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Abstract—In this paper, we consider the problem of completing
a sampled matrix U = [U1|U2] given the ranks of U, U1, and
U2 which is known as the multi-view data completion problem.
We characterize the deterministic conditions on the locations of
the sampled entries that is equivalent (necessary and sufficient)
to finite completability of the sampled matrix. To this end, in
contrast with the existing analysis on Grassmannian manifold
for a single-view matrix, i.e., conventional matrix completion, we
propose a geometric analysis on the manifold structure for multi-
view data to incorporate more than one rank constraint. Then,
using the proposed geometric analysis, we propose sufficient
conditions on the sampling pattern, under which there exists
only one completion (unique completability) given the three rank
constraints.

I. INTRODUCTION

In this paper, we consider the multi-view low-rank data

completion problem, where the ranks of the first and second

views, as well as the rank of whole data consisting of both

views together, are given. The single-view learning problem

has plenty of applications in various areas. The multi-view

learning problem also finds applications in signal processing

[1], multi-label image classification [2, 3], image retrieval [4],

data classification [5], etc.

Given a sampled matrix and a rank constraint, any matrix

that agrees with the sampled entries and rank constraint is

called a completion. A sampled matrix with a rank constraint

is finitely completable if and only if there exist only finitely

many completions of it. Most literature on matrix completion

focus on developing optimization methods to obtain a comple-

tion. For single-view learning, methods including alternating

minimization [6, 7], convex relaxation of rank [8–11], etc.,

have been proposed. Moreover, for multi-view learning, many

optimization-based algorithms have been proposed recently

[12–14].

Deterministic conditions on the locations of the sampled

entries (sampling pattern) are obtained through algebraic

geometry analyses on Grassmannian manifold that lead to

finite/unique solutions to the matrix completion problem [15,

16]. Also, deterministic conditions on the sampling patterns

have been studied for subspace clustering in [17–20]. In par-

ticular, in [15] by D. Pimentel-Alarcón et. al., a deterministic

sampling pattern is proposed that is necessary and sufficient

for finite completability of the sampled matrix of the given

rank. Such an algorithm-independent condition can lead to a

much lower sampling rate than the one that is required by the

optimization-based completion algorithms. In [21], [22] and

[23], we proposed a geometric analysis on canonical polyadic

(CP), Tucker and tensor-train (TT) manifolds for low-rank

tensor completion problem and provided the necessary and

sufficient conditions on sampling pattern for finite completabil-

ity of tensor given its CP, Tucker and TT ranks, respectively.

In this paper, we investigate the finite completability problem

for multi-view data by proposing an analysis on the manifold

structure for such data.

Consider a sampled data matrix U that is partitioned as

U = [U1|U2], where U1 and U2 are the first and second

views of U. The multi-view matrix completion problem is to

complete U given the ranks of U,U1, and U2. Let Ω be the

sampling pattern matrix of U, where Ω(x, y) = 1 if U(x, y)
is sampled and Ω(x, y) = 0 otherwise. This paper is mainly

concerned with the following two problems.

• Problem (i): Characterize the necessary and sufficient

conditions on Ω, under which there exist only finite

completions of U that satisfy all three rank constraints.

• Problem (ii): Characterize sufficient conditions on Ω,

under which there exists only one completion of U that

satisfy all three rank constraints.

II. NOTATIONS

Let U be the sampled matrix to be completed. Denote

Ω as the sampling pattern matrix that is of the same size

as U and Ω(x1, x2) = 1 if U(x1, x2) is observed and

Ω(x1, x2) = 0 otherwise. For each subset of columns U′ of

U, define NΩ(U
′) as the number of observed entries in U′

according to the sampling pattern Ω. For any real number x,

define x+ = max{0, x}. Also, In denotes an n × n identity

matrix and 0n×m denotes an n×m all-zero matrix.

The matrix U ∈ R
n×(m1+m2) is sampled. Denote a partition

of U as U = [U1|U2] where U1 ∈ R
n×m1 and U2 ∈ R

n×m2

represent the first and second views of data, respectively.

Given the rank constraints rank(U1) = r1, rank(U2) = r2
and rank(U) = r, we are interested in characterizing the

conditions on the sampling pattern matrix Ω under which

there are infinite, finite, or unique completions for the sampled

matrix U.

In [15] a necessary and sufficient condition on the sampling

pattern is given for the finite completability of a matrix U
given rank(U) = r, based on an algebraic geometry analysis

on the Grassmannian manifold. However, such analysis cannot
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be used to treat the above multi-view problem since it is not

capable of incorporating the three rank constraints simultane-

ously. Moreover, the analysis on Tucker manifold in [24] is not

capable of incorporating rank constraints for different views.

In particular, if we obtain the conditions in [15] corresponding

to U, U1 and U2 respectively and then take the intersections

of them, it will result in a sufficient condition (not necessary)

on the sampling pattern matrix Ω under which there are finite

number of completions of U.

III. FINITE COMPLETABILITY

In Section III-A, we define an equivalence relation among

all bases of the sampled matrix U, where a basis is a set of

r vectors (r = rank(U)) that spans the column space of U.

This equivalence relation leads to the manifold structure for

multi-view data to incorporate all three rank constraints. We

introduce a set of polynomials according to the sampled entries

to analyze finite completability through analyzing algebraic

independence of the defined polynomials.

In Section III-B, we analyze the required maximum number

of algebraically independent polynomials that is necessary

and sufficient for finite completability. Then, a relationship

between the maximum number of algebraically independent

polynomials (among the defined polynomials) and the sam-

pling pattern (locations of the sampled entries) is character-

ized. Consequently, we obtain the necessary and sufficient

condition on sampling pattern for finite completability.

A. Geometry of the Basis

Let define r′1 = r− r2, r′2 = r− r1 and r′ = r− r′1 − r′2 =
r1 + r2 − r. Observe that r1 ≤ r, r2 ≤ r and r ≤ r1 + r2.

Suppose that the basis V ∈ R
n×r is such that its first r1

columns is a basis for the first view U1, its last r2 columns

is a basis for the second view U2, and all columns of V is

a basis for U = [U1|U2], as shown in Figure 1. Assume

that V = [V1|V2|V3], where V1 ∈ R
n×r′1 , V2 ∈ R

n×r′ and

V3 ∈ R
n×r′2 . Then, [V1|V2] is a basis for U1 and [V2|V3] is

a basis for U2. As a result, there exist matrices T1 ∈ R
r1×m1

and T2 ∈ R
r2×m2 such that

U1 = [V1|V2] ·T1, (1a)

U2 = [V2|V3] ·T2. (1b)

′r2′r′r1

r1
r2

r

V1 V2 V3

Fig. 1: A basis V for the sampled matrix U.

For any i1 ∈ {1, . . . ,m1} and i2 ∈ {1, . . . ,m2}, (1) can be

written as

U1 (:, i1) = [V1|V2] ·T1 (:, i1) , (2a)

U2 (:, i2) = [V2|V3] ·T2 (:, i2) . (2b)

In the following, we list some useful facts that are instru-

mental to the subsequent analysis.

• Fact 1: Observe that each observed entry in U1 results

in a scalar equation from (1a) or (2a) that involves only

all r1 entries of the corresponding row of [V1|V2] and

all r1 entries of the corresponding column of T1 in (1a).

Similarly, each observed entry in U2 results in a scalar

equation from (1b) or (2b) that involves only all r2 entries

of the corresponding row of [V2|V3] and all r2 entries

of the corresponding column of T2 in (1b). Treating

the entries of V, T1 and T2 as variables (right-hand

sides of (1a) and (1b)), each observed entry results in a

polynomial in terms of these variables.

• Fact 2: For any observed entry Ui(x1, x2), x1 and x2

specify the row index of V and the column index of

Ti, respectively, that are involved in the corresponding

polynomial, i = 1, 2.

• Fact 3: It can be concluded from Bernstein’s theorem

[25] that in a system of n polynomials in n variables

such that the coefficients are chosen generically, the n
polynomials are algebraically independent with proba-

bility one, and therefore there exist only finitely many

solutions. Moreover, in a system of n polynomials in n−1
variables (or less), the n polynomials are algebraically

dependent with probability one. Also, given that a system

of n polynomials (generically chosen coefficients) in n−1
variables (or less) has one solution, it can be concluded

that it has a unique solution with probability one.

Given all observed entries {U(x1, x2) : Ω(x1, x2) = 1}, we

are interested in finding the number of possible solutions in

terms of entries of (V,T1,T2) (infinite, finite or unique) via

investigating the algebraic independence among the polynomi-

als. Throughout this paper, we make the following assumption.

Assumption 1: Any column of U1 includes at least r1
observed entries and any column of U2 includes at least r2
observed entries.

Lemma 1. Given a basis V = [V1|V2|V3] in (1), if As-
sumption 1 holds, then there exists a unique solution (T1,T2),
with probability one. Moreover, if Assumption 1 does not hold,
then there are infinite number of solutions (T1,T2), with
probability one.

Proof. Note that only observed entries in the i-th column of

U1 result in degree-1 polynomials in terms of the entries of

T1(:, i) ∈ R
r1×1. As a result, exactly r1 generically chosen

degree-1 polynomials in terms of r1 variables are needed to

ensure there is a unique solution T1 in (1), with probability

one. Moreover, having less than r1 polynomials in terms of

r1 variables results in infinite solutions of T1 in (1), with

probability one. The same arguments apply to T2.



Definition 1. Let P(Ω) denote all polynomials in terms
of the entries of V obtained through the observed entries
excluding the m1r1 + m2r2 polynomials that were used to
obtain (T1,T2). Note that since (T1,T2) is already solved
in terms of V, each polynomial in P(Ω) is in terms of elements
of V.

Consider two bases V and V′ for the matrix U with the

structure in (1). We say that V and V′ span the same space

if and only if: (i) the spans of the first r1 columns of V and

V′ are the same, (ii) the spans of the last r2 columns of V
and V′ are the same, (iii) the spans of all columns of V and

V′ are the same.

Therefore, V and V′ span the same space if and only if:

(i) each column of V1 is a linear combination of the columns

of [V′
1|V′

2], (ii) each column of V2 is a linear combination

of the columns of V′
2, and (iii) each column of V3 is a

linear combination of the columns of [V′
2|V′

3]. The following

equivalence class partitions all possible bases such that any

two bases in a class span the same space, i.e., the above-

mentioned properties (i), (ii) and (iii) hold.

Definition 2. Define an equivalence class for all bases V ∈
R

n×r of the sampled matrix U such that two bases V and
V′ belong to the same class if there exist full rank matrices
A1 ∈ R

r1×r′1 , A2 ∈ R
r′×r′ and A3 ∈ R

r2×r′2 such that

V1 = [V′
1|V′

2] ·A1, (3a)

V2 = V′
2 ·A2, (3b)

V3 = [V′
2|V′

3] ·A3, (3c)

where V = [V1|V2|V3], V′ = [V′
1|V′

2|V′
3], V1,V

′
1 ∈

R
n×r′1 , V2,V

′
2 ∈ R

n×r′ and V3,V
′
3 ∈ R

n×r′2 .

Note that (3) leads to the fact that the dimension of all bases

V is equal to nr− r1r
′
1 − r′r′ − r2r

′
2 = nr− r2 − r21 − r22 +

r(r1 + r2).

Definition 3. (Canonical basis) As shown in Figure 2, denote

B1 = V (1 : r′1, 1 : r′1) ∈ R
r′1×r′1 , (4a)

B2 = V (1 : r′2, 1 + r1 : r′2 + r1) ∈ R
r′2×r′2 , (4b)

B3 = V (1 + max(r′1, r
′
2) : r

′ +max(r′1, r
′
2),

1 + r′1 : r′ + r′1) ∈ R
r′×r′ , (4c)

B4 = V (1 + max(r′1, r
′
2) : r

′ +max(r′1, r
′
2),

1 : r′1) ∈ R
r′×r′1 , (4d)

B5 = V (1 + max(r′1, r
′
2) : r

′ +max(r′1, r
′
2),

1 + r1 : r′2 + r1) ∈ R
r′×r′2 . (4e)

Then, we call V a canonical basis if B1 = Ir′1 , B2 = Ir′2 ,
B3 = Ir′ , B4 = 0r′×r′1 and B5 = 0r′×r′2 .

Remark 1. In order to prove there are finitely many comple-
tions for the matrix U, it suffices to prove there are finitely
many canonical bases that fit in U.

It can be easily seen that according to the definition of the

′r2′r′r1

r1
r2

r

B4 = 0 B3 = I B5 = 0

′r1
′r2

′r

B1 = I B2 = I

Fig. 2: A canonical basis.

equivalence class in (3), any permutation of the rows of any

of these patterns satisfies the property that in each class there

exists exactly one basis with the permuted pattern.

B. Algebraic Independence

The following theorem provides a condition on the polyno-

mials in P(Ω) that is equivalent (necessary and sufficient) to

finite completability of U.

Theorem 1. Assume that Assumption 1 holds. For almost
every sampled matrix U, there are at most finitely many bases
that fit in U if and only if there exist nr − r2 − r21 − r22 +
r(r1 + r2) algebraically independent polynomials in P(Ω).

Proof. According to Lemma 1, Assumption 1 results that

(T1,T2) can be determined uniquely (finitely). Let P(Ω) =
{p1, . . . , pt} and define Si as the set of all basis V that satisfy

polynomials {p1, . . . , pi}, i = 0, 1, . . . , t, where S0 is the

set of all bases V without any polynomial restriction. Each

polynomial in terms of the entries of V reduces the degree

of freedom or the dimension of the set of solutions by one.

Therefore, dim(Si) = dim(Si−1) if the maximum number of

algebraically independent polynomials in sets {p1, . . . , pi} and

{p1, . . . , pi−1} are the same and dim(Si) = dim(Si−1) − 1
otherwise.

Observe that the number of variables is dim(S0) = nr−r2−
r21−r22+r(r1+r2) and the number of solutions of the system

of polynomials P(Ω) is |St|. Therefore, using Fact 3, with

probability one |St| is a finite number if and only if dim(St) =
0. As mentioned earlier, the dimension of the set of all bases

without any polynomial restriction, i.e., dim(S0) = nr− r2 −
r21−r22+r(r1+r2). Hence, we conclude that the existence of

exactly nr−r2−r21−r22+r(r1+r2) algebraically independent

polynomials in P(Ω) is equivalent to having finitely many

bases, i.e., finite completability of U with probability one.

We are interested in characterizing a relationship between

the sampling pattern Ω and the maximum number of alge-

braically independent polynomials in P(Ω). To this end, we

construct a constraint matrix Ω̆ based on Ω such that each

column of Ω̆ represents exactly one of the polynomials in

P(Ω).
Consider an arbitrary column of the first view U1 (:, i),

where i ∈ {1, . . . ,m1}. Let li = NΩ(U1 (:, i)) denote the



number of observed entries in the i-th column of the first

view. Assumption 1 results that li ≥ r1.

We construct li − r1 columns with binary entries based

on the locations of the observed entries in U1 (:, i) such that

each column has exactly r1 + 1 entries equal to one. Assume

that x1, . . . , xli be the row indices of all observed entries

in this column. Let Ωi
1 be the corresponding n × (li − r1)

matrix to this column which is defined as the following:

for any j ∈ {1, . . . , li − r1}, the j-th column has the

value 1 in rows {x1, . . . , xr1 , xr1+j} and zeros elsewhere.

Define the binary constraint matrix of the first view as

Ω̆1 =
[
Ω1

1|Ω2
1 . . . |Ωm1

1

] ∈ R
n×K1 [15], where K1 =

NΩ(U1)−m1r1.

Similarly, we construct the binary constraint matrix Ω̆2 ∈
R

n×K2 for the second view, where K2 = NΩ(U2) − m2r2.

Define the constraint matrix of U as Ω̆ = [Ω̆1|Ω̆2] ∈
R

n×(K1+K2). For any subset of columns Ω̆′ of Ω̆, P(Ω̆′)
denotes the subset of P(Ω) that corrseponds to Ω̆′. In this

paper, when we refer to a subset of columns of the constraint

matrix, those columns are assumed to correspond to different

columns of Ω.

Assume that Ω̆′ is an arbitrary subset of columns of the

constraint matrix Ω̆. Then, Ω̆′
1 and Ω̆′

2 denote the columns

that correspond to the first and second views, respectively.

Similarly, assume that Ω′ is an arbitrary subset of columns

of Ω. Then, Ω′
1 and Ω′

2 denote the columns that correspond

to the first view and second view, respectively. Moreover, for

any matrix X, c(X) denotes the number of columns of X and

g(X) denotes the number of nonzero rows of X.

The following lemma gives an upper bound on the maxi-

mum number of algebraically independent polynomials in any

subset of columns of the constraint matrix Ω̆. Simply put,

for a set of polynomials with coefficients chosen generically,

the total number of involved variables in the polynomials is

an upper bound for the maximum number of algebraically

independent polynomials.

Lemma 2. Assume that Assumption 1 holds. Let Ω̆′ be an ar-
bitrary subset of columns of the constraint matrix Ω̆. Then, the
maximum number of algebraically independent polynomials in
P(Ω̆′) is upper bounded by

r′1(g(Ω̆
′
1)− r1)

+ + r′2(g(Ω̆
′
2)− r2)

+ + r′(g(Ω̆′)− r′)+. (5)

Proof. Please refer to Lemma 2 in [26].

The next lemma which is Lemma 3 in [24], states an

important property of a set of minimally algebraically depen-

dent among polynomials in P(Ω̆). This lemma is needed to

derive the the maximum number of algebraically independent

polynomials in any subset of P(Ω̆). Note that c(Ω̆′) is the

number of polynomials in P(Ω̆′).

Lemma 3. Assume that Assumption 1 holds. Let Ω̆′ be
an arbitrary subset of columns of the constraint matrix Ω̆.
Assume that polynomials in P(Ω̆′) are minimally algebraically
dependent. Then, the number of variables (unknown entries)
of V that are involved in P(Ω̆′) is equal to c(Ω̆′)− 1.

The following lemma explicitly characterizes the relation-

ship between the number of algebraically independent poly-

nomials in P(Ω̆) and the geometry of Ω̆.

Lemma 4. Assume that Assumption 1 holds. Let Ω̆′ be an
arbitrary subset of columns of the constraint matrix Ω̆. The
polynomials in P(Ω̆′) are algebraically dependent if and only
if there exists Ω̆′′ ⊆ Ω̆′ such that

r′1(g(Ω̆
′′
1)− r1)

+ + r′2(g(Ω̆
′′
2)− r2)

+

+ r′(g(Ω̆′′)− r′)+ < c(Ω̆′′). (6)

Proof. Assume that there exists Ω̆′′ ⊆ Ω̆′ such that (6) holds.

Note that there are c(Ω̆′′) polynomials in the set P(Ω̆′′).
Hence, according to Lemma 2 and (6), the maximum number

of algebraically independent polynomials is less than the

number of polynomials, i.e., c(Ω̆′′). Therefore, the polyno-

mials in P(Ω̆′′) and therefore the polynomials in P(Ω̆′) are

algebraically dependent.

For the converse, suppose that the polynomials in P(Ω̆′) are

algebraically dependent. Hence, there exists a subset of these

polynomials, P(Ω̆′′), such that the polynomials are minimally

algebraically dependent. According to Lemma 3, the number

of variables involved in the polynomials of P(Ω̆′′) is c(Ω̆′′)−
1.

On the other hand, as mentioned in the proof of Lemma 2,

the minimum number of involved variables (unknown entries

of V) is equal to r′1(g(Ω̆
′′
1) − r1)

+ + r′2(g(Ω̆
′′
2) − r2)

+ +
r′(g(Ω̆′′) − r′)+, which is therefore less than or equal to

c(Ω̆′′)− 1 and the proof is complete.

Finally, the next theorem which is the main result of this

subsection gives the necessary and sufficient condition on

Ω̆ to ensure there exist nr − r2 − r21 − r22 + r(r1 + r2)
algebraically independent polynomials in P(Ω), and therefore

it gives the necessary and sufficient condition on Ω̆ for finite

completability of U.

Theorem 2. Assume that Assumption 1 holds. For almost
every U, the sampled matrix U is finite completable if there
exists a subset of columns Ω̆′ ∈ R

n×m of the constraint matrix
Ω̆ such that m = nr− r2 − r21 − r22 + r(r1 + r2) and for any
subset of columns Ω̆′′ of Ω̆′ the following inequality holds

r′1(g(Ω̆
′′
1)− r1)

+ + r′2(g(Ω̆
′′
2)− r2)

+

+ r′(g(Ω̆′′)− r′)+ ≥ c(Ω̆′′). (7)

Proof. According to Theorem 1, with probability one, the

sampled matrix U is finitely completable if and only if there

exist nr− r2− r21 − r22 + r(r1+ r2) algebraically independent

polynomials in P(Ω̆). On the other hand, according to Lemma

4, there exist nr − r2 − r21 − r22 + r(r1 + r2) algebraically

independent polynomials in P(Ω̆) if and only if there exists

a subset of columns Ω̆′ with nr − r2 − r21 − r22 + r(r1 + r2)
columns of the constraint matrix Ω̆ that satisfies (7) for any

of its subset of columns.
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IV. UNIQUE COMPLETABILITY

Theorem 2 gives the necessary and sufficient condition on

sampling pattern for finite completability. As we showed in

an example in [24], finite completability can be different from

unique completability. We show that adding a mild condition

to the conditions obtained in the analysis for Problem (i) leads

to unique completability.

Theorem 3. Suppose that Assumption 1 holds. Moreover as-
sume that there exist disjoint subsets of columns Ω̆′ ∈ R

n×m,
Ω̆′

1 ∈ R
n×m′

and Ω̆′
2 ∈ R

n×m′′
of the constraint matrix Ω̆

such that the following properties hold
(i) m = nr− r2 − r21 − r22 + r(r1 + r2) and for any subset

of columns Ω̆′′ of the matrix Ω̆′, (7) holds.
(ii) Ω̆′

1 is a subset of columns of Ω̆1 (constraint matrix of
the first view), m′ = n−r1 and for any subset of columns Ω̆′′

1

of the matrix Ω̆′
1

g(Ω̆′′
1)− r1 ≥ c(Ω̆′′

1). (8)

(iii) Ω̆′
2 is a subset of columns of Ω̆2 (constraint matrix of

the first view), m′′ = n − r2 and for any subset of columns
Ω̆′′

2 of the matrix Ω̆′
2

g(Ω̆′′
2)− r2 ≥ c(Ω̆′′

2). (9)

Then, with probability one, there exists exactly one comple-
tion of U that satisfies the rank constraints.

Proof. Please refer to Theorem 4 in [26].

V. CONCLUSIONS

This paper characterizes fundamental algorithm-

independent conditions on the sampling pattern for finite

completability of a low-rank multi-view matrix through

an algebraic geometry analysis on the manifold structure

of multi-view data. A set of polynomials is defined based

on the sample locations and we characterize the number

of maximum algebraically independent polynomials. Then,

we transform the problem of characterizing the finite or

unique completability of the sampled data to the problem of

finding the maximum number of algebraically independent

polynomials among the defined polynomials. Using these

developed tools, we have obtained the following results:

(i) The necessary and sufficient conditions on the sampling

pattern, under which there are only finite completions given

the three rank constraints, (ii) Sufficient conditions on

the sampling pattern, under which there exists only one

completion given the three rank constraints.
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