a mapping gū : Rm × |Wū| → {1, ..., |Wu|} from
the m received signals and the message at the receiver to
the source message indices (|Wu| is the number of messages
of node u that can be chosen). We say that the rate pair
(RA , log |WA|

m , RB , log |WB |
m ) is achievable if the probabil-

ity of error in decoding both messages by their corresponding
destinations can be made arbitrarily close to 0 as m → ∞.
The capacity region is the convex hull of all the achievable

rate pairs (RA, RB).

III. CAPACITY OF TWO-WAY LINEAR DETERMINISTIC
DIAMOND CHANNEL

In this section, we state the main result that the cut-set
bound for the diamond channel in each direction can be
simultaneously achieved, thus giving the capacity region for
the two-way linear deterministic diamond channel. It can be
seen that max{nA1, nA2} and max{n1B , n2B} are cut-set
bounds on the transmissions from A and to B, respectively.
Moreover, nA1 + n2B and nA2 + n1B are cut-set bounds on
the sum of the two paths for the transmission from A to B.
The same observation can be made for the other direction.

Theorem 1. For the two-way linear deterministic diamond
channel, the capacity region is given as follows:

RA ≤ CAB , min{max{nA1, nA2},
max{n1B , n2B}, nA1 + n2B , nA2 + n1B}, (3)
RB ≤ CBA , min{max{nB1, nB2},
max{n1A, n2A}, nB1 + n2A, nB2 + n1A}. (4)

We note that the outer-bound is the cut-set bound, and thus
the proof is straightforward. We will prove the achievability
of the rate pair (CAB , CBA).

We consider four main cases and several subcases depend-
ing on the forward channel parameters as follows.

Case 1: CAB = nA2 + n1B .
Case 2: CAB = nA1 + n2B .
Case 3: CAB = max{nA1, nA2}. We call it Type 1, if

max{nA1, nA2} = nA1, and Type 2 otherwise. For Type i,
where i, j ∈ {1, 2}, i 6= j, we have:

Case 3.1: niB < CAB . We divide it into two sub-cases:
Case 3.1.1: njB ≥ nAj + niB .
Case 3.1.2: njB < nAj + niB .

Case 3.2: niB ≥ CAB .
Case 4: CAB = max{n1B , n2B} We call it Type 1, if

max{n1B , n2B} = n1B , and Type 2 otherwise. For Type i,
where i, j ∈ {1, 2}, i 6= j, we have:

Case 4.1: nAi < CAB . We divide it into two sub-cases:
Case 4.1.1: nAj ≥ njB + nAi.
Case 4.1.2: nAj < njB + nAi.

Case 4.2: nAi ≥ CAB .
Similarly we divide the backward channel into four main

cases and several subcases where the case definition is ob-
tained by interchanging A and B in the forward direction
cases. For instance, Case 1 in the backward direction is
CBA = nB2 + n1A.

We divide the proof into three parts, depending on the cases
in which forward and backward channel gain parameters lie.
The first part is when neither the forward channel nor the
backward channel is of Case 3.1.2 or 4.1.2 (Section III-A). The
second part is when exactly one of the forward and backward
channels is of Case 3.1.2 or 4.1.2 (Section III-B). And finally
the third part is when both the forward and backward channels
are of Case 3.1.2 or 4.1.2 (Section III-C).
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A. Neither the forward channel nor backward channel is of
Case 3.1.2 or 4.1.2

In this scenario, we use a reverse amplify-and-forward
strategy in the relays to achieve the rate pair (CAB , CBA).
Assume a particular relay (say Ri) gets nAi levels from node A
and nBi levels from node B and transmits qOi levels. It receives
YA1 = [anAi

, ..., a1]
T from node A and YB1 = [bnBi

, ..., b1]
T

from node B. Then it sends out the following signal to nodes
A and B

XRi
=


a1

...
amin(nAi,qOi )

0(qOi −nAi)+

+


b1

...
bmin(nBi,qOi )

0(qOi −nBi)+

 mod 2. (5)

We call this relay strategy as “Relay Strategy 0” (also called
“reverse amplify-and-forward”). We will keep the strategy
at the relays the same, and for different cases use different
strategies for transmission at nodes A and B. Since we need
to show that the rate pair (CAB , CBA) is achievable, it is
enough to show that there is a transmission strategy for node
A such that with the above relay strategy, node B is able to
decode the data in a one-way diamond channel because any
interference by node B on the received signal can be canceled
by node B which knows the interfering signal (Showing it
for one direction is enough since the same arguments hold
for the other). Thus, we only consider one-way diamond
channel for this case. We further consider the case when
nA1, nA2, n1B , n2B > 0 since otherwise the diamond channel
reduces to a relay channel or no connection between the nodes
A and B, and in both cases it is easy to see that node A sending
CAB bits on the lowest levels achieves this rate in the forward
direction.

It has been shown in Appendix 1 of [15] that there is a
transmission strategy for each of the cases (except for Case
3.1.2 or 4.1.2) such that the above relay strategy achieves the
capacity for one-way diamond channel.
B. Exactly one of the forward and backward channels is of
Case 3.1.2 or 4.1.2

We assume that the forward channel is of Case 3.1.2 or
4.1.2 without loss of generality. The other case where the
backward channel is of Case 3.1.2 or 4.1.2 can be proven
symmetrically. Since we need to show that the rate pair
(CAB , CBA) is achievable, we will describe a few relay
strategies for which the same transmission strategy is used at
node A such that node B is able to decode the corresponding
message. Furthermore, we will show that at least one of these
strategies is optimal for the backward channel for each case
of the backward channel parameters. As before we consider
the case when nA1, nA2, n1B , n2B > 0. In the remainder of
this section, we assume that the forward channel is of Case
3.1.2. The case that the forward channel is of Case 4.1.2 is
treated in Appendix 2 of [15].

When the forward channel is of Case 3.1.2, node A trans-
mits [aCAB

, ..., a1]
T . Also, the transmission strategy for node

B depends on the channel gains in the backward direction. For
the relay strategy, we will choose one of the four strategies

explained in the following depending on the backward channel
parameters. We prove that all of these strategies are optimal
for the forward channel for any set of parameters.

The parameters associated with each relay strategy proposed
here are only based on the forward channel gains, and we will
show that at least one of the proposed strategies is optimal
for each choice of the backward channel parameters. Note
that using Relay Strategy 0 in both relays, node B cannot
necessarily decode the message if the forward channel is of
Case 3.1.2 or 4.1.2, when the above transmission strategy is
used by node A.

Remark 1. All relay strategies in this subsection are defined
with respect to the forward channel parameters (and in favor
of the forward channel direction1) because we assumed that
the forward channel is either of Case 3.1.2 or 4.1.2 and the
backward channel is not of these cases. We note that Relay
Strategy 0 is symmetric and is not dependent on the channel
gains in any direction. In Section III-C, we will generalize
some of these strategies to be based on the parameters of
both the forward and backward channels.

1) Relay Strategy 1:: If the forward channel is of Case
3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay
Strategy 1 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we
define Relay Strategy 1 at R2 (forward channel of Case 3.1.2
Type 1), while that for R1 can be obtained by interchanging
roles of relays R1 and R2 (interchanging 1 and 2 and forward
channel of Case 3.1.2 Type 2). As shown in Figure 1, if R2

receives a block of n2B bits, first it will reverse them as
in Relay Strategy 0 and then changes the order of the first
n1B−(nA1−nA2) streams2 with the next nA1−n1B streams.
Node A transmits [aCAB

, ..., a1]
T . The received signals can
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Fig. 1. Relay Strategy 1 at R2.

be seen in Figure 2. We use (Ri, Bj) to denote block number
j from Ri. Bits that are not delivered to node B from R1

using Relay Strategy 0, (an1B+1, ..., anA1
), are all sent at the

highest levels from R2 to node B and thus are decoded with
no interference (block (R2, B1)). The remaining bits can be
decoded by starting from the lowest level of reception in
B (an1B

in block (R1, B4)) and removing the effect of the
decoded bits and going up.

1In the sense that the strategies are designed so that the forward commu-
nication achieves the capacity.

2In the following relay strategies, we divide the streams into multiple sub-
streams. The number of streams in each sub-stream is a non-negative number
when the forward channel is of Case 3.1.2 Type 1.
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Fig. 2. Received signals by using Relay Strategy 1 when the forward channel
is of Case 3.1.2 Type 1.

2) Relay Strategy 2:: If the forward channel is of Case
3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay
Strategy 2 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we
define Relay Strategy 2 at R2 (forward channel of Case 3.1.2
Type 1), while that for R1 can be obtained by interchanging
roles of R1 and R2 (interchanging 1 and 2 and forward channel
of Case 3.1.2 Type 2). It is similar to Relay Strategy 0 with the
only difference that R2 repeats a part of the top nA2 streams
after reverse-amplify-and-forward, as explained below in nine
separate scenarios based on the parameters of the forward
channel. We note that the repetition of streams is based on the
received signal at the relay. However, we describe only the
forward direction to show that the messages can be decoded.

We partition the four-dimensional space
(nA1, nA2, n1B , n2B) into multiple parts, and we
consider one of the case below. The proof for the
rest of cases is given in Section IV of [15]. This case
corresponds to {n2B + (nA1 − nA2) ≤ nA2 + n1B , n1B ≤
(nA1 − nA2) + (n2B − n1B)}. Figure 3 depicts the received
signal at node B (ignoring the effect of transmitted signal
from B) assuming that both relays use Relay Strategy 0. The
repetitions will be described below to show that messages
can be decoded with the proposed strategies. R2 repeats the
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Fig. 3. The received signals at node B (ignoring the effect of transmitted
signal from B) assuming that both relays use Relay Strategy 0 for channel
parameters of case {n2B + (nA1 − nA2) ≤ nA2 + n1B , n1B ≤ (nA1 −
nA2) + (n2B − n1B)}.

streams in block (R2, B2) on block (R2, B4). Using this
strategy, block (R2, B1) will be decoded from the top levels
of the received signal from R2 since there is no interference

from the other relay. Then, subtract the corresponding signals
(blocks (R1, B3) and (R1, B4)). Furthermore, block (R2, B4)
can be decoded from repetitions because their interference
is already decoded. Then, subtract the corresponding signals
(block (R2, B2)). Consequently, block (R1, B2) are decoded
because their interference (block (R2, B2)) was decoded
earlier. Finally, block (R2, B3) can be decoded because all
its interference signals have been decoded.

3) Relay Strategy 3:: If the forward channel is of Case
3.1.2 Type i, then Relay Strategy 0 is used at Ri, and Relay
Strategy 3 is used at Rī, where i, ī ∈ {1, 2}, i 6= ī. Here, we
define Relay Strategy 3 at R2 (forward channel of Case 3.1.2
Type 1), while that for R1 can be obtained by interchanging
roles of relays R1 and R2 (interchanging 1 and 2 and forward
channel of Case 3.1.2 Type 2). As shown in Figure 4, if
R2 receives a block of n2B bits, first it will reverse them
as in Relay Strategy 0 and then changes the order of the
nA2 − (n2B − n1B) streams right after the first n2B − n1B

streams, with the following n2B − nA2 streams. Node A
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Fig. 4. Relay Strategy 3 at R2.

transmits [aCAB
, ..., a1]

T , and it can be shown to be decoded
at node B.

4) Relay Strategy 4:: If the forward channel is of Case
3.1.2 Type i, then Relay Strategy 0 is used at Rī, where i, ī ∈
{1, 2}, i 6= ī, and Relay Strategy 4 is used at Ri. Here, we
define Relay Strategy 4 at R1 (forward channel of Case 3.1.2
Type 1), while that for R2 can be obtained by interchanging
roles of R1 and R2 (interchanging 1 and 2 and forward channel
of Case 3.1.2 Type 2). As shown in Figure 5, if R1 receives
a block of n1B bits, first it will reverse them as in Relay
Strategy 0 and then changes the order of the first nA1 − nA2

streams with the next n1B − (nA1 − nA2) streams. Node A
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Fig. 5. Relay Strategy 4 at R1.

transmits [aCAB
, ..., a1]

T . Bits that are not delivered to node
B from R2 using Relay Strategy 0 in the block (R1, B4) are
decoded without any interference. The remaining bits can be
decoded by starting from the highest level (anA1−nA2+1 in
block (R2, B1)) and removing the effect of the decoded bits.
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These strategies can be used at different relays to achieve the
optimal rate. For instance, if the backward channel is of Case 1
and the forward channel is of Case 3.1.2 Type 1, the following
strategy is used. If nA2 > nB2, we use Relay Strategy 2 at R2

and Relay Strategy 0 at R1. Otherwise use Relay Strategy 1
at R2 and Relay Strategy 0 at R1. If nA2 > nB2, R2 repeats
from the streams that are already decoded from the highest
levels received in A, on the lower levels, and otherwise it just
changes the order of some of the equations at the highest levels
received in A, which does not affect the decoding.

Four new relay strategies are needed for Case 4.1.2, whose
details can be seen in [15].
C. Both the forward and backward channels are either of Case
3.1.2 or 4.1.2

In Section III-B, we used Relay Strategy 2 or Relay Strategy
6 as one of the achievability strategies when the forward
channel is of Case 3.1.2 or 4.1.2, respectively. In this section,
we show that using a modified combination of these strategies
achieve the optimal capacity region when both the forward
and backward channels are either of Case 3.1.2 or 4.1.2.

We will define Relay Strategy (mi, ni) at Ri for i ∈ {1, 2},
mi, ni ∈ {0, 2, 6}. If the forward channel is of Case 3.1.2, at
R1, we use m1 = 0 when the forward channel is Type 1 and
m1 = 2 otherwise. At R2, we use m2 = 2 when the forward
channel is Type 1 and m2 = 0 otherwise. If the forward
channel is of Case 4.1.2, at R1, we use m1 = 6 when the
forward channel is Type 1 and m1 = 0 otherwise. At R2, we
use m2 = 0 when the forward channel is Type 1 and m2 = 6
otherwise. The value of ni is determined the same way based
on the backward channel parameters.

Relay Strategy (mi, 0) at Ri uses Relay Strategy mi at
Ri based on the forward channel parameters, and Relay
Strategy (0, ni) at Ri uses Relay Strategy ni based on the
backward channel parameters. For the remaining strategies
(mi, ni) ∈ {(2, 2), (2, 6), (6, 2), (6, 6)} at Ri, we use the
combination of the repetitions suggested by Relay Strategies
mi based on the forward channel parameters, and ni based
on the backward channel parameters. If these two repetitions
happen at the same level, we sum these modulo 2. However,
there are some modifications to account for repetitions adding
to zero modulo 2, or multiple repetitions due to different
strategies at the relays. The modifications are as follows.

1) If the repetitions happen in the same relay, i.e., m1 =
n1 = 0 or m2 = n2 = 0: In case the repetition of
a particular signal by both the forward and backward
strategies is suggested at the same level, we send the re-
peated signal. If different repeated signals are suggested
at a particular level, we send the sum of these two signals
modulo two.

2) If the repetitions happen in different relays, i.e., m1 =
n2 = 0 or m2 = n1 = 0, we consider two cases.
In case that the repetitions of some streams from two
relays are from the same level and are repeated on the
same level at node B (ignoring the backward signal
component) Ri skips repetitions at the corresponding
levels if the forward channel is of Case 4.1.2 Type i

and Rī skips repetitions at the corresponding levels if
the forward channel is of Case 3.1.2 Type i. In case
that the repetitions of some streams from two relays
are from the same level and are repeated on the same
level at node A (ignoring the forward signal component)
Ri skips repetitions at the corresponding levels if the
backward channel is of Case 4.1.2 Type i and Rī skips
repetitions at the corresponding levels if the backward
channel is of Case 3.1.2 Type i.

We use the same transmission strategy as in Section III-B
for channel of both Cases 3.1.2 and 4.1.2, and the decoding of
the messages at the receivers can be shown. Detailed proofs
can be seen in [15].

IV. CONCLUSIONS
In this paper, we studied the capacity of the bidirectional

(or two-way) diamond channel with two nodes and two relays.
We used the deterministic approach to capture the essence of
the problem and to determine capacity-achieving transmission
and relay strategies. Depending on the forward and backward
channel gains, we used either a reverse amplify-and-forward
or a particular modified strategy involving repetitions, and
reversing order of some streams at the relays.
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