
An Approximation of the CP-Rank of a Partially
Sampled Tensor

Morteza Ashraphijuo
Dep. of Electrical Eng.

Columbia University

New York, NY

Email: ashraphijuo@ee.columbia.edu

Xiaodong Wang
Dep. of Electrical Eng.

Columbia University

New York, NY

Email: wangx@ee.columbia.edu

Vaneet Aggarwal
School of Industrial Eng.

Purdue University

West Lafayette, IN

Email: vaneet@purdue.edu

Abstract—We exploit the recent algebraic geometry analyses
that study the fundamental conditions on the locations of the
sampled entries for finite completability of low-rank sampled
tensor to treat the problem of CP-rank approximation for
a partially sampled tensor. Particularly, the goal is to ap-
proximate the unknown rank based on the locations of the
sampled entries, i.e., the sampling pattern, and the rank of
an arbitrary given completion. First we provide an upper
bound on the unknown CP-rank with probability one assuming
that the sampling pattern satisfies the proposed combinatorial
properties. However, the proposed combinatorial properties may
be hard to verify. Hence, we also provide probabilistic versions
of such bounds that hold with high probability assuming that the
sampling probability is above a threshold, i.e., we provide the
sampling probability that results the sampling pattern satisfies
the proposed combinatorial properties with high probability.
In addition, these upper bounds can be exactly equal to
the unknown CP-rank given the lowest-rank completion. To
illustrate how tight our proposed upper bounds are, we have
provided some numerical results for the case of two-way tensor,
i.e., matrix, in which we applied the nuclear norm minimization
to find a low-rank completion of the sampled data and observe
that the proposed upper bound is almost equal to the true
unknown rank.

Index Terms—Low-rank data completion, rank estimation,
tensor, matrix, manifold, CP rank.

I. INTRODUCTION

The low-rank data completion problem is concerned with

completing a matrix or tensor given a subset of its entries

and its rank. Various applications can be found in many fields

including image and signal processing [1, 2], data mining [3],

network coding [4], compressed sensing [5–7], reconstructing

the visual data [8], bioinformatics [9], fingerprinting [10],

systems biology [11], etc. There is an extensive literature

on developing various optimization methods to treat this

problem including minimizing a convex relaxation of rank

[7, 12–17], non-convex approaches [18], and alternating mini-

mization [19, 20], etc. More recently, deterministic conditions

on the sampling patterns have been studied for subspace

clustering in [21–24]. Moreover, the fundamental conditions

on the sampling pattern that lead to different numbers of

completion (unique, finite, or infinite) for different data

structures given the corresponding rank constraints have been

investigated in [25–31].

However, in many practical low-rank data completion

problems, the rank may not be known a priori. In this paper,

we investigate this problem and we aim to approximate the

rank based on the given entries, where it is assumed that

the original data is generically chosen from the manifold

corresponding to the unknown rank. The only existing work

that treats this problem for matrix based on the sampling

pattern is [32], which requires some strong assumptions

including the existence of a completion whose rank r is a

lower bound on the unknown true rank r∗, i.e., r∗ ≥ r.

We start by investigating the problem for matrix or two-way

tensor to provide a new analysis that does not require such

assumption and also we can extend our novel approach to

treat the same problem for a d-way tensor to determine its

CP rank. We also obtain such bound that holds with high

probability based on the sampling probability. Moreover, for

the case of matrix or d = 2, we provide some numerical

results to show how tight our probabilistic bounds on the

rank are (in terms of the sampling probability). In particular,

we used nuclear norm minimization to find a completion and

demonstrate our proposed method in obtaining a tight bound

on the unknown rank.

We take advantage of the geometric analysis on the mani-

fold of the corresponding data which leads to the fundamental

conditions on the sampling pattern (independent of the value

of entries) [25, 27] such that given an arbitrary low-rank

completion we can provide a tight upper bound on the

rank. To illustrate how such approximation is even possible

consider the following example. Assume that an n1 × n2

rank-2 matrix is chosen generically from the corresponding

manifold. Hence, any 2× 2 submatrix of this matrix is full-

rank with probability one (due to the genericity assumption).

Moreover, note that any 3 × 3 submatrix of this matrix is

not full-rank. As a result, by observing the sampled entries

we can find some bounds on the rank. Using the analysis

in [25–29, 33] on finite completablity of the sampled data

(finite number of completions) for different data models, we

characterize both deterministic and probablistic bounds on

the unknown rank.
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II. NOTATIONS AND PROBLEM STATEMENT

A. Two-Way Tensor Scenario

Assume that the sampled matrix U is chosen generically

from the manifold of the n1 × n2 matrices of rank r∗,

where r∗ is unknown. The matrix V ∈ R
n1×r∗ is called

a basis for U if each column of U can be written as a linear

combination of the columns of V. Denote Ω as the binary

sampling pattern matrix that is of the same size as U and

Ω(�x) = 1 if U(�x) is observed and Ω(�x) = 0 otherwise,

where �x = (x1, x2) represents the entry corresponding to row

number x1 and column number x2. For each submatrix U′

of the matrix U, define NΩ(U
′) as the number of observed

entries in U′ according to the sampling pattern Ω. Moreover,

define UΩ as the matrix obtained from sampling U according

to Ω, i.e.,

UΩ(�x) =

{
U(�x) if Ω(�x) = 1,
0 if Ω(�x) = 0.

(1)

B. d-Way Tensor Scenario

Assume that a d-way tensor U ∈ R
n1×···×nd is sampled.

Denote Ω as the binary sampling pattern tensor that is of the

same size as U and Ω(�x) = 1 if U(�x) is observed and Ω(�x) =
0 otherwise, where U(�x) represents an entry of tensor U with

coordinate �x = (x1, . . . , xd). Moreover, define UΩ as the

tensor obtained from sampling U according to Ω, i.e.,

UΩ(�x) =

{ U(�x) if Ω(�x) = 1,
0 if Ω(�x) = 0.

(2)

For each subtensor U ′ of the tensor U , define NΩ(U ′) as the

number of observed entries in U ′ according to the sampling

pattern Ω.

The CP rank of a tensor U , rankCP(U) = r, is defined as

the minimum number r such that there exist ali ∈ R
ni for

1 ≤ i ≤ d and 1 ≤ l ≤ r, such that

U =
r∑

l=1

al1 ⊗ al2 ⊗ . . .⊗ ald, (3)

or equivalently,

U(x1, x2, . . . , xd) =

r∑
l=1

al1(x1)a
l
2(x2) . . .a

l
d(xd), (4)

where ⊗ denotes the tensor product (outer product) and

ali(xi) denotes the xi-th entry of vector ali. Note that al1 ⊗
al2⊗ . . .⊗ald ∈ R

n1×···×nd is a rank-1 tensor, l = 1, 2, . . . , r.

C. Problem Statement

In this paper, we assume that there exists a full rank

completion of the sampled data (i.e., the data is not over-

sampled). We are interested in obtaining the upper bound

on the unknown rank r∗ deterministically based on the

sampling pattern Ω or Ω and the rank of a given completion.

Also, we aim to provide such bound that holds with high

probability based only on the sampling probability of the

entries and the rank of a given completion. Moreover, we

provide both deterministic and probabilistic conditions such

that the unknown rank can be exactly determined.

III. MAIN RESULTS

Note that for the case of two-way tensor or matrix, the

CP rank simply equivalent to the well-known matrix rank.

Hence, for the simplicity we start by proposing our approach

for the scenario of d = 2 in Section III-A and then generalize

it to a general d-way tensor in Section III-B.

A. Matrix Analysis

Previously, this problem has been treated in [32], where

strong assumptions including the existence of a completion

with rank r ≤ r∗ have been used. In this section, we

provide an analysis that does not require such assumption

and moreover our analysis can be extended to tensors as we

show in Section III-B. Furthermore, we show the tightness

of our theoretical bounds via numerical examples.

1) Deterministic Rank Analysis:
The following assumption will be used frequently in this

subsection.

Assumption Ar: Each column of the sampled matrix

includes at least r sampled entries.

Consider an arbitrary column of the sampled matrix

U (:, i), where i ∈ {1, . . . , n2}. Let li = NΩ(U (:, i)) denote

the number of observed entries in the i-th column of U.

Assumption Ar results that li ≥ r.

We construct a binary valued matrix called constraint
matrix Ω̆r based on Ω and a given number r. Specifically,

we construct li− r columns with binary entries based on the

locations of the observed entries in U (:, i) such that each

column has exactly r + 1 entries equal to one. Assume that

x1, . . . , xli are the row indices of all observed entries in this

column. Let Ωi
r be the corresponding n1 × (li − r) matrix

to this column which is defined as the following: for any

j ∈ {1, . . . , li − r}, the j-th column has the value 1 in rows

{x1, . . . , xr, xr+j} and zeros elsewhere. Define the binary

constraint matrix as Ω̆r =
[
Ω1

r|Ω2
r . . . |Ωn2

r

] ∈ R
n1×Kr [25],

where Kr = NΩ(U)− n2r.

Assumption Br: There exists a submatrix1 Ω̆′
r ∈ R

n1×K

of Ω̆r such that K = n1r − r2 and for any K ′ ∈
{1, 2, . . . ,K} and any submatrix Ω̆′′

r ∈ R
n1×K′

of Ω̆′
r we

have

rf(Ω̆′′
r )− r2 ≥ K ′, (5)

where f(Ω̆′′
r ) denotes the number of nonzero rows of Ω̆′′

r .

Note that exhaustive enumeration is needed in order to

check whether or not Assumption Br holds. Hence, the

deterministic analysis cannot be used in practice for large-

scale data. However, it serves as the basis of the subsequent

probabilistic analysis that will lead to a simple lower bound

on the sampling probability such that Assumption Br holds

with high probability, which is of practical value.

1Specified by a subset of rows and a subset of columns (not necessarily
consecutive).
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In the following, we restate Theorem 1 in [25] which will

be used later.

Lemma 1. For almost every U, there are finitely many
completions of the sampled matrix if and only if Assumptions
Ar∗ and Br∗ hold.

Recall that the true rank r∗ is assumed unknown.

Definition 1. Let SΩ denote the set of all natural numbers
r such that both Assumptions Ar and Br hold.

Lemma 2. There exists a number rΩ such that SΩ =
{1, 2, . . . , rΩ}.

Proof. Assume that 1 < r ≤ min{n1, n2} and r ∈ SΩ. It

suffices to show r − 1 ∈ SΩ. By contradiction, assume that

r − 1 /∈ SΩ. Therefore, according to Lemma 1, there exist

infinitely many completions of U of rank r − 1 and there

exist at most finitely many completions of U of rank r.

Consider a rank r−1 completion Ur−1. Note that changing

one single entry (a non-observed entry) of Ur−1, for example

Ur−1(1, 1) = x, to a random number in y ∈ R changes

the rank of this matrix by at most 1 and basically since

we are changing to a random number, it can be easily

seen that the rank does not decrease with probability one.

Hence, the rank of the modified matrix U′
r−1 would be either

r − 1 or r. Assume that the rank has been increased to r.

Then, we show there exist infinitely many completions of

rank r, which contradicts the assumption. In fact, for any

value of Ur−1(1, 1) except x, this matrix would be a rank

r completion. To observe this more clearly, consider the

r× r submatrix of U′
r−1 whose determinant is not zero due

to changing the value of Ur−1(1, 1). It is easily observed

that this submatrix includes U′
r−1(1, 1) and let assume it

is U′
r−1(1 : r, 1 : r), and therefore the determinant of

U′
r−1(2 : r, 2 : r) is a nonzero number (otherwise the rank

would not increase by changing the value of Ur−1(1, 1)).
Hence, it is easy to see that for any value of Ur−1(1, 1)
except x, U′

r−1 would be a rank r completion, and therefore

there exist infinitely many completions of rank r and proof

is complete in this scenario.

Now, assume that changing any of the non-observed entries

does not increase the rank of Ur−1. Then, this contradicts

the assumption that there exists a full rank completion of the

sampled data since there does not exist any completion of

rank higher than r − 1.

The following theorem provides a relationship between the

unknown rank r∗ and rΩ.

Theorem 1. With probability one, exactly one of the follow-
ing statements holds

(i) r∗ ∈ SΩ = {1, 2, . . . , rΩ};

(ii) For any arbitrary completion of the sampled matrix U
of rank r, we have r /∈ SΩ.

Proof. Suppose that there does not exist a completion of the

sampled matrix U of rank r such that r ∈ SΩ. Therefore, it

is easily verified that statement (ii) holds and statement (i)

does not hold. On the other hand, assume that there exists a

completion of the sampled matrix U of rank r, where r ∈
SΩ. Hence, statement (ii) does not hold and to complete the

proof it suffices to show that with probability one, statement

(i) holds.
Observe that rΩ ∈ SΩ, and therefore Assumption ArΩ

holds. Hence, each column of U includes at least rΩ + 1
observed entries. On the other hand, the existence of a

completion of the sampled matrix U of rank r ∈ SΩ results

in the existence of a basis X ∈ R
n1×r such that each column

of U is a linear combination of the columns of X, and thus

there exists Y ∈ R
r×n2 such that UΩ = (XY)Ω. Hence,

given X, each observed entry U(i, j) results in a degree-1
polynomial in terms of the entries of Y as the following

U(i, j) =

r∑
l=1

X(i, l)Y(l, j). (6)

Consider the first column of U and recall that it includes

at least rΩ + 1 ≥ r + 1 observed entries. The genericity of

the coefficients of the above-mentioned polynomials results

that using r of the observed entries the first column of Y can

be determined uniquely. This is because there exists a unique

solution for a system of r linear equations in r variables that

are linearly independent. Then, there exists at least one more

observed entry besides these r observed entries in the first

column of U and it can be written as a linear combination

of the r observed entries that have been used to obtain the

first column of Y. Let U(i1, 1), . . . , U(ir, 1) denote the r
observed entries that have been used to obtain the first column

of Y and U(ir+1, 1) denote the other observed entry. Hence,

the existence of a completion of the sampled matrix U of

rank r ∈ SΩ results in an equation as the following

U(ir+1, 1) =

r∑
l=1

tlU(il, 1), (7)

where tl’s are constant scalars, l = 1, . . . , r. Assume that

r∗ /∈ SΩ, i.e., statement (i) does not hold. Then, note that

r∗ ≥ r + 1 and U is chosen generically from the manifold

of n1 × n2 rank-r∗ matrices, and therefore an equation

of the form of (7) holds with probability zero. Moreover,

according to Lemma 1 there exist at most finitely many

completions of the sampled matrix of rank r. Therefore,

there exist a completion of U of rank r with probability

zero, which contradicts the initial assumption that there exists

a completion of the sampled matrix U of rank r, where

r ∈ SΩ.

Corollary 1. Consider an arbitrary number r′ ∈ SΩ. Similar
to Theorem 1, it follows that with probability one, exactly one
of the followings holds

(i) r∗ ∈ {1, 2, . . . , r′};
(ii) For any arbitrary completion of the sampled matrix U

of rank r, we have r /∈ {1, 2, . . . , r′}.

As a result of Corollary 1, we have the following.
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Corollary 2. Assuming that there exists a rank-r completion
of the sampled matrix U such that r ∈ SΩ, then with
probability one r∗ ≤ r.

Corollary 3. Let U∗ denote an optimal solution to the
following NP-hard optimization problem

minimizeU′∈Rn1×n2 rank(U′)
(8)

subject to U′
Ω = UΩ.

Also, let Û denote a suboptimal solution to the above
optimization problem. Then, Corollary 1 results the following
statements:

(i) If rank(U∗) ∈ SΩ, then r∗ = rank(U∗) with probability
one.

(ii) If rank(Û) ∈ SΩ, then r∗ ≤ rank(Û) with probability
one.

Remark 1. One challenge of applying Corollary 3 or any of
the other obtained deterministic results is the computation
of SΩ, which involves exhaustive enumeration to check
Assumption Br. Next, for each number r, we provide a lower
bound on the sampling probability in terms of r that ensures
r ∈ SΩ with high probability. Consequently, we do not need
to compute SΩ but instead we can certify the above results
with high probability.

2) Probabilistic Rank Analysis:
The following lemma is a re-statement of Theorem 3 in

[25], which is the probabilistic version of Lemma 1.

Lemma 3. Suppose r ≤ n1

6 and that each column of the
sampled matrix is observed in at least l entries, uniformly at
random and independently across entries, where

l > max
{
12 log

(n1

ε

)
+ 12, 2r

}
. (9)

Also, assume that r(n1 − r) ≤ n2. Then, with probability at
least 1− ε, r ∈ SΩ.

The following lemma is taken from [28] and will be used

to derive a lower bound on the sampling probability that leads

to the similar statement as Theorem 1 with high probability.

Lemma 4. Consider a vector with n entries where each entry
is observed with probability p independently from the other
entries. If p > p′ = k

n + 1
4
√
n

, then with probability at least(
1− exp(−

√
n
2 )

)
, more than k entries are observed.

The following proposition characterizes the probabilistic

version of Theorem 1.

Proposition 1. Suppose r ≤ n1

6 , r(n1 − r) ≤ n2 and that
each entry of the sampled matrix is observed uniformly at
random and independently across entries with probability p,
where

p >
1

n1
max

{
12 log

(n1

ε

)
+ 12, 2r

}
+

1
4
√
n1

. (10)

Then, with probability at least (1− ε)
(
1− exp(−

√
n1

2 )
)n2

,
we have r ∈ SΩ.

Proof. Consider an arbitrary column of U and note that re-

sulting from Lemma 4 the number of observed entries at this

column of U is greater than max
{
12 log

(
n1

ε

)
+ 12, 2r

}
with probability at least

(
1− exp(−

√
n1

2 )
)

. Therefore, the

number of sampled entries at each column satisfies

l > max
{
12 log

(n1

ε

)
+ 12, 2r

}
, (11)

with probability at least
(
1− exp(−

√
n1

2 )
)n2

. Thus, result-

ing from Lemma 3 with probability at least

(1− ε)
(
1− exp(−

√
n1

2 )
)n2

, we have r ∈ SΩ.

Finally, we have the following probabilistic version of

Corollary 3.

Corollary 4. Assume that rank(U∗) ≤ n1

6 and
rank(U∗)(n1 − rank(U∗)) ≤ n2 and (10) holds for
r = rank(U∗), where U∗ denotes an optimal solu-
tion to the optimization problem (8). Then, according to
Proposition 1 and Corollary 3, with probability at least
(1− ε)

(
1− exp(−

√
n1

2 )
)n2

, r∗ = rank(U∗). Similarly, as-

sume that rank(Û) ≤ n1

6 and rank(Û)(n1 − rank(Û)) ≤ n2

and (10) holds for r = rank(Û), where Û denotes a
suboptimal solution to the optimization problem (8). Then,
with probability at least (1− ε)

(
1− exp(−

√
n1

2 )
)n2

, r∗ ≤
rank(Û).

3) Numerical Results:
In Fig. 1 and Fig. 2, the x-axis represents the sampling

probability, and the y-axis denotes the value of r. The color

scale represents the lower bound on the probability of event

r ∈ SΩ. For example, as we can observe in Fig. 1, for

any r ∈ {1, . . . , 44} we have r ∈ SΩ with probability at

least 0.6 (approximately based on the color scale since the

corresponding points are orange) given that p = 0.54.

We consider the sampled matrix U ∈ R
300×15000 and U ∈

R
1200×240000 in Fig. 1 and Fig. 2, respectively. In particular,

for fixed values of sampling probability p and r, we first find

a “small” ε that (10) holds by trial-and-error. Then, according

to Proposition 1, we conclude that with probability at least

(1− ε)
(
1− exp(−

√
n1

2 )
)n2

, r ∈ SΩ.

The purpose of Fig. 3 is to show how tight our proposed

upper bounds on rank can be. Here, we first generate an

n1 × n2 random matrix of a given rank r by multiplying a

random (entries are drawn according to a uniform distribution

on real numbers within an interval) n1×r matrix and r×n2

matrix. Then, each entry of the randomly generated matrix

is sampled uniformly at random and independently across

entries with some sampling probability p. Afterwards, we

apply the nuclear norm minimization method proposed in

[36] for matrix completion, where the non-convex objective

function in (8) is relaxed by using nuclear norm, which is
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Fig. 1: Probability of r ∈ SΩ as a function of sampling

probability for U ∈ R
300×15000.
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Fig. 2: Probability of r ∈ SΩ as a function of sampling

probability for U ∈ R
1200×240000.

the convex hull of the rank function, as follows

minimizeU′∈Rn1×n2 ‖U′‖∗
(12)

subject to U′
Ω = UΩ,

where ‖U′‖∗ denotes the nuclear norm of U′. Let Û∗ denote

an optimal solution to (12) and recall that U∗ denotes an

optimal solution to (8). Since (12) is a convex relaxation to

(8), we conclude that Û∗ is a suboptimal solution to (8),

and therefore rank(U∗) ≤ rank(Û∗). We used the Matlab

program found online [37] to solve (12).

As an example, we generate a random matrix U ∈
R

300×15000 (the same size as the matrix in Fig. 1) of rank

r as described above for r ∈ {1, . . . , 50} and some values

of the sampling probability p. Then, we obtain the rank of

the completion given by (12) and denote it by r′. Due to the

randomness of the sampled matrix, we repeat this procedure

5 times. We calculate the “gap” r′ − r in each of these 5
runs and denote the maximum and minimum among these 5

numbers by dmax and dmin, respectively. Hence, dmax and dmin

represent the loosest (worst) and tightest (best) gaps between

the rank obtained by (12) and rank of the original sampled

matrix over 5 runs, respectively. In Fig. 3, the maximum and

minimum gaps are plotted as a function of rank of the matrix,

for different sampling probabilities.

We have the following observations.
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(d) p = 0.58.

Fig. 3: The gaps between the rank of the obtained matrix via

(12) and that of the original sampled matrix.
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• According to Fig. 1, for p = 0.54 and p = 0.58 we

can ensure that the rank of any completion is an upper

bound on the rank of the sampled matrix or r∗ with

probability at least 0.6 and 0.8, respectively.

• As we can observe in Fig. 3(a)-(d), the defined gap is

always a nonnegative number, which is consistent with

previous observation that for p = 0.54 and p = 0.58 we

can certify that with high probability (≥ 0.6) the rank

of any completion is an upper bound on the rank of the

sampled matrix or r∗.

• For p = 0.54 and p = 0.58 that we have theoretical

results (as mentioned in the first observation) the gap

obtained by (12) is very close to zero. This phenomenon

(that we do not have a rigorous justification for) shows

that as soon as we can certify our proposed theoretical

results (i.e., as soon as the rank of a completion provides

an upper bound on the rank of the sampled matrix or

r∗) by increasing the sampling probability, the upper

bound found through (12) becomes very tight; in some

cases this bound is exactly equal to r∗ (red curves) and

in some cases this bound is almost equal to r∗ (blue

curves). However, these gaps are not small (specially

blue curves) for p = 0.46 and p = 0.50 and note that

according to Fig. 1, for these values of p we cannot

guarantee the bounds on the value of rank hold with

high probability.

B. Tensor Analysis

In this subsection, we assume that the sampled tensor

U ∈ R
n1×...×nd is chosen generically from the manifold of

tensors of rank r∗ = rankCP(U), where r∗ is unknown.

Assumption Ar: Each row of the d-th matricization of the

sampled tensor, i.e., U(d) includes at least r observed entries.

We construct a binary valued tensor called constraint
tensor Ω̆r based on Ω and a given number r. Consider

any subtensor Y ∈ R
n1×n2×···×nd−1×1 of the tensor U .

The sampled tensor U includes nd subtensors that belong

to R
n1×n2×···×nd−1×1 and let Yi for 1 ≤ i ≤ nd denote

these nd subtensors. Define a binary valued tensor Y̆i ∈
R

n1×n2×···×nd−1×ki , where ki = NΩ(Yi)− r and its entries

are described as the following. We can look at Y̆i as ki
tensors each belongs to R

n1×n2×···×nd−1×1. For each of the

mentioned ki tensors in Y̆i we set the entries corresponding

to r of the observed entries equal to 1. For each of the other

ki observed entries, we pick one of the ki tensors of Y̆i and

set its corresponding entry (the same location as that specific

observed entry) equal to 1 and set the rest of the entries equal

to 0. In the case that ki = 0 we simply ignore Y̆i, i.e., Y̆i = ∅
By putting together all nd tensors in dimension d, we

construct a binary valued tensor Ω̆r ∈ R
n1×n2×···×nd−1×K ,

where K =
∑nd

i=1 ki = NΩ(U) − rnd and call it the

constraint tensor. Observe that each subtensor of Ω̆r which

belongs to R
n1×n2×···×nd−1×1 includes exactly r+1 nonzero

entries. In [27], an example is given on the construction of

Ω̆r.

Assumption Br: Ω̆r consists a subtensor Ω̆′
r ∈

R
n1×n2×···×nd−1×K such that K = r(

∑d−1
i=1 ni) − r2 −

r(d− 2) and for any K ′ ∈ {1, 2, . . . ,K} and any subtensor

Ω̆′′
r ∈ R

n1×n2×···×nd−1×K′
of Ω̆′

r we have

r

(
d−1∑
i=1

fi(Ω̆
′′
r )

)
− r min

{
max

{
f1(Ω̆

′′
r ), . . . , fd−1(Ω̆

′′
r )
}
, r
}

−(d− 2) ≥ K ′,

where fi(Ω̆
′′
r ) denotes the number of nonzero rows of the

i-th matricization of Ω̆′′
r .

The following lemma is a re-statement of Theorem 1 in

[27].

Lemma 5. For almost every U , there are only finitely many
rank-r∗ completions of the sampled tensor if and only if
Assumptions Ar∗ and Br∗ hold.

Definition 2. Let SΩ denote the set of all natural numbers
r such that both Assumptions Ar and Br hold.

Lemma 6. There exists a number rΩ such that SΩ =
{1, 2, . . . , rΩ}.

Proof. The proof is similar to the proof of Lemma 2 since

the dimension of the manifold of CP rank-r tensors is

r(
∑d

i=1 ni)− r2 − r(d− 1), which is an increasing function

in r.

The following theorem gives an upper bound on the

unknown rank r∗.

Theorem 2. For almost every U , with probability one, exactly
one of the following statements holds

(i) r∗ ∈ SΩ = {1, 2, . . . , rΩ};
(ii) For any arbitrary completion of the sampled tensor U

of rank r, we have r /∈ SΩ.

Proof. Similar to the proof of Theorem 1, it suffices to

show that the assumption r∗ /∈ SΩ results that there exists

a completion of U of CP rank r, where r ∈ SΩ, with

probability zero. Define V = (V1, . . . ,Vr) as the basis

of the rank-r CP decomposition of U as in (3), where

Vl = al1 ⊗ al2 ⊗ . . .⊗ ald−1 ∈ R
n1×...nd−1 is a rank-1 tensor

and ali is defined in (3) for 1 ≤ l ≤ r and 1 ≤ i ≤ d. Define

Y = (a1d, . . . ,a
r
d) and V ⊗dY =

∑r
l=1 Vl⊗ald. Observe that

U =
∑r

l=1 Vl ⊗ ald = V ⊗d Y .
Observe that each row of U(d) includes at least rΩ + 1

observed entries since Assumption ArΩ holds. Moreover, the

existence of a completion of the sampled tensor U of rank r ∈
SΩ results in the existence of a basis V = (V1, . . . ,Vr) such

that there exists Y = (a1d, . . . ,a
r
d) and UΩ = (V ⊗d Y)Ω.

As a result, given V , each observed entry of U results in a

degree-1 polynomial in terms of the entries of Y as

U(�x) =
r∑

l=1

Vl(x1, . . . , xd−1)a
l
d(xd). (13)

Note that rΩ ≥ r and each row of U(d) includes at least

rΩ + 1 ≥ r + 1 observed entries. Consider r + 1 of the
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observed entries of the first row of U(d) and we denote them

by U(�x1), . . . , U(�xr+1), where the last component of the

vector �xi is equal to one, 1 ≤ i ≤ r+1. Similar to the proof

of Theorem 1, genericity of U results in

U(�xr+1) =

r∑
l=1

tlU(�xi), (14)

where tl’s are constant scalars, l = 1, . . . , r. On the other

hand, according to Lemma 5 there exist at most finitely

many completions of the sampled tensor of rank r. Therefore,

there exist a completion of U of rank r with probability

zero. Moreover, an equation of the form of (14) holds with

probability zero as r∗ ≥ r + 1 and U is chosen generically

from the manifold of tensors of rank-r∗. Therefore, there

exists a completion of rank r with probability zero.

Corollary 5. Consider an arbitrary number r′ ∈ SΩ. Similar
to Theorem 2, it follows that with probability one, exactly one
of the followings holds

(i) r∗ ∈ {1, 2, . . . , r′};

(ii) For any arbitrary completion of the sampled tensor U
of rank r, we have r /∈ {1, 2, . . . , r′}.

Corollary 6. Assuming that there exists a CP rank-r comple-
tion of the sampled tensor U such that r ∈ SΩ, we conclude
that with probability one r∗ ≤ r.

Corollary 7. Let U∗ denote an optimal solution to the
following NP-hard optimization problem

minimizeU ′∈R
n1×···×nd rankCP(U ′)

(15)

subject to U ′
Ω = UΩ.

Assume that rankCP(U∗) ∈ SΩ. Then, Corollary 6 results
that r∗ = rankCP(U∗) with probability one.

The following lemma is Lemma 15 in [27], which is the

probabilistic version of Lemma 5 in terms of the sampling

probability.

Lemma 7. Assume that n1 = n2 = · · · = nd = n, d > 2,
n > max{200, r(d− 2)} and r ≤ n

6 . Moreover, assume that
the sampling probability satisfies

p > 1
nd−2 max

{
27 log

(
n
ε

)
+ 9 log

(
2r(d−2)

ε

)
+ 18, 6r

}
+ 1

4
√
nd−2

. (16)

Then, with probability at least (1 −
ε)
(
1− exp(−

√
nd−2

2 )
)n2

, we have r ∈ SΩ.

The following corollary is the probabilistic version of

Corollaries 6 and 7.

Corollary 8. Assuming that there exists a CP rank-r com-
pletion of the sampled tensor U such that the conditions
given in Lemma 7 hold, with the sampling probability
satisfying (16), we conclude that with probability at least

(1 − ε)
(
1− exp(−

√
nd−2

2 )
)n2

we have r∗ ≤ r. Therefore,
given that (16) holds for r = rank(U∗) and U∗ denotes
an optimal solution to the optimization problem (15), with

probability at least (1 − ε)
(
1− exp(−

√
nd−2

2 )
)n2

we have
r∗ = rank(U∗).

IV. CONCLUSIONS

Recently, fundamental conditions on the sampling patterns

have been obtained for finite completability of low-rank

matrices or tensors given the corresponding ranks. In this

paper, we consider the scenario where the rank is not given

and we aim to approximate the unknown rank based on the

location of sampled entries and some given completion. We

consider a tensor and provide an upper bound on the CP-

rank when an arbitrary low-CP-rank completion is given. We

have characterized these bounds both deterministically, i.e.,

with probability one given that the sampling pattern satisfies

certain combinatorial properties, and probabilistically, i.e.,

with high probability given that the sampling probability

is above some threshold. Moreover, we showed that the

obtained upper bound is exactly equal to the unknown rank

if the lowest-rank completion is given. Furthermore, we have

provided numerical experiments for the case of two-way

tensors, where we use nuclear norm minimization to find

a low-rank completion of the sampled data and we observe

that in most of the cases the proposed upper bound on the

rank is equal to the true rank.
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